Nothing Special   »   [go: up one dir, main page]

JP2008541859A - 3d−2d姿勢推定に基づく案内方法及び生の気管支鏡検査への応用を有する3d−ctレジストレーション - Google Patents

3d−2d姿勢推定に基づく案内方法及び生の気管支鏡検査への応用を有する3d−ctレジストレーション Download PDF

Info

Publication number
JP2008541859A
JP2008541859A JP2008513624A JP2008513624A JP2008541859A JP 2008541859 A JP2008541859 A JP 2008541859A JP 2008513624 A JP2008513624 A JP 2008513624A JP 2008513624 A JP2008513624 A JP 2008513624A JP 2008541859 A JP2008541859 A JP 2008541859A
Authority
JP
Japan
Prior art keywords
image data
previously acquired
motion
pose estimation
registration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008513624A
Other languages
English (en)
Other versions
JP2008541859A5 (ja
JP5525727B2 (ja
Inventor
ウィリアム イー ヒギンズ
スコット エイ メリット
ラヴ ライ
Original Assignee
ザ ペン ステイト リサーチ ファンデーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/437,229 external-priority patent/US7756563B2/en
Application filed by ザ ペン ステイト リサーチ ファンデーション filed Critical ザ ペン ステイト リサーチ ファンデーション
Publication of JP2008541859A publication Critical patent/JP2008541859A/ja
Publication of JP2008541859A5 publication Critical patent/JP2008541859A5/ja
Application granted granted Critical
Publication of JP5525727B2 publication Critical patent/JP5525727B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/415Evaluating particular organs or parts of the immune or lymphatic systems the glands, e.g. tonsils, adenoids or thymus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Endocrinology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

生で気管支鏡または他の内視鏡処置中の医師を案内する方法。気管支鏡の3D運動は、高速粗追跡ステップ及びそれに続く精レジストレーションステップを使用して推定される。追跡は、複数の連続気管支鏡ビデオフレームにまたがる1組の対応特色点を見出し、次いで気管支鏡の新しい姿勢を推定することによって行う。好ましい実施の形態では、姿勢推定は、回転マトリックスの線形化に基づく。現在の気管支鏡ビデオ画像の全域にわたって1組の対応点を与え、またCTをベースとする仮想画像を入力として与えることによって、同じ方法を手動レジストレーションにも使用することができる。精レジストレーションステップは、気管支鏡ビデオ画像とCTをベースとする仮想画像との間の相関を最大化する勾配をベースとするガウス・ニュートン法であることが好ましい。気管支鏡の3D運動をループで推定することによって、連続案内が提供される。奥行きマップ情報が利用可能であるので、追跡は、3D−2D姿勢推定問題を解くことによって行うことができる。3D−2D姿勢推定問題は、2D−2D姿勢推定問題よりも拘束的であり、基本マトリックスの計算に伴う制限の影響を受けない。レジストレーション費用として手動情報の代わりに相関をベースとする費用を使用することによって、レジストレーションのために勾配をベースとする方法の使用がより簡単になる。

Description

本発明は、一般的には気管支鏡検査法に関し、特定的には生で気管支鏡検査中の、または他の応用中の医師を案内する方法に関する。
肺癌を判断する場合、医師は抹消小結節または縦隔リンパ節のような疑わしい癌サイトの生体検査を遂行する必要がある。これらのサイトは、胸郭の3D CT画像データを分析することによって先ず識別される。その後に、気管支鏡検査中に、医師は気管支鏡から入手したビデオの援助を得てこれらのサイトへ到達しようとする。標準気管支鏡検査の成否は、医師の熟達レベル及び経験に大きく依存する。もし処置中に医師がある形状の案内を受ければ、気管支鏡検査の成功は増大することになろう。
過去数年内に幾つかの案内方法が示唆されてきた[1−5]。それらの全ては、奥行きデータ及び視覚データの両方を得るために、気管表面のCTをベースとする(仮想)管腔内レンダリングを使用している。これらは、仮想レンダリング及び到来ビデオフレームを使用して気管支鏡の3D位置及び配向(姿勢)を見出すことを試みている。Bricaultらは、気管支鏡ビデオ(実)と3D CT仮想気管支鏡画像とをレジスタする方法を提唱した[1]。この方法は、実画像の3D表面を見出すために陰影付け技術からの分割(セグメンテーション)及び形状を使用し、次いで計算された表面と仮想表面との3D−3Dレジストレーションを行う。
Moriらは、必須マトリックスを計算し、次いでPowellの方法による画像レジストレーションを使用して残留運動の推定を行うことによって気管支鏡運動を推定するために、先ず、実フレーム全域にわたる1組の点を追跡する方法を提唱した[3]。参照文献[5]においてMoriらは、レジスタされる画像面積を減少させるために、気管支鏡の運動及び新しい類似性の尺度の予測にカルマンフィルタを使用している。Helfertyらは、粗追跡及び精レジストレーションアプローチを使用している[2、6]。この追跡は、運動パラメータを推定するために、標準オプティカルフロー制約式及び仮想レンダリングからの奥行き情報を使用することによって実現されている。このレジストレーションは、シンプレックス方法を使用して実画像と仮想画像との間の相互情報を最大化することによって行われる。
Bricaultらが提唱した方法は追跡を含まず、分岐画像に限定される[1]。Moriらの方法は追跡のために必須マトリックスを[3]、そしてレジストレーションのためにPowellの方法を計算する。このアプローチは3つの限界を有している。第1に、Powellの方法を使用することによって、レジストレーションステップが低速になる。第2に、もし点のサブセットが共面であれば、必須マトリックスを決定することができない[7]。第3に、並進は、推定された必須マトリックスからのスケールまでしか回復することができない[7]。追跡のためにHelfertyらが採用したオプティカルフローアプローチは、ワーピング及び画像のための勾配の繰り返し計算を含むので、追跡は低速である[2、6]。シンプレックス法の使用は、レジストレーションステップをも低速にする。
本発明は、広義では、診断処置に関連して案内を提供するシステム及び方法に関する。本方法は、以前に取得した身体管腔の画像データを準備するステップと、身体管腔の生の画像データを取得するステップと、以前に取得した画像データと生の画像データとをリアルタイムで、またはほぼリアルタイムでレジスタするステップとを含む。好ましい実施の形態においては、内視鏡、気管支鏡、結腸内視鏡、または腹腔鏡のような器具を案内するために、レジストレーションを使用する。
以前に取得した画像データは、コンピュータ化トモグラフィック(CT)スライスを含む仮想画像データから導出することができる。代替として、以前に取得した画像データは予めレコードされているビデオ画像から導出することができる。生の画像データは、診断処置中に取得したビデオデータから導出することも、または到来仮想画像のストリームから導出することもできる。
本発明は、生の気管支鏡検査中の案内に特定の適用性を有している。気管支鏡の3D運動は、高速粗追跡ステップと、それに続く補正の目的から必要な精レジストレーションステップを使用して推定される。追跡は、複数の連続気管支鏡ビデオフレーム全体にわたって1組の対応特色点を見出し、次いで気管支鏡の新しい姿勢を推定することに基づく。
好ましい実施の形態においては、姿勢推定は、回転マトリックスを線形化することに基づく。入力として現在の気管支鏡ビデオ画像全域にわたる1組の対応点、及びCTをベースとする仮想画像を与えることによって、この方法を相互レジストレーションのためにも使用することができる。
精レジストレーションステップは勾配をベースとするガウス・ニュートン法であり、これは気管支鏡ビデオ画像と、CTをベースとする仮想画像との間の相関をベースとする費用(コスト)を最大にする。気管支鏡の3D運動をループで推定することによって、連続案内が提供される。
奥行きマップ情報が利用可能であるから、追跡は3D−2D姿勢推定問題を解くことによって行うことができる。3D−2D姿勢推定問題は2D−2D姿勢推定問題より拘束されており、必須マトリックスの計算に伴う制限を受けることがない。レジストレーション費用として相互情報の代わりに相関をベースとする費用を使用すると、レジストレーションのために勾配をベースとする方法を使用することが簡単になる。
以上に説明したように、気管支鏡の3D運動を追跡するために、我々は高速粗追跡と、その後の精レジストレーションアプローチを使用する。我々は、追跡のために3D−2D姿勢推定アルゴリズムを、またレジストレーションのために勾配をベースとするガウス・ニュートン法(その費用関数として相関をベースとする費用を使用する)を提唱する。
たとえ追跡アルゴリズムが100%正確であるとしても、精レジストレーションステップを回避することはできないことを理解されたい。それは、3D仮想表面データが実際の気管の樹枝分岐の正確な表現ではないからである。イメージングアーチファクトの存在、分割の誤差、及び肺容量に関連する諸問題がこれをもたらしている。従って、追跡中に常に若干のドリフト誤差が存在する。もしレジストレーションステップによってドリフト誤差を斟酌しなければ、それらは最早追跡できなくなる程の大きさまで累積するようになる。
一般的に言えば、精レジストレーションステップにはより多くの時間がかかる。従って、運動の殆どは高速追跡方法によって推定すべきであり、精レジストレーションは補正を行うためだけに留めるべきである。追跡の場合、我々は3D−2D姿勢推定問題を解くために、実ビデオフレーム間の複数の点の対応を、仮想レンダリングからの奥行きマップ情報と共に使用する。少数の連続実フレームを通して累積される回転は小さいから、回転マトリックスの線形化を行うことができるのである。従って、3D−2D姿勢推定問題は、一次系の式を解くことに軽減される。もし実画像と仮想画像との間の手動対応が与えられれば、この方法を手動レジストレーションにも使用することができる。精レジストレーションステップのために、我々は、Helfertyらが追跡に使用したアプローチを使用する[6]。これは、オプティカルフロー制約式を相関に基づく類似制約によって置換し、ソース画像を仮想画像で置換することによって行うことができる。
図1は、1組5枚の連続気管支鏡ビデオ(実)フレームを示しており、気管の樹枝分岐の内側の気管支鏡の運動を表している。最初のフレームを現在のビデオフレームIRcと考え、最後のフレームをIR5と考える。これらの間のフレームはIR2、IR3、及びIR4で表す。図2は、気管支鏡の現在の位置推定及び配向(姿勢)に基づく気管表面のCTをベースとする(仮想)管腔内レンダリングを示す。仮想画像IVは、現ビデオフレームIRcに視覚的に類似している。この目的は、仮想画像IVが現ビデオフレームIRcから5フレーム離間した実フレームIR5のように見えるように、仮想画像IVを再レンダリングすることである。これは、実フレーム内で観測された画像運動、仮想レンダリングからの奥行きマップ、及び仮想画像と実画像との間の視覚的類似性を使用することによって行うことができる。
図3は、総合方法を示している。最初のステップは、仮想画像IVと現在の実画像IRcとの初期レジストレーションを手動または自動の何れかで行う。手動レジストレーションは、実及び仮想画像全域にわたって対応点を与えることによって行われる。好ましい実施の形態では、6点が使用されている。仮想画像内の点もそれらに関連付けられたWiまたは(Xi,Yi,Zi)で表される奥行きデータを有しているから、気管支鏡の現在の姿勢、または3D運動(R、T)を入手するために、仮想画像IVを現在の実画像IRcと同じに見えるようにする3D−2D姿勢推定方法を適用する。IVは、姿勢推定を使用して再レンダリングされる。自動レジストレーションは、精レジストレーションステップによって行われる。
第2のステップは、複数の連続フレームにわたって追跡される複数の点を、現在の実フレームIRcから選択することである。好ましい実施の形態では、5フレームにわたって20点を追跡する。IVとIRcとはレジスタされるから、我々は現在の奥行きマップから各点に関連付けられた奥行きWiを知る。第3のステップは、これらの点の新しい2D位置(ui,vi)を入手するために、次の5フレームにわたる対での対応を使用してこれら20点を追跡することである。第4のステップは、追跡した点の2D運動とそれらの初期奥行きWiを使用して、新しい姿勢(R、T)を推定することである。第5のステップにおいては、新しい姿勢(R、T)を使用して仮想画像IVが再レンダリングされる。第6のステップは、追跡に起因するドリフト誤差を斟酌するためにIVとIR5との間の精レジストレーションを行い、次いでIVを再レンダリングすることである。最後に、新しい現在の実フレームIRcとしてIR5が割当てられ、アルゴリズムは第2のステップへ戻って、連続案内のために第2のステップから第6のステップまでをループする。
特色点の選択及び追跡
気管支鏡を高速粗追跡するために、画像IRc上の20の特色点piが選択される。IVはIRcのためのマッチング仮想画像であり、従ってpi毎に奥行きマップ情報を提供する。各piは奥行きマップによって与えられる関連奥行きを有し、その3D位置はWiまたは(Xi,Yi,Zi)によって与えられる。各特色点piは、IR5におけるそれらの新しい画像位置(ui,vi)を入手するために、フレームIR2、IR3、IR4、及びIR5を通して追跡される。特色点の選択基準は、それを追跡するために使用されている方法に完全に依存する。以下に、選択方法に先立って追跡方法を説明するのは、この理由からである。
追跡
画像IRc内で選択された1つの点は、フレームIR2、IR3、IR4、及びIR5を通して追跡しなければならない。先行フレームIRi内の特色点毎に次のフレームIRi+1内にマッチングする対応点を見出すことによって、特色点の追跡がフレーム毎に行われる。マッチングは、IRi内の点(x,y)の先行位置に生じたローカルシフト(v* x,v* y)を見出すことによって行われる。これは、IRi内の点(x,y)及びIRi+1内のシフトした点の周囲の画像強度パッチの自乗差の和(SSD)を最小にする。
Figure 2008541859
式(1)において、wはマッチした点のより良いセンタリングまたはローカライゼーションを得るために適用されるガウスの窓関数であり、(ux,vy)は探索窓Sにわたって変化し、(p,q)はパッチPにわたって変化する。IRi内の点(x,y)のマッチは、IRi+1内においては(x+v* x,y+v* y)によって与えられる。
フレーム間ではカメラの運動は小さいと考えられるから、Shi及びTomasiが証明したように[8]、簡単な並進画像運動モデルが使用される。より大きい運動に適合させるにためには、ガウスのピラミッドを構築する。
より大きい運動は、より粗なレベルで推定される。より小さい窓Pをテンプレート強度パッチのために使用することができ、また探索空間Sがピラミッドの全てのレベルにおいて小さく留まるので、計算が少なくなる。
選択
追跡の前に、フレームIRcから特色点piが選択される。特色をベースとするアプローチは、計算を節約するために少量の画像データを使用することを試み、若干の場合には頑強性を改善する。特色をベースとする追跡の場合の第1のステップは、1組の特色点を選択することである。ある点は、もしそれが次のフレームにおいて良好なマッチが得られる見込みがあれば、より良い選択であると考えられる。Triggsによれば、各画像マッチング法は対応する自己マッチングをベースとする特色点検出器を限定し、もしある点がそれ自体と正確にマッチすることができなければ、それは他の如何なる点ともしっかりとマッチすることはできない[9]。従って、小さい運動の下でシフトした画像パッチとそれ自体とのマッチングによって得られた相関またはSSDピークの鋭さが、多くの方法のためのキー基準にされてきた[8−10]。
シフト(ux,vy)の関数E(ux,vy)としての、それ自体との画像パッチのSSDは次の式によって与えられる。
Figure 2008541859
ここに、(x,y)は、パッチPにわたって変化する。小さいシフト(ux,vy)の場合には、
Figure 2008541859
及び
Figure 2008541859
が自己相関マトリックスとして知られている。この形状の自己相関マトリックスは、簡単な並進運動モデルに対してのみ有効である。例えばアフィン運動のような、他の運動モデルの場合にはパラメータの数及びディメンションの数が大きい。自己相関マトリックスの固有値は、ローカル画像構造を分析し、特色を隅または縁として分類するために使用されてきた[8、10]。
Zulianiらは、自己相関マトリックスの固有値に基づいて、異なる検出器間の関係を分析した[11]。彼等は、条件数と呼ぶ特色選択のための基準を与えている。条件数Ktransは、動揺(Dux,Dvy)に対するE(ux,vy)の感度の尺度となる。それは次式によって与えられる。
Figure 2008541859
但し、Dは数値安定度のために使用される小さい数である。条件数が大きい値であることは、動揺に対する自己相関の感度が高いことを意味しており、それは、自己相関が関心点において鋭いピークを有していることを意味する。
実施の形態では60点程度を、その点の画像勾配の強さに基づいて特色点候補として候補名簿に載せる。もし奥行きZiが仮想画像IV内の点piの周囲で大きく変化すれば、その点は3D縁に近接していると考えられ、従って追跡のために、またはその後の姿勢推定のためには好ましくない。従って、もう少しの点を拒絶するために、選択された点の周囲の奥行きの標準偏差にしきい値を適用する。これらの点は、それらの条件数に従って格納される。最後に、追跡のためにトップの20点が選択される。
姿勢推定
特色点Piが選択されて追跡されると、フレームIRc内のその3D位置Wi及びフレームIR5内のその新しい2D位置(ux,vy)が知られる。フレームIRcとIR5との間では気管支鏡は3D運動(R、T)させられる。
1つの参照フレーム内のn個の点の3D位置Wi、及び別の参照フレーム内に透視されたそれらの2D画像(ux,vy)を与えて、これらの参照フレーム間の回転及び並進(R、T)を解くことは、3D−2D姿勢推定問題として知られている。従って、姿勢推定ステップの目的は、Wi及び(ux,vy)を与えて(R、T)を推定することである。
この問題を解くために、多くの異なるクラスのアルゴリズムが開発されてきた。3点または4点のための(それらが、臨界的な配置にない限り)閉じた形状の解が存在する[12−14]。これらの方法は多項系の式を解くために、点間の精密な幾何学的制約を使用している。4点より多い場合には、先ず奥行きを解くために複数のクラスの1つの方法がより高次式の1つの系を一次式の1つの系として表し(オーバーディメンショニング)、次いで、姿勢を解くために絶対配向問題の解を使用する[15、16]。Luらは姿勢を決定するための高速繰り返しアルゴリズムを発表した[17]。しかしながら、その方法は、その物体がカメラに極めて接近しているか、またはその物体の奥行きが物体とカメラとの間の距離に匹敵するような場合(我々の応用範囲内では、このようなことが生じ得る)には、並進の推定に大きいバイアス誤差が誘起される。
特色の追跡は一度に数フレームだけについて行われるから、累積される回転は小さいと見做すことができる。我々の方法は、回転マトリックスを線形化するのにこの推測を使用する。我々の方法は、Loweの方法[18]、及びHaralickらによってなされた最小自乗調整ステップ[19]に極めて近い。
3D回転マトリックスRは、次式によって与えられる。
Figure 2008541859
ここに、
Figure 2008541859
であり、またθ,ψ及びφは各軸を中心とする回転角である。θ,ψ及びφの値が小さい場合、回転マトリックスは次のように書くことができる。
Figure 2008541859
(R、T)によって変換された3D世界の点Wは、次式によって与えられる。
Figure 2008541859
透視されたWQの画像は次のように表される。
Figure 2008541859
但し、fは焦点距離である。以下、一般性が失われない限り、fが1であると見做す。
n世界点(Xi,Yi,Zi)及び別の参照フレームにおけるそれらの画像点(ux,vy)が与えられた時、我々は次式を見出さなければならない。
Figure 2008541859
但し、(X’i,Y’i,Z’i)は式(11)によって与えられる。我々は、以下の式を使用して(R、T)を解くことができる。
Figure 2008541859
これは、複数の一次式の1つの過拘束された系を与える。
Figure 2008541859
式(15)の線系は、特異値分解(SVD)を使用して解くことができる(但し、解く間、極めて小さい特異値を0に等しくすることに注意を払うべきである)。Rの線形化された形状(式(10))は近似値であるから、(R、T)のための正確な解に到達するためにはあと数回繰り返さなければならない。(R、T)のための現在の解を使用し、3D点Wiを変換してWi’のための新しい推定を求める。式(11)内の新しいWiとしてWi’を処理することによって、残留変換(R,T)を決定すべきである。次いで、(R、T)を次のように更新する。
Figure 2008541859
この方法は、典型的に3回または4回の繰り返しで収束する。
3D CTレジストレーション
姿勢推定ステップの後に、(R、T)のための推定を使用して仮想画像IVが再レンダリングされる。これは、IVを視覚的にIR5に近付ける。しかしながら、ドリフト誤差が存在するために、IVは未だにIR5と良好にマッチしない。可視的なマッチのための基準として相関及びIVに関連する奥行きマップを使用して、精レジストレーションステップはIVとIR5との間の残留運動(RD,TD)を推定する。案内アルゴリズムの1つのループを完了させるために、(RD,TD)を使用してIVが再レンダリングされる。
対応を使用するレジストレーション
2つのソースをレジスタする高速手法は、追跡に使用したものと同一の方法を使用することである。唯一の差は、仮想画像IVと実画像IR5との間に対応が見出されることであろう。しかしながら、自己相関基準を使用してIR5上に点が選択される。殆どの情報が暗い領域内に含まれているから、点は、それらが全て暗い領域をサンプルするように選択される。選択された点は、ガウスのピラミッドセットアップにおけるマッチング基準としての相関を使用してIVとマッチされる。次のステップは、姿勢推定アルゴリズムを走らせ、推定された姿勢を使用してIVを更新することである。この方法は高速ではあるが、全ての画像対IV及びIR5のマッチングは良好ではない。この方法の精度は、気管内の分岐点からの気管支鏡の距離、及びIR5内に見られる分岐数に依存する。手動レジストレーションはこれと同じ方法を使用するが、対応点は手動で準備される。
相関の最大化を使用するレジストレーション
Helfertyらは追跡を行うために、オプティカルフロー制約式を、回転マトリックスの線形化及び仮想画像からの奥行きマップと共に使用している[6]。我々は、仮想画像IVと実画像IR5との精レジストレーションにこのアプローチを使用することを提唱する。
Helfertyらが示した方法の目的は、実ソース画像を実目標画像に向けて繰り返しワープさせることによって、実ソース画像と実目標画像とをレジスタすることである[6]。ソース画像またはオプティカルフロー2D画像運動(uxi,vyi)内の点の2D画像運動は、3D回転及び並進によって支配される。
Figure 2008541859
その導出は、セクション2.3に与えられているものと殆ど同一である。(ux,vy)を決定するために使用されるオプティカルフロー制約式は次の通りである。
Figure 2008541859
式(17)及び(18)を使用して(R、T)を繰り返して解くために、一次式の系をセットアップする。各ステップの後に、収束するまで次の繰り返しのためにソース画像の勾配のワーピング及び計算を行う。詳細は参照文献[6]を参照されたい。
我々の場合ソース画像はIVであり、目標画像はIR5である。オプティカルフロー制約(18)は、マッチングのためのSSD基準に基づいている。我々の場合、仮想画像IV及び実画像IR5の両者は2つの異なるソースからであるから、オプティカルフロー制約を直接使用することはできない。しかしながら、レジストレーションの前に平均が減算されてIV及びIR5が正規化されていれば式(8)が有効制約になり、精レジストレーションのために両式(17)及び(18)を一緒に使用することができる。

図4は、1対の仮想画像に適用した手動レジストレーションステップを示している。6つの対応点が、2つの画像全域にわたって手動で与えられている。対応と、左側の仮想画像に関連する奥行きマップとを使用し、姿勢推定法によって未知の姿勢が計算されている。左側の仮想画像は、姿勢のための推定を使用して再レンダリングされている。これは、左の画像と右の画像との間にマッチをもたらしている。この姿勢推定法は極めて高速であり、瞬時にマッチを発生する。レジストレーションの精度は、対応の質に依存する。
図5は、案内方法を開始させるために、仮想画像と実画像の初期レジストレーションのための手動レジストレーションステップの使用を示す図である。図6は、Luらによる姿勢推定方法を使用した結果を示しており、我々のドメインにおける不適合性を示している。対応の誤差は小さい(1ピクセル程度の)が、計算された並進の誤差が大きくなっている。以下は、正確な姿勢(R、T)と計算された姿勢(R1、T1)との間の比較である。
Figure 2008541859
Luらの姿勢推定法のためのMatlabコードへのリンクについては、参考文献[17]を参照されたい。
特色選択、追跡、及び姿勢推定の後に、ドリフト誤差を考慮するための精レジストレーションステップが必要である。精レジストレーションステップは、対応またはオプティカルフローの何れかに依存することができる。図7は、仮想画像IV上に入力点を与えた時の、実画像IR5上の計算された対応マッチング点を示している。実画像上の白点は、マッチのための初期推測を示している。黒点は、ガウスのピラミッドのセットアップにおける相関基準を使用して得た最終マッチを示している。ガウスのピラミッドの使用が大きい運動を考慮し、探索空間Sを減少させることによって計算時間が節約される。
図8は、仮想画像及び実画像に対してセクション2.4.1のレジストレーションステップを適用することによって得た結果を示している。対応のために使用された点も示されている。これら2つの場合のレジストレーション結果は良好であるが、一般的にこのようなことはない。レジストレーションステップの精度は、対応の質に依存する。気管支鏡が分岐に近いか、または離れている場合には、良好な対応は見出されない。その場合、オプティカルフローをベースとする精レジストレーションステップが使用される。
図9は、Helfertyらによるオプティカルフローをベースとするレジストレーションのための方法を示す[6]。残留運動を回復するために、ソース画像は目標画像に向かって繰り返しワープされる。これは、IVとIR5の間の残留運動を迅速に回復することができる勾配をベースとするアプローチである。図10a−cは、運動推定の後にワープされた仮想画像の例を有する仮想及びビデオ画像対のための精レジストレーションステップを示している。
高速追跡は、気管支鏡検査中の案内のために2つのソースを一緒に保持する上で必須のステップである。これは、追跡に起因するドリフト誤差から逃れることはできない。それはこれらのドリフト誤差が、部分的に3D画像データ内の小さい誤差から生じているからである。従って、ドリフト誤差を斟酌するために、精レジストレーションステップが必要になる。特色をベースとする3D−2D姿勢推定は、追跡を行う高速且つ安定な技術である。これは、必須マトリックスの計算に伴う不安定さの影響を受けない。もし実及び仮想の両画像にまたがる対応が計算されれば、この同一セットアップをレジストレーションのために同じように使用することができる。
気管支鏡検査の場合、少なくとも2つの他の代替が利用可能である。これらの代替は、
1.以前に取得した画像データは奥行き情報に伴う予めレコードされた気管支鏡ビデオ画像シーケンスであり、生のソースは気管支鏡からの到来ビデオである。
2.以前に取得した画像データは奥行き情報に伴う予めレコードされた気管支鏡ビデオ画像シーケンスであり、生のソースは3D CT画像を通して対話的にナビゲートする時に取得できるような到来仮想画像である。
応用は、特に画像案内方式の内視鏡検査の分野における遠大な応用を有している。
要約すれば、我々は回転マトリックスの線形化に基づく新しい3D−2D姿勢推定方法を提供する。本方法は反復的であり、小さい回転の場合には急速に収束する。オプティカルフロー制約式内に正規化された画像を使用することによって、Helfertyらによる勾配をベースとするレジストレーション方法を精レジストレーションに使用することができる[6]。このアプローチは、レジストレーションのためのシンプレックス法、またはPowellの方法を使用するよりも高速である。
[引用文献]
Figure 2008541859

Figure 2008541859
気管樹枝分岐の内側の気管支鏡の運動を表す1組5枚の連続気管支鏡ビデオ(実)フレームを示している。 気管支鏡の位置及び配向(姿勢)の現在の推定に基づく気管表面のCTをベースとする(仮想)管腔内レンダリングを示す図である。 本発明の総合的方法を示す図である。 1対の仮想画像に適用した手動レジストレーションステップを示す図である。 案内方法を開始させるために、仮想画像と実画像の初期レジストレーションのための手動レジストレーションステップの使用を示す図である。 Luらによる姿勢推定方法を使用した結果を示す図であって、我々のドメインにおけるその不適合性を示している。 仮想画像IV上に入力点を与えた時の、実画像IR5上の計算された対応マッチング点を示す図である。 仮想画像及び実画像にレジストレーションステップを適用することによって得た結果を示す図である。 Helfertyらによるレジストレーションのためのオプティカルフローをベースとする方法を示す図である。 精レジストレーションステップを示す図であって、図10aは、ビデオ画像IRc(図10b)、及び運動推定の後のワープされた仮想画像(図10c)とレジスタされる仮想画像IVを示している。

Claims (27)

  1. 診断処置に関連して案内を提供する方法であって、
    身体管腔(lumen)の以前に取得した画像データを準備するステップと、
    上記身体管腔の生の画像データを取得するステップと、
    上記以前に取得した画像データと上記生の画像データとをリアルタイムで、またはほぼリアルタイムでレジスタするステップと、
    を含むことを特徴とする方法。
  2. 上記以前に取得した画像データと上記生の画像データとをレジスタするステップは、診断処置中に器具を案内するために使用されることを特徴とする請求項1に記載の方法。
  3. 上記器具は、内視鏡、気管支鏡、結腸内視鏡、または腹腔鏡であることを特徴とする請求項2に記載の方法。
  4. 上記以前に取得した画像データは、仮想画像データから導出されることを特徴とする請求項1に記載の方法。
  5. 上記以前に取得した画像データは、コンピュータ化トモグラフィック(CT)画像データから導出されることを特徴とする請求項1に記載の方法。
  6. 上記以前に取得した画像データは、予めレコードされたビデオソースから導出されることを特徴とする請求項1に記載の方法。
  7. 上記生の画像データは、上記診断処置中に取得したビデオデータから導出されることを特徴とする請求項1に記載の方法。
  8. 上記生の画像データは、到来する仮想画像のストリームから導出されることを特徴とする請求項1に記載の方法。
  9. a)奥行き情報を含む以前に取得した画像データを準備するステップと、
    b)生の画像データを供給するために器具を使用するステップと、
    c)上記奥行き情報を使用し、また上記生のビデオ画像に関連する複数の点を追跡して上記器具の三次元(3D)運動を推定するステップと、
    d)3D−2D姿勢推定問題を解くことによって新しい姿勢を決定するステップと、
    e)上記新しい姿勢に基づいて上記以前に取得した画像データを更新するステップと、
    f)上記処置を完了させるために、上記ステップc)乃至e)をシステム内において繰り返すステップと、
    を含むことを特徴とする請求項1に記載の方法。
  10. 上記姿勢推定は、回転マトリックスの線形化に基づくことを特徴とする請求項9に記載の方法。
  11. 上記器具の3D運動の推定に伴う誤差を最小にするために、精レジストレーションステップを遂行するステップを更に含むことを特徴とする請求項9に記載の方法。
  12. 上記精レジストレーションステップは、勾配をベースとするガウス・ニュートン法に基づくことを特徴とする請求項11に記載の方法。
  13. 上記精レジストレーションステップは、
    身体管腔の仮想画像を計算するステップと、
    上記身体管腔の仮想画像と、生のビデオ画像との間の費用を最小化するステップと、
    を含むことを特徴とする請求項11に記載の方法。
  14. 上記以前に取得した画像データは、コンピュータ化トモグラフィック(CT)スライスから導出されることを特徴とする請求項9に記載の方法。
  15. 上記器具は、内視鏡、気管支鏡、結腸内視鏡、または腹腔鏡であることを特徴とする請求項9に記載の方法。
  16. 上記以前に取得した画像データを上記生の画像データとレジスタし、現在の奥行きマップを求めるステップと、
    上記生の画像データに関連する複数の点を選択するステップと、
    連続する複数のフレームにわたって上記複数の点を追跡し、上記追跡された点の二次元(2D)運動を推定するステップと、
    上記追跡された点の2D運動及び上記現在の奥行きマップを使用して、上記器具の三次元(3D)運動を導出するステップと、
    を含むことを特徴とする請求項9に記載の方法。
  17. 上記連続フレームの1つにおけるn点の3D位置(Wi)及びそれらの2D画像(ui,vi)は、別の参照フレームにおける透視を通して知られ、
    上記姿勢推定は、上記(Wi)及び(ui,vi)を使用して回転及び並進(R,T)について解く、
    ことを特徴とする請求項16に記載の方法。
  18. 上記Rは、姿勢推定中に線形化される三次元マトリックスであることを特徴とする請求項16に記載の方法。
  19. 身体管腔を通してビューイング器具を案内するシステムであって、
    身体管腔の以前に取得した画像データを格納するデータベースと、
    上記身体管腔の生の画像データを受信する入力と、
    上記データベース及び上記入力と通信し、上記以前に取得した画像データと上記生の画像データとをリアルタイムで、またはほぼリアルタイムでレジスタするように動作するプロセッサと、
    を含むことを特徴とするシステム。
  20. 上記管腔の以前に取得した画像データを格納するデータベースは、奥行き情報を含むことを特徴とする請求項19に記載のシステム。
  21. 上記プロセッサは更に、
    a)上記奥行き情報を使用し、また上記生のビデオ画像に関連する複数の点を追跡して三次元運動を推定し、
    b)3D−2D姿勢推定問題を解くことによって新しい姿勢を決定する、
    ように動作することを特徴とする請求項19に記載のシステム。
  22. 上記プロセッサは更に、回転マトリックスを線形化して3D−2D姿勢推定問題を解くように動作することを特徴とする請求項21に記載のシステム。
  23. 上記プロセッサは更に、三次元運動の推定に伴う誤差を最小化するために、精レジストレーションステップを遂行するように動作することを特徴とする請求項19に記載のシステム。
  24. 上記精レジストレーションは、勾配をベースとするガウス・ニュートン法を使用することを特徴とする請求項23に記載のシステム。
  25. 上記精レジストレーションは、
    身体管腔の仮想画像を計算し、
    上記仮想画像と上記生の画像データとの間の費用を最小化する
    ことを含むことを特徴とする請求項23に記載のシステム。
  26. 上記以前に取得した画像データは、コンピュータ化トモグラフィック(CT)スライスから導出されることを特徴とする請求項19に記載のシステム。
  27. 上記生の画像データを入手するために、内視鏡、気管支鏡、結腸内視鏡、または腹腔鏡を更に含むことを特徴とする請求項19に記載のシステム。
JP2008513624A 2005-05-23 2006-05-23 3d−2d姿勢推定に基づく案内方法及び生の気管支鏡検査への応用を有する3d−ctレジストレーション Active JP5525727B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US68358805P 2005-05-23 2005-05-23
US60/683,588 2005-05-23
US11/437,229 2006-05-19
US11/437,229 US7756563B2 (en) 2005-05-23 2006-05-19 Guidance method based on 3D-2D pose estimation and 3D-CT registration with application to live bronchoscopy
PCT/US2006/019926 WO2007008289A2 (en) 2005-05-23 2006-05-23 3d-2d pose estimation and 3d-ct registration for bronchoscopy

Publications (3)

Publication Number Publication Date
JP2008541859A true JP2008541859A (ja) 2008-11-27
JP2008541859A5 JP2008541859A5 (ja) 2012-06-14
JP5525727B2 JP5525727B2 (ja) 2014-06-18

Family

ID=40148658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008513624A Active JP5525727B2 (ja) 2005-05-23 2006-05-23 3d−2d姿勢推定に基づく案内方法及び生の気管支鏡検査への応用を有する3d−ctレジストレーション

Country Status (1)

Country Link
JP (1) JP5525727B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056239A (ja) * 2007-09-03 2009-03-19 Olympus Medical Systems Corp 内視鏡装置
JP2012525190A (ja) * 2009-04-29 2012-10-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 単眼の内視鏡画像からのリアルタイム深度推定
JP2013517909A (ja) * 2010-01-28 2013-05-20 ザ ペン ステイト リサーチ ファンデーション 気管支鏡検査法ガイダンスに適用される画像ベースのグローバル登録

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510230A (ja) * 1997-06-27 2002-04-02 ザ・ボード・オブ・トラスティーズ・オブ・ザ・リーランド・スタンフォード・ジュニア・ユニバーシティ 立体的画像ナビゲーション方法及び装置
JP2002345725A (ja) * 2001-05-22 2002-12-03 Olympus Optical Co Ltd 内視鏡システム
JP2003265408A (ja) * 2002-03-19 2003-09-24 Mitsubishi Electric Corp 内視鏡誘導装置および方法
WO2005008591A2 (en) * 2003-07-11 2005-01-27 Siemens Corporate Research, Inc. System and method for endoscopic path planning
JP2005077831A (ja) * 2003-09-01 2005-03-24 Olympus Corp 工業用内視鏡装置及びこれを用いた検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510230A (ja) * 1997-06-27 2002-04-02 ザ・ボード・オブ・トラスティーズ・オブ・ザ・リーランド・スタンフォード・ジュニア・ユニバーシティ 立体的画像ナビゲーション方法及び装置
JP2002345725A (ja) * 2001-05-22 2002-12-03 Olympus Optical Co Ltd 内視鏡システム
JP2003265408A (ja) * 2002-03-19 2003-09-24 Mitsubishi Electric Corp 内視鏡誘導装置および方法
WO2005008591A2 (en) * 2003-07-11 2005-01-27 Siemens Corporate Research, Inc. System and method for endoscopic path planning
JP2005077831A (ja) * 2003-09-01 2005-03-24 Olympus Corp 工業用内視鏡装置及びこれを用いた検査方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056239A (ja) * 2007-09-03 2009-03-19 Olympus Medical Systems Corp 内視鏡装置
JP2012525190A (ja) * 2009-04-29 2012-10-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 単眼の内視鏡画像からのリアルタイム深度推定
JP2013517909A (ja) * 2010-01-28 2013-05-20 ザ ペン ステイト リサーチ ファンデーション 気管支鏡検査法ガイダンスに適用される画像ベースのグローバル登録

Also Published As

Publication number Publication date
JP5525727B2 (ja) 2014-06-18

Similar Documents

Publication Publication Date Title
US7756563B2 (en) Guidance method based on 3D-2D pose estimation and 3D-CT registration with application to live bronchoscopy
Lin et al. Video‐based 3D reconstruction, laparoscope localization and deformation recovery for abdominal minimally invasive surgery: a survey
US20220015727A1 (en) Surgical devices and methods of use thereof
US7889905B2 (en) Fast 3D-2D image registration method with application to continuously guided endoscopy
US20200046436A1 (en) Methods and systems for multi view pose estimation using digital computational tomography
US6381302B1 (en) Computer assisted 2D adjustment of stereo X-ray images
Mori et al. Tracking of a bronchoscope using epipolar geometry analysis and intensity-based image registration of real and virtual endoscopic images
KR102196291B1 (ko) 분지형 해부학적 구조물 내에서의 의료 장치의 위치 결정
Shen et al. Context-aware depth and pose estimation for bronchoscopic navigation
US20210267448A1 (en) Jigs for use in medical imaging and methods for using thereof
EP3261545B1 (en) Robust calcification tracking in fluoroscopic imaging
EP2348954A1 (en) Image-based localization method and system
Wang et al. Gradient-based differential approach for 3-D motion compensation in interventional 2-D/3-D image fusion
US20230030343A1 (en) Methods and systems for using multi view pose estimation
JP5525727B2 (ja) 3d−2d姿勢推定に基づく案内方法及び生の気管支鏡検査への応用を有する3d−ctレジストレーション
CN115120346A (zh) 目标点定位方法、装置、电子设备及支气管镜系统
Rai et al. Real-time image-based guidance method for lung-cancer assessment
US20200297292A1 (en) Catheter tip detection in fluoroscopic video using deep learning
Fu et al. Visual‐electromagnetic system: A novel fusion‐based monocular localization, reconstruction, and measurement for flexible ureteroscopy
JP2008541859A5 (ja)
Boussot et al. Statistical model for the prediction of lung deformation during video-assisted thoracoscopic surgery
CN116327364A (zh) 内窥镜辅助支气管术中导航方法、系统、介质及电子设备
CN118781172A (zh) 3d超高清荧光医用内窥镜血管图像增强方法及系统、装置、存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120123

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130318

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130618

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5525727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250