Nothing Special   »   [go: up one dir, main page]

JP2008238269A - Method of manufacturing electric resistance welded steel pipe having good tenacity in welded portion - Google Patents

Method of manufacturing electric resistance welded steel pipe having good tenacity in welded portion Download PDF

Info

Publication number
JP2008238269A
JP2008238269A JP2008028326A JP2008028326A JP2008238269A JP 2008238269 A JP2008238269 A JP 2008238269A JP 2008028326 A JP2008028326 A JP 2008028326A JP 2008028326 A JP2008028326 A JP 2008028326A JP 2008238269 A JP2008238269 A JP 2008238269A
Authority
JP
Japan
Prior art keywords
welding
welding power
erw
electric resistance
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008028326A
Other languages
Japanese (ja)
Other versions
JP4935703B2 (en
Inventor
Shigeto Sakashita
重人 坂下
Toshihiro Inoue
智弘 井上
Daijiro Yuasa
大二郎 湯浅
Hiroyasu Yokoyama
泰康 横山
Kazuhito Kenmochi
一仁 剣持
Yukimichi Iizuka
幸理 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008028326A priority Critical patent/JP4935703B2/en
Publication of JP2008238269A publication Critical patent/JP2008238269A/en
Application granted granted Critical
Publication of JP4935703B2 publication Critical patent/JP4935703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electric resistance welded pipe having good tenacity in a welded portion by which the electric resistance welded pipe having a desired tenacity in the welded portion even when dimensional variation or the like occurs on a steel strip which is a base material. <P>SOLUTION: Groove shapes are previously imparted to edges 4a, 4b of an open pipe 4 and the edges 4a, 4b are continuously photographed by an edge shape monitor 11 just before performing electric resistance welding. The groove depth h is measured by performing picture processing by inputting the photographed picture and also the distribution of oxides in the welded portion is continuously measured with an ultrasonic flaw detector 15 after the electric resistance welding. The optimum welding power is calculated on the basis of these measured results and the welding power from a welding power generator 6 is adjusted. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、石油または天然ガス等の輸送用ラインパイプとして使用される電縫鋼管の製造方法に関する。   The present invention relates to a method for producing an electric resistance welded steel pipe used as a line pipe for transportation of oil or natural gas.

天然ガス輸送用パイプライン等に使用される鋼管(ラインパイプ)では、その要求特性の厳格化がすすみ、極低温環境(≦−45℃)にも耐えるよう極低温でも高靭性となる鋼管の必要性が高まっている。   Steel pipes (line pipes) used for natural gas transportation pipelines, etc. are becoming more demanding and require steel pipes that have high toughness even at extremely low temperatures so that they can withstand cryogenic environments (≤-45 ° C). The nature is increasing.

電縫鋼管は、ラインパイプとしても従来からよく用いられているが、こうした極低温靭性要求に対しては、電縫シーム部(電縫溶接部)の品質に課題があり、ほとんど適用された実績が無い。これは、電縫溶接(電気抵抗溶接)の際に生成する微小な酸化物が溶接完了後もシーム部(溶接部)内に残留し、これが極低温でのシャルピー試験における吸収エネルギー値の低下要因となり、必要とされる靭性値を安定して得ることができないためである。   ERW steel pipes have long been used as line pipes, but there are problems with the quality of ERW seam parts (ERW welds) in response to such cryogenic toughness requirements, and the results have been mostly applied. There is no. This is because small oxides generated during electric resistance welding (electrical resistance welding) remain in the seam part (welded part) even after welding is complete, and this is the cause of the decrease in absorbed energy value in the Charpy test at cryogenic temperatures. This is because the required toughness value cannot be obtained stably.

従来から、こうした残留微小酸化物の削減のために、様々な試みが実施されてきた。溶接装置と溶接部周辺の鋼管をすっぽり覆ってしまい、不活性ガス等で酸素濃度を低下させた状態で電縫溶接を行う、所謂シールド溶接などが代表的な技術である(例えば、特許文献1参照)。   Conventionally, various attempts have been made to reduce such residual fine oxides. A typical technique is so-called shield welding in which the welding apparatus and the steel pipe around the welded portion are completely covered, and electro-sealing welding is performed in a state where the oxygen concentration is reduced with an inert gas or the like (for example, Patent Document 1). reference).

なお、[発明が解決しようとする課題]の項において、本出願人の未公開先行出願を引用するので、その出願番号をここに記載しておく。すなわち、特願2005−362722号(未公開出願1)である。   In the [Problems to be solved by the invention] section, the unpublished prior application of the present applicant is cited, and the application number is described here. That is, Japanese Patent Application No. 2005-362722 (Unpublished Application 1).

また、[発明を実施するための最良の形態]の項において、下記の特許文献2(本願の優先日より後に出願された)を引用するので、ここに合わせて記載しておく。
特開平4−178281号公報 特開2007−163470号公報
In addition, in the [Best Mode for Carrying Out the Invention] section, the following Patent Document 2 (filed after the priority date of the present application) is cited, and is described here.
Japanese Patent Laid-Open No. 4-178281 JP 2007-163470 A

上述したような、溶接装置と溶接装置の周辺をすっぽり覆ってしまい、大気から遮断して不活性ガスで置換するシールド溶接は、主に外径がφ165mm以下の小径管を製造するミルでは広く実用化されているが、外径が大きくなるに従い、溶接装置も大型化し、シールド領域も大型化しなければならず、完全な密閉が工業的に難しくなるため、外径がφ165mmを越える中径管あるいは大径管を製造するミルでシールド溶接を実用化しているところはほとんどない。   Shield welding that completely covers the periphery of the welding device and the welding device as described above, and is shielded from the atmosphere and replaced with an inert gas, is widely used mainly in mills that manufacture small-diameter pipes with an outer diameter of φ165 mm or less. However, as the outer diameter increases, the welding apparatus must be enlarged and the shield area must be enlarged, and complete sealing becomes industrially difficult. Therefore, a medium diameter pipe having an outer diameter exceeding φ165 mm or There are few places where shield welding is put into practical use in mills that produce large-diameter pipes.

これに対して、本出願人は、前記未公開出願1において、シールド溶接を用いることなく、極低温でも靭性が良好な電縫鋼管を得ることができる電縫鋼管の製造方法を提案している。   On the other hand, the present applicant has proposed a method for producing an electric resistance welded steel pipe that can obtain an electric resistance welded steel pipe having good toughness even at an extremely low temperature without using shield welding in the unpublished application 1. .

すなわち、電縫鋼管は、所定の幅に切断された鋼帯をロールフォーミング装置によって連続的にロール成形して略管形のオープン管とし、そのオープン管の両エッジを電縫溶接する(詳しくは、オープン管のそれぞれのエッジに高周波電流を通電し、それによって生じるジュール熱で両エッジを加熱・溶融し、その後、両エッジを突き合わせて圧接する)ことで製造される。   That is, an electric resistance steel pipe is formed by continuously roll-forming a steel strip cut to a predetermined width by a roll forming device to form a substantially pipe-shaped open pipe, and both edges of the open pipe are electro-welded (for details) , A high-frequency current is applied to each edge of the open tube, both edges are heated and melted by Joule heat generated thereby, and then both edges are butted and pressed).

その際に、従来の電縫溶接では、図8(a)に横断面形状を示すように、オープン管のエッジの形状は単純な矩形であるため、通電の際にエッジの外表面と内表面近傍に電流が集中し、板厚中心では電流密度が低くなることから、この板厚方向の電流密度の不均一は、そのまま温度分布の不均一となり、ひいては板厚中心の温度が低いことによる酸化物排出不良を引き起こす本質的な原因であった。   At that time, in the conventional ERW welding, as shown in FIG. 8A, the shape of the edge of the open tube is a simple rectangle, so that the outer surface and inner surface of the edge are energized. Since current concentrates in the vicinity and the current density is low at the center of the plate thickness, this non-uniform current density in the plate thickness direction results in a non-uniform temperature distribution, and hence oxidation due to the low temperature at the center of the plate thickness. It was an essential cause of poor product discharge.

そこで、前記未公開出願1では、図8(b)に横断面形状を示すように、オープン管のエッジの外表面と内表面のコーナー部に、所定のテーパー形状(開先形状)を付与しておき、それによって、前述の板厚方向の電流密度不均一を解消し、溶接部から酸化物を効率的に排出して、極低温でも高靭性を有する電縫鋼管を得ようとしている。   Therefore, in the unpublished application 1, as shown in the cross-sectional shape in FIG. 8 (b), a predetermined taper shape (groove shape) is imparted to the outer surface and the inner surface of the edge of the open tube. By doing so, the above-described uneven current density in the plate thickness direction is eliminated, oxide is efficiently discharged from the welded portion, and an electric-welded steel pipe having high toughness even at an extremely low temperature is to be obtained.

しかし、実際の操業においては、母材となる鋼帯のキャンバー(曲がり)などの寸法変動や強度のばらつきなどによって、エッジに付与した開先形状が所定の形状どおりにならない場合がある。その場合には、溶接部の温度分布が変動して、所望の靭性を有する電縫鋼管を安定して製造することができない可能性がある。   However, in actual operation, the groove shape applied to the edge may not be in a predetermined shape due to dimensional variation such as a camber (bending) of the steel strip that is the base material and variation in strength. In that case, the temperature distribution of the welded portion may fluctuate, and it may not be possible to stably manufacture an ERW steel pipe having desired toughness.

本発明は、上記のような事情に鑑みてなされたものであり、母材となる鋼帯に寸法変動等があっても、所望の溶接部靭性を有する電縫鋼管を安定して製造することが可能な、溶接部の靭性が良好な電縫鋼管の製造方法を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and stably manufactures an ERW steel pipe having a desired welded portion toughness even if there is a dimensional variation or the like in a steel strip as a base material. It is an object of the present invention to provide a method for producing an electric resistance welded steel pipe having good weld toughness.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]鋼帯を略管形のオープン管に成形し、そのオープン管の両エッジを電縫溶接する電縫鋼管の製造方法において、
予めオープン管のエッジに開先形状を付与しておき、電縫溶接を行う前に前記開先形状を計測するとともに、電縫溶接後に当該溶接部の酸化物量を計測し、それらの計測結果に基づいて、電縫溶接の溶接電力を調節することを特徴とする溶接部の靭性が良好な電縫鋼管の製造方法。
[1] In a method of manufacturing an electric resistance welded steel pipe in which a steel strip is formed into a substantially pipe-shaped open pipe, and both edges of the open pipe are electro-welded
A groove shape is given to the edge of the open pipe in advance, and the groove shape is measured before performing the ERW welding, and the oxide amount of the welded portion is measured after the ERW welding, and the measurement results are obtained. A method for producing an electric resistance welded steel pipe having good weld toughness, characterized in that the welding electric power of electric resistance welding is adjusted.

[2]電縫鋼管の製造前に予め、開先形状の開先高さに対する靭性と溶接電力の関係を求め、その靭性と溶接電力の関係から、開先高さと所望の靭性が得られる溶接電力との関係を求めておくとともに、溶接電力と溶接部の酸化物量との関係も求め、その溶接電力と溶接部の酸化物量との関係から、溶接部の酸化物量と溶接電力の補正係数との関係を求めておき、
その後、電縫鋼管の製造中において、
付与された開先形状の開先高さを電縫溶接を行う前に計測し、前記計測された開先高さならびに前記開先高さと所望の靭性が得られる溶接電力との関係から、前記計測された開先高さに対し所望の靭性が得られる溶接電力を求め、この求められた溶接電力に基づいて電縫溶接の溶接電力を調節するとともに、
電縫溶接後に当該溶接部の酸化物量を計測し、前記計測された酸化物量ならびに前記溶接部の酸化物量と溶接電力の補正係数との関係から、前記計測された酸化物量に対し溶接電力の補正係数を求め、この求められた溶接電力の補正係数に基づいて電縫溶接の溶接電力を調節することを特徴とする前記[1]に記載の溶接部の靭性が良好な電縫鋼管の製造方法。
[2] Before manufacturing the electric resistance welded pipe, the relationship between the toughness and the welding power with respect to the groove height of the groove shape is obtained in advance, and the weld height from which the groove height and the desired toughness can be obtained from the relationship between the toughness and the welding power. In addition to determining the relationship with power, the relationship between welding power and the amount of oxide in the weld is also determined.From the relationship between the welding power and the amount of oxide in the weld, the amount of oxide in the weld and the correction factor for welding power Seeking the relationship
Later, during the manufacture of ERW pipe,
Measure the groove height of the given groove shape before performing ERW welding, and from the relationship between the measured groove height and the welding power at which the groove height and the desired toughness can be obtained, While obtaining the welding power to obtain the desired toughness with respect to the measured groove height, adjusting the welding power of ERW welding based on the obtained welding power,
The amount of oxide in the weld is measured after ERW welding. From the relationship between the measured amount of oxide and the amount of oxide in the weld and the correction coefficient of the welding power, correction of welding power is performed with respect to the measured amount of oxide. The method for producing an ERW steel pipe with good weld toughness according to [1], wherein a coefficient is obtained and the welding power of ERW welding is adjusted based on the obtained correction coefficient of welding power. .

[3]オープン管のエッジにレーザースリット光を照射し、そのレーザースリット光で照射されたオープン管のエッジをカメラで撮影することによって、開先形状を計測することを特徴とする前記[1]または[2]に記載の溶接部の靭性が良好な電縫鋼管の製造方法。   [3] The groove shape is measured by irradiating the edge of the open tube with laser slit light and photographing the edge of the open tube irradiated with the laser slit light with a camera [1] Or the manufacturing method of the ERW steel pipe with favorable toughness of the weld part as described in [2].

[4]超音波を用いて当該溶接部の酸化物量を計測することを特徴とする前記[1]乃至[3]のいずれかに記載の溶接部の靭性が良好な電縫鋼管の製造方法。   [4] The method for producing an ERW steel pipe with good weld toughness according to any one of [1] to [3], wherein an oxide amount of the weld is measured using ultrasonic waves.

[5]予めオープン管のエッジに開先形状を付与しておく方法は、エッジ切削装置で付与する方法、ロールフォーミング装置で付与する方法、または孔型ロールを用いて付与する方法のいずれかであることを特徴とする前記[1]乃至[4]のいずれかに記載の溶接部の靭性が良好な電縫鋼管の製造方法。   [5] The method of applying the groove shape to the edge of the open tube in advance is any one of a method of applying with an edge cutting device, a method of applying with a roll forming device, or a method of applying using a perforated roll. The method for producing an ERW steel pipe having good weld toughness according to any one of the above [1] to [4].

[6]鋼帯を略管形のオープン管に成形するオープン管成形手段と、オープン管の両エッジを電縫溶接する電縫溶接手段を備えた電縫鋼管の製造設備において、
予めオープン管のエッジに開先形状を付与する開先形状付与手段と、電縫溶接を行う前に前記開先形状を計測する開先形状計測手段と、電縫溶接後に当該溶接部の酸化物量を計測する酸化物量計測手段と、前記開先形状計測手段と酸化物量計測手段の計測結果に基づいて電縫溶接の溶接電力を調節する溶接電力調節手段を設けたことを特徴とする電縫鋼管の製造設備。
[6] In an electric resistance steel pipe manufacturing facility comprising an open pipe forming means for forming a steel strip into a substantially tubular open pipe, and an electric resistance welding means for electric resistance welding of both edges of the open pipe,
A groove shape imparting means for previously imparting a groove shape to the edge of the open pipe, a groove shape measuring means for measuring the groove shape before performing the electric resistance welding, and an oxide amount of the welded portion after the electric resistance welding And a welding power adjusting means for adjusting the welding power of ERW welding based on the measurement results of the groove shape measuring means and the oxide amount measuring means. Manufacturing equipment.

本発明においては、大量生産となる実操業において、母材となる鋼帯の寸法変動や強度のばらつき等の不可避的要因によって、オープン管のエッジに付与した開先形状が変動した場合でも、溶接部靭性値のばらつきを抑止して、所望の靭性を有する電縫鋼管(特に、これまで製造が困難であった極低温用途にも適した電縫鋼管)を安定して製造することができる。   In the present invention, even in the actual operation of mass production, even if the groove shape applied to the edge of the open pipe is fluctuated due to unavoidable factors such as dimensional variation and strength variation of the steel strip as the base material, welding is performed. It is possible to stably produce an electric resistance welded steel pipe having desired toughness (especially an electric resistance welded steel pipe suitable for cryogenic applications that have been difficult to produce so far) by suppressing variation in the toughness value.

本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態における電縫鋼管の製造ラインを示すものである。   FIG. 1 shows an ERW steel pipe production line according to an embodiment of the present invention.

通常の電縫鋼管の製造ラインと同様に、所定の幅に切断されたコイル(鋼帯)1のエッジをエッジ切削装置2によって切削した後、ロールフォーミング装置3によって連続的にロール成形して略管形のオープン管4とし、そのオープン管4の両エッジ4a、4bを電縫溶接する、すなわち、オープン管4のそれぞれのエッジ4a、4bに溶接電力発生装置(溶接機)6によって高周波電流を通電し、それによって生じるジュール熱で両エッジ4a、4bを加熱・溶融し、その後、スクイズロール(図示せず)によって両エッジ4a、4bを突き合わせて圧接することで、電縫鋼管7を製造するようになっている。なお、電縫溶接装置(溶接電力発生装置6とスクイズロール)の下流側の近接した位置に、電縫溶接で形成されたビード(余盛り)を切削するビード切削バイト(図示せず)が設けられている。   Similar to a normal ERW steel pipe production line, the edge of a coil (steel strip) 1 cut to a predetermined width is cut by an edge cutting device 2 and then continuously roll-formed by a roll forming device 3. A pipe-shaped open pipe 4 is formed, and both edges 4a, 4b of the open pipe 4 are electro-welded, that is, a high-frequency current is applied to each edge 4a, 4b of the open pipe 4 by a welding power generator (welding machine) 6. By energizing, both edges 4a and 4b are heated and melted by Joule heat generated thereby, and then both edges 4a and 4b are brought into contact with each other by a squeeze roll (not shown) to produce an electric-welded steel pipe 7. It is like that. In addition, a bead cutting bit (not shown) for cutting a bead (surplus) formed by electro-welding welding is provided at a position close to the downstream side of the electro-welding welding apparatus (welding power generator 6 and squeeze roll). It has been.

その上で、この実施形態においては、エッジ切削装置2、ロールフォーミング装置3、または両エッジ4a、4bを適切に加工するための孔型ロール(図示せず)を用いて、鋼帯1幅両端部の外表面と内表面のコーナー部にテーパー加工を施すことによって、図8(b)に示したような開先形状(テーパー形状)をオープン管4のエッジ4a、4bに付与しておき、電縫溶接を行う直前にエッジ4a、4bをエッジ形状モニター(高精度モニターカメラ)11によって連続的に撮影し、その撮影画像を溶接機6に連結した演算処理装置14にリアルタイムで入力して画像処理することによって開先形状の微妙な変化を計測するとともに、電縫溶接後に当該溶接部(開先形状を計測した個所に対応する溶接部)を超音波探傷器15によって検査し、その検査データを演算処理装置14にリアルタイムで入力して演算処理することによって当該溶接部の酸化物分布を計測し、それら開先形状の計測結果(寸法データ)と酸化物分布の計測結果(酸化物量)に基づいて最適な溶接電力を求めて、溶接電力発生装置6からの溶接電力を調節するようにしている。   In addition, in this embodiment, the edge cutting device 2, the roll forming device 3, or the hole-type roll (not shown) for appropriately processing both the edges 4a and 4b are used, and both ends of the steel strip 1 are widened. A groove shape (tapered shape) as shown in FIG. 8B is given to the edges 4a and 4b of the open tube 4 by tapering the outer surface and the corner portion of the inner surface of the portion, The edges 4a and 4b are continuously photographed by the edge shape monitor (high-precision monitor camera) 11 immediately before the electric-welding welding is performed, and the photographed images are input to the arithmetic processing unit 14 connected to the welding machine 6 in real time. This process measures subtle changes in the groove shape, and inspects the welded portion (welded portion corresponding to the location where the groove shape is measured) with an ultrasonic flaw detector 15 after ERW welding. Then, the inspection data is input to the arithmetic processing unit 14 in real time to perform arithmetic processing to measure the oxide distribution of the weld, and the measurement results (dimension data) of the groove shape and the measurement result of the oxide distribution ( The optimum welding power is obtained based on the oxide amount), and the welding power from the welding power generator 6 is adjusted.

図2は、上記のエッジ形状モニター11を用いた開先形状の計測の詳細説明図である。図2(a)は上面図、図2(b)は図2(a)のA−A矢視図(横断面図)である。   FIG. 2 is a detailed explanatory view of groove shape measurement using the edge shape monitor 11 described above. 2A is a top view, and FIG. 2B is an AA arrow view (transverse cross-sectional view) of FIG. 2A.

図2に示すように、エッジ形状モニター11は、レーザースリット光照射装置12と画像計測カメラ13を組み合わせたもの(光切断)であり、ここでは、オープン管4の一方のエッジ4aにレーザースリット光を所定の照射角度θで斜め方向から照射するレーザースリット光照射装置12aと、そのレーザースリット光で照射されたエッジ4aを撮影する画像計測カメラ13aと、オープン管4の他方のエッジ4bにレーザースリット光を所定の照射角度θで斜め方向から照射するレーザースリット光照射装置12bと、そのレーザースリット光で照射されたエッジ4bを撮影する画像計測カメラ13bとからなっている。   As shown in FIG. 2, the edge shape monitor 11 is a combination of a laser slit light irradiation device 12 and an image measurement camera 13 (light cutting). Here, a laser slit light is applied to one edge 4a of the open tube 4. A laser slit light irradiating device 12a that irradiates a laser beam from an oblique direction at a predetermined irradiation angle θ, an image measuring camera 13a that captures an edge 4a irradiated with the laser slit light, and a laser slit on the other edge 4b of the open tube 4 It consists of a laser slit light irradiating device 12b that irradiates light from an oblique direction at a predetermined irradiation angle θ, and an image measurement camera 13b that images the edge 4b irradiated with the laser slit light.

これによって、レーザースリット光照射装置12a、12bからのレーザースリット光で照射されたエッジ4a、4bを画像計測カメラ13a、13bで撮影し、その撮影画像を演算処理装置14で画像処理して、それぞれの開先形状5a、5bを計測する。ここでは、特に、図2(b)に示す4個所の開先高さhを計測するようにしている。   Thereby, the edges 4a and 4b irradiated with the laser slit light from the laser slit light irradiation devices 12a and 12b are photographed by the image measurement cameras 13a and 13b, and the photographed images are image-processed by the arithmetic processing device 14, respectively. The groove shapes 5a and 5b are measured. Here, in particular, four groove heights h shown in FIG. 2B are measured.

そして、上記のようにして開先形状を計測した個所について、電縫溶接後の残留酸化物の量を超音波探傷器15を用いて計測するようにしている。   And the amount of the residual oxide after electric-welding welding is measured using the ultrasonic flaw detector 15 about the part which measured the groove shape as mentioned above.

次に、前述したように、上記の開先高さhの計測結果と当該溶接部の酸化物量の計測結果に基づいて最適な溶接電力を演算して、溶接電力発生装置6からの溶接電力を調節することになるが、その際の基本的な考え方を以下に述べる。   Next, as described above, the optimum welding power is calculated based on the measurement result of the groove height h and the measurement result of the oxide amount of the weld, and the welding power from the welding power generator 6 is calculated. The basic concept will be described below.

図3は、オープン管4の両エッジ4a、4bに開先形状5a、5bを付与して電縫鋼管を製造した場合について、開先高さhをパラメータにして、溶接電力(図3では、単位時間当たり・単位面積当たりに換算してあり、単位はkW/(sec・mm2)である)と溶接シーム部の靭性(シャルピー試験遷移温度)との関係を整理した一例を示すものである。ここでは、溶接シーム部の靭性をシャルピー試験遷移温度(以下、単に遷移温度)で表し、コイル厚tを12.7mm、開先高さhを2mm、3mm、4mmと変化させるとともに、比較のために、開先形状を付与しない場合(開先なし)も示している。なお、図3は溶接電力と溶接シーム部の靭性(シャルピー試験遷移温度)の関係を定性的に示したものであり、溶接電力の値は省略してある。 FIG. 3 shows a case where the groove shape 5a, 5b is applied to both edges 4a, 4b of the open pipe 4 to manufacture an electric resistance welded steel pipe, with the groove height h as a parameter, the welding power ( It is converted into per unit time and unit area, and the unit is kW / (sec · mm 2 )) and shows an example of the relationship between weld seam toughness (Charpy test transition temperature). . Here, the toughness of the weld seam is expressed by the Charpy test transition temperature (hereinafter simply referred to as transition temperature), the coil thickness t is changed to 12.7 mm, the groove height h is changed to 2 mm, 3 mm, and 4 mm for comparison. In addition, a case where no groove shape is given (no groove) is also shown. FIG. 3 qualitatively shows the relationship between the welding power and the toughness (Charpy test transition temperature) of the weld seam, and the value of the welding power is omitted.

図3から明らかなように、開先形状を付与しない場合に比べて、開先形状を付与した場合は、遷移温度が大きく低下して、靭性が大幅に向上しており、開先形状を付与した効果が現れている。   As is clear from FIG. 3, when the groove shape is given, the transition temperature is greatly reduced and the toughness is greatly improved and the groove shape is given when the groove shape is given. The effect that has appeared.

ただし、開先高さが同じ場合に遷移温度が最も低くなる溶接電力(図3中の白抜きの点)は、開先高さによって変化している。言い換えれば、ある開先高さに対応して最適な溶接電力で電縫溶接していても、開先高さが変化すると、そのままの溶接電力では、最適な溶接電力から外れることになり、靭性(遷移温度)が大きく変動してしまうことになる。   However, the welding power at which the transition temperature is lowest when the groove height is the same (the white point in FIG. 3) varies depending on the groove height. In other words, even if ERW welding is performed with an optimum welding power corresponding to a certain groove height, if the groove height changes, the welding power as it is will deviate from the optimum welding power, resulting in toughness. (Transition temperature) will fluctuate greatly.

そこで、この実施形態においては、開先高さhの変化に対応して、溶接電力をその開先高さhにおける最適な溶接電力となるように調節することによって、靭性(遷移温度)の変動(ばらつき)を最小化するようにしている。   Therefore, in this embodiment, the fluctuation of toughness (transition temperature) is adjusted by adjusting the welding power so as to be the optimum welding power at the groove height h in response to the change in the groove height h. (Variation) is minimized.

すなわち、図4に示すように、横軸を最適溶接電力(図4では、単位時間当たり・単位面積当たりに換算してあり、単位はkW/(sec・mm2)である)に、縦軸を(開先高さ合計2h/コイル厚さt)にとり、遷移温度が最も低くなる溶接電力(図3中の白抜きの点)をプロットして得られる曲線が、開先高さhの変化に対応した溶接電力最適化曲線(溶接電力補正曲線)ということになる。そして、前述した開先高さhの計測結果に基づいて、この溶接電力最適化曲線からその開先高さhに最適な溶接電力を求め、溶接電力をその最適溶接電力に設定するようにする。なお、図4は最適溶接電力と縦軸(開先高さ合計2h/コイル厚さt)を定性的に示したものであり、最適溶接電力の値は省略してある。 In other words, as shown in FIG. 4, the horizontal axis represents the optimum welding power (in FIG. 4, the unit is converted per unit time / unit area, and the unit is kW / (sec · mm 2 )), and the vertical axis (Groove height total 2h / coil thickness t), and the curve obtained by plotting the welding power (open point in FIG. 3) at which the transition temperature is the lowest is the change in the groove height h. This is a welding power optimization curve (welding power correction curve) corresponding to. Then, based on the measurement result of the groove height h described above, an optimum welding power for the groove height h is obtained from the welding power optimization curve, and the welding power is set to the optimum welding power. . FIG. 4 qualitatively shows the optimum welding power and the vertical axis (groove height total 2h / coil thickness t), and the value of the optimum welding power is omitted.

あるいは、溶接電力を当初目標の開先高さhm(例えば、3mm)で最適な溶接電力に設定しておき(すなわち、図4において、開先高さ3mmの場合を原点としておき)、開先高さのズレ量に応じて、最適な溶接電力の変動量だけ溶接電力を補正するようにしてもよい。   Alternatively, the welding power is set to an optimum welding power at the initial target groove height hm (for example, 3 mm) (that is, the groove height of 3 mm is set as the origin in FIG. 4), and the groove is formed. The welding power may be corrected by the optimum amount of variation in welding power in accordance with the amount of deviation in height.

なお、図4の溶接電力最適化曲線(溶接電力補正曲線)は、電縫鋼管の製造(操業)を開始する前に予め作成しておき、同一種類の電縫鋼管を製造する際には、同じ溶接電力最適化曲線(溶接電力補正曲線)を利用する。   Note that the welding power optimization curve (welding power correction curve) in FIG. 4 is prepared in advance before starting the manufacture (operation) of the ERW steel pipe, and when manufacturing the same type of ERW steel pipe, The same welding power optimization curve (welding power correction curve) is used.

しかし、前記のような制御を行っても、操業条件等の変動により、溶接部に微細な酸化物が残留して脆性の低下を招くことがある。   However, even if the above control is performed, fine oxides may remain in the weld due to fluctuations in operating conditions and the like, leading to a decrease in brittleness.

そこで、この実施形態においては、電縫溶接後の溶接部の酸化物量を計測し、その計測結果を演算処理装置14を介して溶接電力発生装置6にフィードバックして溶接電力を調節し、溶接部の残留酸化物を安定して低減化することとした。その際、通常は、残留酸化物が多い場合には、溶接電力を増加させて酸化物の浮上除去を促進させる。   Therefore, in this embodiment, the amount of oxide in the welded portion after ERW welding is measured, and the measurement result is fed back to the welding power generating device 6 via the arithmetic processing unit 14 to adjust the welding power, and the welded portion The residual oxide was stably reduced. At that time, usually, when there is a large amount of residual oxide, the welding power is increased to promote the floating removal of the oxide.

溶接部の残留酸化物量(特に溶接部の靭性に影響のある微小残留酸化物(数100μm以下)量)の計測手段は既知の手段が使える。たとえば、前記特許文献2に開示されたアレイ型探触子を用いた超音波探傷法や同文献内に開示された方法により計測可能である。   Known means can be used to measure the amount of residual oxide in the weld (particularly the amount of minute residual oxide (a few hundred μm or less) that affects the toughness of the weld). For example, it can be measured by an ultrasonic flaw detection method using an array type probe disclosed in Patent Document 2 or a method disclosed in the same document.

以下にアレイ型探触子を用いた超音波探傷器15を使用した際のフィードバックの方法を例示する。   A feedback method when using the ultrasonic flaw detector 15 using an array type probe will be exemplified below.

図5に超音波探傷器15の計測値(平均エコー高さ)と吸収エネルギーの関係の一例を示す。なお、平均エコー高さは微細な酸化物量に相当する。したがって、ここでは、平均エコー高さが0〜20%ならば溶接部の酸化物量は少なく十分な靭性が得られている。   FIG. 5 shows an example of the relationship between the measured value (average echo height) of the ultrasonic flaw detector 15 and the absorbed energy. The average echo height corresponds to a fine oxide amount. Therefore, here, if the average echo height is 0 to 20%, the amount of oxide in the welded portion is small and sufficient toughness is obtained.

そこで、図4に基づいて設定した溶接電力で、種々の条件(素材の形状、材質、造管速度等々)で電縫溶接した後の溶接部の平均エコー高さ(=酸化物量)と溶接電力(単位はkW/(sec・mm2)である)の関係を、あらかじめ、図6のように求めておく。 Therefore, with the welding power set based on FIG. 4, the average echo height (= oxide amount) and welding power of the welded part after ERW welding under various conditions (material shape, material, pipe making speed, etc.) The relationship (unit is kW / (sec · mm 2 )) is obtained in advance as shown in FIG.

次に、たとえば図5の例のように、平均エコー高さが20%程度であれば高靭性が確保できる場合は、基準値を20%として、図6に基づいて、平均エコー高さがx%の時の溶接電力の補正係数を下式により求める。なお、図6は平均エコー高さと溶接電力の関係を定性的に示したものであり、溶接電力の値は省略してある。   Next, as in the example of FIG. 5, for example, when high toughness can be secured if the average echo height is about 20%, the reference value is set to 20% and the average echo height is x based on FIG. The correction coefficient of welding power when% is obtained by the following formula. FIG. 6 qualitatively shows the relationship between the average echo height and the welding power, and the value of the welding power is omitted.

補正係数=(溶接電力)エコー高さ=20%/(溶接電力)エコー高さ=x%
ここで、(溶接電力)エコー高さ=20%は、図6における平均エコー高さ20%の時の溶接電力であり、(溶接電力)エコー高さ=x%は、図6における平均エコー高さx%の時の溶接電力である。
Correction coefficient = (welding power) echo height = 20% / (welding power) echo height = x%
Here, (welding power) echo height = 20% is the welding power when the average echo height is 20% in FIG. 6, and (welding power) echo height = x% is the average echo height in FIG. This is the welding power when x%.

例えば、計測された溶接部の平均エコー高さが100%ならば、図6と上式から、補正係数は1.05となる。したがって、この場合は、設定された溶接電力を1.05倍する。   For example, if the average echo height of the measured weld is 100%, the correction coefficient is 1.05 from FIG. 6 and the above equation. Therefore, in this case, the set welding power is multiplied by 1.05.

一方、計測された平均エコー高さが0〜20%ならば溶接条件は変更しなくてよい(補正係数は1)。   On the other hand, if the measured average echo height is 0 to 20%, the welding condition does not need to be changed (the correction coefficient is 1).

図7は、上記のようにして求めた平均エコー高さと補正係数の関係を示している。   FIG. 7 shows the relationship between the average echo height obtained as described above and the correction coefficient.

なお、図7の溶接電力の補正係数は、電縫鋼管の製造(操業)を開始する前に予め作成しておき、同一種類の電縫鋼管を製造する際には、同じ補正係数を利用する。例えば、ある条件で設定した溶接電力で溶接した後に超音波探傷器15で測定された平均エコー高さが100%のときは、図7から補正係数が1.05なので、設定した溶接電力に1.05を乗じた溶接電力に制御する。なお測定された平均エコー高さが0〜20%ならば、図7から補正係数は1となるので溶接条件は変更しなくてよい。   Note that the welding power correction coefficient in FIG. 7 is created in advance before the start (operation) of the ERW steel pipe, and the same correction coefficient is used when manufacturing the same type of ERW steel pipe. . For example, when the average echo height measured by the ultrasonic flaw detector 15 is 100% after welding with a welding power set under a certain condition, the correction coefficient is 1.05 from FIG. Control the welding power multiplied by .05. If the measured average echo height is 0 to 20%, the correction coefficient is 1 from FIG. 7, and the welding conditions need not be changed.

また、超音波探傷器15による残留酸化物量の計測は、電縫溶接の直後に行うことが好ましい。具体的には、ビード切削バイトの直後に超音波探傷器15を配置することが好ましい。電縫溶接装置から離れれば離れるほど時間がたつので、フィードバックする情報としては、精度が落ちるからである。   The measurement of the amount of residual oxide by the ultrasonic flaw detector 15 is preferably performed immediately after the electric resistance welding. Specifically, it is preferable to arrange the ultrasonic flaw detector 15 immediately after the bead cutting tool. This is because as the distance from the electro-welding apparatus increases, the more time it takes, the less accurate the feedback information.

上記の制御方法は一例であり、たとえば平均エコー高さが0〜20%の範囲に収まるように、溶接電力をチューニングするような他の手段を採用しても良いのは言うまでもない。   The above control method is an example, and it goes without saying that other means such as tuning the welding power may be adopted so that the average echo height falls within the range of 0 to 20%.

このようにして、ここでは、開先高さhの計測結果に基づくフィードフォワード制御と、残留酸化物量の計測結果(平均エコー高さ)に基づくフィードバック制御を組み合わせて、溶接電力の最適化を図っている。   In this way, here, the feed-forward control based on the measurement result of the groove height h and the feedback control based on the measurement result of the residual oxide amount (average echo height) are combined to optimize the welding power. ing.

以上述べたように、この実施形態においては、オープン管4のエッジ4a、4bに開先形状(テーパー形状)5a、5bを付与することによって、電縫溶接時の板厚方向の電流密度すなわち温度分布を均一化して、電縫溶接後のシーム内の残留微小酸化物を低減し、良好な極低温靭性を得られるようになっているとともに、付与した開先形状5a、5bの変化と当該溶接部の残留酸化物量を計測して、溶接電力をその開先形状5a、5bに対応した最適な溶接電力に調整することによって、母材となる鋼帯1の寸法変動や強度のばらつき等の不可避的要因で開先形状5a、5bが変化した場合でも、溶接部靭性のばらつきを抑止して、所望の靭性を有する電縫鋼管(特に、これまで製造が困難であった極低温用途にも適した電縫鋼管)を安定して製造することができるようになっている。   As described above, in this embodiment, by providing groove shapes (tapered shapes) 5a and 5b to the edges 4a and 4b of the open tube 4, the current density in the plate thickness direction at the time of ERW welding, that is, the temperature The distribution is made uniform, the residual fine oxide in the seam after ERW welding is reduced, and good cryogenic toughness can be obtained. By measuring the amount of residual oxide in the part and adjusting the welding power to the optimum welding power corresponding to the groove shapes 5a and 5b, it is inevitable that the steel strip 1 serving as the base material has dimensional variation and strength variation. Even if the groove shapes 5a and 5b change due to the mechanical factors, the variation in weld toughness is suppressed, and the ERW steel pipe having the desired toughness (especially suitable for cryogenic applications that have been difficult to manufacture until now) Stable ERW steel pipe) Thereby making it possible to produce Te.

ちなみに、実操業においては、いったん製造を開始してしまうと、連続的に流れるコイル1あるいはオープン管4の開先形状5a、5bは、マニュアルでは測定不可能である。仮に開先形状5a、5bを測定できたとしても、リアルタイムに自動的に溶接機6の溶接電力を変化させる仕組みなしには、工業生産として効果を発揮できない。したがって、本発明の有用性は極めて高いものがある。   By the way, in actual operation, once manufacturing is started, the groove shapes 5a and 5b of the continuously flowing coil 1 or open tube 4 cannot be measured manually. Even if the groove shapes 5a and 5b can be measured, the effect cannot be exhibited as industrial production without a mechanism for automatically changing the welding power of the welding machine 6 in real time. Therefore, the usefulness of the present invention is extremely high.

なお、上記において、開先形状5a、5bを付与するのは、エッジ切削装置2で付与してもよいし、ロールフォーミング装置3の中(例えば、フィンパスロールによる)で付与してもよいし、または孔型ロール(図示無し)を用いて付与してもよいが、できるだけ溶接機6に近い段階で開先形状5a、5bを付与する方が寸法精度は良くなるので好ましい。   In the above, the groove shapes 5a and 5b may be applied by the edge cutting device 2 or by the roll forming device 3 (for example, by a fin pass roll). Alternatively, it may be applied using a perforated roll (not shown), but it is preferable to apply the groove shapes 5a and 5b as close to the welder 6 as possible because the dimensional accuracy is improved.

また、場合によっては、開先形状5a、5bの計測は、オープン管4のいずれか一方の表面側(例えば、外表面側)の開先高さのみでもよい。この場合、図4の縦軸は、(計測されたいずれか一方の開先高さh/コイル厚さt)にて整理される。   In some cases, the measurement of the groove shapes 5a and 5b may be only the groove height on one surface side (for example, the outer surface side) of the open tube 4. In this case, the vertical axis of FIG. 4 is arranged by (measured groove height h / coil thickness t).

また、開先形状5a、5bの計測は、レーザースリット光照射装置12を用いずに画像計測カメラ13でオープン管4のエッジ4a、4bを撮影し、その撮影画像の陰影に基づいて、開先高さhを算定することでも可能である。   Further, the groove shapes 5a and 5b are measured by photographing the edges 4a and 4b of the open tube 4 with the image measurement camera 13 without using the laser slit light irradiation device 12, and based on the shadow of the photographed image. It is also possible to calculate the height h.

さらに、オープン管4の外表面側と内表面側のいずれか一方の表面側に開先形状を付与する場合もある。   Furthermore, a groove shape may be provided on either the outer surface side or the inner surface side of the open tube 4.

また、図4に一例を示した溶接電力最適化曲線(溶接電力補正曲線)は、演算処理装置14に、実験式として保持していても良いし、開先高さや開先高さとコイル厚さとの比や溶接電力等をパラメータとしたデータベースとして保持していても良く、計測された開先高さをこの実験式に当てはめて溶接電力を算出したり、計測された開先高さからデータベースを参照して(必要があればデータベースの値を補間して)溶接電力を算出したりしても良い。これは、図7に一例を示した残留酸化物(平均エコー高さ)による補正係数(補正係数曲線)についても同様である。   Further, the welding power optimization curve (welding power correction curve) shown as an example in FIG. 4 may be held in the arithmetic processing unit 14 as an empirical formula, and the groove height, the groove height, the coil thickness, and the like. It is also possible to maintain a database with parameters such as the ratio of welding and welding power, and calculate the welding power by applying the measured groove height to this empirical formula, or from the measured groove height The welding power may be calculated by referring (interpolating a database value if necessary). The same applies to the correction coefficient (correction coefficient curve) due to the residual oxide (average echo height) shown in FIG.

また、上記の実施形態において、図3から最も低い遷移温度となる溶接電力から図4の溶接電力最適化曲線(溶接電力補正曲線)を作成したが、本発明はこれに限定されない。例えば、所望の靭性(例えば、電縫鋼管に要求される仕様)が得られる遷移温度に対応する溶接電力の範囲から、溶接電力最適化曲線(溶接電力補正曲線)を作成しても良い。この場合は、溶接電力最適化曲線(溶接電力補正曲線)は帯状となり、この帯状の範囲内で溶接電力を調整することとなる。図7に一例を示した残留酸化物(平均エコー高さ)による補正係数(補正係数曲線)についても同様である。   Further, in the above embodiment, the welding power optimization curve (welding power correction curve) of FIG. 4 is created from the welding power having the lowest transition temperature from FIG. 3, but the present invention is not limited to this. For example, a welding power optimization curve (welding power correction curve) may be created from a range of welding power corresponding to a transition temperature at which desired toughness (for example, specifications required for an ERW steel pipe) is obtained. In this case, the welding power optimization curve (welding power correction curve) has a band shape, and the welding power is adjusted within the band range. The same applies to the correction coefficient (correction coefficient curve) based on the residual oxide (average echo height) shown in FIG.

本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態の部分詳細図である。FIG. 3 is a partial detail view of an embodiment of the present invention. 本発明の一実施形態における溶接電力最適化曲線の作成を説明するための図である。It is a figure for demonstrating creation of the welding electric power optimization curve in one Embodiment of this invention. 本発明の一実施形態における溶接電力最適化曲線の一例を示す図である。It is a figure which shows an example of the welding power optimization curve in one Embodiment of this invention. 本発明の一実施形態における溶接電力の補正を説明するための図である。It is a figure for demonstrating correction | amendment of the welding electric power in one Embodiment of this invention. 本発明の一実施形態における溶接電力の補正係数の算定を説明するための図である。It is a figure for demonstrating calculation of the correction coefficient of the welding electric power in one Embodiment of this invention. 本発明の一実施形態における溶接電力の補正係数の一例を示す図である。It is a figure which shows an example of the correction coefficient of the welding electric power in one Embodiment of this invention. オープン管のエッジの形状を示す図である。It is a figure which shows the shape of the edge of an open pipe.

符号の説明Explanation of symbols

1 鋼帯(コイル)
2 エッジ切削装置
3 ロールフォーミング装置
4 オープン管
4a、4b オープン管のエッジ
5a、5b 開先形状
6 溶接電力発生装置(溶接機)
7 電縫鋼管
11 エッジ形状モニター
12、12a、12b レーザースリット光照射装置
13、13a、13b 画像計測カメラ
14 演算処理装置
15 超音波探傷器
1 Steel strip (coil)
2 Edge cutting device 3 Roll forming device 4 Open pipe 4a, 4b Open pipe edge 5a, 5b Groove shape 6 Welding power generator (welder)
7 ERW pipe 11 Edge shape monitor 12, 12a, 12b Laser slit light irradiation device 13, 13a, 13b Image measurement camera 14 Arithmetic processing device 15 Ultrasonic flaw detector

Claims (6)

鋼帯を略管形のオープン管に成形し、そのオープン管の両エッジを電縫溶接する電縫鋼管の製造方法において、
予めオープン管のエッジに開先形状を付与しておき、電縫溶接を行う前に前記開先形状を計測するとともに、電縫溶接後に当該溶接部の酸化物量を計測し、それらの計測結果に基づいて、電縫溶接の溶接電力を調節することを特徴とする溶接部の靭性が良好な電縫鋼管の製造方法。
In the method of manufacturing an electric resistance welded steel pipe, a steel strip is formed into a substantially tubular open pipe and both edges of the open pipe are welded by electric resistance welding.
A groove shape is given to the edge of the open pipe in advance, and the groove shape is measured before performing the ERW welding, and the oxide amount of the welded portion is measured after the ERW welding, and the measurement results are obtained. A method for producing an electric resistance welded steel pipe having good weld toughness, characterized in that the welding electric power of electric resistance welding is adjusted.
電縫鋼管の製造前に予め、開先形状の開先高さに対する靭性と溶接電力の関係を求め、その靭性と溶接電力の関係から、開先高さと所望の靭性が得られる溶接電力との関係を求めておくとともに、溶接電力と溶接部の酸化物量との関係も求め、その溶接電力と溶接部の酸化物量との関係から、溶接部の酸化物量と溶接電力の補正係数との関係を求めておき、
その後、電縫鋼管の製造中において、
付与された開先形状の開先高さを電縫溶接を行う前に計測し、前記計測された開先高さならびに前記開先高さと所望の靭性が得られる溶接電力との関係から、前記計測された開先高さに対し所望の靭性が得られる溶接電力を求め、この求められた溶接電力に基づいて電縫溶接の溶接電力を調節するとともに、
電縫溶接後に当該溶接部の酸化物量を計測し、前記計測された酸化物量ならびに前記溶接部の酸化物量と溶接電力の補正係数との関係から、前記計測された酸化物量に対し溶接電力の補正係数を求め、この求められた溶接電力の補正係数に基づいて電縫溶接の溶接電力を調節することを特徴とする請求項1に記載の溶接部の靭性が良好な電縫鋼管の製造方法。
Before manufacturing the ERW pipe, the relationship between the toughness and the welding power with respect to the groove height of the groove shape is obtained in advance, and the relationship between the toughness and the welding power determines the groove height and the welding power at which the desired toughness can be obtained. In addition to determining the relationship, the relationship between the welding power and the amount of oxide in the weld is also determined. From the relationship between the welding power and the amount of oxide in the weld, the relationship between the amount of oxide in the weld and the correction factor for the welding power is calculated. Asking
Later, during the manufacture of ERW pipe,
Measure the groove height of the given groove shape before performing ERW welding, and from the relationship between the measured groove height and the welding power at which the groove height and the desired toughness can be obtained, While obtaining the welding power to obtain the desired toughness with respect to the measured groove height, adjusting the welding power of ERW welding based on the obtained welding power,
The amount of oxide in the weld is measured after ERW welding. From the relationship between the measured amount of oxide and the amount of oxide in the weld and the correction coefficient of the welding power, correction of welding power is performed with respect to the measured amount of oxide. 2. The method of manufacturing an ERW steel pipe with good weld toughness according to claim 1, wherein a coefficient is obtained and the welding power of ERW welding is adjusted based on the obtained correction coefficient of welding power.
オープン管のエッジにレーザースリット光を照射し、そのレーザースリット光で照射されたオープン管のエッジをカメラで撮影することによって、開先形状を計測することを特徴とする請求項1または2に記載の溶接部の靭性が良好な電縫鋼管の製造方法。   3. The groove shape is measured by irradiating the edge of the open tube with laser slit light and photographing the edge of the open tube irradiated with the laser slit light with a camera. For producing ERW steel pipes with good weld toughness. 超音波を用いて当該溶接部の酸化物量を計測することを特徴とする請求項1乃至3のいずれかに記載の溶接部の靭性が良好な電縫鋼管の製造方法。   The method for producing an electric resistance welded steel pipe with good toughness of a welded portion according to any one of claims 1 to 3, wherein the amount of oxide in the welded portion is measured using ultrasonic waves. 予めオープン管のエッジに開先形状を付与しておく方法は、エッジ切削装置で付与する方法、ロールフォーミング装置で付与する方法、または孔型ロールを用いて付与する方法のいずれかであることを特徴とする請求項1乃至4のいずれかに記載の溶接部の靭性が良好な電縫鋼管の製造方法。   The method of providing the groove shape to the edge of the open tube in advance is either a method of applying with an edge cutting device, a method of applying with a roll forming device, or a method of applying using a hole-type roll. The method for producing an electric resistance welded steel pipe having good toughness of a welded portion according to any one of claims 1 to 4. 鋼帯を略管形のオープン管に成形するオープン管成形手段と、オープン管の両エッジを電縫溶接する電縫溶接手段を備えた電縫鋼管の製造設備において、
予めオープン管のエッジに開先形状を付与する開先形状付与手段と、電縫溶接を行う前に前記開先形状を計測する開先形状計測手段と、電縫溶接後に当該溶接部の酸化物量を計測する酸化物量計測手段と、前記開先形状計測手段と酸化物量計測手段の計測結果に基づいて電縫溶接の溶接電力を調節する溶接電力調節手段を設けたことを特徴とする電縫鋼管の製造設備。
In the manufacturing equipment of the ERW steel pipe comprising the open pipe forming means for forming the steel strip into a substantially tubular open pipe, and the ERW welding means for ERW welding of both edges of the open pipe,
A groove shape imparting means for previously imparting a groove shape to the edge of the open pipe, a groove shape measuring means for measuring the groove shape before performing the electric resistance welding, and an oxide amount of the welded portion after the electric resistance welding And a welding power adjusting means for adjusting the welding power of ERW welding based on the measurement results of the groove shape measuring means and the oxide amount measuring means. Manufacturing equipment.
JP2008028326A 2007-02-27 2008-02-08 Method for producing ERW steel pipe with good weld toughness Active JP4935703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028326A JP4935703B2 (en) 2007-02-27 2008-02-08 Method for producing ERW steel pipe with good weld toughness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007046802 2007-02-27
JP2007046802 2007-02-27
JP2008028326A JP4935703B2 (en) 2007-02-27 2008-02-08 Method for producing ERW steel pipe with good weld toughness

Publications (2)

Publication Number Publication Date
JP2008238269A true JP2008238269A (en) 2008-10-09
JP4935703B2 JP4935703B2 (en) 2012-05-23

Family

ID=39910226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028326A Active JP4935703B2 (en) 2007-02-27 2008-02-08 Method for producing ERW steel pipe with good weld toughness

Country Status (1)

Country Link
JP (1) JP4935703B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999950B1 (en) 2008-11-03 2010-12-09 대우조선해양 주식회사 System and method for generating fine assembly welding quantity
KR101028177B1 (en) 2004-10-08 2011-04-08 현대자동차주식회사 Rear gate locking structure
JP2011104627A (en) * 2009-11-18 2011-06-02 Jfe Steel Corp Method for manufacturing electric resistance welded steel tube, and electric resistance welded steel tube
KR101175389B1 (en) 2009-02-25 2012-08-20 현대제철 주식회사 pipe manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360543A (en) * 1976-11-11 1978-05-31 Matsushita Electric Ind Co Ltd Dielectric resonator
JPS61115685A (en) * 1984-11-12 1986-06-03 Kawasaki Steel Corp Manufacture of seam welded steel tube
JPS63119990A (en) * 1986-11-08 1988-05-24 Nippon Steel Corp Warm seam welding method
JPH04157074A (en) * 1990-10-16 1992-05-29 Nippon Steel Corp Method for detecting butting angle of electro resistance welded tube
JPH05209225A (en) * 1991-12-03 1993-08-20 Nkk Corp Production of resistance welded tube excellent in damping characteristic and welding method therefor
JPH0740062A (en) * 1993-07-29 1995-02-10 Sumitomo Metal Ind Ltd High frequency heating device
JP2001170779A (en) * 1999-12-13 2001-06-26 Kawasaki Steel Corp Steel tube manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360543A (en) * 1976-11-11 1978-05-31 Matsushita Electric Ind Co Ltd Dielectric resonator
JPS61115685A (en) * 1984-11-12 1986-06-03 Kawasaki Steel Corp Manufacture of seam welded steel tube
JPS63119990A (en) * 1986-11-08 1988-05-24 Nippon Steel Corp Warm seam welding method
JPH04157074A (en) * 1990-10-16 1992-05-29 Nippon Steel Corp Method for detecting butting angle of electro resistance welded tube
JPH05209225A (en) * 1991-12-03 1993-08-20 Nkk Corp Production of resistance welded tube excellent in damping characteristic and welding method therefor
JPH0740062A (en) * 1993-07-29 1995-02-10 Sumitomo Metal Ind Ltd High frequency heating device
JP2001170779A (en) * 1999-12-13 2001-06-26 Kawasaki Steel Corp Steel tube manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028177B1 (en) 2004-10-08 2011-04-08 현대자동차주식회사 Rear gate locking structure
KR100999950B1 (en) 2008-11-03 2010-12-09 대우조선해양 주식회사 System and method for generating fine assembly welding quantity
KR101175389B1 (en) 2009-02-25 2012-08-20 현대제철 주식회사 pipe manufacturing method
JP2011104627A (en) * 2009-11-18 2011-06-02 Jfe Steel Corp Method for manufacturing electric resistance welded steel tube, and electric resistance welded steel tube

Also Published As

Publication number Publication date
JP4935703B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US4649256A (en) High-frequency electric resistance welding method using irradiation with a laser beam
KR101318819B1 (en) Method for manufacturing laser-welded steel pipe
CN101983110B (en) Welded steel pipe welded with a high energy density beam, and a manufacturing method therefor
Liu et al. Real-time monitoring of the laser hot-wire welding process
CN108778607B (en) Laser welding steel with power modulation to avoid hot cracking
JP5375527B2 (en) Laser welded steel pipe manufacturing method
JP2009222408A (en) Ultrasonic flaw detection method, ultrasonic flaw detecting device, and production method for seam-welded pipe
JP4998739B2 (en) Method for producing ERW steel pipe with good weld toughness
JP4935703B2 (en) Method for producing ERW steel pipe with good weld toughness
JP5158924B2 (en) Method for determining weldability and route gap suitability in laser butt welding
CN105842034A (en) Crack defect test piece manufacturing method
JP2009255132A (en) Electric welding system
JP2008119708A (en) Laser beam welding method for metal plate
JP5338511B2 (en) Laser welded steel pipe manufacturing method
WO2008099943A1 (en) Seam-welded steel pipe manufacturing method and its manufacturing apparatus
JP2000015474A (en) Inspecting method of weld zone in welded tube
JP4532977B2 (en) Welding method for ERW steel pipe with excellent welding quality
JP2009090363A (en) Equipment and method for manufacturing square steel tube
RU2456107C1 (en) Method of producing steel pipe by laser welding
JP2021154298A (en) Gas shield arc-welding method and gas shield arc-welding device
JP2006175514A (en) Electric resistance welded tube having reduced defect in weld zone and its production method
JP6094690B2 (en) Laser irradiation position deviation detection method for laser welded steel pipe, steel pipe manufacturing method, laser irradiation position deviation detection apparatus, steel pipe laser welding apparatus, and steel pipe manufacturing apparatus
Martin Gabriel A Review of Monitoring in WAAM
Chejarla et al. Distortion control in CO2 Laser Beam dissimilar welds of SS316L to INCONEL625 plates
JP2006088220A (en) Electric welded steel tube manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250