Nothing Special   »   [go: up one dir, main page]

JP2008232621A - Bearing load measurement device - Google Patents

Bearing load measurement device Download PDF

Info

Publication number
JP2008232621A
JP2008232621A JP2007064374A JP2007064374A JP2008232621A JP 2008232621 A JP2008232621 A JP 2008232621A JP 2007064374 A JP2007064374 A JP 2007064374A JP 2007064374 A JP2007064374 A JP 2007064374A JP 2008232621 A JP2008232621 A JP 2008232621A
Authority
JP
Japan
Prior art keywords
phase difference
bearing
change
detection signal
rising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007064374A
Other languages
Japanese (ja)
Other versions
JP5098379B2 (en
Inventor
Koichi Morita
耕一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007064374A priority Critical patent/JP5098379B2/en
Publication of JP2008232621A publication Critical patent/JP2008232621A/en
Application granted granted Critical
Publication of JP5098379B2 publication Critical patent/JP5098379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing load measurement device capable of highly accurately and correctly measuring a load exerted on a bearing by highly accurately and correctly computing a ratio of phase differences even if the rotational speed of the bearing is not constant. <P>SOLUTION: The device includes an encoder fixed to a turning wheel and having a plane to be detected of which characteristics change along a circumferential direction; a detector for detecting changes in the characteristics of the plane to be detected; and a computing unit for computing a load exerted on a bearing by performing prescribed computations on detection signals from the detector. A plurality of rotational speed sensors opposed to the plane to be detected are arranged in the detector along an axial direction. Each rotational speed sensor outputs detection signals (A-phase signals and B-phase signals) corresponding to changes in the characteristics of the plane to be detected with the rotation of the encoder. The computing unit measures times (x1, y1, x2, y2, x3, y3, x4...) of phase differences between detection signals, computes a plurality of ratios P and Q of phase differences in different elapsed times on the basis of results of this measurement, and computes a load exerted on the bearing by computing their average R=(P+Q)/2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば自動車の車輪を懸架装置に対して回転自在に支持するために用いられる軸受の荷重測定装置に関し、特に軸受に対して軸方向に加わる荷重を測定する技術の改良に関する。   The present invention relates to a load measuring device for a bearing used, for example, to rotatably support a wheel of an automobile with respect to a suspension device, and more particularly to improvement of a technique for measuring a load applied to the bearing in an axial direction.

従来、自動車などの各種車両の車輪(例えば、ディスクホイール)を車体(例えば、懸架装置(サスペンション))に対して回転自在に支持するための各種の軸受が知られている。なお、軸受としては、駆動輪用と従動輪用とがあるが、図1(a)には、一例として従動輪用の軸受が示されている。   Conventionally, various bearings are known for rotatably supporting wheels (for example, disc wheels) of various vehicles such as automobiles with respect to a vehicle body (for example, a suspension device (suspension)). Note that there are two types of bearings, one for driving wheels and one for driven wheels. FIG. 1 (a) shows a bearing for driven wheels as an example.

かかる軸受は、車体側に固定されて常時非回転状態に維持される静止輪(外輪)2と、静止輪2の内側に対向して配置され且つ車輪側に接続されて車輪と共に回転する回転輪(内輪)4とを備えており、静止輪2と回転輪4との間には、複数の転動体6,8が複列(例えば2列)で組み込まれている。なお、静止輪2の内周には、周方向に連続した環状の軌道溝2sが複列(例えば2列)で形成され、一方、回転輪4の外周には、静止輪2の各軌道溝2sに対向して軌道溝4sが複列(2列)形成されている。そして、複数の転動体6,8は、静止輪2と回転輪4の軌道溝2s,4s間にそれぞれ転動自在に組み込まれている。   Such a bearing is fixed to the vehicle body side and is always kept in a non-rotating state, and a rotating wheel that is disposed facing the inside of the stationary wheel 2 and is connected to the wheel side and rotates together with the wheel. (Inner ring) 4, and a plurality of rolling elements 6 and 8 are incorporated between the stationary wheel 2 and the rotating wheel 4 in a double row (for example, two rows). An annular raceway groove 2s continuous in the circumferential direction is formed in a double row (for example, two rows) on the inner periphery of the stationary wheel 2, while each raceway groove of the stationary wheel 2 is provided on the outer periphery of the rotating wheel 4. Opposite 2s, raceway grooves 4s are formed in double rows (2 rows). The plurality of rolling elements 6 and 8 are incorporated between the raceway grooves 2 s and 4 s of the stationary wheel 2 and the rotating wheel 4 so as to freely roll.

また、静止輪2と回転輪4との間には、軸受内部を軸受外部から密封するためのシール部材(例えば、車輪側のリップシール10a、車体側のカバー10b)が設けられている。なお、リップシール10aは、静止輪2の車輪側に固定された状態で回転輪4に対して摺動自在に位置決めされている。一方、カバー10bは、静止輪2の車体側全体を覆うように密封可能な円板形状を成しており、その周縁が静止輪2の車体側に固定されている。なお、転動体6,8として図面では、玉を例示しているが、軸受の構成や種類に応じて、コロが適用される場合もある。   Further, a seal member (for example, a lip seal 10a on the wheel side and a cover 10b on the vehicle body side) for sealing the inside of the bearing from the outside of the bearing is provided between the stationary wheel 2 and the rotating wheel 4. The lip seal 10a is slidably positioned with respect to the rotating wheel 4 while being fixed to the wheel side of the stationary wheel 2. On the other hand, the cover 10 b has a disk shape that can be sealed so as to cover the entire vehicle body side of the stationary wheel 2, and the periphery thereof is fixed to the vehicle body side of the stationary wheel 2. In the drawings, balls are illustrated as the rolling elements 6 and 8, but rollers may be applied depending on the configuration and type of the bearing.

また、静止輪2には、その外周面から外方に向って突出した固定フランジ2aが一体成形されている。この場合、固定フランジ2aの固定孔2bに固定用ボルト(図示しない)を挿入し、これを車体側に締結することで、外輪2を図示しない懸架装置(ナックル)に固定することができる。一方、回転輪4には、例えば自動車のディスクホイール(図示しない)を支持しつつ共に回転する略円筒形状のハブ12が設けられており、ハブ12には、ディスクホイールが固定されるハブフランジ12aが突設されている。   The stationary wheel 2 is integrally formed with a fixing flange 2a that protrudes outward from the outer peripheral surface thereof. In this case, the outer ring 2 can be fixed to a suspension device (knuckle) (not shown) by inserting a fixing bolt (not shown) into the fixing hole 2b of the fixing flange 2a and fastening it to the vehicle body side. On the other hand, the rotating wheel 4 is provided with, for example, a substantially cylindrical hub 12 that rotates while supporting a disk wheel (not shown) of an automobile, and the hub 12 has a hub flange 12a to which the disk wheel is fixed. Is protruding.

ハブフランジ12aは、静止輪2を越えて外方(ハブ12の半径方向外側)に向って延出しており、その延出縁付近には、周方向に沿って所定間隔で配置された複数のハブボルト14が設けられている。この場合、複数のハブボルト14をディスクホイールに形成されたボルト孔(図示しない)に差し込んでハブナット(図示しない)で締付けることにより、当該ディスクホイールをハブフランジ12aに位置決め固定することができる。このとき、ハブ12の車輪側に突設されたパイロット部12dによって車輪の径方向の位置決めが成される。   The hub flange 12a extends outward (radially outward of the hub 12) beyond the stationary ring 2, and a plurality of hub flanges 12a are arranged at predetermined intervals along the circumferential direction in the vicinity of the extended edge. Hub bolts 14 are provided. In this case, the disc wheel can be positioned and fixed to the hub flange 12a by inserting a plurality of hub bolts 14 into bolt holes (not shown) formed in the disc wheel and tightening with hub nuts (not shown). At this time, positioning in the radial direction of the wheel is performed by a pilot portion 12d protruding from the wheel side of the hub 12.

また、内輪4(ハブ12)には、その車体側に環状の回転輪構成体16(ハブ12と共に回転輪4を構成する別体内輪)が固定されるようになっている。この場合、回転輪構成体16の固定方法の一例としては、静止輪2と回転輪4との間に複数の転動体6,8を保持器18で保持した状態で、回転輪構成体16をハブ12に形成された段部12bまで嵌合する。次に、回転輪構成体16の周端部16sに例えば固定用間座20をセットした後、ハブ12の車体側に一体成形されたハブ軸12cにナット22を螺合する。そして、当該ナット22で固定用間座20を回転輪構成体16の周端部16s方向に締め込む。これにより、回転輪構成体16を固定用間座20とハブ12との間に挟持した状態で回転輪4に固定することができる。   Further, an annular rotating wheel constituting body 16 (another inner ring constituting the rotating wheel 4 together with the hub 12) is fixed to the inner ring 4 (hub 12) on the vehicle body side. In this case, as an example of a fixing method of the rotating wheel component 16, the rotating wheel component 16 is mounted in a state where a plurality of rolling elements 6 and 8 are held by the cage 18 between the stationary wheel 2 and the rotating wheel 4. The step 12b formed on the hub 12 is fitted. Next, for example, a fixing spacer 20 is set on the peripheral end portion 16 s of the rotating wheel constituting body 16, and then a nut 22 is screwed onto a hub shaft 12 c integrally formed on the vehicle body side of the hub 12. Then, the fixing spacer 20 is tightened in the direction of the peripheral end portion 16 s of the rotating wheel component 16 with the nut 22. As a result, the rotating wheel component 16 can be fixed to the rotating wheel 4 while being sandwiched between the fixing spacer 20 and the hub 12.

このとき、軸受には所定の予圧が付与された状態となり、この状態において、各転動体6,8は、互いに所定の接触角を成して静止輪2と回転輪4の軌道溝2s,4sにそれぞれ接触して回転可能に組み込まれる。この場合、2つの接触点を結んだ作用線(図示しない)は、各軌道溝2s,4sに直交し且つ各転動体6,8の中心を通り、軸受の中心線上の1点(作用点)で交わる。これにより背面組合せ形(DB)軸受が構成される。   At this time, a predetermined preload is applied to the bearing, and in this state, the rolling elements 6 and 8 form a predetermined contact angle with each other and the raceway grooves 2s and 4s of the stationary wheel 2 and the rotating wheel 4 respectively. Each is incorporated in a rotatable manner. In this case, an action line (not shown) connecting the two contact points is orthogonal to each raceway groove 2s, 4s and passes through the center of each rolling element 6, 8 to one point (action point) on the bearing center line. Intersect. This constitutes a rear combination (DB) bearing.

ところで、上述したような構成において、自動車走行中に車輪に作用した力は、全てディスクホイールから軸受(ハブ12)を通じて懸架装置に伝達され、その際、軸受(ハブ12)には、各種の荷重(ラジアル荷重、アキシアル(軸方向)荷重、モーメント荷重など)が加わる。この場合、自動車の走行安定性を確保するために、軸受に加わる各種の荷重が荷重測定装置により測定されている。   By the way, in the configuration as described above, all the forces acting on the wheels during traveling of the vehicle are transmitted from the disc wheel to the suspension device through the bearing (hub 12), and various loads are applied to the bearing (hub 12). (Radial load, axial (axial direction) load, moment load, etc.) are applied. In this case, in order to ensure the running stability of the automobile, various loads applied to the bearing are measured by a load measuring device.

ここで、荷重測定装置としては、例えば特許文献1に開示されたものをはじめとして種々の装置が知られているが、その一例として図1(a),(b)に示された荷重測定装置は、静止輪2と回転輪4との間の相対的な変位量に基づいて、軸受(ハブ12)に加わる荷重を測定している。具体的に説明すると、荷重測定装置は、ハブ12(回転輪4)の外周に同心円状に固定され且つ周方向に沿って所定間隔で特性を変化させた被検出面24sを有する中空円筒状のエンコーダ24と、被検出面24sに対向して静止輪2に固定され且つ当該被検出面24sの特性の変化を検出する検出器26と、検出器26から出力された検出信号に所定の演算処理を施して軸受(ハブ12)に加わる荷重を算出する演算器(図示しない)とを備えている。   Here, as the load measuring device, for example, various devices including those disclosed in Patent Document 1 are known. As an example, the load measuring device shown in FIGS. 1 (a) and 1 (b) is used. Measures the load applied to the bearing (hub 12) based on the relative displacement between the stationary wheel 2 and the rotating wheel 4. More specifically, the load measuring device has a hollow cylindrical shape having a detection surface 24s that is concentrically fixed to the outer periphery of the hub 12 (the rotating wheel 4) and whose characteristics are changed at predetermined intervals along the circumferential direction. The encoder 24, a detector 26 that is fixed to the stationary wheel 2 so as to face the surface 24s to be detected and detects a change in the characteristics of the surface 24s to be detected, and a predetermined calculation process on the detection signal output from the detector 26 And a calculator (not shown) for calculating a load applied to the bearing (hub 12).

エンコーダ24には、その被検出面24sに、スリット状(例えば、長楕円形状)を成す複数の貫通孔(符号化情報)24a,24bが周方向に沿って等間隔で且つ軸方向に2列を成して形成されている。この場合、各列相互の貫通孔24a,24bは、互いに等しい傾斜角度で且つその傾斜方向が互いに逆向きに設定されている。なお、各貫通孔24a,24bの大きさや形状は、例えばエンコーダ24の大きさや形状に応じて任意に設定されるため、ここでは特に限定しない。また、貫通孔24a,24bに代えて、例えば被検出面24sを窪ませて形成した凹溝形状の符号化情報をエンコーダ24の被検出面24sに形成しても良い。また、エンコーダ24の材質は、検出を行うセンサの種類、軸受の使用目的や使用環境に応じて例えば磁性又は非磁性の金属材料や、樹脂材料などを任意に適用することができるため、ここでは特に限定しない。   In the encoder 24, a plurality of through holes (encoded information) 24a and 24b having a slit shape (for example, an elliptical shape) are formed on the detected surface 24s at equal intervals along the circumferential direction and in two rows in the axial direction. Is formed. In this case, the through-holes 24a and 24b in each row are set to have the same inclination angle and the inclination directions are opposite to each other. Note that the sizes and shapes of the through holes 24a and 24b are arbitrarily set according to the size and shape of the encoder 24, for example, and are not particularly limited here. Further, instead of the through holes 24a and 24b, for example, concave groove-shaped encoded information formed by recessing the detected surface 24s may be formed on the detected surface 24s of the encoder 24. Further, as the material of the encoder 24, for example, a magnetic or non-magnetic metal material or a resin material can be arbitrarily applied depending on the type of sensor to be detected, the purpose of use of the bearing, and the usage environment. There is no particular limitation.

一方、検出器26には、軸方向に2列を成した複数の貫通孔24a,24bのそれぞれに対向する2つの回転速度センサSa,Sbが軸方向に沿って配設されている。この場合、各回転速度センサSa,Sbは、軸受(ハブ12)の回転に伴ってエンコーダ24が回転した状態において、当該回転速度センサSa,Sbの直前を複数の貫通孔24a,24bが通過した際に生じる被検出面24sの特性の変化(貫通孔24a,24bの有無による被検出面24sの形状変化)に対応した検出信号(A相信号、B相信号:図2(a))を出力する。   On the other hand, the detector 26 is provided with two rotational speed sensors Sa and Sb facing the respective through holes 24a and 24b in two rows in the axial direction along the axial direction. In this case, each of the rotational speed sensors Sa and Sb passes through the plurality of through holes 24a and 24b immediately before the rotational speed sensors Sa and Sb in a state where the encoder 24 is rotated with the rotation of the bearing (hub 12). Output detection signal (A phase signal, B phase signal: Fig. 2 (a)) corresponding to the change in the characteristics of the detected surface 24s (the change in the shape of the detected surface 24s depending on the presence or absence of the through holes 24a, 24b) To do.

なお、各回転速度センサSa,Sbは、軸受(ハブ12)に荷重が加わっていない初期状態において、必ずしもそれぞれの検出信号の位相が互いに一致している必要はない。また、図面上では、各回転速度センサSa,Sbを軸方向に沿って一列に配置した構成例を示したが、特に軸方向に整列させる構成に限定されることは無い。   It should be noted that the rotational speed sensors Sa and Sb do not necessarily have to have the same detection signal phase in the initial state where no load is applied to the bearing (hub 12). In the drawing, the configuration example in which the rotational speed sensors Sa and Sb are arranged in a line along the axial direction is shown, but the configuration is not particularly limited to the configuration in which the rotational speed sensors Sa and Sb are aligned in the axial direction.

また、各回転速度センサSa,Sbとしては、市販されている光学センサや磁気センサなどを適用することができる。この場合、例えば光学センサであれば、被検出面24sの特性の変化に伴う当該被検出面24sからの反射光の光学的特性(例えば、光量、波長、周波数など)の変化を検出し、その検出信号を出力する。一方、例えば磁気センサであれば、被検出面24sの特性の変化に伴う当該被検出面24sの磁気特性(例えば、磁束密度、磁場など)の変化を検出し、その検出信号を出力する。   Moreover, as each rotational speed sensor Sa and Sb, a commercially available optical sensor, magnetic sensor, or the like can be applied. In this case, for example, in the case of an optical sensor, a change in optical characteristics (for example, light quantity, wavelength, frequency, etc.) of reflected light from the detected surface 24s accompanying a change in the characteristics of the detected surface 24s is detected. A detection signal is output. On the other hand, in the case of a magnetic sensor, for example, a change in magnetic characteristics (for example, magnetic flux density, magnetic field, etc.) of the detected surface 24s accompanying a change in the characteristics of the detected surface 24s is detected, and a detection signal is output.

ここで、上述したような荷重測定装置において、静止輪2と回転輪4との間の相対的な変位量を測定する方法について説明する。
軸受(ハブ12)に荷重が加わっていない初期状態において、各回転速度センサSa,Sbの検出信号の位相差(図2のx又はy)はある一定値となるが、(被検出面の特性変化が周方向に等配されている場合)軸受(ハブ12)にアキシアル(軸方向)への荷重が加わると、静止輪2と回転輪4とが相対的に軸方向へ変位することで、各回転速度センサSa,Sbから出力された検出信号(A相信号、B相信号)の位相差(図2のx又はy)に変化が発生する。
Here, a method for measuring the relative displacement amount between the stationary wheel 2 and the rotating wheel 4 in the load measuring apparatus as described above will be described.
In an initial state in which no load is applied to the bearing (hub 12), the phase difference (x or y in FIG. 2) of the detection signals of the rotational speed sensors Sa and Sb is a certain constant value. When the change is equally distributed in the circumferential direction) When the axial (axial) load is applied to the bearing (hub 12), the stationary wheel 2 and the rotating wheel 4 are relatively displaced in the axial direction, A change occurs in the phase difference (x or y in FIG. 2) of the detection signals (A-phase signal and B-phase signal) output from the rotational speed sensors Sa and Sb.

このとき、演算器(図示しない)は、各回転速度センサSa,Sbから出力された検出信号(A相信号、B相信号)の位相差比を演算し、その演算結果である位相差比に基づいて、軸受(ハブ12)に加わる荷重を算出する。なお、図2(a)には、A相信号及びB相信号のパルス波形が模式的に示されている。A相信号の立ち下りからB相信号の立ち下りまでの位相差(時間x1)と、B相信号の立ち下りからA相信号の立ち下りまでの位相差(時間y1)を計測し、P=x1/(x1+y1)を計算し、A相信号を基準とした位相差比を求める。なお、ここでx1+y1はA相信号の周期を示している。   At this time, the calculator (not shown) calculates the phase difference ratio of the detection signals (A phase signal and B phase signal) output from each of the rotational speed sensors Sa and Sb, and obtains the phase difference ratio as the calculation result. Based on this, the load applied to the bearing (hub 12) is calculated. FIG. 2A schematically shows pulse waveforms of the A-phase signal and the B-phase signal. The phase difference (time x1) from the fall of the A phase signal to the fall of the B phase signal and the phase difference (time y1) from the fall of the B phase signal to the fall of the A phase signal are measured, and P = x1 / (x1 + y1) is calculated, and the phase difference ratio based on the A phase signal is obtained. Here, x1 + y1 indicates the period of the A phase signal.

しかしながら、自動車走行中の車輪の回転は常時一定ではなく、加速や減速が繰り返され、これに伴って軸受(ハブ12)の回転状態も変化するため、かかる状態も考慮に入れて更に高精度且つ正確な位相差比を演算するための技術が求められている。前述した位相差比Pは、回転軸(回転輪)の回転速度が一定である場合には一定値を示すが、加減速時においては、A相の1周期の期間においても速度が一定でないため、軸受に加わる荷重が一定であっても、位相差比Pが変化する。一例として、位相差比P=0.500のとき(荷重一定のとき)、加速度100rpm/s(12.5km/h/s)とした場合の位相差比の変化を計算したものが図2(b)である。図2(b)に示すように、回転速度が約400rpm以下において位相差比に変化(誤差)が生じていることが分かる。   However, the rotation of the wheel during traveling of the vehicle is not always constant, and acceleration and deceleration are repeated, and the rotation state of the bearing (hub 12) also changes accordingly. A technique for calculating an accurate phase difference ratio is required. The phase difference ratio P described above shows a constant value when the rotation speed of the rotating shaft (rotating wheel) is constant, but the speed is not constant even during one cycle of the A phase during acceleration / deceleration. Even if the load applied to the bearing is constant, the phase difference ratio P changes. As an example, when the phase difference ratio P = 0.500 (when the load is constant), the change in the phase difference ratio when the acceleration is 100 rpm / s (12.5 km / h / s) is calculated as shown in FIG. b). As shown in FIG. 2B, it can be seen that a change (error) occurs in the phase difference ratio when the rotational speed is about 400 rpm or less.

そこで、軸受(ハブ12)の回転状態を問わず、高精度且つ正確に位相差比を演算することで、軸受に対して軸方向に加わる荷重を高精度且つ正確に測定することが可能な技術の開発が望まれているが、現在そのような技術は知られていない。
特開2006−226937号公報
Therefore, a technology that can accurately and accurately measure the load applied to the bearing in the axial direction by calculating the phase difference ratio with high accuracy and accuracy regardless of the rotation state of the bearing (hub 12). However, such technology is not currently known.
JP 2006-226937 A

本発明は、このような要望に応えるためになされており、その目的は、加減速時などの軸受の回転速度変動時においても、正確な位相差比を得られる演算方法により、軸受に加わる荷重を高精度且つ正確に測定することが可能な荷重測定装置を提供することにある。   The present invention has been made to meet such demands, and its purpose is to apply a load applied to the bearing by a calculation method capable of obtaining an accurate phase difference ratio even when the rotational speed of the bearing varies during acceleration and deceleration. It is an object of the present invention to provide a load measuring device capable of measuring the accuracy with high accuracy.

このような目的を達成するために、本発明は、静止輪に対して相対回転可能に対向配置された回転輪を備えた軸受の荷重測定装置であって、荷重測定装置は、回転輪に対して同心円状に固定され且つ周方向に沿って所定間隔で特性を変化させた被検出面を有するエンコーダと、被検出面に対向して静止輪に固定され且つ当該被検出面の特性の変化を検出する検出器と、検出器から出力された検出信号に所定の演算処理を施して軸受に加わる荷重を算出する演算器とを具備している。   In order to achieve such an object, the present invention provides a load measuring device for a bearing including a rotating wheel disposed so as to be relatively rotatable with respect to a stationary wheel. An encoder having a detected surface that is fixed concentrically and whose characteristics are changed at predetermined intervals along the circumferential direction, and is fixed to a stationary wheel facing the detected surface and changes in characteristics of the detected surface. A detector for detection, and a calculator for calculating a load applied to the bearing by performing a predetermined calculation process on the detection signal output from the detector.

この場合、検出器には、エンコーダの被検出面に対向する複数の回転速度センサが軸方向に沿って配設されており、各回転速度センサは、軸受の回転に伴ってエンコーダが回転した状態において、被検出面の特性の変化に対応した検出信号を出力する。また、演算器は、各回転速度センサから出力された検出信号相互の位相差を時間として計測すると共に、その計測結果に基づいて異なる経過時間における複数の位相差比を演算し、これら複数の位相差比の平均をとることで、軸受に加わる荷重を算出する。   In this case, the detector is provided with a plurality of rotational speed sensors facing the detected surface of the encoder along the axial direction, and each rotational speed sensor is in a state where the encoder is rotated as the bearing rotates. , A detection signal corresponding to the change in the characteristics of the surface to be detected is output. In addition, the computing unit measures the phase difference between the detection signals output from the respective rotation speed sensors as time, calculates a plurality of phase difference ratios at different elapsed times based on the measurement result, and calculates the plurality of levels. The load applied to the bearing is calculated by taking the average of the phase difference ratio.

本発明においては、第一段階としてA相信号の立ち下りからB相信号の立ち下りまでの位相差(時間x1)と、B相信号の立ち下りからA相信号の立ち下りまでの位相差(時間y1)を計測し、P=x1/(x1+y1)を計算し、位相差比Pを求める。次に、第二段階として、次のA相信号の立ち下りからB相信号の立ち下りまでの位相差(時間x2)を計測し、Q=x2/(y1+x2)を計算し、位相差比Qを求める。第三段階として、位相差比R=(P+Q)/2を求め、このRを求める位相差比とし、軸受に加わる荷重を算出する。   In the present invention, as the first stage, the phase difference from the fall of the A phase signal to the fall of the B phase signal (time x1) and the phase difference from the fall of the B phase signal to the fall of the A phase signal ( Time y1) is measured, P = x1 / (x1 + y1) is calculated, and the phase difference ratio P is obtained. Next, as the second stage, the phase difference (time x2) from the fall of the next A-phase signal to the fall of the B-phase signal is measured, Q = x2 / (y1 + x2) is calculated, and the phase difference ratio Q Ask for. As a third stage, a phase difference ratio R = (P + Q) / 2 is obtained, and the load applied to the bearing is calculated using this R as a phase difference ratio.

また、本発明において、各回転速度センサは、軸受に荷重が加わっていない初期状態において、それぞれの検出信号の位相が必ずしも互いに一致していなくてもよい。なお、エンコーダには、その被検出面に、所定形状を成す複数の符号化情報が周方向に沿って等間隔で且つ軸方向に複数列を成して形成されている。また、本発明の軸受は、各種車両の車輪を車体に対して回転自在に支持するように構成されており、静止輪は、車体側に固定されて常時非回転状態に維持され、回転輪は、車輪側に接続されて車輪と共に回転する。   Further, in the present invention, in the initial state where the load is not applied to the bearings, the phases of the detection signals do not necessarily have to coincide with each other. In the encoder, a plurality of pieces of encoded information having a predetermined shape are formed on the detection surface in a plurality of rows in the axial direction at equal intervals along the circumferential direction. Also, the bearing of the present invention is configured to rotatably support the wheels of various vehicles with respect to the vehicle body, the stationary wheel is fixed to the vehicle body side and is always kept in a non-rotating state, It is connected to the wheel side and rotates with the wheel.

本発明の荷重測定装置によれば、加減速時などの軸受の回転速度変動時においても、正確な位相差比を得られる演算方法により、軸受に加わる荷重を高精度且つ正確に測定することができる。   According to the load measuring apparatus of the present invention, the load applied to the bearing can be measured with high accuracy and accuracy by a calculation method capable of obtaining an accurate phase difference ratio even when the rotational speed of the bearing varies during acceleration and deceleration. it can.

以下、本発明の一実施の形態に係る軸受の荷重測定装置について、添付図面を参照して説明する。本実施の形態は、上述した軸受の荷重測定装置(図1(a),(b))の演算器における演算処理の改良であるため、以下では改良部分の説明にとどめる。この場合、本実施の形態に適用する軸受は、図1(a)の軸受と同一であるため、その説明は省略する。   Hereinafter, a bearing load measuring device according to an embodiment of the present invention will be described with reference to the accompanying drawings. Since the present embodiment is an improvement of the arithmetic processing in the arithmetic unit of the above-described bearing load measuring device (FIGS. 1A and 1B), only the improved portion will be described below. In this case, the bearing applied to the present embodiment is the same as the bearing shown in FIG.

図3(a),(b)に示すように、本実施の形態の荷重測定装置では、演算器(図示しない)において、検出器26の各回転速度センサSa,Sbから出力された検出信号(A相信号、B相信号)相互の位相差の時間(x1,y1,x2,y2,x3,y3,x4…)を計測すると共に、その計測結果に基づいて異なる経過時間における複数の位相差比を演算し、これら複数の位相差比の平均をとることで、軸受に加わる荷重を算出する。   As shown in FIGS. 3 (a) and 3 (b), in the load measuring apparatus of the present embodiment, detection signals (not shown) output from the rotational speed sensors Sa and Sb of the detector 26 (not shown) A phase signal, B phase signal) Measure the phase difference time (x1, y1, x2, y2, x3, y3, x4 ...), and based on the measurement results, a plurality of phase difference ratios at different elapsed times Is calculated, and the average of these plural phase difference ratios is calculated to calculate the load applied to the bearing.

ここで、軸受に加わる荷重を算出する動作について具体的に説明する。
この場合、軸受回転中に軸受(ハブ12)にアキシアル(軸方向)への荷重が加わって、図3(b)に示すように、各回転速度センサSa,Sbから出力された検出信号(A相信号、B相信号)に位相差が生じた状態を想定する。なお、同図(b)には、A相信号及びB相信号のパルス波形が模式的に示されている。
Here, the operation | movement which calculates the load added to a bearing is demonstrated concretely.
In this case, the axial (axial direction) load is applied to the bearing (hub 12) during the rotation of the bearing, and as shown in FIG. 3B, the detection signals (A It is assumed that a phase difference has occurred in the phase signal and the B phase signal. FIG. 2B schematically shows pulse waveforms of the A phase signal and the B phase signal.

本実施の形態において、演算器は、各回転速度センサSa,Sbから出力された検出信号(A相信号、B相信号)の位相差比を異なる経過時間毎に複数算出する。また、かかる算出処理では一例として、一方の検出信号(例えば、A相信号)のパルスの立下りを基準として経過時間をカウントする。なお、時間経過のカウント方法としては、例えば演算器やマイクロコンピュータに内蔵されたCPUの既存の周期測定機能を利用しても良いし、或いは、時間経過カウンタを別途増設するようにしても良い。   In the present embodiment, the computing unit calculates a plurality of phase difference ratios of the detection signals (A-phase signal and B-phase signal) output from the rotational speed sensors Sa and Sb at different elapsed times. Further, in this calculation process, as an example, the elapsed time is counted with reference to the falling edge of the pulse of one detection signal (for example, the A-phase signal). As a method for counting the elapsed time, for example, an existing period measurement function of a CPU incorporated in an arithmetic unit or a microcomputer may be used, or a time elapsed counter may be additionally provided.

このとき、演算器は、第一段階としてA相信号の立ち下りからB相信号の立ち下りまでの位相差(時間x1)と、B相信号の立ち下りからA相信号の立ち下りまでの位相差(時間y1)を計測し、P=x1/(x1+y1)を計算し、位相差比Pを求める。   At this time, the computing unit, as the first stage, has a phase difference (time x1) from the fall of the A phase signal to the fall of the B phase signal, and the level from the fall of the B phase signal to the fall of the A phase signal. The phase difference (time y1) is measured, P = x1 / (x1 + y1) is calculated, and the phase difference ratio P is obtained.

続いて、第二段階として、次のA相信号の立ち下りからB相信号の立ち下りまでの位相差(時間x2)を計測し、Q=x2/(y1+x2)を計算し、位相差比Qを求める。   Subsequently, as the second stage, the phase difference (time x2) from the fall of the next A-phase signal to the fall of the B-phase signal is measured, Q = x2 / (y1 + x2) is calculated, and the phase difference ratio Q Ask for.

第三段階として、位相差比R=(P+Q)/2を求め、このRを求める位相差比とし、軸受に加わる荷重を算出する。この場合、例えば自動車走行中に加速や減速が繰り返され、これに伴って軸受(ハブ12)の回転加速度が変化した状態において、2つの位相差比P,Qは、互いに加速度の変化に対して相反する特性を示すため、その平均Rをとることで、軸受(ハブ12)の回転加速度の影響を低減することができる。
なお、以上の説明において位相差(時間)をA相、B相の立ち下りから立ち下りとし、説明したが、立ち上りから立ち上りでもよいし、立ち上りから立ち下り、又は、立ち下りから立ち上りでもよい。
As a third stage, a phase difference ratio R = (P + Q) / 2 is obtained, and the load applied to the bearing is calculated using this R as a phase difference ratio. In this case, for example, in a state in which acceleration and deceleration are repeated while the vehicle is running and the rotational acceleration of the bearing (hub 12) is changed accordingly, the two phase difference ratios P and Q are different from each other with respect to the change in acceleration. Since the contradictory characteristics are shown, the influence of the rotational acceleration of the bearing (hub 12) can be reduced by taking the average R.
In the above description, the phase difference (time) has been described as falling from the fall of the A phase and the B phase.

ここで一例として、位相差比P=0.500のとき、100rpm/s(12.5km/h/s)の回転加速度における位相差比P,Q,Rの変化について考察すると、図3(a)に示すように、回転速度が約400rpm以下において2つの位相差比P,Qの加速度による誤差が相反して対称的であることが分かる。これに対して、2つの位相差比P,Qの平均をとった位相差比Rは、2つの位相差比P,Qの加速度による誤差が相殺され、その結果、回転速度が約400rpm以下における位相差比の誤差が解消されていることが分かる。   Here, as an example, when the phase difference ratio P = 0.500, changes in the phase difference ratios P, Q, and R at a rotational acceleration of 100 rpm / s (12.5 km / h / s) are considered. ), It can be seen that the error due to the acceleration of the two phase difference ratios P and Q is opposite and symmetrical when the rotational speed is about 400 rpm or less. On the other hand, the phase difference ratio R obtained by averaging the two phase difference ratios P and Q cancels the error due to the acceleration of the two phase difference ratios P and Q. As a result, the rotational speed is about 400 rpm or less. It can be seen that the error in the phase difference ratio has been eliminated.

これにより、軸受(ハブ12)の回転速度が一定している状態のみならず、その回転加速度が変化した状態においても、位相差比を高精度且つ正確に演算することができる。この結果、軸受の回転状態を問わず、軸受に加わる荷重を高精度且つ正確に測定することが可能となる。   As a result, the phase difference ratio can be calculated with high accuracy and accuracy not only in a state where the rotational speed of the bearing (hub 12) is constant but also in a state where the rotational acceleration changes. As a result, the load applied to the bearing can be measured with high accuracy and accuracy regardless of the rotation state of the bearing.

なお、上述した実施の形態では、互いに隣接(連続)した位相差比R=(P+Q)/2に基づいて回転加速度の影響を相殺したが、当該加速度が小さい場合には、必ずしも隣接(連続)した位相差比をとらなくても良い。この場合、互いに対称的に相反する特性を示す2つの位相差比P,Qを演算し、これの平均をとれば良い。   In the above-described embodiment, the influence of the rotational acceleration is canceled based on the phase difference ratio R = (P + Q) / 2 that is adjacent (continuous) to each other. It is not necessary to take the phase difference ratio. In this case, two phase difference ratios P and Q exhibiting characteristics that are symmetrically opposite to each other are calculated, and an average of these may be taken.

例えば図3(b)のA相信号及びB相信号のパルス波形において、互いに隣接(連続)した時間x1,x2と、これと離れた時間y3,x4とをカウントし、そのカウント結果に基づいて、P=x1/(x1+y1)、Q=x4/(y3+x4)をそれぞれ演算する。そして、2つの位相差比P,Qの平均R=(P+Q)/2をとり、かかる平均Rを位相差比として、軸受に加わる荷重を測定する。   For example, in the pulse waveforms of the A-phase signal and the B-phase signal in FIG. 3B, the adjacent times (continuous) times x1 and x2 and the separated times y3 and x4 are counted, and based on the count result , P = x1 / (x1 + y1), Q = x4 / (y3 + x4), respectively. Then, the average R of the two phase difference ratios P and Q is taken as R = (P + Q) / 2, and the load applied to the bearing is measured using the average R as the phase difference ratio.

(a)は、荷重測定装置が組み込まれた軸受の断面図、(b)は、荷重測定装置のエンコーダの斜視図。(a) is sectional drawing of the bearing in which the load measuring device was integrated, (b) is a perspective view of the encoder of a load measuring device. (a)は、従来の荷重測定方法に用いられる検出器の検出信号のパルス波形を模式的に示す図、(b)は、検出信号の位相差比を示す図。(a) is a figure which shows typically the pulse waveform of the detection signal of the detector used for the conventional load measuring method, (b) is a figure which shows the phase difference ratio of a detection signal. (a)は、本発明の一実施の形態に係る荷重測定装置で演算された位相差比を示す図、(b)は、本実施の形態の荷重測定方法に用いられる検出器の検出信号のパルス波形を模式的に示す図。(a) is a figure which shows the phase difference ratio calculated with the load measuring apparatus which concerns on one embodiment of this invention, (b) is the detection signal of the detector used for the load measuring method of this embodiment. The figure which shows a pulse waveform typically.

符号の説明Explanation of symbols

x1,y1,x2,y2,x3,y3,x4… 位相差の時間
P,Q 位相差比
R 位相差比P,Qの平均
x1, y1, x2, y2, x3, y3, x4 ... Phase difference time P, Q Phase difference ratio R Average of phase difference ratios P, Q

Claims (5)

静止輪に対して相対回転可能に対向配置された回転輪を備えた軸受の荷重測定装置であって、
荷重測定装置は、回転輪に対して同心円状に固定され且つ周方向に沿って所定間隔で特性を変化させた被検出面を有するエンコーダと、被検出面に対向して静止輪に固定され且つ当該被検出面の特性の変化を検出する検出器と、検出器から出力された検出信号に所定の演算処理を施して軸受に加わる荷重を算出する演算器とを具備しており、
検出器には、エンコーダの被検出面に対向する複数の回転速度センサが軸方向に沿って配設されており、各回転速度センサは、軸受の回転に伴ってエンコーダが回転した状態において、被検出面の特性の変化に対応した検出信号を出力し、
演算器は、各回転速度センサから出力された検出信号相互の位相差の時間を計測すると共に、その計測結果に基づいて異なる経過時間における複数の位相差比を演算し、軸受に加わる荷重を算出することを特徴とする軸受の荷重測定装置。
A load measuring device for a bearing provided with a rotating wheel disposed so as to be relatively rotatable with respect to a stationary wheel,
The load measuring device is fixed concentrically to the rotating wheel and has an encoder having a detected surface whose characteristics are changed at predetermined intervals along the circumferential direction, and is fixed to the stationary wheel so as to face the detected surface. A detector that detects a change in the characteristics of the detected surface; and a calculator that calculates a load applied to the bearing by performing a predetermined calculation process on the detection signal output from the detector;
The detector is provided with a plurality of rotational speed sensors facing the detection surface of the encoder along the axial direction. Each rotational speed sensor is in a state where the encoder is rotated in accordance with the rotation of the bearing. Output detection signals corresponding to changes in the characteristics of the detection surface,
The computing unit measures the time of the phase difference between the detection signals output from each rotational speed sensor, calculates the multiple phase difference ratios at different elapsed times based on the measurement result, and calculates the load applied to the bearing A bearing load measuring device characterized by that.
2つの回転速度センサの出力信号A相とB相における、一方の検出信号の変化(立ち下り又は立ち上り)から他方の検出信号の変化(立ち下り又は立ち上り)までの時間x1(位相差)と、この変化点から一方の検出信号の次の変化(立ち下り又は立ち上り)までの時間をy1(位相差)として、位相差比P=x1/(x1+y1)を計算し、位相差比Pを求めると共に、
次の一方の検出信号の変化(立ち下り又は立ち上り)から他方の信号の変化(立ち下り又は立ち上り)までの時間x2(位相差)を計測し、Q=x2/(y1+x2)を計算し、位相差比Qを求め、
更に、位相差比R=(P+Q)/2を求め、このRを求める位相差比とすることを特徴とする請求項1に記載の軸受の荷重測定装置。
Time x1 (phase difference) from the change (falling or rising) of one detection signal to the change (falling or rising) of the other detection signal in the output signals A phase and B phase of the two rotational speed sensors, The phase difference ratio P = x1 / (x1 + y1) is calculated with the time from this change point to the next change (falling or rising) of one detection signal as y1 (phase difference) to obtain the phase difference ratio P. ,
The time x2 (phase difference) from the change (falling or rising) of the next one detection signal to the change (falling or rising) of the other signal is measured, and Q = x2 / (y1 + x2) is calculated. Find the phase difference ratio Q,
2. The bearing load measuring apparatus according to claim 1, wherein a phase difference ratio R = (P + Q) / 2 is obtained, and the phase difference ratio for obtaining R is used.
位相差比Qの計算において、隣接したパルスでなく離れたパルスを使用し、他方の検出信号の変化(立ち下り又は立ち上り)から一方の検出信号の変化(立ち下り又は立ち上り)の時間y3(位相差)を計測し、一方の検出信号の変化(立ち下り又は立ち上り)から他方の検出信号の変化(立ち下り又は立ち上り)の時間x4(位相差)を計測し、Q=x4/(y3+x4)を計算し、位相差比Qを求めることを特徴とする請求項2に記載の軸受の荷重測定装置。   In the calculation of the phase difference ratio Q, a distant pulse is used instead of an adjacent pulse, and the time y3 (position) of the change (falling or rising) of one detection signal from the change (falling or rising) of the other detection signal is used. Phase difference), a time x4 (phase difference) from a change (falling or rising) of one detection signal to a change (falling or rising) of the other detection signal is measured, and Q = x4 / (y3 + x4) is measured. The bearing load measuring device according to claim 2, wherein the phase difference ratio Q is obtained by calculation. エンコーダには、その被検出面に、所定形状を成す複数の符号化情報が周方向に沿って等間隔に形成され且つ軸方向に複数列を成して形成されていることを特徴とする請求項1〜3のいずれかに記載の軸受の荷重測定装置。   The encoder is characterized in that a plurality of pieces of encoded information having a predetermined shape are formed on the detected surface at regular intervals along the circumferential direction and in a plurality of rows in the axial direction. Item 4. The bearing load measuring device according to any one of Items 1 to 3. 軸受は、各種車両の車輪を車体に対して回転自在に支持するように構成されており、静止輪は、車体側に固定されて常時非回転状態に維持され、回転輪は、車輪側に接続されて車輪と共に回転することを特徴とする請求項1〜4のいずれかに記載の軸受の荷重測定装置。   The bearing is configured to rotatably support the wheels of various vehicles with respect to the vehicle body, the stationary wheel is fixed to the vehicle body side and is always kept non-rotating, and the rotating wheel is connected to the wheel side. The bearing load measuring device according to claim 1, wherein the bearing load measuring device rotates with the wheel.
JP2007064374A 2007-02-22 2007-03-14 Bearing load measuring device Expired - Fee Related JP5098379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064374A JP5098379B2 (en) 2007-02-22 2007-03-14 Bearing load measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007042491 2007-02-22
JP2007042491 2007-02-22
JP2007064374A JP5098379B2 (en) 2007-02-22 2007-03-14 Bearing load measuring device

Publications (2)

Publication Number Publication Date
JP2008232621A true JP2008232621A (en) 2008-10-02
JP5098379B2 JP5098379B2 (en) 2012-12-12

Family

ID=39905619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064374A Expired - Fee Related JP5098379B2 (en) 2007-02-22 2007-03-14 Bearing load measuring device

Country Status (1)

Country Link
JP (1) JP5098379B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101626A (en) * 2008-10-21 2010-05-06 Nsk Ltd Quantity-of-state measuring device for rotary machine
JP2015045517A (en) * 2013-08-27 2015-03-12 日本精工株式会社 Rotary machine with physical amount measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226999A (en) * 2005-01-24 2006-08-31 Nsk Ltd Displacement measuring device and load measurement device for rolling bearing unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226999A (en) * 2005-01-24 2006-08-31 Nsk Ltd Displacement measuring device and load measurement device for rolling bearing unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101626A (en) * 2008-10-21 2010-05-06 Nsk Ltd Quantity-of-state measuring device for rotary machine
JP2015045517A (en) * 2013-08-27 2015-03-12 日本精工株式会社 Rotary machine with physical amount measurement device

Also Published As

Publication number Publication date
JP5098379B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5153373B2 (en) Wheel bearing with sensor
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2006300086A (en) Rolling bearing unit with load measuring device
JP5098379B2 (en) Bearing load measuring device
JP2011185944A (en) Rolling bearing unit with load measuring instrument
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP2009041704A (en) Rolling bearing device
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP4957357B2 (en) Rotational support device state quantity measuring device
JP2008128812A (en) Roller bearing device equipped with sensor
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2009128265A (en) Wheel bearing with sensor
JP4952405B2 (en) State quantity measuring device for rolling bearing units
JP2008292275A (en) Load measuring instrument for rolling bearing unit
JP4821331B2 (en) Displacement measuring device for rolling bearing unit and load measuring device for rolling bearing unit
JP2004184297A (en) Load-measuring device for roller bearing unit
JP2008224397A (en) Load measuring device for roller bearing unit
JP4843958B2 (en) Load measuring device for rolling bearing units
JP4956940B2 (en) State quantity measuring device
JP2007085742A (en) Rolling bearing unit with load measuring device
JP2005181265A (en) Load measuring device for rolling bearing unit
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2007057342A (en) Rolling bearing unit with load measuring device
JP5300429B2 (en) Wheel bearing with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees