JP2008226643A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2008226643A JP2008226643A JP2007063195A JP2007063195A JP2008226643A JP 2008226643 A JP2008226643 A JP 2008226643A JP 2007063195 A JP2007063195 A JP 2007063195A JP 2007063195 A JP2007063195 A JP 2007063195A JP 2008226643 A JP2008226643 A JP 2008226643A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- capacity
- positive electrode
- active material
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水電解液二次電池に関し、特に好適な正極活物質と負極活物質を組み合わせたものに関する。 The present invention relates to a non-aqueous electrolyte secondary battery, and particularly relates to a combination of a positive electrode active material and a negative electrode active material.
近年、電子機器のポータブル化、コードレス化が進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池の要望が強まっている。高電圧、高エネルギー密度を有する非水電解液二次電池の中でも、とりわけリチウム二次電池に対する期待が大きくなっている。また、最近の電子機器は更なる高機能化、高電力化が進んでいて、非水電解液二次電池の更なる高エネルギー密度化が求められている。 In recent years, electronic devices have become portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Among non-aqueous electrolyte secondary batteries having high voltage and high energy density, expectations for lithium secondary batteries are particularly high. In addition, recent electronic devices are being further enhanced in functionality and power, and there is a demand for further increase in energy density of non-aqueous electrolyte secondary batteries.
非水電解液二次電池の正極活物質には、従来からリチウム複合コバルト酸化物(以下、LiCoO2と略す)が用いられる場合が多く、この他にもニッケル含有リチウム複合酸化物やスピネル型リチウム複合マンガン酸化物(LiMn2O4)、またはこれらの異種元素固溶物や混合物などが用いられている。 Conventionally, lithium composite cobalt oxide (hereinafter abbreviated as LiCoO 2 ) is often used as the positive electrode active material of the non-aqueous electrolyte secondary battery. In addition, nickel-containing lithium composite oxide and spinel-type lithium are also used. Complex manganese oxide (LiMn 2 O 4 ), or a solid solution or a mixture of these different elements is used.
一方、負極には、種々の炭素材料が用いられている。特に黒鉛が多用される理由として、重量当たりの容量が大きい、負極合剤層の炭素密度が大きくなる、負極の初期の初回充電容量と初回放電容量の差(不可逆容量)が小さくなるなどの利点が挙げられる。 On the other hand, various carbon materials are used for the negative electrode. In particular, the reason why graphite is frequently used is that the capacity per weight is large, the carbon density of the negative electrode mixture layer is increased, and the difference between the initial initial charge capacity and the initial discharge capacity (irreversible capacity) of the negative electrode is reduced. Is mentioned.
従来から使用されている正極活物質としてのLiCoO2は、初期の不可逆容量が小さく、初回充放電効率はほぼ100%である。このような正極に対しては、負極の可逆容量がそのまま電池容量となるため、不可逆容量の小さい負極を組み合わせることで高容量電池設計が可能となる。 LiCoO 2 as a positive electrode active material conventionally used has a small initial irreversible capacity, and its initial charge / discharge efficiency is almost 100%. For such a positive electrode, since the reversible capacity of the negative electrode becomes the battery capacity as it is, a high capacity battery can be designed by combining a negative electrode with a small irreversible capacity.
不可逆容量の小さい負極活物質としては従来から研究開発されており、電気特性も良好な負極活物質として、例えば球状天然黒鉛および黒鉛化炭素繊維からなる炭素材料を用いる方法が提案されている(例えば、特許文献1参照)。 As a negative electrode active material having a small irreversible capacity, research and development have been conventionally conducted, and as a negative electrode active material having good electrical characteristics, a method using a carbon material made of, for example, spherical natural graphite and graphitized carbon fiber has been proposed (for example, , See Patent Document 1).
また、正極活物質としてLiCoO2より更に高容量が見込めるニッケル含有リチウム複合酸化物は1回目の充電(リチウムの離脱反応)と、放電(リチウムの挿入反応)の間に大きな充放電容量差があることが知られている。
電気特性、例えば放電温度特性やサイクル特性を向上させるために負極活物質を改良する場合、例えば一般的に、負極活物質の比表面積を大きくして反応活性面積を増大させることが挙げられる。これにより電気特性は向上するものの、電解液との反応面積も増えることから副反応も増長させてしまうため、負極の不可逆容量は大きくなってしまう。 When improving a negative electrode active material in order to improve electrical characteristics, for example, discharge temperature characteristics and cycle characteristics, for example, the specific surface area of the negative electrode active material is generally increased to increase the reaction active area. As a result, although the electrical characteristics are improved, the reaction area with the electrolytic solution is increased, so that side reactions are also increased, so that the irreversible capacity of the negative electrode is increased.
高容量かつ優れた電気特性を確保するため、従来から使用されているLiCoO2のような充放電効率がほぼ100%に近い正極を用いた場合、例えば上記のような負極と組み合わせると、電池の容量は負極の不可逆容量により支配されてしまうため、高容量化かつ優れた電池特性の両立は困難となる。 In order to ensure high capacity and excellent electrical characteristics, when using a positive electrode with a charge / discharge efficiency close to 100%, such as LiCoO 2 that has been used in the past, when combined with the above negative electrode, for example, Since the capacity is governed by the irreversible capacity of the negative electrode, it is difficult to achieve both high capacity and excellent battery characteristics.
正極の不可逆容量が大きいニッケル含有リチウム複合酸化物のような正極と、不可逆容
量の小さい負極を組み合わせた場合、つまり正極の不可逆容量が負極の不可逆容量より大きい場合、電池の容量は正極の不可逆容量により支配されてしまう。加えて、正極不可逆容量に相当する量のリチウムイオンは放電終了後でも負極に残存しており、この負極に残存したリチウムイオンは、本来は放電可能であるのにもかかわらず、充放電反応に関与することができない。充放電に関与できないリチウムイオンを負極炭素中に保持したままの状態では、2サイクル目以降に充電できる負極の可逆電気容量が小さくなる。このため、電池の充放電可能な電気容量が減少するとともに、充電時に可逆電気容量の限界を超えた電気量が通電されやすくなるため、負極表面に金属リチウムが析出しやすくなる問題がある。この析出した金属リチウムは熱的に安定性が低く、電池の安全性から考慮すると好ましくない。
When a positive electrode such as a nickel-containing lithium composite oxide with a large irreversible capacity of the positive electrode and a negative electrode with a small irreversible capacity are combined, that is, when the irreversible capacity of the positive electrode is larger than the irreversible capacity of the negative electrode, the capacity of the battery is the irreversible capacity of the positive electrode Will be dominated by. In addition, lithium ions in an amount equivalent to the irreversible capacity of the positive electrode remain in the negative electrode even after the end of discharge, and the lithium ion remaining in the negative electrode is charged / discharged in spite of being originally dischargeable. I can't get involved. In a state where lithium ions that cannot participate in charge / discharge are held in the negative electrode carbon, the reversible electric capacity of the negative electrode that can be charged after the second cycle is reduced. For this reason, since the electric capacity which can be charged / discharged of a battery reduces, the electric quantity exceeding the limit of a reversible electric capacity becomes easy to energize at the time of charge, and there exists a problem that metal lithium tends to precipitate on the negative electrode surface. The deposited metallic lithium is thermally unstable and is not preferable in view of battery safety.
本発明は、これら従来の課題を解決し、優れた電気特性を有し、かつ高エネルギー密度化された非水電解液二次電池を提供することを目的とする。 An object of the present invention is to solve these conventional problems and to provide a non-aqueous electrolyte secondary battery having excellent electrical characteristics and high energy density.
前記従来の課題を解決するため、本発明の非水電解液二次電池は、充放電でリチウムイオンを放出吸蔵可能な正極活物質を含む正極と、充放電でリチウムイオンを吸蔵放出可能な負極活物質を含む負極と非水電解液とを備えた非水電解液二次電池において、前記負極活物質は、不可逆容量が39mAh/g以上61mAh/g以下である炭素であり、前記正極活物質リチウム複合ニッケル酸化物であり、その不可逆容量をAとし、正極合剤層に対向する負極合剤層の部分に存在する負極活物質の不可逆容量をBとした場合、0.73≦A/B≦1.14であるものである。 In order to solve the conventional problems, the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode including a positive electrode active material capable of releasing and storing lithium ions by charge and discharge, and a negative electrode capable of inserting and extracting lithium ions by charge and discharge. In a non-aqueous electrolyte secondary battery comprising a negative electrode containing an active material and a non-aqueous electrolyte, the negative electrode active material is carbon having an irreversible capacity of 39 mAh / g or more and 61 mAh / g or less, and the positive electrode active material When the irreversible capacity of the negative electrode active material existing in the portion of the negative electrode mixture layer facing the positive electrode mixture layer is B, 0.73 ≦ A / B. ≦ 1.14.
また、電池特性の優れた不可逆容量が39mAh/g以上61mAh/g以下である負極と、LiCoO2より重量当たりの容量が大きく、かつ不可逆容量の大きいリチウム複合ニッケル酸化物を組み合わせて、上記正負極の不可逆容量の割合を満たすことで、正極の不可逆容量が、負極の不可逆容量、例えば負極表面被膜の生成等に充当されるため、充放電に関与しないリチウムイオンが負極活物質中に残ることなく、電池設計上、負極のセンター負荷設計値を負極の不可逆容量が39mAh/g以下の負極と組み合わせたときよりも高く設定することができるため、優れた電気特性を有し、かつ高エネルギー密度化、電池の高容量設計が可能となる。 Further, the positive and negative electrodes are formed by combining a negative electrode having an irreversible capacity with excellent battery characteristics of 39 mAh / g or more and 61 mAh / g or less and a lithium composite nickel oxide having a larger capacity per weight than LiCoO 2 and a larger irreversible capacity. By satisfying the ratio of irreversible capacity, the irreversible capacity of the positive electrode is applied to the irreversible capacity of the negative electrode, for example, the formation of the negative electrode surface coating, etc., so that lithium ions that do not participate in charge / discharge do not remain in the negative electrode active material. In terms of battery design, the center load design value of the negative electrode can be set higher than when combined with a negative electrode having an irreversible capacity of 39 mAh / g or less, so that it has excellent electrical characteristics and high energy density. The high capacity design of the battery becomes possible.
また、金属リチウムの析出も抑制されるため、安全性も高まる。 Moreover, since precipitation of metallic lithium is also suppressed, safety is enhanced.
本発明によると、電池容量に寄与しない正負極活物質を電池に内蔵することがなくなる電池設計が可能となり、電池の高容量設計が可能となる。また、高容量だけでなく安全性も増した非水電解液二次電池が提供できる。 According to the present invention, it is possible to design a battery in which positive and negative electrode active materials that do not contribute to the battery capacity are not built in the battery, and it is possible to design a high capacity battery. In addition, it is possible to provide a non-aqueous electrolyte secondary battery with increased safety as well as high capacity.
本発明の実施の形態における非水電解液二次電池は、正極と負極がセパレータを介して絶縁した状態で積層された極板群を有し、正極活物質の不可逆容量をAとし、正極合剤層に対向する部分の負極合剤層に存在する負極活物質の不可逆容量をBとした場合、0.73≦A/B≦1.14であり、その正極活物質がリチウム複合ニッケル酸化物で構成されている。 The non-aqueous electrolyte secondary battery according to the embodiment of the present invention has an electrode plate group in which a positive electrode and a negative electrode are insulated with a separator interposed therebetween, and the positive electrode active material has an irreversible capacity A and a positive electrode composite. When the irreversible capacity of the negative electrode active material existing in the portion of the negative electrode mixture layer facing the agent layer is B, 0.73 ≦ A / B ≦ 1.14, and the positive electrode active material is a lithium composite nickel oxide It consists of
こうすることにより、従来から用いられている充放電効率がほぼ100%である正極活物質LiCoO2に対して、優れた電気特性を有するが不可逆容量が大きいため電池の高容量化に不向きであった負極を、この負極の不可逆容量に相当する不可逆容量を有するLiCoO2より重量当たりの容量が大きいリチウム複合ニッケル酸化物を組み合わせるこ
とで、電池容量に寄与しない正負極活物質を電池に内蔵することがなくなり、優れた電気特性を有し、かつ高容量電池設計が可能となる。
In this way, the positive electrode active material LiCoO 2 having a charge / discharge efficiency of almost 100%, which has been used conventionally, has excellent electrical characteristics but is not suitable for increasing the capacity of the battery because of its large irreversible capacity. The positive and negative electrode active materials that do not contribute to the battery capacity are incorporated in the battery by combining the negative electrode with lithium composite nickel oxide having a larger capacity per weight than LiCoO 2 having an irreversible capacity corresponding to the irreversible capacity of the negative electrode. Therefore, it is possible to design a high-capacity battery having excellent electrical characteristics.
負極活物質としては、各種天然黒鉛、各種人造黒鉛等の炭素材料を用いることができる。上述のように、正極活物質LiCoO2に対して、優れた電気特性を有するが不可逆容量が大きいため電池の高容量化に不向きであった負極を、この負極の不可逆容量に相当する不可逆容量を有するLiCoO2より重量当たりの容量が大きいリチウム複合ニッケル酸化物を組み合わせることで高容量電池設計が可能となるとはいえ、不可逆容量が大きくかつ理論容量が小さい炭素材料(例えばメソカーボンマイクロビーズ)は高容量電池設計には不向きであり、本発明の効果を十分に活かすことができない。負極活物質の理論容量は少なくとも350mAh/gであることが好ましい。 As the negative electrode active material, carbon materials such as various natural graphites and various artificial graphites can be used. As described above, the positive electrode active material LiCoO 2 has an excellent irreversible capacity due to the large irreversible capacity but the irreversible capacity corresponding to the irreversible capacity of the negative electrode. Although a high-capacity battery design is possible by combining lithium composite nickel oxide having a larger capacity per weight than LiCoO 2 having, carbon materials (for example, mesocarbon microbeads) having a large irreversible capacity and a small theoretical capacity are high. It is not suitable for capacity battery design, and the effects of the present invention cannot be fully utilized. The theoretical capacity of the negative electrode active material is preferably at least 350 mAh / g.
本発明の好ましい実施の形態における非水電解液二次電池は、正極活物質を一般式LixNiyM1−yO2(x:0.95≦x≦1.10、MはCo、Mn、Cr、Fe、Mg、TiおよびAlの少なくとも1種類以上、y:0.3≦y≦0.95)で表されるリチウム複合ニッケル酸化物が好ましい。 In the non-aqueous electrolyte secondary battery according to a preferred embodiment of the present invention, the positive electrode active material is represented by the general formula Li x Ni y M 1-y O 2 (x: 0.95 ≦ x ≦ 1.10, M is Co, A lithium composite nickel oxide represented by at least one of Mn, Cr, Fe, Mg, Ti and Al, y: 0.3 ≦ y ≦ 0.95) is preferable.
こうすることにより、正極活物質にLiCoO2を用いた場合は単位体積当りの容量120mAh/cc程度であるが、正極活物質の一般式がLixNiyM1−yO2(x:0.95≦x≦1.10、MはCo、Mn、Cr、Fe、Mg、TiおよびAlからなるいずれか1種類以上、y:0.3≦y≦0.95)で表されるリチウム複合ニッケル酸化物を用いることにより単位体積当りの容量130mAh/cc以上の高エネルギー密度の非水電解液二次電池を得ることができる。 Thus, when LiCoO 2 is used as the positive electrode active material, the capacity per unit volume is about 120 mAh / cc, but the general formula of the positive electrode active material is Li x Ni y M 1-y O 2 (x: 0 .95 ≦ x ≦ 1.10, M is one or more of Co, Mn, Cr, Fe, Mg, Ti and Al, y: 0.3 ≦ y ≦ 0.95) By using nickel oxide, it is possible to obtain a non-aqueous electrolyte secondary battery having a high energy density with a capacity of 130 mAh / cc or more per unit volume.
ここで、正極活物質を一般式LixNiyM1−yO2(x:0.95≦x≦1.10、MはCo、Mn、Cr、Fe、Mg、TiおよびAlの少なくとも1種類以上、y:0.3≦y≦0.95)で表されるリチウム複合ニッケル酸化物の代表として、LiNi1/3Co1/3Mn1/3O2、LiNi0.6Co0.3Al0.1O2、LiNi0.6Co0.3Ti0.1O2、およびLiNi0.5Co0.5O2が挙げられる。 Here, the positive electrode active material is represented by the general formula Li x Ni y M 1-y O 2 (x: 0.95 ≦ x ≦ 1.10, M is at least one of Co, Mn, Cr, Fe, Mg, Ti, and Al. LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0 .0 as representatives of lithium composite nickel oxide represented by y = 0.3 ≦ y ≦ 0.95) . 3 Al 0.1 O 2 , LiNi 0.6 Co 0.3 Ti 0.1 O 2 , and LiNi 0.5 Co 0.5 O 2 .
正極に用いる結着剤としては、ポリフッ化ビニリデン(以下、PVDFと略す)などのフッ素樹脂や、アクリロニトリル単位を含むゴム性状高分子を用いることができる。充放電特性の機能を十分に発揮させる観点から、PVDFよりも非水電解液に膨潤または湿潤するアクリロニトリル単位を含むゴム性状高分子が好ましい。これは、結着剤が電解液に湿潤または膨潤することにより、充放電時にリチウムイオンが極板間を移動するパスをつくり、充放電特性を向上させると考えられる。 As the binder used for the positive electrode, a fluororesin such as polyvinylidene fluoride (hereinafter abbreviated as PVDF) or a rubbery polymer containing an acrylonitrile unit can be used. From the viewpoint of sufficiently exerting the function of charge / discharge characteristics, a rubber-like polymer containing an acrylonitrile unit that swells or wets in the non-aqueous electrolyte is preferable to PVDF. This is considered that the binder is wetted or swollen in the electrolytic solution, thereby creating a path for lithium ions to move between the electrode plates during charge and discharge, thereby improving the charge and discharge characteristics.
導電剤としては、アセチレンブラック、ケッチェンブラック(登録商標)、および各種黒鉛などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いても良い。 As the conductive agent, acetylene black, ketjen black (registered trademark), various graphites, and the like can be used. These may be used alone or in combination of two or more.
負極は、少なくとも負極活物質と結着剤を含む。 The negative electrode includes at least a negative electrode active material and a binder.
結着剤としては、PVDFおよびその変性体を始め各種バインダーを用いることができる。 As the binder, various binders such as PVDF and modified products thereof can be used.
非水溶媒からなる電解液には、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などの各種リチウム塩を溶質として用いることができる。非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびメチルエチルカ
ーボネート(MEC)などを用いることが好ましいが、これらに限定されない。非水溶媒は、1種を単独で用いることもできるが、2種以上を組み合わせて用いることが好ましい。また、添加剤としては、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、およびそれらの変性体などを用いることもできる。
Various lithium salts such as lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) can be used as the solute in the electrolyte solution composed of a non-aqueous solvent. As the non-aqueous solvent, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC) and the like are preferably used, but are not limited thereto. Although a non-aqueous solvent can also be used individually by 1 type, it is preferable to use combining 2 or more types. Moreover, as an additive, vinylene carbonate (VC), cyclohexylbenzene (CHB), those modified bodies, etc. can also be used.
セパレータとしては、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂の微多孔膜や不織布からなる単層または多層構造で構成されているものが好ましい。 As a separator, what is comprised by the single layer or multilayer structure which consists of a microporous film | membrane and nonwoven fabrics of polyolefin resins, such as a polyethylene resin and a polypropylene resin, is preferable.
以下、本発明の実施例を説明する。ただし、本発明は以下に説明する実施例に限定されるものではない。 Examples of the present invention will be described below. However, the present invention is not limited to the examples described below.
(実施例1)
直径18mm、高さ65mm、いわゆる18650サイズの円筒型リチウムイオン二次電池を以下のようにして作製した。
(Example 1)
A so-called 18650 size cylindrical lithium ion secondary battery having a diameter of 18 mm and a height of 65 mm was produced as follows.
(a)正極板の作製
正極活物質であるLiNi0.6Co0.3Al0.1O2の粉末100重量部と、導電材としてアセチレンブラックを5重量部、および結着剤としてPVDFを5重量部、および適量のN−メチルピロリドン(NMP)の有機溶剤に添加して、ペースト状の正極合剤を調整した。この合剤ペーストを厚み15μmのアルミニウム箔に塗布し、乾燥後圧延して、正極合剤層を形成した。その後、その正極板は、幅56mm、長さ660mmの大きさに切り出した。
(A) Production of positive electrode plate 100 parts by weight of a powder of LiNi 0.6 Co 0.3 Al 0.1 O 2 as a positive electrode active material, 5 parts by weight of acetylene black as a conductive material, and PVDF as a binder 5 parts by weight and an appropriate amount of N-methylpyrrolidone (NMP) were added to an organic solvent to prepare a paste-like positive electrode mixture. This mixture paste was applied to an aluminum foil having a thickness of 15 μm, dried and rolled to form a positive electrode mixture layer. Thereafter, the positive electrode plate was cut into a size of 56 mm in width and 660 mm in length.
(b)負極板の作製
負極活物質であるコークスを加熱処理して得た炭素粉末100重量部に、結着剤としてスチレン系結着剤を10重量部混合し、これをカルボキシメチルセルロース(CMC)の水溶液に懸濁させてペースト状の負極合剤を調整した。この合剤ペーストを厚み10μmの銅箔に塗布し、乾燥後圧延して、負極合剤層を形成した。その後、その負極板は、幅58mm、長さ740mmの大きさに切り出した。
(B) Production of negative electrode plate 100 parts by weight of carbon powder obtained by heat-treating coke as a negative electrode active material was mixed with 10 parts by weight of a styrene-based binder as a binder, and this was mixed with carboxymethyl cellulose (CMC). A paste-like negative electrode mixture was prepared by suspending in an aqueous solution. This mixture paste was applied to a copper foil having a thickness of 10 μm, dried and rolled to form a negative electrode mixture layer. Thereafter, the negative electrode plate was cut into a size having a width of 58 mm and a length of 740 mm.
(c)電解液の調製
ECと、MECとを体積比1:3で混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解し、電解液を調製した。
(C) Preparation of Electrolytic Solution LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent in which EC and MEC were mixed at a volume ratio of 1: 3 to prepare an electrolytic solution.
(d)電池の組立
正極板と負極板とを、厚み16μmのセパレータを介して捲回して極板群を構成した。この時、正極合剤層は完全に負極合剤層に覆われていることを確認した。
(D) Assembly of battery The positive electrode plate and the negative electrode plate were wound through a separator having a thickness of 16 μm to form an electrode plate group. At this time, it was confirmed that the positive electrode mixture layer was completely covered with the negative electrode mixture layer.
そしてこの電極群を電池ケース内に挿入した。次いで、前述の電解液を5.0g秤量して、電池ケース内に注入し、ケースの開口部を封口する。こうして、円筒型リチウムイオン二次電池を作製した。 And this electrode group was inserted in the battery case. Next, 5.0 g of the aforementioned electrolyte is weighed and poured into the battery case, and the opening of the case is sealed. Thus, a cylindrical lithium ion secondary battery was produced.
また、正極活物質、負極活物質の不可逆容量は、以下に述べるように電気化学セルを作製して測定した。 The irreversible capacity of the positive electrode active material and the negative electrode active material was measured by preparing an electrochemical cell as described below.
正極の不可逆容量は、実際に電池を構成する正極と同じ極板を所定量用いて電極を作製し、対極に金属リチウムを用いた電気化学セルを構成し、25℃において、リチウム電位基準で上限電圧4.3Vから下限電圧3.0Vの間で、電流密度0.2mA/cm2の定電流で充放電させた際の充放電容量の差を不可逆容量とした。 The irreversible capacity of the positive electrode is an upper limit on the basis of the lithium potential at 25 ° C. by forming an electrode using a predetermined amount of the same electrode plate as the positive electrode that actually constitutes the battery, and forming an electrochemical cell using metallic lithium as the counter electrode. The difference in charge / discharge capacity when charging / discharging at a constant current of 0.2 mA / cm 2 between a voltage of 4.3 V and a lower limit voltage of 3.0 V was defined as an irreversible capacity.
また、負極の不可逆容量は、正極と同様に、対極に金属リチウムを用いた電気化学セルを構成し、25℃において、リチウム電位基準で上限電圧1.5Vから下限電圧0Vの間で、電流密度0.2mA/cm2の定電流で充放電させた際の充放電容量の差を不可逆容量とした。 The irreversible capacity of the negative electrode is similar to that of the positive electrode in that an electrochemical cell using metallic lithium is used as the counter electrode, and at 25 ° C., the current density is between the upper limit voltage 1.5V and the lower limit voltage 0V on the basis of the lithium potential. The difference in charge / discharge capacity when charging / discharging at a constant current of 0.2 mA / cm 2 was defined as the irreversible capacity.
対極に金属リチウムを用いた電気化学セルで測定した正極活物質の不可逆容量は25mAh/gであった。また、負極活物質には、対極に金属リチウムを用いた電気化学セルで測定した不可逆容量が39mAh/gで理論容量が370mAh/gであるものを用いた。作製した電池の正極合剤層中の正極活物質重量は15.992gであり、電池としての正極の不可逆容量Aは400mAhと算出した。 The irreversible capacity of the positive electrode active material measured by an electrochemical cell using metallic lithium as a counter electrode was 25 mAh / g. The negative electrode active material used had an irreversible capacity of 39 mAh / g and a theoretical capacity of 370 mAh / g as measured by an electrochemical cell using metallic lithium as the counter electrode. The weight of the positive electrode active material in the positive electrode mixture layer of the produced battery was 15.992 g, and the irreversible capacity A of the positive electrode as the battery was calculated to be 400 mAh.
負極板の重量から銅箔の重量を差し引いたもの、すなわち、負極合剤層の重量は10.933gであった。正極合剤層に対向する負極合剤層の部分は負極塗布面積の92.3%であり、負極合剤中の負極活物質重量(負極合剤から結着剤とCMCを差し引いたもの)は89.3%になる。このようにして算出した負極活物質重量は、9.011gであり、電池としての負極の不可逆容量、つまり正極合剤層に対向する負極合剤層の部分に存在する負極活物質の不可逆容量Bは351mAhと算出した。すなわち、A/B=1.14となる電池を作製した。 The weight of the negative electrode plate minus the weight of the copper foil, that is, the weight of the negative electrode mixture layer was 10.933 g. The portion of the negative electrode mixture layer facing the positive electrode mixture layer is 92.3% of the negative electrode application area, and the weight of the negative electrode active material in the negative electrode mixture (the negative electrode mixture minus the binder and CMC) is It becomes 89.3%. The weight of the negative electrode active material thus calculated was 9.011 g, and the irreversible capacity of the negative electrode as a battery, that is, the irreversible capacity B of the negative electrode active material present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer. Was calculated to be 351 mAh. That is, a battery with A / B = 1.14 was produced.
(実施例2)
対極に金属リチウムを用いた電気化学セルで測定した不可逆容量が51mAh/gで理論容量が370mAh/gである負極活物質を用いた。作製した電池の正極合剤層中の正極活物質重量は16.010gであり、電池としての正極の不可逆容量Aは400mAhと算出した。
(Example 2)
A negative electrode active material having an irreversible capacity of 51 mAh / g and a theoretical capacity of 370 mAh / g measured with an electrochemical cell using metallic lithium as a counter electrode was used. The weight of the positive electrode active material in the positive electrode mixture layer of the produced battery was 16.010 g, and the irreversible capacity A of the positive electrode as the battery was calculated to be 400 mAh.
負極合剤重量10.918gから、実施例1と同様に算出した正極合剤層に対向する負極合剤層の部分に存在する負極活物質重量は、8.999gであり、電池としての負極の不可逆容量、つまり正極合剤層に対向する負極合剤層の部分に存在する負極活物質の不可逆容量Bは459mAhと算出した。すなわち、A/B=0.87となる電池を作製した以外は、実施例1と同様に行った。 From the negative electrode mixture weight of 10.918 g, the negative electrode active material weight present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer calculated in the same manner as in Example 1 was 8.999 g, The irreversible capacity, that is, the irreversible capacity B of the negative electrode active material present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer was calculated to be 459 mAh. That is, it carried out like Example 1 except having produced the battery used as A / B = 0.87.
(実施例3)
対極に金属リチウムを用いた電気化学セルで測定した不可逆容量が61mAh/gで理論容量が370mAh/gである負極活物質を用いた。作製した電池の正極合剤層中の正極活物質重量は15.982gであり、電池としての正極の不可逆容量Aは400mAhと算出した。
(Example 3)
A negative electrode active material having an irreversible capacity of 61 mAh / g and a theoretical capacity of 370 mAh / g measured with an electrochemical cell using metallic lithium as a counter electrode was used. The weight of the positive electrode active material in the positive electrode mixture layer of the produced battery was 15.982 g, and the irreversible capacity A of the positive electrode as the battery was calculated to be 400 mAh.
負極合剤重量10.902gから、実施例1と同様に算出した正極合剤層に対向する負極合剤層の部分に存在する負極活物質重量は、8.986gであり、電池としての負極の不可逆容量、つまり正極合剤層に対向する負極合剤層の部分に存在する負極活物質の不可逆容量Bは548mAhと算出した。すなわち、A/B=0.73となる電池を作製した以外は、実施例1と同様に行った。 The weight of the negative electrode active material present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer calculated from the negative electrode mixture weight of 10.902 g in the same manner as in Example 1 was 8.986 g. The irreversible capacity, that is, the irreversible capacity B of the negative electrode active material present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer was calculated to be 548 mAh. That is, it carried out like Example 1 except having produced the battery used as A / B = 0.73.
(比較例1)
対極に金属リチウムを用いた電気化学セルで測定した不可逆容量が30mAh/gで理論容量が370mAh/gである負極活物質を用いた。作製した電池の正極合剤層中の正極活物質重量は16.009gであり、電池としての正極の不可逆容量Aは400mAhと算出した。
(Comparative Example 1)
A negative electrode active material having an irreversible capacity of 30 mAh / g and a theoretical capacity of 370 mAh / g measured with an electrochemical cell using metallic lithium as a counter electrode was used. The weight of the positive electrode active material in the positive electrode mixture layer of the produced battery was 16.009 g, and the irreversible capacity A of the positive electrode as the battery was calculated to be 400 mAh.
負極合剤重量10.925gから、実施例1と同様に算出した正極合剤層に対向する負極合剤層の部分に存在する負極活物質重量は、9.005gであり、電池としての負極の不可逆容量、つまり正極合剤層に対向する負極合剤層の部分に存在する負極活物質の不可逆容量Bは270mAhと算出した。すなわち、A/B=1.48となる電池を作製した以外は、実施例1と同様に行った。 From the negative electrode mixture weight of 10.925 g, the negative electrode active material weight present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer calculated in the same manner as in Example 1 was 9.005 g. The irreversible capacity, that is, the irreversible capacity B of the negative electrode active material existing in the portion of the negative electrode mixture layer facing the positive electrode mixture layer was calculated to be 270 mAh. That is, it carried out like Example 1 except having produced the battery used as A / B = 1.48.
(比較例2)
対極に金属リチウムを用いた電気化学セルで測定した不可逆容量が71mAh/gで理論容量が370mAh/gである負極活物質を用いた。作製した電池の正極合剤層中の正極活物質重量は15.979gであり、電池としての正極の不可逆容量Aは399mAhと算出した。
(Comparative Example 2)
A negative electrode active material having an irreversible capacity of 71 mAh / g and a theoretical capacity of 370 mAh / g measured with an electrochemical cell using metallic lithium as a counter electrode was used. The weight of the positive electrode active material in the positive electrode mixture layer of the produced battery was 15.979 g, and the irreversible capacity A of the positive electrode as the battery was calculated to be 399 mAh.
負極合剤重量10.885gから、実施例1と同様に算出した正極合剤層に対向する負極合剤層の部分に存在する負極活物質重量は、8.972gであり、電池としての負極の不可逆容量、つまり正極合剤層に対向する負極合剤層の部分に存在する負極活物質の不可逆容量Bは637mAhと算出した。すなわち、A/B=0.63となる電池を作製した以外は、実施例1と同様に行った。 The weight of the negative electrode active material present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer calculated from the negative electrode mixture weight of 10.85 g in the same manner as in Example 1 was 8.972 g. The irreversible capacity, that is, the irreversible capacity B of the negative electrode active material existing in the portion of the negative electrode mixture layer facing the positive electrode mixture layer was calculated to be 637 mAh. That is, it carried out like Example 1 except having produced the battery used as A / B = 0.63.
(比較例3)
対極に金属リチウムを用いた電気化学セルで測定した不可逆容量が39mAh/gで理論容量が330mAh/gである負極活物質を用いた。作製した電池の正極合剤層中の正極活物質重量は14.002gであり、電池としての正極の不可逆容量Aは350mAhと算出した。
(Comparative Example 3)
A negative electrode active material having an irreversible capacity of 39 mAh / g and a theoretical capacity of 330 mAh / g as measured by an electrochemical cell using metallic lithium as a counter electrode was used. The weight of the positive electrode active material in the positive electrode mixture layer of the produced battery was 14.002 g, and the irreversible capacity A of the positive electrode as the battery was calculated to be 350 mAh.
負極合剤重量10.942gから、実施例1と同様に算出した正極合剤層に対向する負極合剤層の部分に存在する負極活物質重量は、9.019gであり、電池としての負極の不可逆容量、つまり正極合剤層に対向する負極合剤層の部分に存在する負極活物質の不可逆容量Bは351mAhと算出した。すなわち、A/B=1.00となる電池を作製した以外は、実施例1と同様に行った。 The weight of the negative electrode active material present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer calculated from the negative electrode mixture weight of 10.422 g in the same manner as in Example 1 was 9.019 g. The irreversible capacity, that is, the irreversible capacity B of the negative electrode active material present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer was calculated to be 351 mAh. That is, it carried out like Example 1 except having produced the battery used as A / B = 1.00.
(比較例4)
正極活物質にLiCoO2を用い、対極に金属リチウムを用いた電気化学セルで測定すると、不可逆容量は2mAh/gであった。また、負極活物質には、対極に金属リチウムを用いた電気化学セルで測定した不可逆容量が40mAh/gで理論容量が370mAh/gであるものを用いた。作製した電池の正極合剤層中の正極活物質重量は17.980gであり、電池としての正極の不可逆容量Aは36mAhと算出した。
(Comparative Example 4)
When measured with an electrochemical cell using LiCoO 2 as the positive electrode active material and metallic lithium as the counter electrode, the irreversible capacity was 2 mAh / g. The negative electrode active material used had an irreversible capacity of 40 mAh / g and a theoretical capacity of 370 mAh / g as measured by an electrochemical cell using metallic lithium as the counter electrode. The weight of the positive electrode active material in the positive electrode mixture layer of the produced battery was 17.980 g, and the irreversible capacity A of the positive electrode as the battery was calculated to be 36 mAh.
負極合剤重量8.471gから、実施例1と同様に算出した正極合剤層に対向する負極合剤層の部分に存在する負極活物質重量は、6.982gであり、電池としての負極の不可逆容量、つまり正極合剤層に対向する負極合剤層の部分に存在する負極活物質の不可逆容量Bは279mAhと算出した。すなわち、A/B=0.13となる電池を作製した。 The weight of the negative electrode active material present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer calculated from the negative electrode mixture weight of 8.471 g in the same manner as in Example 1 is 6.982 g. The irreversible capacity, that is, the irreversible capacity B of the negative electrode active material existing in the portion of the negative electrode mixture layer facing the positive electrode mixture layer was calculated as 279 mAh. That is, a battery having A / B = 0.13 was produced.
(比較例5)
対極に金属リチウムを用いた電気化学セルで測定した不可逆容量が30mAh/gで理論容量が370mAh/gである負極活物質を用いた。作製した電池の正極合剤層中の正極活物質重量は17.991gであり、電池としての正極の不可逆容量Aは36mAhと算出した。
(Comparative Example 5)
A negative electrode active material having an irreversible capacity of 30 mAh / g and a theoretical capacity of 370 mAh / g measured with an electrochemical cell using metallic lithium as a counter electrode was used. The weight of the positive electrode active material in the positive electrode mixture layer of the produced battery was 17.991 g, and the irreversible capacity A of the positive electrode as a battery was calculated to be 36 mAh.
負極合剤重量8.517gから、実施例1と同様に算出した正極合剤層に対向する負極合剤層の部分に存在する負極活物質重量は、7.020gであり、電池としての負極の不
可逆容量、つまり正極合剤層に対向する負極合剤層の部分に存在する負極活物質の不可逆容量Bは211mAhと算出した。すなわち、A/B=0.17となる電池を作製した以外は、比較例1と同様に行った。
The weight of the negative electrode active material present in the portion of the negative electrode mixture layer facing the positive electrode mixture layer calculated from the negative electrode mixture weight of 8.517 g in the same manner as in Example 1 was 7.020 g. The irreversible capacity, that is, the irreversible capacity B of the negative electrode active material existing in the portion of the negative electrode mixture layer facing the positive electrode mixture layer was calculated to be 211 mAh. That is, it carried out similarly to the comparative example 1 except having produced the battery used as A / B = 0.17.
<充放電試験>
環境温度25℃において、充放電容量の測定を以下の条件で行った。
<Charge / discharge test>
At an environmental temperature of 25 ° C., the charge / discharge capacity was measured under the following conditions.
充電条件:定電流定電圧充電
4.2V、0.7ItmA、50mA終止
放電条件:定電流放電
0.2ItmA、2.5V終止(比較例4、5は3.0V終止)
<充放電サイクル特性試験>
環境温度25℃において、充放電サイクル特性の評価を以下の条件で行った。
Charging conditions: constant current and constant voltage charging
4.2V, 0.7 ItmA, 50 mA termination Discharge condition: constant current discharge
0.2 ItmA, 2.5V termination (Comparative Examples 4 and 5 are 3.0V termination)
<Charge / discharge cycle characteristics test>
At an environmental temperature of 25 ° C., the charge / discharge cycle characteristics were evaluated under the following conditions.
充電条件:定電流定電圧充電
4.2V、0.7ItmA、50mA終止
放電条件:定電流放電
1ItmA、2.5V終止(比較例4,5は3.0V終止)
これら充電と放電を1サイクルとし、1サイクル目の放電容量を100%として、次式により算出される放電容量維持率が50%になるサイクル数を測定した。
Charging conditions: constant current and constant voltage charging
4.2V, 0.7 ItmA, 50 mA termination Discharge condition: constant current discharge
1 ItmA, 2.5V termination (Comparative Examples 4 and 5 are 3.0V termination)
With these charging and discharging as one cycle, the discharge capacity at the first cycle was set to 100%, and the number of cycles at which the discharge capacity maintenance ratio calculated by the following equation was 50% was measured.
放電容量維持率(%)=サイクル経過時放電容量(mAh)/1サイクル目放電容量(mAh)×100
これらの結果を(表1)に示す。
Discharge capacity maintenance rate (%) = discharge capacity at the time of cycle (mAh) / 1st cycle discharge capacity (mAh) × 100
These results are shown in (Table 1).
実施例1と比較例1は、正極の不可逆容量が負極の不可逆容量より大きいため、正極の可逆容量が電池容量となる。このことから、実施例1および比較例1の電池において、1サイクル目の充電容量と放電容量の差は各々の電池において、ほとんど同じとなっている。 In Example 1 and Comparative Example 1, since the irreversible capacity of the positive electrode is larger than the irreversible capacity of the negative electrode, the reversible capacity of the positive electrode becomes the battery capacity. From this, in the batteries of Example 1 and Comparative Example 1, the difference between the charge capacity and the discharge capacity in the first cycle is almost the same in each battery.
また、比較例3も正極の不可逆容量が負極の不可逆容量より大きいため、正極の可逆容量が電池容量となっている。しかし、負極の理論容量が330mAh/gと低く、実施例1および比較例1と同じ電池設計ができないため、充電容量そのものが実施例1、2、3および比較例1、2より小さく、更なる高容量化、高エネルギー密度化には不利であるといえる。 In Comparative Example 3, the irreversible capacity of the positive electrode is larger than the irreversible capacity of the negative electrode, so that the reversible capacity of the positive electrode is the battery capacity. However, since the theoretical capacity of the negative electrode is as low as 330 mAh / g and the same battery design as in Example 1 and Comparative Example 1 cannot be performed, the charging capacity itself is smaller than in Examples 1, 2, 3 and Comparative Examples 1 and 2, and further It can be said that it is disadvantageous for high capacity and high energy density.
実施例2、3と比較例2は、正極の不可逆容量より負極の不可逆容量のほうが大きいため、負極の可逆容量が電池容量となる。 In Examples 2 and 3 and Comparative Example 2, since the irreversible capacity of the negative electrode is larger than the irreversible capacity of the positive electrode, the reversible capacity of the negative electrode becomes the battery capacity.
このことから、実施例2、3、比較例2の電池においては、1サイクル目の充電容量と放電容量の差は実施例1、比較例1の電池より大きくなっている。 Therefore, in the batteries of Examples 2 and 3 and Comparative Example 2, the difference between the charge capacity and the discharge capacity at the first cycle is larger than that of the batteries of Example 1 and Comparative Example 1.
比較例4および比較例5は、正極活物質にLiNi0.6Co0.3Al0.1O2より重量当たりの容量が低いLiCoO2を使用しているため、充電容量そのものがLiNi0.6Co0.3Al0.1O2を用いた実施例1、2、3および比較例1、2、3より小さく、更なる高容量化、高エネルギー密度化には不利であるといえる。また、LiCoO2は充放電効率がほぼ100%であるため、この電池の容量は負極可逆容量が支配する。 Since Comparative Example 4 and Comparative Example 5 use LiCoO 2 having a lower capacity per weight than LiNi 0.6 Co 0.3 Al 0.1 O 2 as the positive electrode active material, the charge capacity itself is LiNi 0. It is smaller than Examples 1, 2, 3 and Comparative Examples 1, 2, 3 using 6 Co 0.3 Al 0.1 O 2 , and is disadvantageous for further increase in capacity and energy density. Moreover, since LiCoO 2 has a charge / discharge efficiency of almost 100%, the capacity of this battery is dominated by the negative electrode reversible capacity.
サイクル試験については、実施例2、3が良好であった。 Regarding the cycle test, Examples 2 and 3 were good.
サイクル試験後の電池を分解し観察した結果、比較例1の電池の負極表面には金属光沢を有するリチウム金属の析出が観察され、実施例1、2、3、比較例2、3、4、5の電池では析出が観察されなかった。 As a result of disassembling and observing the battery after the cycle test, deposition of lithium metal having metallic luster was observed on the negative electrode surface of the battery of Comparative Example 1, and Examples 1, 2, 3, Comparative Examples 2, 3, 4, No precipitation was observed in the battery of No. 5.
この結果から、比較例1では、サイクル初期の電池容量は実施例1と同じであっても、正極の不可逆容量分が負極の炭素中に残存したまま充放電サイクルが進行することが顕著で実質的な可逆容量が減少し、充電によって負極の可逆な充放電容量を越えて充電が行われたため負極板表面に金属リチウムが析出し、放電容量が著しく減少したものと考えられる。ちなみに、この場合、正極活物質量を減らすか、充電電圧を下げることによって、負極の可逆容量に余裕を持たせることにより、サイクル特性の良好な電池は実現できるが、放電容量自体が小さくなるため電池の高容量化は実現できない。 From this result, in Comparative Example 1, even though the battery capacity at the beginning of the cycle is the same as in Example 1, it is remarkable that the charge / discharge cycle proceeds with the irreversible capacity of the positive electrode remaining in the carbon of the negative electrode. The reversible capacity is reduced, and charging is performed beyond the reversible charge / discharge capacity of the negative electrode, so that the lithium metal is deposited on the surface of the negative electrode plate and the discharge capacity is remarkably reduced. Incidentally, in this case, a battery with good cycle characteristics can be realized by reducing the amount of the positive electrode active material or reducing the charging voltage, thereby providing a reversible capacity of the negative electrode, but the discharge capacity itself is reduced. Higher battery capacity cannot be realized.
以上の結果より、高容量電池設計とサイクル特性のバランスを考慮すると、正極の不可逆容量/負極の不可逆容量は0.73以上1.14以下とすることが望ましく、これまで高容量化には不向きであった優れた電気特性は有するが不可逆容量の大きい、詳しくは不可逆容量が39mAh/g以上61mAh/g以下の負極活物質に、LiCoO2より重量当たりの容量が大きく、不可逆容量の大きいリチウム複合ニッケル酸化物正極に合わせることで、正負極の不可逆容量がほぼ等しくなり、長寿命で更なる高容量化設計が可能となる。 From the above results, considering the balance between high capacity battery design and cycle characteristics, the irreversible capacity of the positive electrode / irreversible capacity of the negative electrode is preferably 0.73 or more and 1.14 or less. Lithium composite that has excellent electrical characteristics but large irreversible capacity, in particular, a negative active material having an irreversible capacity of 39 mAh / g or more and 61 mAh / g or less, a larger capacity per weight than LiCoO 2 , and a large irreversible capacity By matching with the nickel oxide positive electrode, the irreversible capacity of the positive and negative electrodes becomes almost equal, and it is possible to design a higher capacity with a longer life.
上記実施例においては円筒型の電池を用いて評価を行ったが、角型など電池形状が異なっても同様の効果が得られる。 In the above examples, evaluation was performed using a cylindrical battery, but the same effect can be obtained even if the battery shape is different, such as a rectangular battery.
本発明は、非水電解液二次電池に利用することができ、特に、高容量を求められる携帯電子機器、ノートパソコン用等の電源として有用である。 INDUSTRIAL APPLICABILITY The present invention can be used for a non-aqueous electrolyte secondary battery, and is particularly useful as a power source for portable electronic devices, notebook computers, and the like that are required to have a high capacity.
Claims (3)
前記負極活物質は、不可逆容量が39mAh/g以上61mAh/g以下である炭素であり、
前記正極活物質はリチウム複合ニッケル酸化物であり、その不可逆容量をAとし、正極合剤層に対向する負極合剤層の部分に存在する負極活物質の不可逆容量をBとした場合、0.73≦A/B≦1.14である非水電解液二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material capable of releasing and storing lithium ions by charge and discharge, a negative electrode including a negative electrode active material capable of storing and releasing lithium ions by charge and discharge, and a non-aqueous electrolyte In
The negative electrode active material is carbon having an irreversible capacity of 39 mAh / g or more and 61 mAh / g or less,
When the positive electrode active material is lithium composite nickel oxide, the irreversible capacity thereof is A, and the irreversible capacity of the negative electrode active material existing in the portion of the negative electrode mixture layer facing the positive electrode mixture layer is B. A nonaqueous electrolyte secondary battery in which 73 ≦ A / B ≦ 1.14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007063195A JP2008226643A (en) | 2007-03-13 | 2007-03-13 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007063195A JP2008226643A (en) | 2007-03-13 | 2007-03-13 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008226643A true JP2008226643A (en) | 2008-09-25 |
Family
ID=39845011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007063195A Pending JP2008226643A (en) | 2007-03-13 | 2007-03-13 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008226643A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009037740A (en) * | 2007-07-31 | 2009-02-19 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
WO2011145301A1 (en) * | 2010-05-18 | 2011-11-24 | パナソニック株式会社 | Lithium secondary battery |
JP2013518390A (en) * | 2010-01-27 | 2013-05-20 | スリーエム イノベイティブ プロパティズ カンパニー | High capacity lithium ion electrochemical cell |
CN105074991A (en) * | 2013-02-25 | 2015-11-18 | 株式会社丰田自动织机 | Lithium-ion secondary battery and manufacturing method therefor |
US11545660B2 (en) | 2017-10-20 | 2023-01-03 | Lg Energy Solutions, Ltd. | Long-life and ultra-high energy density lithium secondary battery |
US11621423B2 (en) | 2017-11-29 | 2023-04-04 | Lg Energy Solution, Ltd. | Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same |
-
2007
- 2007-03-13 JP JP2007063195A patent/JP2008226643A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009037740A (en) * | 2007-07-31 | 2009-02-19 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2013518390A (en) * | 2010-01-27 | 2013-05-20 | スリーエム イノベイティブ プロパティズ カンパニー | High capacity lithium ion electrochemical cell |
WO2011145301A1 (en) * | 2010-05-18 | 2011-11-24 | パナソニック株式会社 | Lithium secondary battery |
US8568925B2 (en) | 2010-05-18 | 2013-10-29 | Panasonic Corporation | Lithium secondary battery |
CN105074991A (en) * | 2013-02-25 | 2015-11-18 | 株式会社丰田自动织机 | Lithium-ion secondary battery and manufacturing method therefor |
US11545660B2 (en) | 2017-10-20 | 2023-01-03 | Lg Energy Solutions, Ltd. | Long-life and ultra-high energy density lithium secondary battery |
US11621423B2 (en) | 2017-11-29 | 2023-04-04 | Lg Energy Solution, Ltd. | Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4604460B2 (en) | Nonaqueous electrolyte secondary battery and battery charge / discharge system | |
JP4945967B2 (en) | Non-aqueous electrolyte secondary battery | |
US20150180036A1 (en) | Nonaqueous electrolyte secondary battery | |
US10305104B2 (en) | Li-ion battery cathode materials with over-discharge protection | |
JP3705728B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2009076372A (en) | Non-aqueous secondary battery | |
KR101488043B1 (en) | Method for activating high capacity lithium secondary battery | |
JP2004047180A (en) | Nonaqueous electrolytic solution battery | |
CN102160215A (en) | Nonaqueous electrolyte secondary battery | |
US10637048B2 (en) | Silicon anode materials | |
US10840508B2 (en) | Lithium ion secondary battery | |
JP5082198B2 (en) | Lithium ion secondary battery | |
JP2008198593A (en) | Nonaqueous electrolyte secondary battery and its manufacturing method | |
JP2016042461A (en) | Positive electrode material, positive electrode including the same and lithium battery including the positive electrode | |
JP5279567B2 (en) | Nonaqueous electrolyte secondary battery | |
KR20220046267A (en) | Anodeless lithium secondary battery and preparing method thereof | |
US11973178B2 (en) | Lithium ion cells with high performance electrolyte and silicon oxide active materials achieving very long cycle life performance | |
JP2008226643A (en) | Nonaqueous electrolyte secondary battery | |
KR101175375B1 (en) | Lithium secondary battery and preparation method thereof | |
JP2012124026A (en) | Nonaqueous electrolyte secondary battery | |
CN107078274B (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same | |
US20140234719A1 (en) | High capacity lithium-ion electrochemical cells and methods of making same | |
JP2012252951A (en) | Nonaqueous electrolyte secondary battery | |
JP2013197052A (en) | Lithium ion power storage device | |
JP2013186972A (en) | Nonaqueous electrolyte secondary battery |