Nothing Special   »   [go: up one dir, main page]

JP2008221128A - Method for improving cissing resistance of coating film - Google Patents

Method for improving cissing resistance of coating film Download PDF

Info

Publication number
JP2008221128A
JP2008221128A JP2007062872A JP2007062872A JP2008221128A JP 2008221128 A JP2008221128 A JP 2008221128A JP 2007062872 A JP2007062872 A JP 2007062872A JP 2007062872 A JP2007062872 A JP 2007062872A JP 2008221128 A JP2008221128 A JP 2008221128A
Authority
JP
Japan
Prior art keywords
coating
paint
water
elastic modulus
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007062872A
Other languages
Japanese (ja)
Inventor
Kazutoshi Sugiura
一俊 杉浦
Miki Aoki
美樹 青木
Yoshinori Hara
義則 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2007062872A priority Critical patent/JP2008221128A/en
Publication of JP2008221128A publication Critical patent/JP2008221128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of improving the cissing resistance of a coating film and further to provide a method of effectively improving the cissing resistance of a water paint under an environment where the cissing easily occurs. <P>SOLUTION: In the application of the water paint on a material to be coated, the cissing resistance of the coating film is improved by controlling the storage elasticity modulus G' by vibration measurement in 0.1 Hz frequency at 25°C to 5-500 Pa and the ratio (G'/G'') of the storage elasticity modulus G' to loss elasticity modulus G'' to 0.5-5.0 in the wet coating film right after the water paint to be applied which has 21-30 mN surface tension at 25°C measured by a pendant drop method is applied on the material to be coated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水性塗料を被塗物に塗装した塗膜にハジキが発生しないようにするための耐ハジキ性改良方法に関し、ハジキの発生し易い環境下においても耐ハジキ性を改良する方法に関する。   The present invention relates to a method for improving repellency in order to prevent repellency from occurring in a coating film obtained by applying a water-based paint to an object to be coated, and relates to a method for improving repellency even in an environment where repellency is likely to occur.

塗料塗装時の塗膜のハジキやヘコミは、塗装工程で発生する重大な塗膜欠陥の一つであり、その撲滅は塗料、塗装業界における課題となっている。   The repellency and dents of the paint film at the time of paint coating are one of the serious paint film defects that occur in the painting process, and the eradication is a problem in the paint and paint industry.

塗料塗装後から乾燥過程にかけて、塗液中、気液界面又は被塗物/塗液界面に低い表面張力を有する部位(汚染部位)が存在すると、そこを中心に塗液がはじかれてくぼみが発生する。一般的に被塗物表面が見えるほどくぼんでいるものをハジキ、被塗物表面まで到達していないものをヘコミというが、ヘコミも含めてハジキという場合もある。本明細書においては、ヘコミも含めてハジキというものとする。   If there is a part with low surface tension (contaminated part) in the coating liquid, the gas-liquid interface or the coating object / coating liquid interface from the paint coating to the drying process, the coating liquid will be repelled around that and the dent will be appear. In general, the object that is so deep that the surface of the object to be coated can be seen is called a repellant, and the object that does not reach the surface of the object to be coated is called a dent. In this specification, it shall be called a repellency including a dent.

塗膜のハジキは、液状塗料を被塗物に塗装した時に、被塗物上の塗膜表面に円形状のくぼみが形成されたり、ひどいときには、被塗物の素地が見えるほどの穴を生じたりする現象である。該ハジキは、様々な要因から発生するが、一般には、塗装直後のウエット塗膜からの局部的な溶剤の急蒸発、塗料に含まれる残留モノマー、塗料用添加剤等の影響、雰囲気中からのダストのコンタミ、被塗物上の油汚れ等によって、塗膜表面に低表面張力のトリガー部位が生じ、これが拡張することによって起こると考えられている。   The repellency of the paint film causes a circular dent to form on the surface of the paint film when the liquid paint is applied to the work. It is a phenomenon. The repellency may occur due to various factors. Generally, local solvent rapid evaporation from a wet coating film immediately after coating, the influence of residual monomers, paint additives, etc. contained in the paint, It is thought that this is caused by expansion of a trigger portion having a low surface tension on the surface of the coating film due to dust contamination, oil stains on the object to be coated, and the like.

塗膜のハジキ性に関して、従来、塗料のハジキ発生傾向は塗料の流動特性に依存すること、スプレー塗装した場合、残留粘度が小さく、降伏値が大きい塗料ほどハジキが発生しやすいことが、記載されている(非特許文献1参照)。   Regarding the repellency of the paint film, it has been described that the tendency of repellency to occur depends on the flow characteristics of the paint, and that when spray coating is applied, a paint with a lower residual viscosity and a higher yield value is more likely to generate repellency. (See Non-Patent Document 1).

また、貯蔵弾性率G'の大きい連続表面膜は、ハジキ抑制効果があること、レベリング剤等の塗料用添加剤を塗料に加えることにより貯蔵弾性率G'が増加することが記載されている(非特許文献2参照)。   Further, it is described that a continuous surface film having a large storage elastic modulus G ′ has a repellency suppressing effect, and that the storage elastic modulus G ′ is increased by adding a coating additive such as a leveling agent to the coating ( Non-patent document 2).

更に、塗料における貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値が、塗膜のハジキ性に関連すること、この値が大きいほどハジキ抵抗性が大きいことが記載されている(非特許文献3参照)。   Furthermore, the value of the ratio (G ′ / G ″) of the storage elastic modulus G ′ to the loss elastic modulus G ″ in the paint is related to the repellency of the coating film. It is described that it is large (see Non-Patent Document 3).

また、被塗物に、有機溶剤型の液状塗料を塗装した直後のウエット塗膜の20℃におけるズリ速度5秒-1 での定常流測定による粘度を0.2〜1.0Pa・sの範囲内に、かつ20℃における角周波数10rad/秒での振動測定による貯蔵弾性率G'と損失弾性率G''との比(G'/G'')を0.1〜0.25の範囲内になるよう制御することによって塗膜の耐ハジキ性を改良できることが記載されている(特許文献1参照)。この方法は有機溶剤型塗料における塗膜の耐ハジキ性の改良に有効であるが、水性塗料については効果は十分でなかった。   Further, the viscosity of the wet coating film immediately after the organic solvent-type liquid paint is applied to the object to be coated is in the range of 0.2 to 1.0 Pa · s according to the steady flow measurement at 20 ° C. and the slip rate of 5 sec −1. And the ratio (G ′ / G ″) of the storage elastic modulus G ′ and loss elastic modulus G ″ by vibration measurement at an angular frequency of 10 rad / sec at 20 ° C. is in the range of 0.1 to 0.25. It is described that the repelling resistance of the coating film can be improved by controlling to be inside (see Patent Document 1). This method is effective for improving the repellency resistance of the coating film in the organic solvent-type paint, but the effect is not sufficient for the aqueous paint.

水性塗料は有機溶剤型塗料に比較してハジキが発生しやすく、水性塗料によって形成される塗膜の耐ハジキ性を改良できる方法については、これまで知られておらず、さらにハジキが発生しやすい環境下において水性塗料の耐ハジキ性を有効に改良できる方法も知られていなかった。   Water-based paints are more susceptible to repelling than organic solvent-based paints, and no method has been known to improve the repelling resistance of paint films formed with water-based paints. There has been no known method that can effectively improve the repellency of water-based paints under the environment.

色材協会誌、Vol.47, No.9, P19-26(1974)Japan Society of Color Material, Vol.47, No.9, P19-26 (1974) 塗料の研究、No.136, Apr., P9-16(2001)Paint Research, No.136, Apr., P9-16 (2001) 塗料の研究、No.127, Oct., P2-9(1996)Paint Research, No.127, Oct., P2-9 (1996) 特開2003−129001号公報JP 2003-129001 A

本発明の目的は、水性塗料について、塗膜の耐ハジキ性を改良できる新規な方法を提供することにあり、さらにハジキが発生しやすい環境下において水性塗料の耐ハジキ性を有効に改良できる方法を提供することである。   An object of the present invention is to provide a novel method capable of improving the repellency of a coating film with respect to a water-based paint, and a method capable of effectively improving the repellency of an aqueous paint in an environment where repellency is likely to occur. Is to provide.

本発明者は、水性塗料の粘性、弾性、塗料性状などが、塗膜のハジキの発生程度に及ぼす影響について種々検討を行なった結果、塗装する水性塗料の表面張力、被塗物に塗装直後のウエット塗膜における、貯蔵弾性率、及び貯蔵弾性率と損失弾性率との比の三者を、それぞれ特定の範囲内になるように、制御することによって、塗膜の耐ハジキ性を改良できることを見出した。本発明は、かかる新知見に基づき、完成されたものである。   The present inventor has conducted various studies on the effects of the viscosity, elasticity, paint properties, etc. of water-based paints on the degree of repellency of the paint film. As a result, the surface tension of water-based paints to be applied, It is possible to improve the repellency of the coating film by controlling the storage modulus and the ratio between the storage modulus and the loss modulus in the wet coating so that they are within a specific range. I found it. The present invention has been completed based on such new findings.

すなわち、本発明によると、以下の塗膜の耐ハジキ性改良方法を提供するものである。
1.被塗物に水性塗料を塗装するにあたり、塗装する水性塗料のペンダントドロップ法による25℃における表面張力を21〜30mN/mの範囲内とし、かつ該水性塗料を被塗物に塗装した直後のウエット塗膜において、25℃における周波数0.1Hzでの振動測定による貯蔵弾性率G'を5〜500Paの範囲内とし、貯蔵弾性率G'と損失弾性率G''との比(G'/G'')を0.5〜5.0の範囲内になるように制御することにより、塗膜の耐ハジキ性を改良する方法。
2.水性塗料がビヒクル成分として、水溶性樹脂、エマルション樹脂及び架橋剤を含有するものである上記項1記載の塗膜の耐ハジキ性改良方法。
3.上記表面張力、上記貯蔵弾性率G'、及び上記貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の制御を、塗装する水性塗料の組成変更、塗装方法の変更及び塗装条件の変更からなる群から選ばれる少なくとも一種の方法により行う上記項1又は2に記載の塗膜の耐ハジキ性改良方法。
4.塗装する水性塗料の組成変更を、流動性調整剤の添加、溶剤の添加及び塗料の顔料濃度の調整から選ばれる少なくとも一つの処方により行う上記項3に記載の塗膜の耐ハジキ性改良方法。
That is, according to the present invention, the following method for improving the repellency resistance of a coating film is provided.
1. In applying a water-based paint to the object to be coated, the wetness immediately after the surface tension of the water-based paint to be applied is 25 to 30 mN / m by the pendant drop method and the water-based paint is applied to the object to be coated In the coating film, the storage elastic modulus G ′ by vibration measurement at 25 ° C. with a frequency of 0.1 Hz is in the range of 5 to 500 Pa, and the ratio of the storage elastic modulus G ′ to the loss elastic modulus G ″ (G ′ / G '') Is controlled to be in the range of 0.5 to 5.0, thereby improving the repellency resistance of the coating film.
2. Item 2. The method for improving repellency of a coating film according to Item 1, wherein the water-based paint contains a water-soluble resin, an emulsion resin, and a crosslinking agent as vehicle components.
3. Control of the surface tension, the storage elastic modulus G ′, and the ratio (G ′ / G ″) of the storage elastic modulus G ′ to the loss elastic modulus G ″, composition change of a water-based paint to be applied, and coating method Item 3. The method for improving repellency of a coating film according to Item 1 or 2, which is performed by at least one method selected from the group consisting of a change in coating conditions and a change in coating conditions.
4). Item 4. The method for improving the repellency resistance of a coating film according to Item 3, wherein the composition of the aqueous paint to be applied is changed by at least one formulation selected from the addition of a fluidity modifier, the addition of a solvent, and the adjustment of the pigment concentration of the paint.

本発明の塗膜の耐ハジキ性改良方法によると、被塗物に水性塗料の塗装において、塗膜のハジキの発生のない塗装を行なうことができるという顕著な効果が得られる。また、本発明の方法によると、ハジキが発生しやすい環境下における水性塗料の塗装においても耐ハジキ性を有効に改良できるという効果を発揮するものである。   According to the method for improving the repellency resistance of a coating film of the present invention, it is possible to obtain a remarkable effect that it is possible to perform coating without generating repellency of a coating film in the application of a water-based paint to an object. In addition, according to the method of the present invention, the effect of effectively improving the repellency can be exhibited even in the application of a water-based paint in an environment where repellency is likely to occur.

本発明方法における被塗物としては、特に限定されるものではなく、例えば、鉄、アルミニウム、ステンレス、亜鉛メッキ鋼板、亜鉛合金メッキ鋼板、ブリキ板などの金属基材;上記金属表面にリン酸塩処理、クロメート処理、複合酸化物処理などの表面処理が施された表面処理金属基材;プラスチック基材;ガラス、セメント、スレート、モルタル、コンクリート、瓦などの無機窯業基材等;紙など;これらの基材に塗膜が施された塗装基材;及びこれらの基材を加工した物品などを挙げることができる。上記亜鉛合金メッキ鋼板としては、例えば、鉄−亜鉛、ニッケル−亜鉛、アルミニウム−亜鉛などの合金メッキを施した鋼板が挙げられる。   The object to be coated in the method of the present invention is not particularly limited. For example, a metal substrate such as iron, aluminum, stainless steel, galvanized steel sheet, zinc alloy plated steel sheet, tin plate, etc .; phosphate on the metal surface Surface-treated metal base material that has been subjected to surface treatment such as treatment, chromate treatment, complex oxide treatment; plastic base material; inorganic ceramic base material such as glass, cement, slate, mortar, concrete, roof tile; paper, etc .; And a coated substrate in which a coating film is applied to the substrate; and articles obtained by processing these substrates. As said zinc alloy plating steel plate, the steel plate which gave alloy plating, such as iron-zinc, nickel-zinc, aluminum-zinc, is mentioned, for example.

本発明方法において使用される水性塗料としては、特に制限されるものではなく、例えば、ビヒクル成分である塗料用樹脂及び必要に応じて架橋剤が、水性媒体中に溶解ないしは分散された水性塗料が挙げられる。   The water-based paint used in the method of the present invention is not particularly limited. For example, a water-based paint in which a resin for a vehicle that is a vehicle component and, if necessary, a crosslinking agent is dissolved or dispersed in an aqueous medium. Can be mentioned.

上記塗料用樹脂としては、それ自体既知のものを特に制限なく用いることができる。例えば、代表例としてアクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ポリアミド樹脂、シリコンポリエステル樹脂、シリコンアクリル樹脂、フッ素樹脂、エポキシ樹脂、これらの樹脂の変性樹脂などを挙げることができ、これらは1種で又は2種以上組合せて使用することができる。また、上記塗料用樹脂は、架橋剤と組合せて使用することができ、架橋剤としては、例えば、メラミン樹脂などのアミノ樹脂、エポキシ化合物、ポリアミン化合物、ポリイソシアネート化合物、ブロック化ポリイソシアネート化合物などを挙げることができる。また、塗料用樹脂と架橋剤との組合せとしては、エポキシ基含有アクリル樹脂とカルボキシル基含有アクリル樹脂との組合せなども挙げることができる。   As the coating resin, those known per se can be used without particular limitation. For example, acrylic resins, polyester resins, alkyd resins, epoxy resins, polyamide resins, silicon polyester resins, silicon acrylic resins, fluororesins, epoxy resins, modified resins of these resins, etc. can be cited as representative examples. It can be used in combination with two or more species. The coating resin can be used in combination with a crosslinking agent. Examples of the crosslinking agent include amino resins such as melamine resins, epoxy compounds, polyamine compounds, polyisocyanate compounds, and blocked polyisocyanate compounds. Can be mentioned. Further, examples of the combination of the coating resin and the crosslinking agent include a combination of an epoxy group-containing acrylic resin and a carboxyl group-containing acrylic resin.

上記塗料用樹脂を水性化するためには、樹脂中にカルボキシル基などのアニオン性基を含有させておき、このアニオン性基をアミン化合物などの塩基性化合物で中和して水性化する方法、水性媒体中で界面活性剤などの乳化剤の存在下で、エマルション重合法などによって、これらの樹脂の重合を行う方法、水性媒体中で界面活性剤などの乳化剤の存在下で、強攪拌してこれらの樹脂を強制乳化する方法など、従来公知の方法を用いることができる。
上記水性塗料は、クリヤ塗料であっても、着色顔料及び/又は光輝性顔料などを含有する着色塗料であってもよい。また、必要に応じて、体質顔料等のその他の顔料を含んでいても良い。
In order to make the coating resin aqueous, an anionic group such as a carboxyl group is contained in the resin, and the anionic group is neutralized with a basic compound such as an amine compound to make it aqueous. In the presence of an emulsifier such as a surfactant in an aqueous medium, a method of polymerizing these resins by an emulsion polymerization method, etc., in the presence of an emulsifier such as a surfactant in an aqueous medium, with vigorous stirring A conventionally known method such as a method of forcibly emulsifying the resin can be used.
The water-based paint may be a clear paint or a colored paint containing a color pigment and / or a luster pigment. In addition, other pigments such as extender pigments may be included as necessary.

着色顔料としては、例えば、二酸化チタン、チタンイエロー、酸化鉄、カーボンブラック、各種焼成顔料等の無機顔料;フタロシアニンブルー、キナクリドンレッド、ペリレンレッド、アゾレッド、フタロシアニングリーン等の有機顔料等を挙げることができる。また、光輝性顔料としては、例えば、アルミニウム粉、銅粉、ニッケル粉、マイカ粉、雲母状酸化鉄、酸化チタン被覆マイカ粉、酸化鉄被覆マイカ粉、ガラスフレーク、光輝性グラファイト、ホログラム顔料等を挙げることができる。更に、体質顔料としては、例えば、硫酸バリウム、炭酸カルシウム、タルク、クレー等を挙げることができる。   Examples of the color pigment include inorganic pigments such as titanium dioxide, titanium yellow, iron oxide, carbon black, and various fired pigments; organic pigments such as phthalocyanine blue, quinacridone red, perylene red, azo red, and phthalocyanine green. . Examples of glitter pigments include aluminum powder, copper powder, nickel powder, mica powder, mica-like iron oxide, titanium oxide-coated mica powder, iron oxide-coated mica powder, glass flakes, glitter graphite, and hologram pigment. Can be mentioned. Furthermore, examples of extender pigments include barium sulfate, calcium carbonate, talc, and clay.

上記水性塗料における水性媒体としては、水又は水と水性有機溶剤との混合溶剤が使用できる。この水性有機溶剤としては、例えば、エチレングリコール、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、エタノール、ブタノール、イソプロパノール等を挙げることができる。水性媒体中には、疎水性の有機溶剤、例えば、キシレン、ヘプタン、メチルイソブチルケトン、2−エチルヘキシルアルコール、エチレングリコールモノエチルエーテルアセテートなどが少量含有していてもよい。水性塗料の固形分濃度としては、通常、10〜70重量%程度とするのが適当である。   As the aqueous medium in the water-based paint, water or a mixed solvent of water and an aqueous organic solvent can be used. Examples of the aqueous organic solvent include ethylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, ethanol, butanol, and isopropanol. The aqueous medium may contain a small amount of a hydrophobic organic solvent such as xylene, heptane, methyl isobutyl ketone, 2-ethylhexyl alcohol, ethylene glycol monoethyl ether acetate and the like. The solid content concentration of the water-based paint is usually about 10 to 70% by weight.

本発明方法において、被塗物に、水性塗料を塗装する塗装方法としては、エアスプレー塗装、回転型霧化スプレー塗装、エアレススプレー塗装、ロール塗装、刷毛塗り、カーテン塗装、浸漬塗装などを挙げることができる。これらの塗装方法のなかでも、エアスプレー塗装、回転型霧化スプレー塗装及びエアレススプレー塗装等のスプレー塗装が好適である。これらのスプレー塗装は静電印加されていてもよい。   In the method of the present invention, examples of the coating method for applying a water-based paint to an object to be coated include air spray coating, rotary atomizing spray coating, airless spray coating, roll coating, brush coating, curtain coating, and immersion coating. Can do. Among these coating methods, spray coating such as air spray coating, rotary atomizing spray coating, and airless spray coating is preferable. These spray coatings may be electrostatically applied.

また、スプレー塗装する場合の水性塗料の粘度は、例えば、フォードカップNo.4粘度計において25℃で15〜60秒程度の粘度となるように、前記水性媒体を用いて、適宜、調整しておくことが好ましい。   The viscosity of the water-based paint when spray coating is, for example, Ford Cup No. It is preferable to adjust appropriately using the said aqueous medium so that it may become a viscosity of about 15 to 60 second at 25 degreeC in 4 viscosity meter.

また、被塗物に塗装される水性塗料の塗着量としては、乾燥膜厚が5〜50μm程度、好ましくは8〜40μm程度とするのが適当である。   The coating amount of the water-based paint to be coated on the object is suitably about 5 to 50 μm, preferably about 8 to 40 μm in dry film thickness.

本発明方法においては、被塗物に水性塗料を塗装するにあたり、下記3つの条件を満足するよう制御することが必要であり、これらの条件を満足することによって塗膜のハジキ発生を効果的に防止できる。
(1)塗装する水性塗料のペンダントドロップ法による25℃における表面張力が30mN/m以下、好ましくは21〜30mN/m、さらに好ましくは22〜28mN/mの範囲内であること。
(2)水性塗料を被塗物に塗装した直後のウエット塗膜において、25℃における周波数0.1Hzでの振動測定による貯蔵弾性率G'が5Pa以上、好ましくは5〜500Pa、さらに好ましくは10〜300Paの範囲内であること。
(3)水性塗料を被塗物に塗装した直後のウエット塗膜において、25℃における周波数0.1Hzでの振動測定による貯蔵弾性率G'と損失弾性率G''との比(G'/G'')が0.5以上、好ましくは0.5〜5.0、さらに好ましくは0.8〜4.5の範囲内であること。
In the method of the present invention, when applying a water-based paint to an object to be coated, it is necessary to control so that the following three conditions are satisfied. Can be prevented.
(1) The surface tension of the water-based paint to be coated at 25 ° C. by the pendant drop method is 30 mN / m or less, preferably 21 to 30 mN / m, more preferably 22 to 28 mN / m.
(2) In the wet coating film immediately after coating the water-based paint on the object to be coated, the storage elastic modulus G ′ by vibration measurement at a frequency of 0.1 Hz at 25 ° C. is 5 Pa or more, preferably 5 to 500 Pa, more preferably 10 Within the range of ~ 300Pa.
(3) Ratio of storage elastic modulus G ′ and loss elastic modulus G ″ measured by vibration measurement at a frequency of 0.1 Hz at 25 ° C. (G ′ / G ″) is 0.5 or more, preferably 0.5 to 5.0, more preferably 0.8 to 4.5.

上記条件(1)において、ペンダントドロップ法による表面張力は、公知の各種測定機を用いて測定できる。本発明においては、協和界面化学社製の「界面張力計PD−X型」を用いて、25℃の室内で、塗装する水性塗料の液滴を作成し、作成20秒後の形状を測定して表面張力を求めた。   In the above condition (1), the surface tension by the pendant drop method can be measured using various known measuring machines. In the present invention, using an “interface tension meter PD-X type” manufactured by Kyowa Interface Chemical Co., Ltd., droplets of a water-based paint to be painted are created in a room at 25 ° C., and the shape 20 seconds after the creation is measured. The surface tension was determined.

この表面張力が30mN/mを超えると塗液とハジキ核との間で生じる拡張力が大きくなるためハジキが発生しやすくなる。一方、この表面張力が21mN/mより小さくなり、さらに小さくなるに伴い、得られる硬化塗膜の耐水性やノンサンドリコート付着性が低下し易くなる。ハジキの抑制効果及び得られる硬化塗膜の耐水性やノンサンドリコート付着性の観点から、表面張力が21〜30mN/m、特に22〜28mN/mの範囲内であることがより好適である。   If the surface tension exceeds 30 mN / m, the expansion force generated between the coating liquid and the repellent nuclei increases, and repelling is likely to occur. On the other hand, as the surface tension becomes smaller than 21 mN / m and becomes further smaller, the water resistance and non-sand recoat adhesion of the resulting cured coating film tend to be lowered. From the viewpoint of the repelling effect and the water resistance and non-sand recoat adhesion of the resulting cured coating film, the surface tension is more preferably in the range of 21 to 30 mN / m, particularly 22 to 28 mN / m.

前記条件(2)、(3)において、水性塗料を被塗物に塗装した直後のウエット塗膜の貯蔵弾性率G'と損失弾性率G''は、該ウエット塗膜を塗装直後に掻きとった塗料を、公知の各種粘弾性測定機器を用いて測定することによって得ることができる。本発明における塗装した直後のウエット塗膜の貯蔵弾性率G'と損失弾性率G''は、塗装1分後に塗料を掻きとり、HAAKE社製のレオメーター「RheoStressRS150」を用いて、温度25℃、応力0.5Paにおける、周波数0.1Hzでの振動測定により得られた値である。   Under the conditions (2) and (3), the storage elastic modulus G ′ and the loss elastic modulus G ″ of the wet coating immediately after the water-based coating is applied to the object are determined by scratching the wet coating immediately after the coating. The paint can be obtained by measuring using various known viscoelasticity measuring instruments. The storage elastic modulus G ′ and loss elastic modulus G ″ of the wet coating film immediately after coating in the present invention are determined by scraping the paint one minute after coating and using a rheometer “RheoStressRS150” manufactured by HAAKE at a temperature of 25 ° C. The value obtained by vibration measurement at a frequency of 0.1 Hz at a stress of 0.5 Pa.

上記条件(2)において、貯蔵弾性率G'が5Pa未満となると、塗液とハジキ核との間に発生する拡張力による塗液の流動を抑制することが困難となる。一方、貯蔵弾性率G'が500Paを超え、さらに大きくなるに伴い、塗液の流動を抑制しすぎて塗面の平滑性が低下し易くなる。ハジキの抑制効果及び塗面の平滑性の観点から、貯蔵弾性率G'が5〜500Pa、特に10〜300Paの範囲内であることがより好適である。   In the above condition (2), when the storage elastic modulus G ′ is less than 5 Pa, it is difficult to suppress the flow of the coating liquid due to the expansion force generated between the coating liquid and the repellent core. On the other hand, as the storage elastic modulus G ′ exceeds 500 Pa and further increases, the flow of the coating liquid is excessively suppressed, and the smoothness of the coating surface tends to be lowered. From the viewpoint of the repelling effect and the smoothness of the coated surface, the storage elastic modulus G ′ is more preferably in the range of 5 to 500 Pa, particularly 10 to 300 Pa.

上記条件(3)において、貯蔵弾性率G'と損失弾性率G''との比(G'/G'')が0.5未満となると、塗液とハジキ核との間に発生する拡張力による塗液の流動を抑制することが困難となる。一方、上記比(G'/G'')が5.0を超え、さらに大きくなるに伴い、塗液の流動を抑制しすぎて塗面の平滑性が低下し易くなる。ハジキの抑制効果及び塗面の平滑性の観点から、上記比(G'/G'')が0.5〜5.0、特に0.8〜4.5の範囲内であることがより好適である。   In the above condition (3), when the ratio (G ′ / G ″) of the storage elastic modulus G ′ to the loss elastic modulus G ″ is less than 0.5, the expansion that occurs between the coating liquid and the repellent nucleus It becomes difficult to suppress the flow of the coating liquid due to force. On the other hand, as the ratio (G ′ / G ″) exceeds 5.0 and further increases, the flow of the coating liquid is excessively suppressed, and the smoothness of the coating surface tends to be lowered. From the viewpoint of the repelling effect and the smoothness of the coated surface, the ratio (G ′ / G ″) is more preferably in the range of 0.5 to 5.0, particularly 0.8 to 4.5. It is.

塗装する水性塗料の表面張力を前記条件(1)の範囲内に制御する方法としては、塗装する水性塗料の組成を調整する方法、例えば、水の添加や有機溶剤の添加による水性媒体の組成変更、表面調整剤の添加などによって容易に行うことができる。表面張力は、一般に水を添加することによって上昇し、有機溶剤によって影響の程度は異なるが有機溶剤を添加することによって低下する。表面張力に対する表面調整剤の種類、量の影響は大きく、表面調整剤を選定し、添加することにより効果的に表面張力を調整することができる。表面調整剤としては、シリコン系表面調整剤、アクリル系表面調整剤、フッ素系表面調整剤などを挙げることができ、なかでもシリコン系表面調整剤が表面張力の低下に効果的である。   As a method for controlling the surface tension of the aqueous paint to be applied within the range of the condition (1), a method for adjusting the composition of the aqueous paint to be applied, for example, changing the composition of the aqueous medium by adding water or adding an organic solvent. It can be easily performed by adding a surface conditioner. The surface tension generally increases with the addition of water, and decreases with the addition of an organic solvent, although the degree of influence varies depending on the organic solvent. The influence of the type and amount of the surface conditioner on the surface tension is large, and the surface tension can be effectively adjusted by selecting and adding the surface conditioner. Examples of the surface conditioner include a silicon-based surface conditioner, an acrylic-based surface conditioner, and a fluorine-based surface conditioner. Among these, the silicon-based surface conditioner is effective in reducing the surface tension.

塗装直後のウエット塗膜の貯蔵弾性率G'を前記条件(2)の範囲内に制御する方法としては、塗装前の塗料を調整する方法、塗装条件を変更する方法などによることができる。   As a method of controlling the storage elastic modulus G ′ of the wet coating film immediately after coating within the range of the condition (2), a method of adjusting a coating material before coating, a method of changing coating conditions, or the like can be used.

塗装直後のウエット塗膜の貯蔵弾性率G'と損失弾性率G''との比を前記条件(3)の範囲内に制御する方法としては、前記条件(2)の場合と同様に、塗装前の塗料を調整する方法、塗装条件を変更する方法などによることができる。   As a method for controlling the ratio between the storage elastic modulus G ′ and the loss elastic modulus G ″ of the wet coating film immediately after coating within the range of the condition (3), the method is the same as in the case of the condition (2). It is possible to use a method of adjusting the previous paint, a method of changing the coating conditions, or the like.

被塗物上に塗装直後のウエット塗膜の貯蔵弾性率G'及び上記貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値が条件(2)及び(3)の範囲内となるように、水性塗料の組成を調整する方法としては、流動性調整剤の添加、溶剤の添加、樹脂組成の調整及び塗料の顔料濃度の調整などを挙げることができ、これら処方のうちの1種の処方を又はこれらの処方の2種以上を組合せて調整することができる。   The storage elastic modulus G ′ of the wet coating immediately after coating on the object to be coated and the ratio of the storage elastic modulus G ′ to the loss elastic modulus G ″ (G ′ / G ″) are the conditions (2) and Examples of the method for adjusting the composition of the aqueous paint so as to fall within the range of (3) include addition of a fluidity modifier, addition of a solvent, adjustment of the resin composition, and adjustment of the pigment concentration of the paint. One of these formulations can be adjusted or a combination of two or more of these formulations.

上記流動性調整剤としては、例えば、シリカ系微粉末、ベントナイト系調整剤、硫酸バリウム微粒化粉末、ポリアミド系流動性調整剤、有機樹脂微粒子流動性調整剤、ジウレア系流動性調整剤、ウレタン会合型流動性調整剤等を挙げることができ、これらの一種又は二種以上を組み合わせて使用できる。   Examples of the fluidity modifier include, for example, silica fine powder, bentonite modifier, barium sulfate atomized powder, polyamide fluidity modifier, organic resin fine particle fluidity modifier, diurea fluidity modifier, urethane association. A mold fluidity modifier etc. can be mentioned, These 1 type or 2 types or more can be used in combination.

これらの流動性調整剤を添加することによって、塗装直後のウエット塗膜において、貯蔵弾性率G'、及び貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値を増大させることができる。   By adding these fluidity modifiers, the storage modulus G ′ and the ratio of the storage modulus G ′ to the loss modulus G ″ (G ′ / G ″) in the wet coating immediately after coating are added. The value of can be increased.

上記水性塗料の組成調整に用いることができる溶剤としては、従来、水性塗料に使用されるそれ自体既知の有機溶剤、水を挙げることができる。   Examples of the solvent that can be used for adjusting the composition of the water-based paint include conventionally known organic solvents and water used for water-based paints.

溶剤添加による調整としては、塗装する水性塗料により用いる溶剤の揮発速度を調整したり、溶剤の親水性の程度を調整することによって、貯蔵弾性率G'や、貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値を調整することができる。   As the adjustment by adding a solvent, the storage elastic modulus G ′, the storage elastic modulus G ′, and the loss elastic modulus can be adjusted by adjusting the volatilization rate of the solvent used by the aqueous paint to be applied or adjusting the hydrophilicity of the solvent. The value of the ratio (G ′ / G ″) with G ″ can be adjusted.

塗装直後のウエット塗膜の貯蔵弾性率G'や、貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値を調整するための水性塗料の樹脂組成の調整は、例えば、水性塗料の樹脂成分として、水溶性樹脂とエマルション樹脂とを併用している場合、エマルション樹脂の配合割合を増加させることによって、一般に該ウエット塗膜の貯蔵弾性率G'や、貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値を上昇させることができる。   The resin composition of the water-based paint for adjusting the storage elastic modulus G ′ of the wet coating immediately after coating and the ratio of the storage elastic modulus G ′ to the loss elastic modulus G ″ (G ′ / G ″) For example, when the water-soluble resin and the emulsion resin are used in combination as a resin component of the water-based paint, the adjustment is generally performed by increasing the blending ratio of the emulsion resin, so that the storage elastic modulus G ′ of the wet coating film is generally The value of the ratio (G ′ / G ″) between the storage elastic modulus G ′ and the loss elastic modulus G ″ can be increased.

塗装直後のウエット塗膜の貯蔵弾性率G'や、貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値を調整するための塗料の顔料濃度の調整は、水性塗料中に当該塗料の顔料組成と同組成の顔料ペーストを添加して樹脂分に対する顔料濃度を増大させることによって、通常、該ウエット塗膜の貯蔵弾性率G'や、上記比(G'/G'')の値を上昇させることができる。また、塗料に顔料抜きのクリヤー塗料を添加して樹脂分に対する顔料濃度を減少させることによって、該ウエット塗膜における貯蔵弾性率G'や、上記比(G'/G'')の値を低下させることができる。   Adjustment of paint pigment concentration to adjust storage elastic modulus G ′ of wet paint film immediately after coating and ratio of storage elastic modulus G ′ to loss elastic modulus G ″ (G ′ / G ″) Is usually obtained by adding a pigment paste having the same composition as the pigment composition of the paint to the water-based paint to increase the pigment concentration relative to the resin content. The value of “/ G ″) can be increased. Also, by adding a clear paint without pigment to the paint to reduce the pigment concentration relative to the resin content, the storage modulus G ′ and the ratio (G ′ / G ″) in the wet coating are reduced. Can be made.

塗装直後のウエット塗膜の貯蔵弾性率G'や、貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値は、塗装方法の変更、例えば、スプレー塗装以外の塗装方法をスプレー塗装に変更することによっても変化する。スプレー塗装においては、微粒化された塗料粒子が被塗物表面に付着するまでの間に、かなりの水性媒体が揮散し不揮発分が高くなるので、スプレー塗装は、他の塗装方法に比べると、塗装直後のウエット塗膜の貯蔵弾性率G'や、上記比(G'/G'')の値を上昇させる程度が大きい。   The storage modulus G ′ of the wet coating immediately after coating and the ratio of the storage modulus G ′ to the loss modulus G ″ (G ′ / G ″) can be changed by changing the coating method, for example, spray coating It changes also by changing the painting method other than to spray painting. In spray coating, since a considerable amount of aqueous medium is volatilized and the non-volatile content becomes high before the atomized paint particles adhere to the surface of the object to be coated, spray coating is compared with other coating methods. The degree to which the storage elastic modulus G ′ of the wet coating immediately after coating and the ratio (G ′ / G ″) are increased is large.

塗装直後のウエット塗膜の貯蔵弾性率G'や、貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値を調整するための塗装条件の変更としては、例えば、エアスプレー塗装において、エア圧を上げる等の手段により、塗装時における塗料の微粒化の程度を向上させることにより、塗装時の水性媒体の揮発を速くし、塗装直後のウエット塗膜の貯蔵弾性率G'や、上記比(G'/G'')の値を増大させることができる。また、塗装環境における温度を上げる、相対湿度を下げることによっても塗装直後のウエット塗膜の貯蔵弾性率G'や、上記比(G'/G'')の値を増大させることができる。水性塗料の塗装においては、通常、塗装環境における相対湿度が、上記貯蔵弾性率G'や、貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値に大きく影響する。   Changes in the coating conditions to adjust the storage modulus G ′ of the wet paint film immediately after coating and the ratio of the storage modulus G ′ to the loss modulus G ″ (G ′ / G ″) For example, in air spray painting, by increasing the degree of atomization of the paint at the time of painting by means such as increasing the air pressure, the volatilization of the aqueous medium at the time of painting is accelerated, and The storage elastic modulus G ′ and the ratio (G ′ / G ″) can be increased. Further, the storage elastic modulus G ′ of the wet coating film immediately after coating and the ratio (G ′ / G ″) can be increased also by increasing the temperature in the coating environment and decreasing the relative humidity. In the application of water-based paints, the relative humidity in the coating environment is usually the value of the storage elastic modulus G ′ or the ratio of the storage elastic modulus G ′ to the loss elastic modulus G ″ (G ′ / G ″). A big influence.

本発明に従って、上記塗装する水性塗料の表面張力、水性塗料を被塗物に塗装した直後のウエット塗膜の貯蔵弾性率G'及び貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の値となるよう調整された水性塗料によって耐ハジキ性が顕著に改良された塗膜が得られる。   According to the present invention, the surface tension of the water-based paint to be coated, the storage elastic modulus G ′ and the ratio of the storage elastic modulus G ′ and the loss elastic modulus G ″ of the wet coating immediately after the water-based paint is applied to the object ( A coating film in which the repellency resistance is remarkably improved by the water-based paint adjusted to have a value of G ′ / G ″) is obtained.

以下、製造例及び実施例を挙げて、本発明をさらに具体的に説明する。各例における「部」及び「%」は、いずれも質量基準である。   Hereinafter, the present invention will be described more specifically with reference to production examples and examples. “Part” and “%” in each example are based on mass.

製造例1 水酸基含有アクリル樹脂水分散液の製造
温度計、サーモスタット、撹拌器、還流冷却器及び滴下装置を備えた反応容器に脱イオン水145部、Newcol562SF(注1)1.2部を仕込み、窒素気流中で撹拌混合し、80℃に昇温した。次いで下記のモノマー乳化物1全量のうちの1%量及び3%過硫酸アンモニウム水溶液5.2部とを反応容器内に導入し80℃で15分間保持した。その後、残りのモノマー乳化物1を3時間かけて反応容器内に滴下し、滴下終了後1時間、熟成を行なった。その後、下記のモノマー乳化物2及び3%過硫酸アンモニウム水溶液1.5部を2時間かけて滴下し、1時間熟成した後、1.5%ジメチルエタノールアミン水溶液89部を反応容器に徐々に加えながら30℃まで冷却し、100メッシュのナイロンクロスで濾過しながら排出し、固形分25%のアクリル樹脂(A)水分散液を得た。得られたアクリル樹脂(A)の水酸基価は22.1mgKOH/g、酸価は30.7mgKOH/g、平均粒子径は100nmであった。
(注1)Newcol562SF;日本乳化剤社製、商品名、ポリオキシエチレンアルキルベンゼンスルホン酸アンモニウム、有効成分60%。
Production Example 1 Production of Hydroxyl-Containing Acrylic Resin Aqueous Dispersion A reaction vessel equipped with a thermometer, thermostat, stirrer, reflux condenser and dropping device was charged with 145 parts of deionized water and 1.2 parts of Newcol 562SF (Note 1), The mixture was stirred and mixed in a nitrogen stream and heated to 80 ° C. Next, 1% of the total amount of the following monomer emulsion 1 and 5.2 parts of 3% aqueous ammonium persulfate solution were introduced into the reaction vessel and maintained at 80 ° C. for 15 minutes. Then, the remaining monomer emulsion 1 was dripped in reaction container over 3 hours, and it age | cure | ripened for 1 hour after completion | finish of dripping. Thereafter, 1.5 parts of the following monomer emulsion 2 and 3% aqueous ammonium persulfate solution were added dropwise over 2 hours, and after aging for 1 hour, 89 parts of 1.5% aqueous dimethylethanolamine solution was gradually added to the reaction vessel. It cooled to 30 degreeC and discharged | emitted, filtering through a 100 mesh nylon cloth, and the acrylic resin (A) water dispersion liquid of solid content 25% was obtained. The obtained acrylic resin (A) had a hydroxyl value of 22.1 mgKOH / g, an acid value of 30.7 mgKOH / g, and an average particle size of 100 nm.
(Note 1) Newcol 562SF; manufactured by Nippon Emulsifier Co., Ltd., trade name, ammonium polyoxyethylene alkylbenzenesulfonate, active ingredient 60%.

モノマー乳化物1:脱イオン水94.3部、メチルメタクリレート17部、n−ブチルアクリレート80部、アリルメタクリレート3部及びNewcol562SF1.2部を混合攪拌して、モノマー乳化物1を得た。   Monomer emulsion 1: 94.3 parts of deionized water, 17 parts of methyl methacrylate, 80 parts of n-butyl acrylate, 3 parts of allyl methacrylate and 1.2 parts of Newcol 562SF were mixed and stirred to obtain monomer emulsion 1.

モノマー乳化物2:脱イオン水39部、メチルメタクリレート15.4部、n−ブチルアクリレート2.9部、ヒドロキシエチルアクリレート5.9部、メタクリル酸5.1部及びNewcol562SF 0.5部を混合攪拌して、モノマー乳化物2を得た。   Monomer emulsion 2: 39 parts of deionized water, 15.4 parts of methyl methacrylate, 2.9 parts of n-butyl acrylate, 5.9 parts of hydroxyethyl acrylate, 5.1 parts of methacrylic acid and 0.5 part of Newcol 562SF are mixed and stirred. Thus, a monomer emulsion 2 was obtained.

製造例2 水酸基含有アクリル樹脂水溶液の製造
温度計、サーモスタット、撹拌器、還流冷却器及び滴下装置を備えた反応容器に、エチレングリコールモノブチルエーテル50部を入れ、120℃に加熱保持した。この中に、
スチレン15部、メチルメタクリレート20部、エチルアクリレート25部、n−ブチルアクリレート20部、2−ヒドロキシエチルメタクリレート15部、アクリル酸5部及び2,2'−アゾビスイソブチロニトリル(ラジカル重合開始剤)4部の混合物を2時間かけて徐々に滴下し、滴下終了後1時間熟成した後、ジメチルエタノールアミン及び脱イオン水を反応容器に徐々に加えながら30℃まで冷却し、100メッシュのナイロンクロスで濾過しながら排出し、固形分40%でpH7.8のアクリル樹脂(B)水溶液を得た。得られたアクリル樹脂(B)の水酸基価は72mgKOH/g、酸価は39mgKOH/g、数平均分子量は12000であった。この数平均分子量は、ゲルパーミエーションクロマトグラフ(東ソー(株)社製、「HLC8120GPC」)で測定したクロマトグラムから標準ポリスチレンの分子量を基準にして算出した値である。カラムは、「TSKgel G−4000HXL」、「TSKgel G−3000HXL」、「TSKgel G−2500HXL」、「TSKgel G−2000HXL」(いずれも東ソー(株)社製、商品名)の4本を用い、移動相;テトラヒドロフラン、測定温度;40℃、流速;1cc/分、検出器;RIの条件で行ったものである。
Production Example 2 Production of Hydroxyl-Containing Acrylic Resin Aqueous Solution 50 parts of ethylene glycol monobutyl ether was placed in a reaction vessel equipped with a thermometer, a thermostat, a stirrer, a reflux condenser, and a dropping device, and heated to 120 ° C. In this,
15 parts of styrene, 20 parts of methyl methacrylate, 25 parts of ethyl acrylate, 20 parts of n-butyl acrylate, 15 parts of 2-hydroxyethyl methacrylate, 5 parts of acrylic acid and 2,2′-azobisisobutyronitrile (radical polymerization initiator) ) 4 parts of the mixture was gradually added dropwise over 2 hours. After completion of the addition, the mixture was aged for 1 hour, then cooled to 30 ° C while gradually adding dimethylethanolamine and deionized water to the reaction vessel, and 100 mesh nylon cloth. And an acrylic resin (B) aqueous solution having a solid content of 40% and a pH of 7.8. The obtained acrylic resin (B) had a hydroxyl value of 72 mgKOH / g, an acid value of 39 mgKOH / g, and a number average molecular weight of 12,000. This number average molecular weight is a value calculated based on the molecular weight of standard polystyrene from a chromatogram measured with a gel permeation chromatograph (manufactured by Tosoh Corporation, “HLC8120GPC”). The column used was “TSKgel G-4000HXL”, “TSKgel G-3000HXL”, “TSKgel G-2500HXL”, “TSKgel G-2000HXL” (both manufactured by Tosoh Corporation, trade name), and moved. Phase: Tetrahydrofuran, Measurement temperature: 40 ° C., Flow rate: 1 cc / min, Detector: Under the conditions of RI.

製造例3 水性メタリック塗料の製造
製造例1で得たアクリル樹脂(A)水分散液200部(固形分50部)に、攪拌下にて製造例2で得たアクリル樹脂(B)水溶液50部(固形分20部)、サイメル325(日本サイテックインダストリーズ社製、メラミン樹脂、固形分80%)37.5部(固形分30部)を加え、ついでBYK345(BYK CHEMIE INTERNATIONAL GMBH社製、ポリエーテル変性ジメチルポリシロキサン、表面調整剤)1部を配合し、均一にした後、旭化成アルミペーストGX−180A(旭化成ケミカルズ社製、アルミペースト、アルミニウム分74%)27部(固形分20部)を配合、攪拌し、さらにジメチルエタノールアミン及び脱イオン水を添加し、均一に攪拌してpH8.0、25℃でのフォードカップ#4による粘度40秒の水性メタリック塗料を得た。得られた水性メタリック塗料について、前記したペンダントドロップ法にて得られた水性メタリック塗料の表面張力を測定した。
Production Example 3 Production of Aqueous Metallic Paint 50 parts of the acrylic resin (B) aqueous solution obtained in Production Example 2 under stirring in 200 parts of the acrylic resin (A) aqueous dispersion (solid content 50 parts) obtained in Production Example 1 (Solid content 20 parts), Cymel 325 (Nihon Cytec Industries, Inc., melamine resin, solid content 80%) 37.5 parts (Solid content 30 parts) were added, then BYK345 (BYK CHEMIE INTERNATIONAL GMBH, Polyether modified) 1 part of dimethylpolysiloxane, surface conditioner) was blended and homogenized, and then 27 parts of Asahi Kasei Aluminum Paste GX-180A (Asahi Kasei Chemicals Corporation, aluminum paste, aluminum content 74%) (solid content 20 parts) were blended. Stir and further add dimethylethanolamine and deionized water and stir uniformly to pH 8.0, 25. To obtain a Ford cup # 4 by the viscosity 40 seconds aqueous metallic paint in. About the obtained water-based metallic coating material, the surface tension of the water-based metallic coating material obtained by the above-mentioned pendant drop method was measured.

製造例4〜9
製造例3において、旭化成アルミペーストGX−180Aを配合する前までの樹脂及びポリシロキサンの配合を下記表1に示すとおりとする以外は製造例3と同様にして、pH8.0、25℃でのフォードカップ#4による粘度40秒の各水性メタリック塗料を得た。表1における各成分の配合量は、固形分質量部による表示である。各水性メタリック塗料のペンダントドロップ法による表面張力の測定結果も表1中に記載する。
Production Examples 4-9
In Production Example 3, as in Production Example 3, except that the composition of the resin and polysiloxane before blending Asahi Kasei Aluminum Paste GX-180A is as shown in Table 1 below, at pH 8.0 and 25 ° C. Each water-based metallic paint having a viscosity of 40 seconds was obtained from Ford Cup # 4. The compounding quantity of each component in Table 1 is a display by a solid content mass part. Table 1 also shows the measurement results of the surface tension of each water-based metallic paint by the pendant drop method.

表1における(註)は下記の意味を有する。
(注2)BYK333:BYK CHEMIE INTERNATIONAL GMBH社製、ポリエーテル変性ジメチルポリシロキサン、表面調整剤。
(註) in Table 1 has the following meaning.
(Note 2) BYK333: manufactured by BYK CHEMIE INTERNATIONAL GMBH, polyether-modified dimethylpolysiloxane, surface conditioner.

Figure 2008221128
Figure 2008221128

試験用被塗物の作成
(1)試験用中塗り塗装板の作成
パルボンド#3020(日本パーカライジング社製、商品名、リン酸亜鉛処理)を施した冷延鋼板に、エレクロンGT−10(関西ペイント社製、商品名、カチオン電着塗料)を硬化膜厚が20μmとなるように電着塗装し、170℃で30分間焼付けを行った。ついで、この電着塗膜上にアミラックTP−65−2(関西ペイント社製、商品名、中塗り塗料)を硬化膜厚が35μmとなるように塗装し、5分間放置後、140℃で30分間加熱して硬化させて試験用中塗り塗装板(2)を作成した。この塗装板(2)を塗面の肌、耐水性の試験に供した。
Creating test objects
(1) Preparation of a test intermediate coating plate Cold-rolled steel sheet to which Palbond # 3020 (manufactured by Nihon Parkerizing Co., Ltd., trade name, zinc phosphate treatment) was applied to Eleklon GT-10 (Kansai Paint Co., Ltd., trade name, cation) The electrodeposition paint) was electrodeposited so that the cured film thickness was 20 μm, and baked at 170 ° C. for 30 minutes. Subsequently, Amylac TP-65-2 (trade name, intermediate coating material, manufactured by Kansai Paint Co., Ltd.) was applied on the electrodeposition coating film so as to have a cured film thickness of 35 μm, and allowed to stand at 140 ° C. for 30 minutes. A test intermediate coat plate (2) was prepared by heating for a minute and curing. The coated plate (2) was subjected to a test on the skin and water resistance of the coated surface.

(2)シリコーン塗布試験用中塗り塗装板の作成
上記試験用中塗り塗装板(1)の表面に、「TSM630」(商品名、GE東芝シリコーン(株)製、ジメチルシリコーンオイルを乳化したエマルジョン型のシリコーン離型剤)を水で10000倍に薄めたものをスプレーガンでウエット膜厚が約20μmになるように塗布し、80℃×3分間で乾燥させてシリコーン塗布試験用中塗り塗装板(2)を作成した。この塗装板(2)を耐ハジキ性試験に供した。
(2) Preparation of intermediate coating plate for silicone coating test The emulsion type in which "TSM630" (trade name, manufactured by GE Toshiba Silicone Co., Ltd., dimethyl silicone oil is emulsified on the surface of the above-mentioned intermediate coating plate for testing (1) The silicone mold release agent) is diluted 10,000 times with water and applied with a spray gun so that the wet film thickness is about 20 μm, and dried at 80 ° C. for 3 minutes, and then an intermediate coating plate for silicone application test ( 2) was created. This coated plate (2) was subjected to a repellency resistance test.

実施例1
製造例3で得た水性メタリック塗料を、温度25℃、湿度65%RHの雰囲気条件にて、乾燥膜厚15μmになるように、厚さ0.3mmのブリキ板、上記試験用中塗り塗装板(1)及びシリコーン塗布試験用中塗り塗装板(2)の3種の各被塗物にエアスプレー塗装を行った。
Example 1
The water-based metallic paint obtained in Production Example 3 is a tin plate having a thickness of 0.3 mm so as to have a dry film thickness of 15 μm under an atmospheric condition of a temperature of 25 ° C. and a humidity of 65% RH. Air spray coating was performed on each of the three types of coating materials (1) and the intermediate coating plate for silicone coating test (2).

ブリキ板の塗装については、水性メタリック塗料塗装1分後にブリキ板上の塗料を掻き取り、HAAKE社製のレオメーター「RheoStressRS150」を用いて、温度25℃、応力0.5Paにおける、周波数0.1Hzでの振動測定により貯蔵弾性率G'、及び貯蔵弾性率G'と損失弾性率G''との比(G'/G'')を測定した。   For coating the tinplate, the paint on the tinplate is scraped after 1 minute of water-based metallic paint coating, and the frequency is 0.1 Hz at a temperature of 25 ° C. and a stress of 0.5 Pa using a rheometer “RheoStressRS150” manufactured by HAAKE. The storage elastic modulus G ′ and the ratio (G ′ / G ″) of the storage elastic modulus G ′ and the loss elastic modulus G ″ were measured by vibration measurement at

試験用中塗り塗装板(1)の塗装については、水性メタリック塗料を塗装後、80℃で5分間プレヒートし、ついで、水性メタリック塗膜上に、マジクロンTC−71(関西ペイント社製、商品名、上塗りクリヤ塗料)を硬化膜厚が35μmとなるように塗装し、140℃で30分間焼付け硬化させた。この上塗塗装板を、塗面の肌及び耐水性の試験に供した。   For the coating of the test intermediate coating plate (1), after applying a water-based metallic paint, preheat it at 80 ° C. for 5 minutes, and then on the water-based metallic coating film, Magiclon TC-71 (trade name, manufactured by Kansai Paint Co., Ltd.). , Top-coated clear paint) was applied to a cured film thickness of 35 μm, and baked and cured at 140 ° C. for 30 minutes. This top coat board was used for the test of the skin and water resistance of a coating surface.

シリコーン塗布試験用中塗り塗装板(2)の塗装については、水性メタリック塗料を塗装後、80℃で5分間乾燥させた後の塗面状態を評価した。   As for the coating of the intermediate coating plate (2) for the silicone coating test, the coated surface state after drying the water-based metallic paint at 80 ° C. for 5 minutes was evaluated.

実施例2〜6及び比較例1〜5
実施例1において、使用する水性メタリック塗料種及び塗装条件における湿度を下記表2に示すとおりとする以外は実施例1と同様に行った。実施例1〜6及び比較例1〜5の試験結果を表2に示す。
Examples 2-6 and Comparative Examples 1-5
In Example 1, it carried out similarly to Example 1 except having made the water-based metallic paint kind to be used and the humidity in a coating condition as shown in Table 2 below. Table 2 shows the test results of Examples 1 to 6 and Comparative Examples 1 to 5.

Figure 2008221128
Figure 2008221128

上記表2における試験方法は下記のとおりである。
試験方法
耐ハジキ性:前記シリコーン塗布試験用中塗り塗装板(2)に水性メタリック塗料を塗装後、80℃で5分間乾燥させた後の塗面状態を評価した。
○:ハジキなし、 ×:ハジキあり
塗面の肌:前記試験用中塗り塗装板(1)の上塗塗装板について、塗面の平滑性を目視評価した。
The test methods in Table 2 are as follows.
Test method Repelling resistance: After applying an aqueous metallic paint to the intermediate coating plate (2) for silicone application test, the coated surface state after drying at 80 ° C. for 5 minutes was evaluated.
○: No repelling, ×: Repelling coating surface skin: The smoothness of the coating surface was visually evaluated for the top coating plate of the intermediate coating plate (1) for test.

耐水性:前記試験用中塗り塗装板(1)の上塗塗装板を、40℃の脱イオン水に240時間浸漬後の塗膜外観及び付着性を調べた。付着性は、素地に達するようにカッターナイフで×印状のクロスカットを入れ、そのクロスカット部に粘着セロハンテープを貼着し、それを急激に剥がした後のハガレを評価した。
○:全く異常が認められない、
△:フクレ、ブリスター発生などの外観異常は認められないが、ハガレが認められる、
×:フクレ、ブリスター発生などの外観異常及びハガレがともに認められる。
Water resistance: The appearance and adhesion of the coating film after immersion for 240 hours in 40 ° C. deionized water were examined for the above-mentioned intermediate coating board (1) for test. Adhesiveness evaluated the peeling after making a crosscut of a X mark with a cutter knife so that it might reach a substrate, sticking an adhesive cellophane tape on the crosscut part, and removing it rapidly.
○: No abnormality is observed at all,
Δ: Appearance abnormalities such as blistering and blistering are not observed, but peeling is observed.
X: Appearance abnormalities such as blistering and blistering and peeling are recognized.

Claims (4)

被塗物に水性塗料を塗装するにあたり、塗装する水性塗料のペンダントドロップ法による25℃における表面張力を21〜30mN/mの範囲内とし、かつ該水性塗料を被塗物に塗装した直後のウエット塗膜において、25℃における周波数0.1Hzでの振動測定による貯蔵弾性率G'を5〜500Paの範囲内とし、貯蔵弾性率G'と損失弾性率G''との比(G'/G'')を0.5〜5.0の範囲内になるように制御することにより、塗膜の耐ハジキ性を改良する方法。 In applying a water-based paint to the object to be coated, the wetness immediately after the surface tension of the water-based paint to be applied is 25 to 30 mN / m by the pendant drop method and the water-based paint is applied to the object to be coated In the coating film, the storage elastic modulus G ′ by vibration measurement at 25 ° C. with a frequency of 0.1 Hz is in the range of 5 to 500 Pa, and the ratio of the storage elastic modulus G ′ to the loss elastic modulus G ″ (G ′ / G '') Is controlled to be in the range of 0.5 to 5.0, thereby improving the repellency resistance of the coating film. 水性塗料がビヒクル成分として、水溶性樹脂、エマルション樹脂及び架橋剤を含有するものである請求項1記載の塗膜の耐ハジキ性改良方法。 The method for improving repellency of a coating film according to claim 1, wherein the water-based paint contains a water-soluble resin, an emulsion resin and a crosslinking agent as vehicle components. 上記表面張力、上記貯蔵弾性率G'、及び上記貯蔵弾性率G'と損失弾性率G''との比(G'/G'')の制御を、塗装する水性塗料の組成変更、塗装方法の変更及び塗装条件の変更からなる群から選ばれる少なくとも一種の方法により行う請求1又は2に記載の塗膜の耐ハジキ性改良方法。 Control of the surface tension, the storage elastic modulus G ′, and the ratio (G ′ / G ″) of the storage elastic modulus G ′ to the loss elastic modulus G ″, composition change of a water-based paint to be applied, and coating method The method for improving repellency of a coating film according to claim 1 or 2, which is carried out by at least one method selected from the group consisting of a change in coating conditions and a change in coating conditions. 塗装する水性塗料の組成変更を、流動性調整剤の添加、溶剤の添加及び塗料の顔料濃度の調整から選ばれる少なくとも一つの処方により行う請求項3に記載の塗膜の耐ハジキ性改良方法。 4. The method for improving the repellency resistance of a coating film according to claim 3, wherein the composition of the aqueous paint to be applied is changed by at least one prescription selected from the addition of a fluidity modifier, the addition of a solvent, and the adjustment of the pigment concentration of the paint.
JP2007062872A 2007-03-13 2007-03-13 Method for improving cissing resistance of coating film Pending JP2008221128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062872A JP2008221128A (en) 2007-03-13 2007-03-13 Method for improving cissing resistance of coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062872A JP2008221128A (en) 2007-03-13 2007-03-13 Method for improving cissing resistance of coating film

Publications (1)

Publication Number Publication Date
JP2008221128A true JP2008221128A (en) 2008-09-25

Family

ID=39840334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062872A Pending JP2008221128A (en) 2007-03-13 2007-03-13 Method for improving cissing resistance of coating film

Country Status (1)

Country Link
JP (1) JP2008221128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234281A (en) * 2009-03-31 2010-10-21 Kansai Paint Co Ltd Coating method
KR101465026B1 (en) * 2012-07-17 2014-12-04 테크 다이요 코교 코포레이션 리미티드 Anti-corrosive coating composition precursor
JP2015124360A (en) * 2013-12-27 2015-07-06 大日本塗料株式会社 Far infrared reflective coating material, formation method of coating film, and coated article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234281A (en) * 2009-03-31 2010-10-21 Kansai Paint Co Ltd Coating method
KR101465026B1 (en) * 2012-07-17 2014-12-04 테크 다이요 코교 코포레이션 리미티드 Anti-corrosive coating composition precursor
JP2015124360A (en) * 2013-12-27 2015-07-06 大日本塗料株式会社 Far infrared reflective coating material, formation method of coating film, and coated article

Similar Documents

Publication Publication Date Title
JP5148480B2 (en) Method for forming glittering multilayer coating film
JP5116486B2 (en) Method for forming glittering multilayer coating film
AU776925B2 (en) Method of forming composite coating film
JP6866007B2 (en) A water-based two-component clear paint composition and a method for repairing and painting a painted body using the same.
WO2007119762A1 (en) Aqueous coating composition
WO1998031756A1 (en) Water-base metallic paint composition and method of forming overcoat
JP2020182944A (en) Double-layer coating film formation method and double-layer coating film
JP2008221128A (en) Method for improving cissing resistance of coating film
JP7042027B2 (en) A two-component reaction-curing water-based paint composition for topcoat paints, and a multi-layer film forming method and coating body using the same.
JP5059288B2 (en) Water-based paint composition
JP2008126140A (en) Top coat formation method, and clear coating composition used for the same
JP2006239622A (en) Coating method and coated metal plate
JP4106248B2 (en) Multi-layer coating formation method
WO2016176386A1 (en) Architectural coatings containing fluorinated polymeric additives
JP4256116B2 (en) Method for forming glitter coating film
JP6863569B2 (en) Surface conditioner for coating agents
JP4374486B2 (en) Method for improving coating film smoothness of thermosetting liquid coating composition
JP4415208B2 (en) Method for improving repellency of coating film
WO2021193082A1 (en) One-component aqueous coating composition
EP4347671A1 (en) Hydroxyalkylamide-based coating compositions
JP2008195742A (en) Water-based pigment paste and water-based coating material composition
JP4829416B2 (en) Water-based coloring base thermosetting paint and coating film forming method using the same
CN112839743A (en) Method for producing a multicoat paint system by post-addition of an aqueous dispersion containing polyamide and/or amide wax to at least one basecoat
JP2009006293A (en) Method for forming multilayer coating film
KR100672758B1 (en) Water-soluble baking enamel paint