JP2008211757A - Temperature compensated piezoelectric oscillator - Google Patents
Temperature compensated piezoelectric oscillator Download PDFInfo
- Publication number
- JP2008211757A JP2008211757A JP2007212635A JP2007212635A JP2008211757A JP 2008211757 A JP2008211757 A JP 2008211757A JP 2007212635 A JP2007212635 A JP 2007212635A JP 2007212635 A JP2007212635 A JP 2007212635A JP 2008211757 A JP2008211757 A JP 2008211757A
- Authority
- JP
- Japan
- Prior art keywords
- terminal
- mos
- mos capacitor
- capacitor
- capacitor element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
Abstract
Description
本発明は、圧電発振器に関し、特に簡易な温度補償回路を用いて圧電振動子の温度補償を行い、且つIC化に適した温度補償圧電発振器に関する。 The present invention relates to a piezoelectric oscillator, and more particularly, to a temperature compensated piezoelectric oscillator that performs temperature compensation of a piezoelectric vibrator using a simple temperature compensation circuit and that is suitable for integration into an IC.
圧電発振器は周波数安定度、小型軽量、低価格等の優れた点を有するため、通信機器や電子機器等の多くの分野で用いられ、中でも圧電振動子の周波数温度特性を補償した温度補償圧電発振器(TCXO)は、携帯電話等に広く用いられている。圧電発振器の回路構成は、周知のようにピアース型発振回路、コルピッツ型発振回路が多く用いられているが、基本的回路構成は同じであり、交流接地点がピアース型発振回路の場合はエミッタ接地、コルピッツ型発振回路の場合はコレクタ接地の違いである。 Piezoelectric oscillators have excellent features such as frequency stability, small size, light weight, and low price, so they are used in many fields such as communication equipment and electronic equipment. Among them, temperature compensated piezoelectric oscillators that compensate the frequency temperature characteristics of piezoelectric vibrators (TCXO) is widely used in mobile phones and the like. As is well known, piezoelectric oscillators and Colpitts oscillators are often used for the circuit configuration of piezoelectric oscillators, but the basic circuit configuration is the same. When the AC grounding point is a Pierce oscillator, the emitter is grounded. In the case of a Colpitts type oscillation circuit, the difference is in the collector grounding.
特許文献1には本願出願人による温度補償発振器が開示されている。図21はその温度補償発振器の回路構成の一例であり、コルピッツ発振回路OSC1と、直流阻止用容量C3と、温度補償回路Compと、水晶振動子Xtalと、を直列に接続した回路で、典型的なコルピッツ型発振回路を用いて構成した温度補償水晶発振器である。図21に示すように、コルピッツ発振回路OSC1は、トランジスタTr1のコレクタを電源VCCに接続し、ベースにはブリーダー抵抗R1、R2を介してバイアス電圧を供給し、ベースとエミッタ間に容量C1を接続する。さらに、トランジスタTr1のエミッタと接地間にエミッタ抵抗Reと、容量C2とを並列接続し、発振出力はエミッタから容量Coを介して取り出す。なお、トランジスタTr1のコレクタはバイパスコンデンサCcを介して高周波的に接地されている。
図21に示す温度補償発振器は、トランジスタTR1のベースに直流阻止用容量C3を介して温度補償回路Compを接続し、該温度補償回路Compに水晶振動子Xtalが接続されている。温度補償回路Compは、低温部補償用のMOS容量素子MLと容量C4との直列接続回路と、高温部補償用のMOS容量素子MHと、を並列接続した回路からなり、低温用MOS容量素子MLと、高温用MOS容量素子MHとは極性が互いに逆向で並列接続されている。
低温用MOS容量素子MLのバックゲートと容量C4との接続点に、低温部制御電圧VLが抵抗R4を介して供給され、高温用MOS容量素子MHのゲートには抵抗R5を介して高温部制御電圧VHが供給される。そして、低温用MOS容量素子MLのゲートと、高温用MOS容量素子MHのバックゲートとの接続点に、抵抗R6を介して基準電圧Vrefが供給される。周知のように、MOS容量素子はバックゲートBGと、ゲートGとの間に印加する電圧により、容量が変化する素子である。例えば、バックゲートBGを基準としてゲートG電圧を低い値から高い値へと変化させると、その容量がほぼ直線的に大きくなり、十分に低い、あるいは高い電圧では、容量値は飽和し、共に一定値に近づく容量素子である。
The low-temperature part control voltage VL is supplied to the connection point between the back gate of the low-temperature MOS capacitor ML and the capacitor C4 via the resistor R4, and the high-temperature part control is supplied to the gate of the high-temperature MOS capacitor MH via the resistor R5. A voltage VH is supplied. The reference voltage Vref is supplied to the connection point between the gate of the low-temperature MOS capacitor element ML and the back gate of the high-temperature MOS capacitor element MH via the resistor R6. As is well known, the MOS capacitance element is an element whose capacitance changes depending on the voltage applied between the back gate BG and the gate G. For example, when the gate G voltage is changed from a low value to a high value with reference to the back gate BG, the capacitance increases almost linearly, and at a sufficiently low or high voltage, the capacitance value is saturated and both are constant. It is a capacitive element that approaches the value.
しかしながら、特許文献1に開示されている温度補償回路では、2個のMOS容量素子を用いて、低温域、高温域をそれぞれ温度補償するように構成されているため、図22(a)に示すような周波数温度特性、即ち常温近傍で周波数温度特性がほぼ平坦になるATカット水晶振動子は補償できるが、低温、高温の両端部における温度補償が不十分であるという問題があった。さらに、所定の角度のATカット水晶素板を得るため人工水晶を切断すると、得られた水晶素板の角度分布は所定の角度を中心として正規分布となる。そのため、図22(a)の周波数温度特性を呈する切断角度のみを使用すると、それ以外の切断角度、例えば周波数温度特性が図22(b)に示すように、極大値、極小値を有する三次曲線、あるいは同図(c)に示すような温度に対して右肩上がりを呈する一般的な切断角度の水晶素板が無駄になるという問題もあった。
本発明は上記問題を解決するためになされたもので、広温度範囲で補償精度の改善と、IC化に適した温度補償圧電発振器を提供することにある。
However, since the temperature compensation circuit disclosed in
The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a temperature-compensated piezoelectric oscillator which is improved in compensation accuracy over a wide temperature range and suitable for IC implementation.
上記目的を達成するため、本発明は、発振回路、圧電振動子、及び周波数温度補償回路を直列に接続して構成される温度補償圧電発振器であって、前記周波数温度補償回路は、第1、第2、第3MOS容量素子を備え、前記第1MOS容量素子と前記第3MOS容量素子とを直列接続した回路に前記第2MOS容量素子を並列接続した回路であり、前記第1MOS容量素子の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、前記第1MOS容量素子の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第1制御電圧を供給し、前記第3MOS容量素子の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されている。
このように温度補償圧電発振器を構成すると、周波数温度特性が極大値、極小値を有する三次曲線の圧電振動子を補償することが可能となり、且つ低温域、常温域、高温域を、温度に対して直線的に変化する2つの電圧を利用してそれぞれ別々に温度補償するので、広温度範囲に亘り、精度よく補償することができるという効果がある。
In order to achieve the above object, the present invention provides a temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series, the frequency temperature compensation circuit comprising: A circuit comprising a second and a third MOS capacitive element, wherein the second MOS capacitive element is connected in parallel to a circuit in which the first MOS capacitive element and the third MOS capacitive element are connected in series, and one terminal of the first MOS capacitive element; A reference voltage having a constant voltage value is supplied to a connection point between the first MOS capacitor element and one terminal of the second MOS capacitor element, and a connection point between the other terminal of the first MOS capacitor element and one terminal of the third MOS capacitor element The first control voltage is supplied to the second MOS capacitor element, and the second control voltage is supplied to a connection point between the other terminal of the third MOS capacitor element and the other terminal of the second MOS capacitor element.
When the temperature compensated piezoelectric oscillator is configured in this way, it becomes possible to compensate for a cubic-shaped piezoelectric vibrator having a frequency temperature characteristic having a maximum value and a minimum value, and a low temperature range, a normal temperature range, and a high temperature range with respect to the temperature. Thus, the temperature compensation is performed separately using two linearly varying voltages, and therefore, there is an effect that the compensation can be made with accuracy over a wide temperature range.
また本発明は、発振回路、圧電振動子、及び周波数温度補償回路を直列に接続して構成される温度補償圧電発振器であって、前記周波数温度補償回路は、第1、第2、第3MOS容量素子と第1容量とを備え、前記第1MOS容量素子及び前記第1容量を直列接続した回路に、前記第2MOS容量素子を並列接続した回路と、前記第3MOS容量素子と、を直列接続した回路であり、前記第1MOS容量素子の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点、及び前記第3MOS容量素子の一方の端子とにそれぞれ第1制御電圧を供給し、前記第3MOS容量素子の他方の端子と前記第1容量の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されている。
このように温度補償圧電発振器を構成すると、周波数温度特性が三次曲線を呈する圧電振動子を適切に補償することができ、且つ低温域、常温域、高温域をそれぞれ別々に温度補償するので広温度範囲に亘り、精度よく補償することができるという効果がある。
The present invention is also a temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series, wherein the frequency temperature compensation circuit includes first, second, and third MOS capacitors. A circuit comprising an element and a first capacitor, a circuit in which the second MOS capacitor element is connected in parallel to a circuit in which the first MOS capacitor element and the first capacitor are connected in series, and a circuit in which the third MOS capacitor element is connected in series A reference voltage having a constant voltage value is supplied to a connection point between one terminal of the first MOS capacitor element and one terminal of the second MOS capacitor element, and the other terminal of the first MOS capacitor element and the terminal A first control voltage is supplied to a connection point between one terminal of the first capacitor and one terminal of the third MOS capacitor element, and the other terminal of the third MOS capacitor element and the other terminal of the first capacitor are supplied. Terminal It is configured to supply the second control voltage to the connection point between the other terminal of the first 2MOS capacitive element.
By constructing a temperature-compensated piezoelectric oscillator in this way, it is possible to appropriately compensate for a piezoelectric vibrator whose frequency-temperature characteristic exhibits a cubic curve, and separately compensates for the low temperature range, the normal temperature range, and the high temperature range. There is an effect that compensation can be made with accuracy over a range.
また本発明は、発振回路、圧電振動子、及び周波数温度補償回路を直列に接続して構成される温度補償圧電発振器であって、前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2容量素子と、を備え、前記第1MOS容量素子と前記第1容量とを直列接続した回路、前記第2容量と第3MOS容量素子と直列接続した回路、及び前記第2MOS容量素子をそれぞれ並列接続した回路であり、前記第1MOS容量素子の一方の端子と前記第2容量の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点、及び前記第2容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点にそれぞれ第1制御電圧を供給し、前記第1容量の他方の端子と前記第3MOS容量素子の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されている。
このように温度補償圧電発振器を構成すると、周波数温度特性が三次曲線を呈する圧電振動子を適切に補償することができ、且つ低温域、常温域、高温域をそれぞれ別々に温度補償するので広温度範囲に亘り、精度よく補償することができるという効果がある。
The present invention is also a temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series, wherein the frequency temperature compensation circuit includes first, second, and third MOS capacitors. A circuit comprising: an element; and first and second capacitive elements, wherein the first MOS capacitive element and the first capacitor are connected in series, the second capacitor and a third MOS capacitive element are connected in series, and the first A circuit in which two MOS capacitor elements are connected in parallel, and a voltage value is constant at a connection point between one terminal of the first MOS capacitor element, one terminal of the second capacitor, and one terminal of the second MOS capacitor element. A reference voltage is supplied, a connection point between the other terminal of the first MOS capacitor and one terminal of the first capacitor, and the other terminal of the second capacitor and one terminal of the third MOS capacitor. To the connection point A first control voltage is supplied, and a second control voltage is supplied to a connection point between the other terminal of the first capacitor, the other terminal of the third MOS capacitor element, and the other terminal of the second MOS capacitor element. It is configured as follows.
By constructing a temperature-compensated piezoelectric oscillator in this way, it is possible to appropriately compensate for a piezoelectric vibrator whose frequency-temperature characteristic exhibits a cubic curve, and separately compensates for the low temperature range, the normal temperature range, and the high temperature range. There is an effect that compensation can be made with accuracy over a range.
また本発明は、発振回路、圧電振動子、及び周波数温度補償回路を直列に接続して構成される温度補償圧電発振器であって、前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2、第3容量と、を備え、前記第1MOS容量素子と前記第1容量との直列接続回路、前記第2容量と前記第3MOS容量素子と前記第3容量との直列接続回路、及び前記第2MOS容量素子を並列接続した回路であり、前記第1MOS容量素子の一方の端子と前記第2容量の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点、及び前記第2容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第1制御電圧を供給し、前記第3MOS容量素子の他方の端子と前記第3容量の一方の端子との接続点、及び、前記第1容量の他方の端子と前記第3容量の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されている。
このように温度補償圧電発振器を構成すると、周波数温度特性が三次曲線を呈する圧電振動子を適切に補償することができ、且つ低温域、常温域、高温域をそれぞれ別々に温度補償するので広温度範囲に亘り、精度よく補償することができるという効果がある。
The present invention is also a temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series, wherein the frequency temperature compensation circuit includes first, second, and third MOS capacitors. And a first connection circuit of the first MOS capacitor and the first capacitor, and the second capacitor, the third MOS capacitor, and the third capacitor. A series connection circuit and a circuit in which the second MOS capacitor element is connected in parallel, and a connection point between one terminal of the first MOS capacitor element, one terminal of the second capacitor, and one terminal of the second MOS capacitor element Is supplied with a reference voltage having a constant voltage value, a connection point between the other terminal of the first MOS capacitor element and one terminal of the first capacitor, and the other terminal of the second capacitor and the third MOS capacitor. Connection to one terminal of the element A first control voltage, and a connection point between the other terminal of the third MOS capacitor element and one terminal of the third capacitor, and the other terminal of the first capacitor and the other terminal of the third capacitor. A second control voltage is supplied to a connection point between the terminal and the other terminal of the second MOS capacitor.
By constructing a temperature-compensated piezoelectric oscillator in this way, it is possible to appropriately compensate for a piezoelectric vibrator whose frequency-temperature characteristic exhibits a cubic curve, and separately compensates for the low temperature range, the normal temperature range, and the high temperature range. There is an effect that compensation can be made with accuracy over a range.
また本発明は、発振回路、圧電振動子、及び周波数温度補償回路を直列に接続して構成される温度補償圧電発振器であって、前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2容量と、利得調整可能な第1、第2増幅器と、を備え、前記第1MOS容量素子、前記第1容量、前記第3MOS容量素子及び前記第2容量を直列接続した回路と、前記第2MOS容量素子と、を並列接続した回路であり、前記第1MOS容量素子の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点に第1制御電圧を供給し、前記第1容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第1増幅器を介して第1制御電圧を供給し、前記第3MOS容量素子の他方の端子と前記第2容量の一方の端子との接続点に第2増幅器を介して第2制御電圧を供給し、前記第2容量の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されている。
このように温度補償圧電発振器を構成すると、第3MOS容量素子のゲート及びバックゲートに印可する電圧を、第1及び第2増幅器により適宜設定できるので、周波数温度特性が三次曲線を呈する圧電振動子を、特に常温域において適切に補償することができ、且つ低温域、常温域、高温域をそれぞれ別々に温度補償するので広温度範囲に亘り、精度よく補償することができるという効果がある。
The present invention is also a temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series, wherein the frequency temperature compensation circuit includes first, second, and third MOS capacitors. An element, first and second capacitors, and gain adjustable first and second amplifiers, wherein the first MOS capacitor, the first capacitor, the third MOS capacitor, and the second capacitor are connected in series. And a circuit in which the second MOS capacitor element is connected in parallel, and a voltage value is constant at a connection point between one terminal of the first MOS capacitor element and one terminal of the second MOS capacitor element. A voltage is supplied, a first control voltage is supplied to a connection point between the other terminal of the first MOS capacitor and one terminal of the first capacitor, and the other terminal of the first capacitor and the third MOS capacitor At the connection point with one of the terminals Supplying a first control voltage via one amplifier, and supplying a second control voltage via a second amplifier to a connection point between the other terminal of the third MOS capacitor and one terminal of the second capacitor; A second control voltage is supplied to a connection point between the other terminal of the second capacitor and the other terminal of the second MOS capacitor element.
When the temperature compensated piezoelectric oscillator is configured in this way, the voltage applied to the gate and the back gate of the third MOS capacitor can be appropriately set by the first and second amplifiers, so that the piezoelectric vibrator whose frequency-temperature characteristic exhibits a cubic curve can be obtained. In particular, the compensation can be made appropriately in the normal temperature range, and the low temperature range, the normal temperature range, and the high temperature range are separately compensated for temperature, so that there is an effect that the compensation can be made accurately over a wide temperature range.
また本発明は、発振回路、圧電振動子、及び周波数温度補償回路を直列に接続して構成される温度補償圧電発振器であって、前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2、第3容量と、利得調整可能な第1、第2増幅器と、を備え、前記周波数温度補償回路は、前記第1MOS容量素子と前記第1容量との直列接続回路、前記第2容量と前記第3MOS容量素子と前記第3容量との直列接続回路、及び前記第2MOS容量素子をそれぞれ並列接続した回路であり、前記第1MOS容量素子の一方の端子と前記第2容量の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点に第1制御電圧を供給し、前記第2容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第1増幅器を介して第1制御電圧を供給し、前記第3MOS容量素子の他方の端子と前記第3容量の一方の端子との接続点に第2増幅器を介して第2制御電圧を供給し、前記第1容量の他方の端子と前記第3容量の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されている。
このように温度補償圧電発振器を構成すると、第3MOS容量素子のゲート及びバックゲートに印可する電圧を、第1及び第2増幅器により適宜設定できるので、周波数温度特性が三次曲線を呈する圧電振動子を、特に常温域において適切に補償することができ、且つ低温域、常温域、高温域をそれぞれ別々に温度補償するので広温度範囲に亘り、精度よく補償することができるという効果がある。
The present invention is also a temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series, wherein the frequency temperature compensation circuit includes first, second, and third MOS capacitors. The frequency temperature compensation circuit includes a first MOS capacitor element and a first capacitor connected in series. A circuit, a series connection circuit of the second capacitor, the third MOS capacitor element, and the third capacitor, and a circuit in which the second MOS capacitor element is connected in parallel, and one terminal of the first MOS capacitor element and the first capacitor A reference voltage having a constant voltage value is supplied to a connection point between one terminal of two capacitors and one terminal of the second MOS capacitor element, and one terminal of the first capacitor and the other terminal of the first MOS capacitor element is supplied. The first connection point to the terminal A control voltage is supplied, a first control voltage is supplied via a first amplifier to a connection point between the other terminal of the second capacitor and one terminal of the third MOS capacitor element, and the other of the third MOS capacitor element is supplied. A second control voltage is supplied via a second amplifier to a connection point between the terminal of the first capacitor and the one terminal of the third capacitor, and the other terminal of the first capacitor, the other terminal of the third capacitor, and the first capacitor. The second control voltage is supplied to a connection point with the other terminal of the 2MOS capacitor.
When the temperature compensated piezoelectric oscillator is configured in this way, the voltage applied to the gate and the back gate of the third MOS capacitor can be appropriately set by the first and second amplifiers, so that the piezoelectric vibrator whose frequency-temperature characteristic exhibits a cubic curve can be obtained. In particular, the compensation can be made appropriately in the normal temperature range, and the low temperature range, the normal temperature range, and the high temperature range are separately compensated for temperature, so that there is an effect that the compensation can be made accurately over a wide temperature range.
また本発明は、発振回路、圧電振動子、及び周波数温度補償回路を直列に接続して構成される温度補償圧電発振器であって、前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2容量と、利得調整可能な第1、第2増幅器と、を備え、前記周波数温度補償回路は、前記第1MOS容量素子と前記第1容量とを直列接続した回路に前記第2MOS容量素子を並列接続した回路と、前記第2容量と前記第3MOS容量素子とを直列接続した回路と、を直列接続した回路であり、前記第1MOS容量素子の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点に第1制御電圧を供給し、前記第1容量の他方の端子と前記第2容量の一方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給し、前記第2容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第2増幅器を介して第2制御電圧を供給し、前記第3MOS容量素子の他方の端子に第1増幅器を介して第1制御電圧を供給するように構成されている。
このように温度補償圧電発振器を構成すると、第3MOS容量素子のゲート及びバックゲートに印可する電圧を、第1及び第2増幅器により適宜設定できるので、周波数温度特性が三次曲線を呈する圧電振動子を、特に常温域において適切に補償することができ、且つ低温域、常温域、高温域をそれぞれ別々に温度補償するので広温度範囲に亘り、精度よく補償することができるという効果がある。
The present invention is also a temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series, wherein the frequency temperature compensation circuit includes first, second, and third MOS capacitors. The frequency temperature compensation circuit is a circuit in which the first MOS capacitor element and the first capacitor are connected in series. A circuit in which the second MOS capacitor element is connected in parallel and a circuit in which the second capacitor and the third MOS capacitor element are connected in series are connected in series, and one terminal of the first MOS capacitor element and the first MOS capacitor element A reference voltage having a constant voltage value is supplied to a connection point with one terminal of the 2MOS capacitor element, and a first control is performed at a connection point between the other terminal of the first MOS capacitor element and one terminal of the first capacitor. Supplying a voltage, said first A second control voltage is supplied to a connection point between the other terminal of the quantity, one terminal of the second capacitor, and the other terminal of the second MOS capacitor, and the other terminal of the second capacitor and the third MOS capacitor A second control voltage is supplied to a connection point with one terminal of the element via a second amplifier, and a first control voltage is supplied to the other terminal of the third MOS capacitor element via the first amplifier. Has been.
When the temperature compensated piezoelectric oscillator is configured in this way, the voltage applied to the gate and the back gate of the third MOS capacitor can be appropriately set by the first and second amplifiers, so that the piezoelectric vibrator whose frequency-temperature characteristic exhibits a cubic curve can be obtained. In particular, the compensation can be made appropriately in the normal temperature range, and the low temperature range, the normal temperature range, and the high temperature range are separately compensated for temperature, so that there is an effect that the compensation can be made accurately over a wide temperature range.
また本発明は、発振回路、圧電振動子、及び周波数温度補償回路を直列に接続して構成される温度補償圧電発振器であって、前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2容量と、利得調整可能な第1、第2増幅器と、第1、第2スイッチと、第1、第2基準電圧と、を備え、前記周波数温度補償回路は、前記第1MOS容量素子と前記第1容量とを直列接続した回路に前記第2MOS容量素子を並列接続した回路と、前記第2容量と前記第3MOS容量素子とを直列接続した回路と、を直列接続した回路であり、前記第1MOS容量素子の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点に第1制御電圧を供給し、前記第1容量の他方の端子と前記第2容量の一方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給し、前記第2容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第2増幅器の出力を接続し、前記第2制御電圧と前記第2基準電圧のいずれか一方の電圧を前記第2スイッチにて選択しこれを第2増幅器の入力に供給したものであり、前記第3MOS容量素子の他方の端子に第1増幅器の出力を接続し、前記第1制御電圧と前記第1基準電圧のいずれか一方の電圧を前記第1スイッチにて選択してこれを第1増幅器の入力に供給したものである。
このように温度補償圧電発振器を構成すると、第1及び第2スイッチを第1及び第2制御電圧側に倒すと、第3MOS容量素子のゲート及びバックゲートに印可する電圧を、第1及び第2増幅器により適宜設定できるので、周波数温度特性が三次曲線を呈する圧電振動子を、特に常温域において適切に補償することができ、且つ低温域、常温域、高温域をそれぞれ別々に温度補償するので広温度範囲に亘り、精度よく補償することができるという効果がある。また、第1及び第2スイッチを第1及び第2基準電圧側に倒すと、第3MOS容量素子は固定容量となり、常温近傍が平坦な圧電振動子を補償することができるという効果がある。
The present invention is also a temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series, wherein the frequency temperature compensation circuit includes first, second, and third MOS capacitors. An element, first and second capacitors, gain adjustable first and second amplifiers, first and second switches, and first and second reference voltages, and the frequency temperature compensation circuit includes: A circuit in which the second MOS capacitor element is connected in parallel to a circuit in which the first MOS capacitor element and the first capacitor are connected in series, and a circuit in which the second capacitor and the third MOS capacitor element are connected in series are connected in series. A reference voltage having a constant voltage value is supplied to a connection point between one terminal of the first MOS capacitor element and one terminal of the second MOS capacitor element, and the other terminal of the first MOS capacitor element. And one end of the first capacitor The first control voltage is supplied to the connection point between the first capacitor and the second control voltage at the connection point between the other terminal of the first capacitor, the one terminal of the second capacitor, and the other terminal of the second MOS capacitor element. And supplying an output of the second amplifier to a connection point between the other terminal of the second capacitor and one terminal of the third MOS capacitor element, and one of the second control voltage and the second reference voltage. Is selected by the second switch and supplied to the input of the second amplifier, the output of the first amplifier is connected to the other terminal of the third MOS capacitor, and the first control voltage and One of the first reference voltages is selected by the first switch and supplied to the input of the first amplifier.
When the temperature compensated piezoelectric oscillator is configured as described above, when the first and second switches are moved to the first and second control voltage sides, the voltages applied to the gate and the back gate of the third MOS capacitor element are changed to the first and second voltages. Since it can be set as appropriate by the amplifier, the piezoelectric vibrator whose frequency-temperature characteristic exhibits a cubic curve can be compensated appropriately especially in the normal temperature range, and the low temperature range, the normal temperature range, and the high temperature range are separately compensated for temperature. There is an effect that compensation can be made with high accuracy over a temperature range. Further, when the first and second switches are tilted to the first and second reference voltage sides, the third MOS capacitor element has a fixed capacitance, and there is an effect that it is possible to compensate for a piezoelectric vibrator having a flat near room temperature.
また本発明は、前記圧電振動子が水晶振動子であり、該水晶振動子の周波数温度特性が常温近傍で平坦な特性、変曲点を挟んで極大値及び極小値を有する特性、あるいは温度増加に対して右肩上がりの特性の何れにも対応するよう構成されている。
このように温度補償圧電発振器を構成すると、ATカット基板を所定の精度で切断して構成される水晶振動子を効率よく利用できるという効果がある。
According to the present invention, the piezoelectric vibrator is a crystal vibrator, and the frequency temperature characteristic of the crystal vibrator is flat around normal temperature, a characteristic having a maximum value and a minimum value across an inflection point, or a temperature increase. In contrast, it is configured to cope with any of the characteristics of rising to the right.
When the temperature compensated piezoelectric oscillator is configured in this way, there is an effect that a quartz crystal resonator formed by cutting an AT cut substrate with a predetermined accuracy can be used efficiently.
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は本発明に係る第1の実施例の温度補償圧電発振器の構成を示す回路図である。温度補償圧電発振器は、発振回路OSCと、圧電振動子Xtalと、第1の周波数温度補償回路Comp1と、容量C3と、を直列接続して構成した温度補償圧電発振器である。発振回路OSCは、トランジスタTr1のコレクタを、抵抗R1を介して電源VCCに接続し、ベースとコレクタ間には抵抗R2を接続し自己バイアス回路とする。トランジスタTr1のベースとエミッタ間に容量C1を接続し、エミッタと接地間にエミッタ抵抗R3と、容量C2とを並列接続したコルピッツ型発振回路である。該コルピッツ型発振回路OSCも、図21のコルピッツ型発振回路OSC1(電流帰還バイアス)と同様に周知の回路であるので、その動作の説明を省略する。また、圧電振動子Xtalとしては、例えば周波数温度特性が図22(b)に示すように、極大値、極小値を有し、三次曲線を呈する一般的なATカット水晶振動子を用い、容量C3には通常の容量を用いる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing a configuration of a temperature compensated piezoelectric oscillator according to a first embodiment of the present invention. The temperature compensated piezoelectric oscillator is a temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit OSC, a piezoelectric vibrator Xtal, a first frequency temperature compensation circuit Comp1, and a capacitor C3 in series. The oscillation circuit OSC connects the collector of the transistor Tr1 to the power supply VCC via the resistor R1, and connects the resistor R2 between the base and the collector to form a self-bias circuit. This is a Colpitts oscillation circuit in which a capacitor C1 is connected between the base and emitter of the transistor Tr1, and an emitter resistor R3 and a capacitor C2 are connected in parallel between the emitter and the ground. The Colpitts type oscillation circuit OSC is also a well-known circuit like the Colpitts type oscillation circuit OSC1 (current feedback bias) of FIG. Further, as the piezoelectric vibrator Xtal, for example, as shown in FIG. 22B, a general AT cut crystal vibrator having a maximum value and a minimum value and exhibiting a cubic curve is used, and a capacitance C3 is used. A normal capacity is used.
第1の周波数温度補償回路Comp1は、第1MOS容量素子M1と第3MOS容量素子M3とを直列接続した回路に、第1MOS容量素子M1と極性を逆にした第2MOS容量素子M2を並列接続した回路である。そして、第1MOS容量素子M1のゲートと第2MOS容量素子M2のバックゲートとの接続点に、抵抗R4を介して電圧値が一定である基準電圧Vrefを供給する。第1MOS容量素子M1のバックゲートと第3MOS容量素子M3のゲートとの接続点に、抵抗R5を介して第1制御電圧VLを供給すると共に、第3MOS容量素子M3のバックゲートと第2MOS容量素子M2のゲートとの接続点に、抵抗R6を介して第2制御電圧VHを供給する。ここで、基準電圧Vref、第1制御電圧VL及び第2制御電圧VHは、図示しない周知の回路から供給するものとする。 The first frequency temperature compensation circuit Comp1 is a circuit in which a first MOS capacitor element M1 and a third MOS capacitor element M3 are connected in series, and a second MOS capacitor element M2 having a polarity opposite to that of the first MOS capacitor element M1 is connected in parallel. It is. Then, a reference voltage Vref having a constant voltage value is supplied to the connection point between the gate of the first MOS capacitor element M1 and the back gate of the second MOS capacitor element M2 via the resistor R4. The first control voltage VL is supplied to the connection point between the back gate of the first MOS capacitor element M1 and the gate of the third MOS capacitor element M3 via the resistor R5, and the back gate of the third MOS capacitor element M3 and the second MOS capacitor element The second control voltage VH is supplied to the connection point of the gate of M2 via the resistor R6. Here, the reference voltage Vref, the first control voltage VL, and the second control voltage VH are supplied from a known circuit (not shown).
図2は、MOS容量素子のバックゲートの電圧を基準とし、バックゲート−ゲート間の電圧差Vdと容量Cの関係を示す電圧差Vd−容量C特性の一例である。図3は温度補償に用いる基準電圧Vref、第1制御電圧VL及び第2制御電圧VHと、温度Tとの関係を示した一例である。基準電圧Vrefは温度に関わらず常に一定であり、第1制御電圧VLと温度Tとの関係は図3の実線で示すように、低温と常温の間では直線的に減少し、常温と高温の間では最小値のまま一定値となるように回路構成(図示しない)を行う。また、第2制御電圧VHと温度Tとの関係は、図3の破線で示すように低温と常温の間では最小値のまま一定であり、常温と高温との間では直線的に増加するように回路構成(図示しない)を行う。
温度Tが低温から高温に変化するときに、図1に示す第1MOS容量素子M1の容量Cがどのように変化するかについて説明する。第1MOS容量素子M1のバックゲートには第1制御電圧VLが、ゲートには基準電圧Vrefが印加されている。第1制御電圧VLが図3に示すように変化する場合、バックゲート−ゲート間の電圧差Vdは、温度が低温から常温に変化するとき電圧差Vdは0V近傍から直線的に大きくり、常温近辺で最大となって、常温より高温までは最大値を維持する。この電圧差Vdの変動を図2の電圧差Vd−容量C特性に当てはめると、容量Cの変化は図2のαで示した領域の変動に相当する。つまり、図1に示す第1MOS容量素子M1の容量Cと温度Tとの関係は、図4(a)に示した曲線のようになる。
FIG. 2 is an example of a voltage difference Vd-capacitance C characteristic showing the relationship between the back gate-gate voltage difference Vd and the capacitance C with reference to the back gate voltage of the MOS capacitance element. FIG. 3 is an example showing the relationship between the reference voltage Vref, the first control voltage VL and the second control voltage VH used for temperature compensation, and the temperature T. The reference voltage Vref is always constant regardless of the temperature, and the relationship between the first control voltage VL and the temperature T decreases linearly between the low temperature and the normal temperature as shown by the solid line in FIG. In the meantime, a circuit configuration (not shown) is performed so that a constant value is maintained with a minimum value. In addition, the relationship between the second control voltage VH and the temperature T is constant at a minimum value between the low temperature and the normal temperature, and increases linearly between the normal temperature and the high temperature, as shown by the broken line in FIG. A circuit configuration (not shown) is performed.
The following describes how the capacitance C of the first MOS capacitor element M1 shown in FIG. 1 changes when the temperature T changes from a low temperature to a high temperature. The first control voltage VL is applied to the back gate of the first MOS capacitor element M1, and the reference voltage Vref is applied to the gate. When the first control voltage VL changes as shown in FIG. 3, the voltage difference Vd between the back gate and the gate increases linearly from around 0 V when the temperature changes from low temperature to normal temperature. It becomes the maximum in the vicinity and keeps the maximum value from room temperature to high temperature. When the variation of the voltage difference Vd is applied to the voltage difference Vd-capacitance C characteristic of FIG. 2, the variation of the capacitance C corresponds to the variation of the region indicated by α in FIG. That is, the relationship between the capacitance C and the temperature T of the first MOS capacitor element M1 shown in FIG. 1 is as shown by the curve shown in FIG.
次に、図1に示す第2MOS容量素子M2の容量Cと、温度Tとの関係について説明する。第2MOS容量素子M2のバックゲート−ゲート間の電圧差Vdは負(ゲート電圧よりバックゲート電圧が高い)の値であり、温度が低温から常温まで変化するときに電圧差Vdは負の一定値となる。温度が常温から高温に変化すると電圧差Vdの絶対値は直線的に小さくなる。この電圧差Vdの変動を図2の曲線に当てはめると、βで示した領域の変化に相当する。つまり、図1に示す第2MOS容量素子M2の容量Cと温度Tとの関係は、図4(b)に示した曲線のようになる。
次に、図1に示す第3MOS容量素子M3の容量Cと温度Tとの関係について説明する。第3MOS容量素子M3のバックゲートには第2制御電圧VHが、ゲートには第1制御電圧VLが印加されている。第1及び第2制御電圧VL、VHが温度Tの変化に対し図3に示したように変化する場合、第3MOS容量素子M3のバックゲート−ゲート間の電圧差Vdは、温度Tが低温から常温まで変化すると正の値で直線的に減少し、温度Tが常温から高温まで変化すると負の値、でその絶対値は直線的に増加する。この電圧差Vdの変動を図2に当てはめると、図2の曲線の中央部(直線部分)に相当する。つまり、第3MOS容量素子M3の容量Cと温度Tとの関係は、図4(c)に示した曲線のようになる。
Next, the relationship between the capacitance C of the second MOS capacitive element M2 shown in FIG. The voltage difference Vd between the back gate and the gate of the second MOS capacitor M2 is a negative value (the back gate voltage is higher than the gate voltage), and the voltage difference Vd is a negative constant value when the temperature changes from low temperature to room temperature. It becomes. When the temperature changes from room temperature to high temperature, the absolute value of the voltage difference Vd decreases linearly. When the fluctuation of the voltage difference Vd is applied to the curve of FIG. 2, it corresponds to the change of the region indicated by β. That is, the relationship between the capacitance C and the temperature T of the second MOS capacitive element M2 shown in FIG. 1 is as shown by the curve shown in FIG.
Next, the relationship between the capacitance C and the temperature T of the third MOS capacitive element M3 shown in FIG. 1 will be described. The second control voltage VH is applied to the back gate of the third MOS capacitive element M3, and the first control voltage VL is applied to the gate. When the first and second control voltages VL and VH change as shown in FIG. 3 with respect to the change in the temperature T, the voltage difference Vd between the back gate and the gate of the third MOS capacitor M3 is from the low temperature T. When it changes to room temperature, it decreases linearly with a positive value, and when the temperature T changes from room temperature to high temperature, its absolute value increases linearly with a negative value. When the fluctuation of the voltage difference Vd is applied to FIG. 2, it corresponds to the central portion (straight line portion) of the curve of FIG. That is, the relationship between the capacitance C of the third MOS capacitor element M3 and the temperature T is as shown by the curve shown in FIG.
図5は温度Tと周波数偏差df/fとの関係を示す図である。温度Tの変化に対して周波数が変化しない理想的な圧電振動子Xiを仮定し、この圧電振動子Xiの負荷容量として、図4(a)〜(c)に示すような温度特性の容量Cを直列接続するものとする。このときの周波数温度特性は、図5(a)〜(c)に示すような周波数温度特性となる。図1に示す第1の周波数温度補償回路Comp1のように、第1MOS容量素子M1と第3MOS容量素子M3とを直列接続した回路に、第2MOS容量素子M2を並列接続して構成した回路を、圧電振動子Xiの負荷容量とした場合の周波数温度特性は、図5(d)に示すような特性となる。つまり、低温では第1MOS容量素子M1の呈する温度特性が主であり、常温近傍の温度では第3MOS容量素子M3の温度特性が主となり、高温では第2MOS容量素子M2の温度特性が主となって、図5(d)に示すような周波数温度特性となる。この特性は、図22(b)に示した通常のATカット水晶振動子の周波数温度特性の逆特性に相当する。従って、圧電振動子Xiの代わりに周波数温度特性が図22(b)に示すようなATカット水晶振動子を用いれば、温度による周波数変化が補償され、広温度範囲で平坦の温度補償水晶発振器が得られる。 FIG. 5 is a diagram showing the relationship between the temperature T and the frequency deviation df / f. Assuming an ideal piezoelectric vibrator Xi whose frequency does not change with respect to changes in temperature T, the load capacity of this piezoelectric vibrator Xi is a capacitance C having temperature characteristics as shown in FIGS. Shall be connected in series. The frequency temperature characteristics at this time are frequency temperature characteristics as shown in FIGS. A circuit configured by connecting a second MOS capacitor element M2 in parallel to a circuit in which a first MOS capacitor element M1 and a third MOS capacitor element M3 are connected in series, like the first frequency temperature compensation circuit Comp1 shown in FIG. The frequency-temperature characteristic when the load capacity of the piezoelectric vibrator Xi is used is as shown in FIG. That is, the temperature characteristic of the first MOS capacitor element M1 is mainly at low temperatures, the temperature characteristic of the third MOS capacitor element M3 is mainly at temperatures near room temperature, and the temperature characteristic of the second MOS capacitor element M2 is mainly at high temperatures. The frequency-temperature characteristics are as shown in FIG. This characteristic corresponds to the inverse characteristic of the frequency temperature characteristic of the normal AT-cut crystal resonator shown in FIG. Therefore, if an AT-cut quartz crystal whose frequency temperature characteristic is as shown in FIG. 22B is used instead of the piezoelectric vibrator Xi, a frequency change due to temperature is compensated, and a flat temperature compensated crystal oscillator in a wide temperature range is obtained. can get.
以上の説明は、図1の周波数温度補償回路Comp1の温度特性を定性的に説明をしたが、実際の設計では、図2に示すMOS容量素子の電圧差Vd−容量C曲線、図3に示す基準電圧Vref、第1制御電圧VL及び第2制御電圧VHと、温度Tとの関係を数式で表し、シミュレータを用いて温度補償圧電発振器の周波数温度特性が所望の偏差内に収斂するまで繰り返し求める。この場合、トランジスタTr1の温度特性等も考慮される。
本発明の特徴は、電圧生成回路から供給される、温度に対して直線的に変化する2つの電圧、即ち第1制御電圧VL、第2制御電圧VHを用い、MOS容量素子の特定領域の容量変化を利用して、低温、常温、高温の3つ領域の周波数温度補償を行うところにある。従って、広い温度範囲で良好な補償が可能であり、且つ補償回路は簡素となるのでIC化が容易であるという利点がある。
The above description qualitatively describes the temperature characteristics of the frequency temperature compensation circuit Comp1 of FIG. 1, but in actual design, the voltage difference Vd-capacitance C curve of the MOS capacitance element shown in FIG. 2 and FIG. The relationship between the reference voltage Vref, the first control voltage VL and the second control voltage VH, and the temperature T is expressed by a mathematical expression, and is repeatedly obtained using a simulator until the frequency temperature characteristic of the temperature compensated piezoelectric oscillator converges within a desired deviation. . In this case, the temperature characteristics of the transistor Tr1 are also taken into consideration.
A feature of the present invention is that two voltages which are supplied from the voltage generation circuit and change linearly with respect to temperature, that is, the first control voltage VL and the second control voltage VH are used, and the capacitance of a specific region of the MOS capacitor element. Using the change, frequency temperature compensation is performed in three regions of low temperature, normal temperature, and high temperature. Therefore, there is an advantage that good compensation is possible in a wide temperature range, and the compensation circuit is simple, so that it is easy to make an IC.
図6は、第2の実施例の温度補償圧電発振器の構成を示す回路図であって、発振回路OSCと、圧電振動子Xtalと、第2の周波数温度補償回路Comp2と、容量C3と、を直列接続して温度補償圧電発振器を構成する。発振回路OSC、圧電振動子Xtal、容量C3は、図1に示した第1の実施例の温度補償圧電発振器と同様であるので、以下、周波数温度補償回路を中心に説明する。第2の周波数温度補償回路Comp2は、第1MOS容量素子M1と第1容量C4とを直列接続した回路に第1MOS容量素子M1と極性を逆にした第2MOS容量素子M2を並列接続した回路と、第2MOS容量素子と同じ極性の第3MOS容量素子M3と、を直列接続した回路である。そして、第1MOS容量素子M1のゲートと前記第2MOS容量素子M2のバックゲートとの接続点に、抵抗R4を介して電圧値が一定である基準電圧Vrefを供給する。更に、第1MOS容量素子M1のバックゲートと第1容量C4との接続点に抵抗R5を介して第1制御電圧VLを供給すると共に、第3MOS容量素子M3のゲートに抵抗R8を介して第1制御電圧VLを供給する。第3MOS容量素子M3のバックゲートと第1容量C4と第2MOS容量素子M2のゲートとの接続点に、抵抗R7を介して第2制御電圧VHを供給する構成となっている。 FIG. 6 is a circuit diagram showing the configuration of the temperature compensated piezoelectric oscillator of the second embodiment, and includes an oscillation circuit OSC, a piezoelectric vibrator Xtal, a second frequency temperature compensation circuit Comp2, and a capacitor C3. A temperature-compensated piezoelectric oscillator is configured in series connection. Since the oscillation circuit OSC, the piezoelectric vibrator Xtal, and the capacitor C3 are the same as those of the temperature compensated piezoelectric oscillator of the first embodiment shown in FIG. 1, the frequency temperature compensation circuit will be mainly described below. The second frequency temperature compensation circuit Comp2 includes a circuit in which a first MOS capacitor element M1 and a first capacitor C4 are connected in series to a circuit in which a first MOS capacitor element M1 and a second MOS capacitor element M2 having a reverse polarity are connected in parallel. This is a circuit in which a third MOS capacitor element M3 having the same polarity as the second MOS capacitor element is connected in series. A reference voltage Vref having a constant voltage value is supplied to a connection point between the gate of the first MOS capacitor element M1 and the back gate of the second MOS capacitor element M2 via the resistor R4. Further, the first control voltage VL is supplied to the connection point between the back gate of the first MOS capacitor M1 and the first capacitor C4 via the resistor R5, and the first MOS voltage element M3 is supplied to the gate via the resistor R8. A control voltage VL is supplied. The second control voltage VH is supplied via a resistor R7 to a connection point between the back gate of the third MOS capacitor element M3, the first capacitor C4, and the gate of the second MOS capacitor element M2.
第2の実施例の周波数温度補償回路Comp2が、図1に示した第1の実施例と異なる点は、第3MOS容量素子M3を第1容量C4で置換し、並列回路から第3MOS容量素子M3を外に出し、直列接続とした構成である。第1MOS容量素子M1のゲートには基準電圧Vrefが、バックゲートには第1制御電圧VLが印加され、温度Tと容量Cとの関係は図4(a)の温度T−容量C特性と同様になる。第2MOS容量素子M2については図1と同様である。第3MOS容量素子M3のゲートには第1制御電圧VLが、バックゲートには第2制御電圧VHが印加され、温度Tと容量Cとの関係は図4(c)の温度T−容量C特性と同様になる。 The frequency temperature compensation circuit Comp2 of the second embodiment is different from the first embodiment shown in FIG. 1 in that the third MOS capacitor element M3 is replaced with the first capacitor C4, and the third MOS capacitor element M3 is replaced from the parallel circuit. Is configured to be connected in series. The reference voltage Vref is applied to the gate of the first MOS capacitor element M1, the first control voltage VL is applied to the back gate, and the relationship between the temperature T and the capacitor C is the same as the temperature T-capacitance C characteristic of FIG. become. The second MOS capacitor element M2 is the same as that shown in FIG. The first control voltage VL is applied to the gate of the third MOS capacitor element M3, the second control voltage VH is applied to the back gate, and the relationship between the temperature T and the capacitance C is the temperature T-capacitance C characteristic of FIG. It will be the same.
図7は、第3の実施例の温度補償圧電発振器の構成を示す回路図であって、発振回路OSCと、圧電振動子Xtalと、第3の周波数温度補償回路Comp3と、容量C3と、を直列接続して温度補償圧電発振器を構成する。第3の周波数温度補償回路Comp3は、第1MOS容量素子M1と第1容量C4とを直列接続した回路と、第2容量C5と第3MOS容量素子M3と直列接続した回路と、第1MOS容量素子と極性を逆にした第2MOS容量素子M2と、をそれぞれ並列接続した回路である。そして、第1MOS容量素子M1のゲートと第2容量C5と第2MOS容量素子M2のバックゲートとの接続点に、抵抗R4を介して電圧値が一定である基準電圧Vrefを供給する。第1MOS容量素子M1のバックゲートと第1容量C4との接続点に、抵抗R5を介して第1制御電圧VLを供給すると共に、第2容量C5と第3MOS容量素子M3のゲートとの接続点に、抵抗R9を介して第1制御電圧VLを供給する。さらに、第1容量C4と、第3MOS容量素子M3のバックゲートと、第2MOS容量素子M2のゲートと、の接続点に抵抗R7を介して第2制御電圧VHを供給する構成の温度補償回路である。
図7に示す第3の周波数温度補償回路Comp3は、第1及び第2MOS容量素子M1、M2の並列接続回路に、第2容量C5を直列接続した第3MOS容量素子M3を並列接続して構成した周波数温度補償回路である。第1及び第2MOS容量素子M1、M2を含む回路は図6と同じ回路構成である。第3MOS容量素子M3のゲートには第1制御電圧VLが、バックゲートには第2制御電圧VHが印加され、温度Tと容量Cとの関係は図4(c)の温度T−容量C特性と同様になる。
FIG. 7 is a circuit diagram showing the configuration of the temperature compensated piezoelectric oscillator of the third embodiment, and includes an oscillation circuit OSC, a piezoelectric vibrator Xtal, a third frequency temperature compensation circuit Comp3, and a capacitor C3. A temperature-compensated piezoelectric oscillator is configured in series connection. The third frequency temperature compensation circuit Comp3 includes a circuit in which the first MOS capacitor element M1 and the first capacitor C4 are connected in series, a circuit in which the second capacitor C5 and the third MOS capacitor element M3 are connected in series, a first MOS capacitor element, This is a circuit in which a second MOS capacitor element M2 having opposite polarity is connected in parallel. A reference voltage Vref having a constant voltage value is supplied via a resistor R4 to a connection point between the gate of the first MOS capacitor element M1, the second capacitor C5, and the back gate of the second MOS capacitor element M2. The first control voltage VL is supplied to the connection point between the back gate of the first MOS capacitor element M1 and the first capacitor C4 via the resistor R5, and the connection point between the second capacitor C5 and the gate of the third MOS capacitor element M3. In addition, the first control voltage VL is supplied through the resistor R9. Further, the temperature compensation circuit is configured to supply the second control voltage VH to the connection point between the first capacitor C4, the back gate of the third MOS capacitor element M3, and the gate of the second MOS capacitor element M2 via the resistor R7. is there.
The third frequency temperature compensation circuit Comp3 shown in FIG. 7 is configured by connecting in parallel a third MOS capacitor element M3 having a second capacitor C5 connected in series to a parallel connection circuit of the first and second MOS capacitor elements M1 and M2. It is a frequency temperature compensation circuit. The circuit including the first and second MOS capacitance elements M1 and M2 has the same circuit configuration as that of FIG. The first control voltage VL is applied to the gate of the third MOS capacitor element M3, the second control voltage VH is applied to the back gate, and the relationship between the temperature T and the capacitance C is the temperature T-capacitance C characteristic of FIG. It will be the same.
図8は第4の実施例の温度補償圧電発振器の構成を示す回路図であって、発振回路OSCと、圧電振動子Xtalと、第4の周波数温度補償回路Comp4と、容量C3と、を直列接続して構成した温度補償発振器であり、第4の周波数温度補償回路Comp4は、図7に示した周波数温度補償回路Comp3の第3MOS容量素子M3に直列に第3容量C9を接続した回路である。
即ち、第4の周波数温度補償回路Comp4は、第1MOS容量素子M1と第1容量C4との直列接続回路と、第2容量C8と第3MOS容量素子M3と第3容量C9との直列接続回路と、第1MOS容量素子と極性を逆にした第2MOS容量素子M2と、をそれぞれ並列接続した回路である。そして、第1MOS容量素子M1のゲートと第2容量C8と第2MOS容量素子M2のバックゲートとの接続点に、抵抗R4を介して電圧値が一定である基準電圧Vrefを供給する。さらに、第1MOS容量素子M1のバックゲートと第1容量C4との接続点に、抵抗R5を介して第1制御電圧VLを供給すると共に、第2容量C8と第3MOS容量素子M3のゲートとの接続点に、抵抗R9を介して第1制御電圧VLを供給する。さらに、第3MOS容量素子M3のバックゲートと第3容量C9との接続点に、抵抗R13を介して第2制御電圧VHを供給し、第1容量C4と第3容量C9と第2MOS容量素子M2のゲートとの接続点に、抵抗R7を介して第2の制御線圧VHを供給する構成の温度補償回路である。
FIG. 8 is a circuit diagram showing the configuration of the temperature compensated piezoelectric oscillator of the fourth embodiment, in which an oscillation circuit OSC, a piezoelectric vibrator Xtal, a fourth frequency temperature compensation circuit Comp4, and a capacitor C3 are connected in series. The fourth frequency temperature compensation circuit Comp4 is a circuit in which a third capacitor C9 is connected in series to the third MOS capacitor element M3 of the frequency temperature compensation circuit Comp3 shown in FIG. .
That is, the fourth frequency temperature compensation circuit Comp4 includes a series connection circuit of the first MOS capacitor element M1 and the first capacitor C4, and a series connection circuit of the second capacitor C8, the third MOS capacitor element M3, and the third capacitor C9. The first MOS capacitor element and the second MOS capacitor element M2 having the opposite polarity are connected in parallel. Then, a reference voltage Vref having a constant voltage value is supplied via a resistor R4 to a connection point between the gate of the first MOS capacitor element M1, the second capacitor C8, and the back gate of the second MOS capacitor element M2. Further, the first control voltage VL is supplied to the connection point between the back gate of the first MOS capacitor element M1 and the first capacitor C4 via the resistor R5, and the second capacitor C8 and the gate of the third MOS capacitor element M3 are connected to each other. The first control voltage VL is supplied to the connection point via the resistor R9. Further, the second control voltage VH is supplied to the connection point between the back gate of the third MOS capacitor element M3 and the third capacitor C9 via the resistor R13, and the first capacitor C4, the third capacitor C9, and the second MOS capacitor element M2 are supplied. This is a temperature compensation circuit configured to supply the second control line pressure VH to the connection point with the gate via the resistor R7.
図9は、第5の実施例の温度補償圧電発振器の構成を示す回路図であって、発振回路OSCと、圧電振動子Xtalと、第5の周波数温度補償回路Comp5と、容量C3と、を直列接続して構成した温度補償発振器である。第5の周波数温度補償回路Comp5は、第1MOS容量素子M1と第1容量C6と第3MOS容量素子M3と第2容量C7とを直列接続した回路と、第1MOS容量素子と極性を逆にした第2MOS容量素子M2と、を並列接続した回路構成である。そして、第1MOS容量素子M1のゲートと第2MOS容量素子M2のバックゲートとの接続点に、抵抗R4を介して電圧値が一定である基準電圧Vrefを供給する。さらに、第1MOS容量素子M1のバックゲートと第1容量C6との接続点に抵抗R5を介して第1制御電圧VLを供給すると共に、第1容量C6と第3容量素子M3のゲートとの接続点に、利得調整可能な第1増幅器A1と抵抗R10を介して第1制御電圧VLを供給する。第3MOS容量素子M3のバックゲートと第2容量C7との接続点に、同じく利得調整可能な第2増幅器A2と抵抗R11とを介して第2制御電圧VHを供給し、第2容量C7と第2MOS容量素子M2のゲートとの接続点に、抵抗R12を介して第2制御電圧VHを供給する構成の温度補償回路である。
第5の周波数温度補償回路Comp5の特徴は、常温近傍の周波数温度特性を補償する第3容量素子M3のゲートとバックゲートに、それぞれ第1及び第2増幅器A1、A2を介して第1及び第2制御電圧VL、VHが供給されるので、バックゲート−ゲート間の電圧差Vdを微細に調整することが可能となり、周波数温度特性の補償の精度が向上するという効果がある。
FIG. 9 is a circuit diagram showing the configuration of the temperature compensated piezoelectric oscillator of the fifth embodiment, and includes an oscillation circuit OSC, a piezoelectric vibrator Xtal, a fifth frequency temperature compensation circuit Comp5, and a capacitor C3. This is a temperature compensated oscillator configured in series connection. The fifth frequency temperature compensation circuit Comp5 includes a circuit in which a first MOS capacitor element M1, a first capacitor C6, a third MOS capacitor element M3, and a second capacitor C7 are connected in series, and a first MOS capacitor element having a polarity opposite to that of the first MOS capacitor element. This is a circuit configuration in which a 2MOS capacitor element M2 is connected in parallel. Then, a reference voltage Vref having a constant voltage value is supplied to the connection point between the gate of the first MOS capacitor element M1 and the back gate of the second MOS capacitor element M2 via the resistor R4. Further, the first control voltage VL is supplied to the connection point between the back gate of the first MOS capacitor element M1 and the first capacitor C6 via the resistor R5, and the connection between the first capacitor C6 and the gate of the third capacitor element M3. The first control voltage VL is supplied to the point through the first amplifier A1 and the resistor R10 which can adjust the gain. The second control voltage VH is supplied to the connection point between the back gate of the third MOS capacitor element M3 and the second capacitor C7 through the second amplifier A2 and the resistor R11, which can also be gain-adjusted, and the second capacitor C7 and the second capacitor C7. This is a temperature compensation circuit configured to supply the second control voltage VH to the connection point with the gate of the 2MOS capacitive element M2 via the resistor R12.
The fifth frequency temperature compensation circuit Comp5 is characterized in that the first and second amplifiers A1 and A2 are respectively connected to the gate and back gate of the third capacitor element M3 that compensates for the frequency temperature characteristics near room temperature. 2 Since the control voltages VL and VH are supplied, the voltage difference Vd between the back gate and the gate can be finely adjusted, and there is an effect that the accuracy of frequency temperature characteristic compensation is improved.
図10は第6の実施例の温度補償圧電発振器の構成を示す回路図であって、発振回路OSCと、圧電振動子Xtalと、第6の周波数温度補償回路Comp6と、容量C3と、を直列接続して構成した温度補償発振器である。第6の周波数温度補償回路Comp6は、第1MOS容量素子M1と第1容量C4との直列接続回路と、第2容量C8と第3MOS容量素子M3と第3容量C9との直列接続回路と、第1MOS容量素子M1と極性を逆にした第2MOS容量素子M2と、をそれぞれ並列接続した回路である。そして、第1MOS容量素子M1のゲートと第2容量C8と第2MOS容量素子M2のバックゲートとの接続点に、抵抗R4を介して電圧値が一定である基準電圧Vrefを供給する。第1MOS容量素子M1のバックゲートと第1容量C4との接続点に、抵抗R5を介して第1制御電圧VLを供給すると共に、第2容量C8と第3MOS容量素子M3のゲートとの接続点に、利得調整可能な第1増幅器A1と抵抗R10とを介して第1制御電圧VLを供給する。さらに、第3MOS容量素子M3のバックゲートと第3容量C9との接続点に、利得調整可能な第2増幅器A2と抵抗R11とを介して第2制御電圧VHを供給し、第1容量C4と第3容量C9と第2MOS容量素子M2のゲートとの接続点に、抵抗R7を介して第2制御電圧VHを供給する構成の温度補償回路である。
第6の実施例の周波数温度補償回路Comp6は、第5の実施例の周波数温度補償回路Comp5とほぼ同じであるが、第3MOS容量素子M3の両端に第1及び第2増幅器を介して、第1及び第2制御電圧VL、VHが印加されるように構成された点が異なる。第1及び第2増幅器の利得を調整することにより第3MOS容量素子M3のバックゲート−ゲート間の電圧差Vdを微細に調整することが可能となり、常温近傍の周波数温度特性の補償精度が向上するという効果がある。
FIG. 10 is a circuit diagram showing a configuration of the temperature compensated piezoelectric oscillator of the sixth embodiment, in which an oscillation circuit OSC, a piezoelectric vibrator Xtal, a sixth frequency temperature compensation circuit Comp6, and a capacitor C3 are connected in series. It is a temperature compensated oscillator configured by connecting. The sixth frequency temperature compensation circuit Comp6 includes a series connection circuit of the first MOS capacitor element M1 and the first capacitor C4, a series connection circuit of the second capacitor C8, the third MOS capacitor element M3, and the third capacitor C9, This is a circuit in which a 1MOS capacitor element M1 and a second MOS capacitor element M2 having a reversed polarity are connected in parallel. Then, a reference voltage Vref having a constant voltage value is supplied via a resistor R4 to a connection point between the gate of the first MOS capacitor element M1, the second capacitor C8, and the back gate of the second MOS capacitor element M2. The first control voltage VL is supplied to the connection point between the back gate of the first MOS capacitor element M1 and the first capacitor C4 via the resistor R5, and the connection point between the second capacitor C8 and the gate of the third MOS capacitor element M3. In addition, the first control voltage VL is supplied through the first amplifier A1 and the resistor R10 which can adjust the gain. Further, the second control voltage VH is supplied to the connection point between the back gate of the third MOS capacitor element M3 and the third capacitor C9 via the second amplifier A2 and the resistor R11 that can be adjusted in gain, and the first capacitor C4 This is a temperature compensation circuit configured to supply the second control voltage VH via a resistor R7 to the connection point between the third capacitor C9 and the gate of the second MOS capacitor element M2.
The frequency temperature compensation circuit Comp6 of the sixth embodiment is substantially the same as the frequency temperature compensation circuit Comp5 of the fifth embodiment, but the first and second amplifiers are connected to both ends of the third MOS capacitor M3 via the first and second amplifiers. The difference is that the first and second control voltages VL and VH are applied. By adjusting the gains of the first and second amplifiers, the voltage difference Vd between the back gate and the gate of the third MOS capacitor element M3 can be finely adjusted, and the accuracy of compensation of the frequency temperature characteristics in the vicinity of room temperature is improved. There is an effect.
図11は、第7の実施例の温度補償圧電発振器の構成を示す回路図であって、発振回路OSCと、圧電振動子Xtalと、第7の周波数温度補償回路Comp7と、容量C3と、を直列接続して構成した温度補償発振器である。第7の周波数温度補償回路Comp7は、第1MOS容量素子M1と第1容量C4とを直列接続した回路に第1MOS容量素子と極性を逆にした第2MOS容量素子M2を並列接続した回路と、第2容量C10と第2MOS容量素子M2と同じ極性の第3MOS容量素子M3とを直列接続した回路と、を直列接続して構成した回路である。そして、第1MOS容量素子M1のゲートと第2MOS容量素子M2のバックゲートとの接続点に、抵抗R4を介して電圧値が一定である基準電圧Vrefを供給する。さらに、第1MOS容量素子M1のバックゲートと第1容量C4との接続点に、抵抗R5を介して第1制御電圧VLを供給すると共に、第1容量C4と第2MOS容量素子M2のゲートと第2容量C10との接続点に、抵抗R7を介して第2制御電圧VHを供給する。第2容量C10と第3MOS容量素子M3のバックゲートと接続点に、利得調整可能な第2増幅器A2と抵抗R11とを介して第2制御電圧VHを供給し、第3MOS容量素子M3のゲートに、利得調整可能な第1増幅器A1と抵抗R10とを介して第1制御電圧VLを供給する構成の温度補償回路である。
第7の実施例の周波数温度補償回路Comp7は、図6に示した周波数温度補償回路Comp2と基本的には同じであるが、第3MOS容量素子M3のバックゲートに第2容量C10が直列接続され、第3MOS容量素子M3のゲートとバックゲートとに、それぞれ第1及び第2増幅器A1、A2を介して第1及び第2制御電圧VL、VHが印加される点が異なる。そのため、常温近傍の周波数温度補償が微細に行えるので補償精度が向上するという利点がある。
FIG. 11 is a circuit diagram showing the configuration of the temperature compensated piezoelectric oscillator of the seventh embodiment, and includes an oscillation circuit OSC, a piezoelectric vibrator Xtal, a seventh frequency temperature compensation circuit Comp7, and a capacitor C3. This is a temperature compensated oscillator configured in series connection. The seventh frequency temperature compensation circuit Comp7 includes a circuit in which a first MOS capacitor element M1 and a first capacitor C4 are connected in series to a circuit in which a second MOS capacitor element M2 having a polarity opposite to that of the first MOS capacitor element is connected in parallel. A circuit in which a two-capacitance C10 and a third MOS capacitive element M3 having the same polarity as the second MOS capacitive element M2 are connected in series and connected in series. Then, a reference voltage Vref having a constant voltage value is supplied to the connection point between the gate of the first MOS capacitor element M1 and the back gate of the second MOS capacitor element M2 via the resistor R4. Furthermore, the first control voltage VL is supplied to the connection point between the back gate of the first MOS capacitor element M1 and the first capacitor C4 via the resistor R5, and the first capacitor C4 and the gates of the second MOS capacitor element M2 The second control voltage VH is supplied to the connection point with the two capacitors C10 via the resistor R7. The second control voltage VH is supplied to the connection point between the back gate of the second capacitor C10 and the third MOS capacitor element M3 via the second amplifier A2 and the resistor R11 capable of gain adjustment, and the gate of the third MOS capacitor element M3 is supplied. The temperature compensation circuit is configured to supply the first control voltage VL via the first amplifier A1 and the resistor R10 that can adjust the gain.
The frequency temperature compensation circuit Comp7 of the seventh embodiment is basically the same as the frequency temperature compensation circuit Comp2 shown in FIG. 6, but a second capacitor C10 is connected in series to the back gate of the third MOS capacitor element M3. The difference is that the first and second control voltages VL and VH are applied to the gate and back gate of the third MOS capacitor element M3 via the first and second amplifiers A1 and A2, respectively. Therefore, there is an advantage that the compensation accuracy is improved because the frequency temperature compensation near room temperature can be finely performed.
以上は、水晶振動子の周波数温度特性(df/f−Temp)が、図22(b)に示すように温度の変化に対し、変曲点を挟んで極大値と極小値とを有する場合の周波数補償方法について説明した。周波数温度特性が図22(c)に示すように、温度の増加に対し、右肩上がりの特性を有する場合の周波数補償方法について、以下に説明する。
図12は、本発明に係る第8の実施例の温度補償圧電発振器の構成を示す回路図である。温度補償圧電発振器は、発振回路OSCと、圧電振動子Xtalと、第8の周波数温度補償回路Comp’1と、容量C3と、を直列接続して構成した温度補償圧電発振器である。図1に示した第1の実施例の温度補償圧電発振器と異なる点は、第3MOS容量素子M3の極性を逆にしたところである。図12に示す第3MOS容量素子M3の両端に第1及び第2制御電圧VL、VHを印加した場合の温度T−容量C特性は、図4(c)に示す曲線を上下逆にした特性、つまり図13(a)に示すように、温度の増加に対し容量が増大する特性となる。これを図5に示すように、周波数温度特性(温度T−周波数df/f)に変換すると、図13(b)に示すように温度Tの増加に対して右肩下がりの特性になる。既に説明したように、第3MOS容量素子M3は常温を中心とした中温部の補償に関与し、第1MOS容量素子M1、第2MOS容量素子M2は夫々低温部、高温部の補償を担う。第1MOS容量素子M1、第2MOS容量素子M2の作用については、図1で説明した通りである。従って、図12に示す周波数温度補償回路Comp’1を用いることにより、図22(c)に示すような温度増加に対し右肩上がりの水晶振動子の補償を行うことができる。
The above is the case where the frequency-temperature characteristic (df / f-Temp) of the crystal resonator has a maximum value and a minimum value with an inflection point with respect to the temperature change as shown in FIG. The frequency compensation method has been described. As shown in FIG. 22C, the frequency compensation method in the case where the frequency temperature characteristic has a rising characteristic with respect to an increase in temperature will be described below.
FIG. 12 is a circuit diagram showing the configuration of the temperature compensated piezoelectric oscillator of the eighth embodiment according to the present invention. The temperature compensated piezoelectric oscillator is a temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit OSC, a piezoelectric vibrator Xtal, an eighth frequency temperature compensation circuit Comp′1, and a capacitor C3 in series. The difference from the temperature compensated piezoelectric oscillator of the first embodiment shown in FIG. 1 is that the polarity of the third MOS capacitor element M3 is reversed. A temperature T-capacitance C characteristic when the first and second control voltages VL and VH are applied to both ends of the third MOS capacitor element M3 shown in FIG. 12 is a characteristic obtained by turning the curve shown in FIG. That is, as shown in FIG. 13A, the capacity increases with increasing temperature. When this is converted into a frequency-temperature characteristic (temperature T−frequency df / f) as shown in FIG. 5, it becomes a characteristic of decreasing to the right as the temperature T increases as shown in FIG. As already described, the third MOS capacitor element M3 is involved in compensation of the intermediate temperature part centered on the normal temperature, and the first MOS capacitor element M1 and the second MOS capacitor element M2 are responsible for compensation of the low temperature part and the high temperature part, respectively. The operation of the first MOS capacitor element M1 and the second MOS capacitor element M2 is as described in FIG. Therefore, by using the frequency temperature compensation circuit Comp′1 shown in FIG. 12, it is possible to compensate the crystal oscillator that rises to the right as shown in FIG. 22C.
図14は、本発明に係る第9の実施例の温度補償圧電発振器の構成を示す回路図である。図6に示した第2の実施例の温度補償圧電発振器と異なる点は、第3MOS容量素子M3の極性を逆にしたところである。図14に示す周波数温度補償回路Comp’2 を用いることにより、図22(c)に示すような温度の増加に対し右肩上がりの水晶振動子の補償を行うことができる。
同様に、図15〜図19は、夫々第10〜第14の実施例の温度補償圧電発振器の構成を示す回路図である。図15〜図19に示す温度補償圧電発振器の周波数温度補償回路Comp’3〜 Comp’7が、図7〜図11に示す周波数温度補償回路Comp3〜 Comp7と異なる点は、夫々第3MOS容量素子M3の極性を逆にしたところである。第3MOS容量素子M3の極性を逆にすることにより、図22(c)に示すような温度の増加に対し右肩上がりの水晶振動子の補償を行うことができる。
FIG. 14 is a circuit diagram showing the configuration of the temperature compensated piezoelectric oscillator of the ninth embodiment according to the present invention. The difference from the temperature compensated piezoelectric oscillator of the second embodiment shown in FIG. 6 is that the polarity of the third MOS capacitor element M3 is reversed. By using the frequency temperature compensation circuit Comp′2 shown in FIG. 14, it is possible to compensate for the crystal oscillator that rises to the right as shown in FIG. 22C.
Similarly, FIGS. 15 to 19 are circuit diagrams showing configurations of the temperature compensated piezoelectric oscillators of the tenth to fourteenth embodiments, respectively. The frequency temperature compensation circuits Comp′3 to Comp′7 of the temperature compensated piezoelectric oscillator shown in FIGS. 15 to 19 are different from the frequency temperature compensation circuits Comp3 to Comp7 shown in FIGS. 7 to 11, respectively, in the third MOS capacitor element M3. The polarity is reversed. By reversing the polarity of the third MOS capacitor element M3, it is possible to compensate for the crystal oscillator that rises to the right as the temperature increases as shown in FIG.
図20は、本発明に係る第15の実施例の温度補償圧電発振器の構成を示す回路図である。図19に示した第14の実施例の温度補償圧電発振器と異なる点は、第1、第2制御電圧VL、VHと、第1、第2増幅回路A1、A2との接点に夫々第1、第2スイッチSW1、SW2を挿入すると共に、該第1、第2スイッチSW1、SW2に夫々第1、第2基準電圧Vref1、Vref2を接続したところである。第1、第2スイッチSW1、SW2の動作を説明すると、第1、第2スイッチSW1、SW2が、夫々第1、第2制御電圧VL、VHの側に接続されると、第14の実施例の温度補償圧電発振器と同様に動作する。第1、第2スイッチSW1、SW2が、夫々第1、第2基準電圧Vref1、Vref2に側に接続されると、第3MOS容量素子M3は固定容量として機能する。つまり、第3MOS容量素子M3が担っていた常温を中心とした中温部の温度補償の機能はなくなり、図22(a)に示すような、常温近傍で平坦な特性を有する水晶振動子の周波数を補償することになる。
また、第1、第2の増幅回路A1、A2の利得を調整することにより、図22(c)の右肩上がりの傾斜が急なものや、或いは傾斜が緩やかなものであっても、その傾斜の程度に応じて水晶振動子の周波数を補償することが可能になる。
FIG. 20 is a circuit diagram showing a configuration of a temperature compensated piezoelectric oscillator according to a fifteenth embodiment of the present invention. The difference from the temperature compensated piezoelectric oscillator of the fourteenth embodiment shown in FIG. 19 is that the first and second control voltages VL and VH are connected to the first and second amplifier circuits A1 and A2 at the first and second contact points, respectively. The second switches SW1 and SW2 are inserted, and the first and second reference voltages Vref1 and Vref2 are connected to the first and second switches SW1 and SW2, respectively. The operation of the first and second switches SW1 and SW2 will be described. When the first and second switches SW1 and SW2 are connected to the first and second control voltages VL and VH, respectively, the fourteenth embodiment. It operates in the same manner as the temperature compensated piezoelectric oscillator. When the first and second switches SW1 and SW2 are connected to the first and second reference voltages Vref1 and Vref2, respectively, the third MOS capacitor element M3 functions as a fixed capacitor. In other words, the temperature compensation function of the middle temperature portion centered on the normal temperature that the third MOS capacitor element M3 has played is lost, and the frequency of the crystal resonator having flat characteristics near the normal temperature as shown in FIG. Will compensate.
Further, by adjusting the gains of the first and second amplifier circuits A1 and A2, even if the slope of the right shoulder in FIG. 22C is steep or the slope is gentle, It becomes possible to compensate the frequency of the crystal resonator according to the degree of inclination.
なお、図20において第3MOS容量素子M3の極性を逆にし、第1、第2の増幅回路A1、A2の利得を調整すれば、同様に図22(b)における常温近傍の傾斜の程度に応じて、水晶振動子の周波数を補償できることは言うまでもない。
図20に示すような温度補償圧電発振器を、水晶振動子を除いてIC化すると、1つのICで水晶振動子の周波数温度特性が、図22(a)、(b)、(c)に示すような、常温近傍で平坦な特性、変曲点を挟んで極大値と極小値とを有する特性、右肩上がりの特性を、有する何れの特性の水晶振動子であっても周波数補償が可能になるという効果がある。
In FIG. 20, if the polarity of the third MOS capacitor element M3 is reversed and the gains of the first and second amplifier circuits A1 and A2 are adjusted, the degree of inclination near room temperature in FIG. Needless to say, the frequency of the crystal unit can be compensated.
When the temperature compensated piezoelectric oscillator as shown in FIG. 20 is made into an IC excluding the crystal oscillator, the frequency temperature characteristics of the crystal oscillator are shown in FIGS. 22A, 22B, and 22C with one IC. Frequency compensation is possible for any crystal oscillator that has flat characteristics near room temperature, characteristics that have a maximum value and minimum value across an inflection point, and characteristics that rise to the right There is an effect of becoming.
M1、M2、M3…MOS容量素子、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13…抵抗、C1、C2、C3、C4、C5、C6、C7、C8、C9、C10…容量、Tr1…トランジスタ、Xtal…圧電振動子、Vref…基準電圧、Vref1…第1基準電圧、Vref2…第2基準電圧、VL…第1制御電圧、VH…第2制御電圧、Vcc…電源電圧、A1、A2…増幅器 M1, M2, M3 ... MOS capacitance elements, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13 ... resistors, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 ... capacitance, Tr1 ... transistor, Xtal ... piezoelectric vibrator, Vref ... reference voltage, Vref1 ... first reference voltage, Vref2 ... second reference voltage, VL ... first control voltage, VH ... second Control voltage, Vcc ... Power supply voltage, A1, A2 ... Amplifier
Claims (9)
前記周波数温度補償回路は、第1、第2、第3MOS容量素子を備え、前記第1MOS容量素子と前記第3MOS容量素子とを直列接続した回路に前記第2MOS容量素子を並列接続した回路であり、
前記第1MOS容量素子の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、
前記第1MOS容量素子の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第1制御電圧を供給し、
前記第3MOS容量素子の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されていることを特徴とする温度補償圧電発振器。 A temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series,
The frequency temperature compensation circuit includes first, second, and third MOS capacitance elements, and is a circuit in which the second MOS capacitance element is connected in parallel to a circuit in which the first MOS capacitance element and the third MOS capacitance element are connected in series. ,
Supplying a reference voltage having a constant voltage value to a connection point between one terminal of the first MOS capacitor element and one terminal of the second MOS capacitor element;
Supplying a first control voltage to a connection point between the other terminal of the first MOS capacitor element and one terminal of the third MOS capacitor element;
A temperature compensated piezoelectric oscillator configured to supply a second control voltage to a connection point between the other terminal of the third MOS capacitor and the other terminal of the second MOS capacitor.
前記周波数温度補償回路は、第1、第2、第3MOS容量素子と第1容量とを備え、前記第1MOS容量素子及び前記第1容量を直列接続した回路に、前記第2MOS容量素子を並列接続した回路と、前記第3MOS容量素子と、を直列接続した回路であり、
前記第1MOS容量素子の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、
前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点、及び前記第3MOS容量素子の一方の端子とにそれぞれ第1制御電圧を供給し、
前記第3MOS容量素子の他方の端子と前記第1容量の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されていることを特徴とする温度補償圧電発振器。 A temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series,
The frequency temperature compensation circuit includes first, second, and third MOS capacitor elements and a first capacitor, and the second MOS capacitor element is connected in parallel to a circuit in which the first MOS capacitor element and the first capacitor are connected in series. And a circuit in which the third MOS capacitor element is connected in series,
Supplying a reference voltage having a constant voltage value to a connection point between one terminal of the first MOS capacitor element and one terminal of the second MOS capacitor element;
Supplying a first control voltage to a connection point between the other terminal of the first MOS capacitor element and one terminal of the first capacitor and to one terminal of the third MOS capacitor element;
The second control voltage is supplied to a connection point between the other terminal of the third MOS capacitor element, the other terminal of the first capacitor, and the other terminal of the second MOS capacitor element. Temperature compensated piezoelectric oscillator.
前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2容量素子と、を備え、前記第1MOS容量素子と前記第1容量とを直列接続した回路、前記第2容量と第3MOS容量素子と直列接続した回路、及び前記第2MOS容量素子をそれぞれ並列接続した回路であり、
前記第1MOS容量素子の一方の端子と前記第2容量の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、
前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点、及び前記第2容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点にそれぞれ第1制御電圧を供給し、
前記第1容量の他方の端子と前記第3MOS容量素子の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されていることを特徴とする温度補償圧電発振器。 A temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series,
The frequency temperature compensation circuit includes first, second, and third MOS capacitance elements, and first and second capacitance elements, and a circuit in which the first MOS capacitance element and the first capacitance are connected in series, A circuit in which two capacitors and a third MOS capacitor element are connected in series, and a circuit in which the second MOS capacitor element is connected in parallel.
Supplying a reference voltage having a constant voltage value to a connection point between one terminal of the first MOS capacitor element, one terminal of the second capacitor, and one terminal of the second MOS capacitor element;
A connection point between the other terminal of the first MOS capacitor element and one terminal of the first capacitor, and a connection point between the other terminal of the second capacitor and one terminal of the third MOS capacitor element are respectively first. Supply control voltage,
The second control voltage is supplied to a connection point between the other terminal of the first capacitor, the other terminal of the third MOS capacitor, and the other terminal of the second MOS capacitor. Temperature compensated piezoelectric oscillator.
前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2、第3容量と、を備え、前記第1MOS容量素子と前記第1容量との直列接続回路、前記第2容量と前記第3MOS容量素子と前記第3容量との直列接続回路、及び前記第2MOS容量素子を並列接続した回路であり、
前記第1MOS容量素子の一方の端子と前記第2容量の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、
前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点、及び前記第2容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第1制御電圧を供給し、
前記第3MOS容量素子の他方の端子と前記第3容量の一方の端子との接続点、及び、前記第1容量の他方の端子と前記第3容量の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されていることを特徴とする温度補償圧電発振器。 A temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series,
The frequency temperature compensation circuit includes first, second, and third MOS capacitor elements, and first, second, and third capacitors, and a series connection circuit of the first MOS capacitor element and the first capacitor, A series connection circuit of a second capacitor, the third MOS capacitor and the third capacitor, and a circuit in which the second MOS capacitor is connected in parallel;
Supplying a reference voltage having a constant voltage value to a connection point between one terminal of the first MOS capacitor element, one terminal of the second capacitor, and one terminal of the second MOS capacitor element;
The first control is performed at a connection point between the other terminal of the first MOS capacitor element and one terminal of the first capacitor, and a connection point between the other terminal of the second capacitor and one terminal of the third MOS capacitor element. Supply voltage,
A connection point between the other terminal of the third MOS capacitor element and one terminal of the third capacitor, the other terminal of the first capacitor, the other terminal of the third capacitor, and the other of the second MOS capacitor element. A temperature-compensated piezoelectric oscillator configured to supply a second control voltage to a connection point with the terminal.
前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2容量と、利得調整可能な第1、第2増幅器と、を備え、前記第1MOS容量素子、前記第1容量、前記第3MOS容量素子及び前記第2容量を直列接続した回路と、前記第2MOS容量素子と、を並列接続した回路であり、
前記第1MOS容量素子の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、
前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点に第1制御電圧を供給し、
前記第1容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第1増幅器を介して第1制御電圧を供給し、
前記第3MOS容量素子の他方の端子と前記第2容量の一方の端子との接続点に第2増幅器を介して第2制御電圧を供給し、
前記第2容量の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されていることを特徴とする温度補償圧電発振器。 A temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series,
The frequency temperature compensation circuit includes first, second, and third MOS capacitors, first and second capacitors, and first and second amplifiers that can adjust gain, and the first MOS capacitors, the first MOS capacitors, 1 capacitor, a circuit in which the third MOS capacitor element and the second capacitor are connected in series, and a circuit in which the second MOS capacitor element is connected in parallel,
Supplying a reference voltage having a constant voltage value to a connection point between one terminal of the first MOS capacitor element and one terminal of the second MOS capacitor element;
Supplying a first control voltage to a connection point between the other terminal of the first MOS capacitor and the one terminal of the first capacitor;
Supplying a first control voltage via a first amplifier to a connection point between the other terminal of the first capacitor and one terminal of the third MOS capacitor;
Supplying a second control voltage to a connection point between the other terminal of the third MOS capacitor element and one terminal of the second capacitor via a second amplifier;
A temperature compensated piezoelectric oscillator configured to supply a second control voltage to a connection point between the other terminal of the second capacitor and the other terminal of the second MOS capacitor.
前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2、第3容量と、利得調整可能な第1、第2増幅器と、を備え、
前記周波数温度補償回路は、前記第1MOS容量素子と前記第1容量との直列接続回路、前記第2容量と前記第3MOS容量素子と前記第3容量との直列接続回路、及び前記第2MOS容量素子をそれぞれ並列接続した回路であり、
前記第1MOS容量素子の一方の端子と前記第2容量の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、
前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点に第1制御電圧を供給し、
前記第2容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第1増幅器を介して第1制御電圧を供給し、
前記第3MOS容量素子の他方の端子と前記第3容量の一方の端子との接続点に第2増幅器を介して第2制御電圧を供給し、
前記第1容量の他方の端子と前記第3容量の他方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給するように構成されていることを特徴とする温度補償圧電発振器。 A temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series,
The frequency temperature compensation circuit includes first, second, and third MOS capacitors, first, second, and third capacitors, and first and second amplifiers that can be adjusted in gain.
The frequency temperature compensation circuit includes a series connection circuit of the first MOS capacitor element and the first capacitor, a series connection circuit of the second capacitor, the third MOS capacitor element, and the third capacitor, and the second MOS capacitor element. Are connected in parallel,
Supplying a reference voltage having a constant voltage value to a connection point between one terminal of the first MOS capacitor element, one terminal of the second capacitor, and one terminal of the second MOS capacitor element;
Supplying a first control voltage to a connection point between the other terminal of the first MOS capacitor and the one terminal of the first capacitor;
Supplying a first control voltage via a first amplifier to a connection point between the other terminal of the second capacitor and one terminal of the third MOS capacitor;
Supplying a second control voltage via a second amplifier to a connection point between the other terminal of the third MOS capacitor element and one terminal of the third capacitor;
The second control voltage is supplied to a connection point between the other terminal of the first capacitor, the other terminal of the third capacitor, and the other terminal of the second MOS capacitor element. Temperature compensated piezoelectric oscillator.
前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2容量と、利得調整可能な第1、第2増幅器と、を備え、
前記周波数温度補償回路は、前記第1MOS容量素子と前記第1容量とを直列接続した回路に前記第2MOS容量素子を並列接続した回路と、前記第2容量と前記第3MOS容量素子とを直列接続した回路と、を直列接続した回路であり、
前記第1MOS容量素子の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、
前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点に第1制御電圧を供給し、
前記第1容量の他方の端子と前記第2容量の一方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給し、
前記第2容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第2増幅器を介して第2制御電圧を供給し、
前記第3MOS容量素子の他方の端子に第1増幅器を介して第1制御電圧を供給するように構成されていることを特徴とする温度補償圧電発振器。 A temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series,
The frequency temperature compensation circuit includes first, second, and third MOS capacitors, first and second capacitors, and first and second amplifiers that can adjust gain,
The frequency temperature compensation circuit includes a circuit in which the second MOS capacitor element is connected in parallel to a circuit in which the first MOS capacitor element and the first capacitor are connected in series, and the second capacitor and the third MOS capacitor element are connected in series. Circuit that is connected in series,
Supplying a reference voltage having a constant voltage value to a connection point between one terminal of the first MOS capacitor element and one terminal of the second MOS capacitor element;
Supplying a first control voltage to a connection point between the other terminal of the first MOS capacitor and the one terminal of the first capacitor;
Supplying a second control voltage to a connection point between the other terminal of the first capacitor, one terminal of the second capacitor, and the other terminal of the second MOS capacitor;
Supplying a second control voltage via a second amplifier to a connection point between the other terminal of the second capacitor and one terminal of the third MOS capacitor;
A temperature compensated piezoelectric oscillator configured to supply a first control voltage to the other terminal of the third MOS capacitor element via a first amplifier.
前記周波数温度補償回路は、第1、第2、第3MOS容量素子と、第1、第2容量と、利得調整可能な第1、第2増幅器と、第1、第2スイッチと、第1、第2基準電圧と、を備え、
前記周波数温度補償回路は、前記第1MOS容量素子と前記第1容量とを直列接続した回路に前記第2MOS容量素子を並列接続した回路と、前記第2容量と前記第3MOS容量素子とを直列接続した回路と、を直列接続した回路であり、
前記第1MOS容量素子の一方の端子と前記第2MOS容量素子の一方の端子との接続点に電圧値が一定である基準電圧を供給し、
前記第1MOS容量素子の他方の端子と前記第1容量の一方の端子との接続点に第1制御電圧を供給し、
前記第1容量の他方の端子と前記第2容量の一方の端子と前記第2MOS容量素子の他方の端子との接続点に第2制御電圧を供給し、
前記第2容量の他方の端子と前記第3MOS容量素子の一方の端子との接続点に第2増幅器の出力を接続し、前記第2制御電圧と前記第2基準電圧のいずれか一方の電圧を前記第2スイッチにて選択しこれを第2増幅器の入力に供給したものであり、
前記第3MOS容量素子の他方の端子に第1増幅器の出力を接続し、前記第1制御電圧と前記第1基準電圧のいずれか一方の電圧を前記第1スイッチにて選択してこれを第1増幅器の入力に供給したものであることを特徴とする温度補償圧電発振器。 A temperature compensated piezoelectric oscillator configured by connecting an oscillation circuit, a piezoelectric vibrator, and a frequency temperature compensation circuit in series,
The frequency temperature compensation circuit includes first, second, and third MOS capacitors, first and second capacitors, gain-adjustable first and second amplifiers, first and second switches, first, A second reference voltage,
The frequency temperature compensation circuit includes a circuit in which the second MOS capacitor element is connected in parallel to a circuit in which the first MOS capacitor element and the first capacitor are connected in series, and the second capacitor and the third MOS capacitor element are connected in series. Circuit that is connected in series,
Supplying a reference voltage having a constant voltage value to a connection point between one terminal of the first MOS capacitor element and one terminal of the second MOS capacitor element;
Supplying a first control voltage to a connection point between the other terminal of the first MOS capacitor and the one terminal of the first capacitor;
Supplying a second control voltage to a connection point between the other terminal of the first capacitor, one terminal of the second capacitor, and the other terminal of the second MOS capacitor;
An output of a second amplifier is connected to a connection point between the other terminal of the second capacitor and one terminal of the third MOS capacitor element, and either one of the second control voltage and the second reference voltage is set. Selected by the second switch and supplied to the input of the second amplifier;
The output of the first amplifier is connected to the other terminal of the third MOS capacitor element, and one of the first control voltage and the first reference voltage is selected by the first switch. A temperature compensated piezoelectric oscillator characterized by being supplied to an input of an amplifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007212635A JP5034772B2 (en) | 2007-01-29 | 2007-08-17 | Temperature compensated piezoelectric oscillator |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007017425 | 2007-01-29 | ||
JP2007017425 | 2007-01-29 | ||
JP2007212635A JP5034772B2 (en) | 2007-01-29 | 2007-08-17 | Temperature compensated piezoelectric oscillator |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008211757A true JP2008211757A (en) | 2008-09-11 |
JP2008211757A5 JP2008211757A5 (en) | 2010-09-24 |
JP5034772B2 JP5034772B2 (en) | 2012-09-26 |
Family
ID=39787659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007212635A Expired - Fee Related JP5034772B2 (en) | 2007-01-29 | 2007-08-17 | Temperature compensated piezoelectric oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5034772B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009035095A1 (en) | 2007-09-12 | 2009-03-19 | Showa Denko K.K. | EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE AND METHOD FOR MANUFACTURING EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE |
JP2010153972A (en) * | 2008-12-24 | 2010-07-08 | Nippon Dempa Kogyo Co Ltd | High-frequency colpitts circuit |
WO2020067341A1 (en) * | 2018-09-28 | 2020-04-02 | 株式会社村田製作所 | Temperature compensation circuit and temperature compensation crystal oscillator |
WO2020066672A1 (en) * | 2018-09-28 | 2020-04-02 | 株式会社村田製作所 | Temperature compensation circuit and temperature compensated crystal oscillator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6195104U (en) * | 1984-11-28 | 1986-06-19 | ||
JP2001060828A (en) * | 1999-06-17 | 2001-03-06 | Toyo Commun Equip Co Ltd | Temperature compensation oscillator |
JP2003037438A (en) * | 2001-07-24 | 2003-02-07 | Nippon Dempa Kogyo Co Ltd | Crystal oscillator |
JP2004343733A (en) * | 2003-04-25 | 2004-12-02 | Toyo Commun Equip Co Ltd | Temperature compensated oscillator |
JP2005236798A (en) * | 2004-02-20 | 2005-09-02 | Toyo Commun Equip Co Ltd | Temperature compensated piezoelectric rezonator |
-
2007
- 2007-08-17 JP JP2007212635A patent/JP5034772B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6195104U (en) * | 1984-11-28 | 1986-06-19 | ||
JP2001060828A (en) * | 1999-06-17 | 2001-03-06 | Toyo Commun Equip Co Ltd | Temperature compensation oscillator |
JP2003037438A (en) * | 2001-07-24 | 2003-02-07 | Nippon Dempa Kogyo Co Ltd | Crystal oscillator |
JP2004343733A (en) * | 2003-04-25 | 2004-12-02 | Toyo Commun Equip Co Ltd | Temperature compensated oscillator |
JP2005236798A (en) * | 2004-02-20 | 2005-09-02 | Toyo Commun Equip Co Ltd | Temperature compensated piezoelectric rezonator |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009035095A1 (en) | 2007-09-12 | 2009-03-19 | Showa Denko K.K. | EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE AND METHOD FOR MANUFACTURING EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE |
JP2010153972A (en) * | 2008-12-24 | 2010-07-08 | Nippon Dempa Kogyo Co Ltd | High-frequency colpitts circuit |
US8154355B2 (en) | 2008-12-24 | 2012-04-10 | Nihon Dempa Kogyo Co., Ltd | High-frequency colpitts circuit |
WO2020067341A1 (en) * | 2018-09-28 | 2020-04-02 | 株式会社村田製作所 | Temperature compensation circuit and temperature compensation crystal oscillator |
WO2020066672A1 (en) * | 2018-09-28 | 2020-04-02 | 株式会社村田製作所 | Temperature compensation circuit and temperature compensated crystal oscillator |
Also Published As
Publication number | Publication date |
---|---|
JP5034772B2 (en) | 2012-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7348859B2 (en) | Crystal oscillator | |
JP2008113435A (en) | Quartz oscillator allowing amplitude to be controlled in broad voltage and temperature range | |
JP5034772B2 (en) | Temperature compensated piezoelectric oscillator | |
CN110011644B (en) | Ring oscillator | |
JP2006165720A (en) | Oscillation circuit | |
JP5311545B2 (en) | Oscillator | |
US7928810B2 (en) | Oscillator arrangement and method for operating an oscillating crystal | |
US6768388B2 (en) | Voltage-controlled piezoelectric oscillator | |
JP2006033238A (en) | Voltage-controlled oscillator | |
JP2002135051A (en) | Piezoelectric oscillator | |
JP4428124B2 (en) | Temperature compensated oscillator | |
JP2003298349A (en) | Voltage controlled oscillating circuit | |
JPH1168461A (en) | Piezoelectric oscillation circuit | |
JP5098979B2 (en) | Piezoelectric oscillator | |
JP2004266820A (en) | Piezoelectric oscillation circuit | |
JP4314988B2 (en) | Temperature compensated piezoelectric oscillator | |
JP3239776B2 (en) | Temperature compensated piezoelectric oscillator | |
JP2009290380A (en) | Oscillator | |
JP2009077342A (en) | Compensation voltage circuit and temperature compensated piezoelectric oscillator | |
JP4538913B2 (en) | Temperature compensated piezoelectric oscillator | |
JP3638543B2 (en) | Temperature compensated crystal oscillator | |
JP4311313B2 (en) | Piezoelectric oscillator | |
JPH0533054Y2 (en) | ||
JP2009124215A (en) | Voltage-controlled oscillator | |
JPH01300604A (en) | Voltage controlled piezoelectric oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100804 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100804 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110729 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110729 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120605 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120618 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |