Nothing Special   »   [go: up one dir, main page]

JP2008206563A - Multileaf collimator - Google Patents

Multileaf collimator Download PDF

Info

Publication number
JP2008206563A
JP2008206563A JP2007043741A JP2007043741A JP2008206563A JP 2008206563 A JP2008206563 A JP 2008206563A JP 2007043741 A JP2007043741 A JP 2007043741A JP 2007043741 A JP2007043741 A JP 2007043741A JP 2008206563 A JP2008206563 A JP 2008206563A
Authority
JP
Japan
Prior art keywords
leaf
leaves
female screw
screw
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007043741A
Other languages
Japanese (ja)
Other versions
JP4602366B2 (en
Inventor
Masahiro Nakajima
正浩 中嶋
Tatsuya Fujisawa
達哉 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007043741A priority Critical patent/JP4602366B2/en
Publication of JP2008206563A publication Critical patent/JP2008206563A/en
Application granted granted Critical
Publication of JP4602366B2 publication Critical patent/JP4602366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the high-speed actuation of leaves while improving the shape accuracy of the irradiation field of beams. <P>SOLUTION: This multileaf collimator 200 is provided with a plurality of leaves, a plurality of feed screws threadedly engaged with screw holes 8a of the plurality of leaves and, for example, a plurality of rotary machines 6 for rotating the plurality of feed screws 5 respectively; and forms the irradiation field 3 of radiation beams according to the disposition of the plurality of leaves 4, wherein the leaf 4 has a leaf body 7, a female screw part 8 formed integrally with the leaf body 7, configured to increase the thickness more than the leaf body 7 and having a screw hole 8a, and a through-hole 7a formed in the leaf body 7 corresponding to the moving area of the feed screw 5 threadedly engaged with the screw hole 8a of the female screw part 8; the female screw part 8 of mutually adjoining leaves 4 and the through-hole 7a are formed in different positions in the height direction; and a groove 7b is formed in the leaf body 7 corresponding to the relative movement area of the female screw 8 of the mutually adjoining leaves 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、標的の形状に合わせて放射線ビームの照射野を形成するマルチリーフコリメータに係り、詳しくは、リーフを送りネジを介し駆動する駆動手段を備えたマルチリーフコリメータに関する。   The present invention relates to a multi-leaf collimator that forms an irradiation field of a radiation beam in accordance with the shape of a target. More specifically, the present invention relates to a multi-leaf collimator including a driving unit that drives a leaf via a feed screw.

放射線ビーム(例えばX線、陽子線、及び電子線等)を照射対象の内部にある標的に照射する代表的な例としては、患者の体内にあるがん細胞(以下、患部という)に放射線を照射する場合が挙げられる。なお、この場合、照射対象が患者に相当し、標的が患部に相当する。放射線を患者体内の患部に対し照射する場合、放射線ビームの照射野(照射範囲)と患部形状が一致しないと、患部周辺の正常な部位にも放射線が照射されることになる。放射線が患部周辺の正常な部位に照射されると、その正常な部位に悪影響を与える可能性があるため、放射線ビームの照射野は患部に照らし合わせて精密に限定することが好ましい。   As a typical example of irradiating a target in an irradiation target with a radiation beam (for example, X-ray, proton beam, electron beam, etc.), radiation is applied to cancer cells (hereinafter referred to as an affected area) in the patient's body. The case where it irradiates is mentioned. In this case, the irradiation target corresponds to the patient, and the target corresponds to the affected area. When irradiating the affected part in the patient body with radiation, if the radiation field (irradiation range) of the radiation beam and the shape of the affected part do not coincide, the normal part around the affected part is also irradiated with radiation. When radiation is irradiated to a normal site around the affected area, the normal site may be adversely affected. Therefore, it is preferable to precisely limit the radiation beam irradiation field in light of the affected site.

このような放射線ビームの照射野を形成する手段の1つとして、マルチリーフコリメータが知られている。マルチリーフコリメータは、例えば、複数のリーフと、複数のリーフのネジ穴にそれぞれ螺合した複数の送りネジ(スクリューネジ)と、複数の送りネジをそれぞれ回転させる複数のステッピングモータとを備えたものが開示されている(例えば、特許文献1参照)。   A multi-leaf collimator is known as one of means for forming an irradiation field of such a radiation beam. The multi-leaf collimator includes, for example, a plurality of leaves, a plurality of feed screws (screw screws) respectively screwed into screw holes of the plurality of leaves, and a plurality of stepping motors that respectively rotate the plurality of feed screws. Is disclosed (for example, see Patent Document 1).

特開平7−255718号公報(図3)JP-A-7-255718 (FIG. 3)

しかしながら、上記従来技術には以下のような課題が存在する。
マルチリーフコリメータは、リーフの厚みを薄くして枚数を多くし、これらリーフによるビームの照射野の分割数を増大させれば、ビームの照射野を患部形状にできる限り近づけることが可能である。ところが、送りネジをリーフのネジ穴に螺合させリーフを駆動する上記マルチリーフコリメータにおいて、リーフの厚みを薄くしようとすると、通常、送りネジの径を細くしなければならない。そして、この細い送りネジを高速回転させると、送りネジに大きな振れが生じて周辺の部品に接触する恐れがあった。そのため、送りネジの回転速度を抑える必要が生じ、リーフの駆動速度の低下がいなめなかった。
However, there are the following problems in the above-described prior art.
The multi-leaf collimator can make the beam irradiation field as close as possible to the shape of the affected area by reducing the thickness of the leaf and increasing the number of leaves and increasing the number of divisions of the beam irradiation field by these leaves. However, in the multi-leaf collimator that drives the leaf by screwing the feed screw into the screw hole of the leaf, it is usually necessary to reduce the diameter of the feed screw in order to reduce the thickness of the leaf. When this thin feed screw is rotated at a high speed, there is a risk that the feed screw may be greatly shaken to come into contact with surrounding components. For this reason, it is necessary to suppress the rotational speed of the feed screw, and the decrease in the drive speed of the leaf cannot be avoided.

本発明の目的は、ビームの照射野の形状精度を高めつつ、リーフの高速駆動を図ることができるマルチリーフコリメータを提供することにある。   An object of the present invention is to provide a multi-leaf collimator capable of achieving high-speed driving of a leaf while improving the shape accuracy of a beam irradiation field.

(1)上記目的を達成するために、本発明は、複数のリーフと、前記複数のリーフのネジ穴にそれぞれ螺合した複数の送りネジと、前記複数の送りネジを回転させる駆動手段とを有し、前記複数のリーフの配置に応じた放射線ビームの照射野を形成するマルチリーフコリメータにおいて、前記リーフは、リーフ本体部と、前記リーフ本体部と一体にかつ前記リーフ本体部より厚みが増すように形成され、前記ネジ穴を有するメネジ部と、前記メネジ部のネジ穴に螺合した前記送りネジの移動領域に対応して前記リーフ本体部に形成した貫通穴とを有し、互いに隣接する前記リーフのメネジ部及び貫通穴の位置を高さ方向に異ならせるとともに、互いに隣接する前記メネジ部の相対移動領域に対応して前記リーフ本体に溝を形成する。   (1) In order to achieve the above object, the present invention includes a plurality of leaves, a plurality of feed screws respectively screwed into screw holes of the plurality of leaves, and a driving means for rotating the plurality of feed screws. A multi-leaf collimator for forming an irradiation field of a radiation beam according to the arrangement of the plurality of leaves, wherein the leaf is integrated with the leaf main body and the leaf main body and is thicker than the leaf main body. And a through hole formed in the leaf main body corresponding to a moving region of the feed screw that is screwed into the screw hole of the female screw portion and adjacent to each other. The positions of the female screw portion and the through hole of the leaf to be changed are different in the height direction, and a groove is formed in the leaf body corresponding to the relative movement region of the female screw portions adjacent to each other.

本発明においては、リーフ本体部よりメネジ部の厚みを大きくするので、メネジ部のネジ穴に螺合する送りネジの径寸法を大きくすることができる。これにより、送りネジの回転速度を高めることができ、リーフの高速駆動を図ることができる。一方、メネジ部よりリーフ本体の厚みを薄くすることができる。また、互いに隣接するリーフのメネジ部及び貫通穴の位置を高さ方向に異ならせるとともに、互いに隣接するリーフのメネジ部の相対移動領域に対応してリーフ本体に溝を形成することにより、複数のリーフを厚み方向に隙間なく並べることができる。したがって、リーフの厚みを薄くして枚数を多くし、これらリーフによるビームの照射野の分割数を増大させることができ、ビームの照射野の形状精度を高めることができる。   In the present invention, since the thickness of the female screw portion is made larger than that of the leaf main body portion, the diameter dimension of the feed screw that is screwed into the screw hole of the female screw portion can be increased. Thereby, the rotational speed of the feed screw can be increased, and the leaf can be driven at a high speed. On the other hand, the thickness of the leaf body can be made thinner than the female thread portion. Further, by changing the positions of the female screw portions and the through holes of the adjacent leaves in the height direction, and forming grooves in the leaf body corresponding to the relative movement regions of the adjacent female screw portions of the leaves, a plurality of Leaves can be arranged without gaps in the thickness direction. Therefore, the number of leaves can be reduced by increasing the number of leaves, the number of divisions of the beam irradiation field by these leaves can be increased, and the shape accuracy of the beam irradiation field can be increased.

(2)上記目的を達成するために、また本発明は、複数のリーフと、前記複数のリーフのネジ穴にそれぞれ螺合した複数の送りネジと、前記複数の送りネジを回転させる駆動手段とを有し、前記複数のリーフの配置に応じた放射線ビームの照射野を形成するマルチリーフコリメータにおいて、前記リーフは、リーフ本体部と、前記リーフ本体部より厚みが増すように形成されて前記リーフ本体部に取り付けられ、前記ネジ穴を有するメネジ部と、前記メネジ部のネジ穴に螺合した前記送りネジの移動領域に対応して前記リーフ本体部に形成した貫通穴とを有し、互いに隣接する前記リーフのメネジ部及び貫通穴の位置を高さ方向に異ならせるとともに、互いに隣接する前記リーフのメネジ部の相対移動領域に対応して前記リーフ本体に溝を形成する。   (2) In order to achieve the above object, the present invention also provides a plurality of leaves, a plurality of feed screws respectively screwed into screw holes of the plurality of leaves, and a driving means for rotating the plurality of feed screws. A multi-leaf collimator that forms an irradiation field of a radiation beam according to the arrangement of the plurality of leaves, wherein the leaves are formed to have a leaf body portion and a thickness greater than that of the leaf body portion. A female screw portion attached to the main body portion and having the screw hole; and a through hole formed in the leaf main body portion corresponding to a moving region of the feed screw screwed into the screw hole of the female screw portion, The positions of the female screw portion and the through hole of the adjacent leaf are made different in the height direction, and a groove is formed in the leaf body corresponding to the relative movement region of the female screw portion of the adjacent leaf. To.

(3)上記(1)又は(2)において、好ましくは、前記駆動手段は、前記複数の送りネジにそれぞれ同軸接続した複数の回転機である。   (3) In the above (1) or (2), preferably, the driving means is a plurality of rotating machines that are coaxially connected to the plurality of feed screws.

本発明によれば、ビームの照射野の形状精度を高めつつ、リーフの高速駆動を図ることができる。   According to the present invention, it is possible to drive the leaf at high speed while improving the shape accuracy of the beam irradiation field.

以下、本発明の一実施形態を図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態のマルチリーフコリメータを備えた放射線ビーム照射装置の全体システム構成を表す概念的構成図である。   FIG. 1 is a conceptual configuration diagram showing an overall system configuration of a radiation beam irradiation apparatus including a multi-leaf collimator according to the present embodiment.

この放射線ビーム照射装置は、制御装置23の制御に基づき、シンクロトロン101で加速した荷電粒子ビーム等の放射線ビーム(以下適宜、ビームという)を回転照射装置102から出力して患者Kの患部にビームを照射するものであり、回転照射装置102は回転軸を中心に回転することによって複数の方向から患部にビームを照射可能となっている。なお、荷電粒子の加速手段として、シンクロトロン101の他に、サイクロトロンや直線型加速器、レーザ加速器などを用いてもよい。   This radiation beam irradiation apparatus outputs a radiation beam such as a charged particle beam accelerated by the synchrotron 101 (hereinafter, appropriately referred to as a beam) from the rotary irradiation apparatus 102 based on the control of the control device 23, and transmits the beam to the affected area of the patient K. The rotation irradiation device 102 can irradiate the affected part with a beam from a plurality of directions by rotating around the rotation axis. In addition to the synchrotron 101, a cyclotron, a linear accelerator, a laser accelerator, or the like may be used as a charged particle acceleration means.

(1)シンクロトロン101の構成及び動作
シンクロトロン101は、ビームに高周波の磁場及び電場(以下、高周波電磁場という)を印加することによりビームのベータトロン振動振幅を増加させる高周波印加装置111と、ビームの軌道を曲げる偏向電磁石112と、ビームのベータトロン振動を制御する四極電磁石113と、ビーム出射時の共鳴を励起するための六極電磁石114と、ビームにエネルギを与える、すなわちビームを加速する高周波加速空胴115と、ビームをシンクロトロン101に入射する入射器116と、ビームをシンクロトロン101から出射する出射用デフレクター117とを備えている。
(1) Configuration and operation of the synchrotron 101 The synchrotron 101 includes a high-frequency applying device 111 that increases the betatron oscillation amplitude of the beam by applying a high-frequency magnetic field and electric field (hereinafter referred to as a high-frequency electromagnetic field) to the beam, A bending electromagnet 112 that bends the trajectory of the beam, a quadrupole electromagnet 113 that controls betatron oscillation of the beam, a hexapole electromagnet 114 that excites resonance during beam emission, and a high frequency that gives energy to the beam, that is, accelerates the beam. An acceleration cavity 115, an injector 116 that makes a beam incident on the synchrotron 101, and an output deflector 117 that emits the beam from the synchrotron 101 are provided.

制御装置23が前段加速器104に出射指令を出力すると、前段加速器104はこれに従って低エネルギのビームを出射し、そのビームは、ビーム輸送系を介してシンクロトロン101の入射器116に導かれ、これによってシンクロトロン101に入射される。入射したビームは、偏向電磁石112により軌道が曲げられることによりシンクロトロン101内を周回する。このとき、ビームは、そのベータトロン振動の振動数が四極電磁石113の励磁量により適宜制御されることにより、シンクロトロン101内を安定に周回する。そして、その周回過程で、高周波加速空胴115からビームに高周波電場が印加されることにより、ビームにエネルギが与えられ、ビームは加速され、エネルギが増大する。シンクロトロン101内を周回するビームのエネルギがエネルギEまで増加したら、高周波加速空胴115によるビームへのエネルギの付与を停止するとともに、四極電磁石113、六極電磁石114、及び高周波印加装置111による公知の制御によってビームの軌道勾配を変化させて共鳴によりベータトロン振動振幅を急激に増大させ、出射用デフレクター117によってビームをシンクロトロン101から出射させる。   When the control device 23 outputs an emission command to the pre-stage accelerator 104, the pre-stage accelerator 104 emits a low energy beam in accordance with this, and the beam is guided to the injector 116 of the synchrotron 101 via the beam transport system. Is incident on the synchrotron 101. The incident beam circulates in the synchrotron 101 as the trajectory is bent by the deflecting electromagnet 112. At this time, the beam circulates stably in the synchrotron 101 by appropriately controlling the frequency of the betatron vibration by the excitation amount of the quadrupole electromagnet 113. Then, in the circulation process, a high frequency electric field is applied to the beam from the high frequency acceleration cavity 115, whereby energy is given to the beam, the beam is accelerated, and energy is increased. When the energy of the beam circulating in the synchrotron 101 increases to the energy E, the application of energy to the beam by the high-frequency acceleration cavity 115 is stopped, and the quadrupole electromagnet 113, the hexapole electromagnet 114, and the high-frequency application device 111 are known. By changing the orbital gradient of the beam by the control, the betatron oscillation amplitude is rapidly increased by resonance, and the beam is emitted from the synchrotron 101 by the emission deflector 117.

以上のシンクロトロン101の動作において、制御装置23は、治療計画装置(詳細は後述)24から入力された患部の深さ位置に基づいて、所定の照射方向(通常は複数の方向から照射する)から患部に照射するビームのエネルギEを決定する。また、シンクロトロン101においてビームをエネルギEまで加速するために必要とされる、偏向電磁石112、四極電磁石113、高周波加速空胴115の各々に供給する電流値のパターン、及びエネルギEのビームを出射するために必要とされる、高周波印加装置111、六極電磁石114に供給する電流値を計算する。計算された各電流値は、各装置毎にエネルギEに対応させて制御装置23内の記憶手段に記憶され、加速時や出射時に電源108或いは電源109に出力される。   In the operation of the synchrotron 101 described above, the control device 23 performs a predetermined irradiation direction (usually irradiation from a plurality of directions) based on the depth position of the affected part input from the treatment planning device (details will be described later) 24. To determine the energy E of the beam irradiated to the affected area. Further, the synchrotron 101 emits the beam of energy E and the beam of energy E required for accelerating the beam to energy E and supplied to each of the deflection electromagnet 112, the quadrupole electromagnet 113, and the high-frequency acceleration cavity 115. A current value to be supplied to the high-frequency applying device 111 and the hexapole electromagnet 114 is calculated. The calculated current values are stored in the storage means in the control device 23 in correspondence with the energy E for each device, and are output to the power supply 108 or the power supply 109 during acceleration or extraction.

(2)回転照射装置102の構成及び動作
シンクロトロン101から出射されたビームは、回転照射装置102に入力される。回転照射装置102は、偏向電磁石123、四極電磁石124、及び出射ノズル120を取り付けたガントリー122と、このガントリー122を所定の回転軸(図1参照)まわりに回転駆動するモータ121とを備えている。
(2) Configuration and Operation of Rotating Irradiation Device 102 The beam emitted from the synchrotron 101 is input to the rotating irradiation device 102. The rotary irradiation device 102 includes a gantry 122 to which a deflection electromagnet 123, a quadrupole electromagnet 124, and an emission nozzle 120 are attached, and a motor 121 that rotationally drives the gantry 122 about a predetermined rotation axis (see FIG. 1). .

回転照射装置102に入力されたビームは、まず偏向電磁石123により軌道が曲げられ、かつ四極電磁石124によってベータトロン振動が調節されて出射ノズル120に導かれる。出射ノズル120に導かれたビームは、まず走査電磁石201,202の磁極間を通過する。走査電磁石201,202には位相の90度ずれた正弦波交流電流が電源201A,202Aより供給されており、走査電磁石201,202の磁極間を通過するビームは、走査電磁石201,202が発生する磁場によって、患部位置において円形に走査されるように偏向される。   The beam input to the rotary irradiation device 102 is first bent in its trajectory by the deflecting electromagnet 123, and betatron vibration is adjusted by the quadrupole electromagnet 124 and guided to the emission nozzle 120. The beam guided to the emission nozzle 120 first passes between the magnetic poles of the scanning electromagnets 201 and 202. The scanning electromagnets 201 and 202 are supplied with a sine wave alternating current having a phase difference of 90 degrees from the power supplies 201A and 202A, and the scanning electromagnets 201 and 202 generate beams passing between the magnetic poles of the scanning electromagnets 201 and 202. The magnetic field is deflected so as to be scanned in a circular shape at the affected area.

走査電磁石201,202を通過したビームは、散乱体203により散乱されてビームの径が拡大された後、リッジフィルタ204A(又は204B)を通過する。リッジフィルタ204A(又は204B)はビームのエネルギを決められた割合で減衰させ、ビームのエネルギに患部の厚さに応じた分布をもたせる。ビームはその後、線量モニタ205により線量が計測された後、ボーラス206A(又は206B)に入力されて患部の下部形状に応じたエネルギ分布とされ、さらにマルチリーフコリメータ200により患部の水平方向形状に成形された後、患部に照射される。   The beams that have passed through the scanning electromagnets 201 and 202 are scattered by the scatterer 203 and the diameter of the beam is expanded, and then pass through the ridge filter 204A (or 204B). The ridge filter 204A (or 204B) attenuates the energy of the beam at a predetermined rate, and gives the beam energy a distribution corresponding to the thickness of the affected part. After the dose is measured by the dose monitor 205, the beam is input to the bolus 206A (or 206B) to obtain an energy distribution corresponding to the lower shape of the affected area, and further shaped into the horizontal shape of the affected area by the multi-leaf collimator 200. Then, the affected area is irradiated.

ここで、前述したように、通常、ビームは管部に対し複数の方向から照射される。本実施形態は、一例として、2つの照射方向から照射する例を示しており、2つのリッジフィルタ204A,204Bは、治療計画装置24によって求められた患部の厚みに応じてそれら2つの照射方向各々に対して予め作製され、ボーラス206A,206Bも、求められた患部の下部形状に応じて2つの照射方向各々に対して予め作製されたものである。作製されたリッジフィルタ204A,204Bは回転テーブル204Cに設置され、ボーラス206A,206Bは回転テーブル206Cに設置されている。このとき、回転テーブル206Cの回転軸とビームの軌道中心とは偏心しており、回転テーブル206Cを回転させることにより、ボーラス206A若しくはボーラス206Bを入れ替わりにビームの軌道上に配置させ、これによって2つの照射方向の両方に対応したビームのエネルギ分布を形成できるようになっている。なお、回転テーブル204Cも回転テーブル206Cと同様の構成となっている。   Here, as described above, normally, the beam is irradiated to the tube portion from a plurality of directions. The present embodiment shows an example of irradiation from two irradiation directions as an example, and the two ridge filters 204A and 204B each have two irradiation directions according to the thickness of the affected part determined by the treatment planning device 24. The boluses 206A and 206B are also prepared in advance for each of the two irradiation directions in accordance with the obtained lower shape of the affected part. The manufactured ridge filters 204A and 204B are installed on the rotary table 204C, and the boluses 206A and 206B are installed on the rotary table 206C. At this time, the rotation axis of the rotary table 206C and the center of the beam trajectory are eccentric, and by rotating the rotary table 206C, the bolus 206A or the bolus 206B is alternately placed on the beam trajectory, thereby two irradiations. A beam energy distribution corresponding to both directions can be formed. The rotary table 204C has the same configuration as the rotary table 206C.

そして、照射方向の設定あるいは変更の際には、制御装置23からモータ121に照射方向に対応した傾斜角度信号が出力され、モータ121がガントリー122をその傾斜角度まで回転駆動し、回転照射装置102は当該照射方向から患部にビームを照射できる位置に移動される。さらに、制御装置23は、回転テーブル204C,206Cの各々に対して、当該照射方向に対応するリッジフィルタ204A(又は204B)及びボーラス206A(又は206B)をビームの軌道上に配置するように指示信号を出力し、回転テーブル204C,206Cはこれに応じて回転する。   When the irradiation direction is set or changed, an inclination angle signal corresponding to the irradiation direction is output from the control device 23 to the motor 121, and the motor 121 rotates the gantry 122 to the inclination angle. Is moved from the irradiation direction to a position where the affected part can be irradiated with the beam. Further, the control device 23 instructs each of the rotary tables 204C and 206C to arrange the ridge filter 204A (or 204B) and the bolus 206A (or 206B) corresponding to the irradiation direction on the beam trajectory. , And the rotary tables 204C and 206C rotate according to this.

そしてこのとき、制御装置23からコリメータコントローラ(リーフ位置制御計算機)22に当該照射方向に対応する制御信号が出力され、コリメータコントローラ22はこれに応じて、後述の図2に示すようにマルチリーフコリメータ200に備えられた複数のリーフ(薄板状のブロック)4を突き合わせその空隙により当該照射方向から見た患部の水平方向形状に合致するビームの照射野(照射範囲)3を実現するように駆動制御する。これにより、ボーラス206A(又は206B)を通過してマルチリーフコリメータ200に到達したビーム(図2に示すビーム源2からのビーム照射領域)のうち、照射野3以外に向かう成分は複数のリーフ4により遮られ、不要な部位への照射を避けることができる。   At this time, the control device 23 outputs a control signal corresponding to the irradiation direction to the collimator controller (leaf position control computer) 22, and the collimator controller 22 responds accordingly to the multi-leaf collimator as shown in FIG. Drive control is performed so that a plurality of leaves (thin plate-like blocks) 4 provided in 200 are abutted and a beam irradiation field (irradiation range) 3 matching the horizontal shape of the affected part viewed from the irradiation direction is realized by the gap. To do. As a result, among the beams that have passed through the bolus 206A (or 206B) and reached the multi-leaf collimator 200 (the beam irradiation region from the beam source 2 shown in FIG. 2), the components that are directed to other than the irradiation field 3 are a plurality of leaves 4. Therefore, irradiation to unnecessary parts can be avoided.

(3)マルチリーフコリメータ200の構成及び動作
図2は、上記マルチリーフコリメータ200の全体構造を表す斜視図である。また、図3は、本実施形態のリーフの詳細構造を表す斜視図であり、図4は、本実施形態のマルチリーフコリメータの詳細構造を表す部分断面図である。
(3) Configuration and Operation of Multi-leaf Collimator 200 FIG. 2 is a perspective view showing the overall structure of the multi-leaf collimator 200. FIG. 3 is a perspective view showing the detailed structure of the leaf of this embodiment, and FIG. 4 is a partial cross-sectional view showing the detailed structure of the multi-leaf collimator of this embodiment.

これら図2〜図4において、マルチリーフコリメータ200は、複数のリーフ4と、これら複数のリーフ4のネジ穴8aにそれぞれ螺合された複数の送りネジ5と、これら複数の送りネジ5にそれぞれ同軸接続された複数のモータ6(駆動手段)とを備えている。リーフ4は、2枚1組で互いに接近又は離間する方向にスライド可動に配設されており、それら複数組がビーム照射方向に対し垂直方向に並べられている。そして、各モータ6の駆動によって送りネジが回転し、その送りネジに螺合されたリーフが移動配置されて、患部形状に合わせたビームの照射野3を形成するようになっている。   2 to 4, the multi-leaf collimator 200 includes a plurality of leaves 4, a plurality of feed screws 5 respectively screwed into screw holes 8 a of the plurality of leaves 4, and a plurality of feed screws 5. And a plurality of motors 6 (drive means) connected coaxially. The leaves 4 are slidably arranged in a direction of approaching or separating from each other as a set of two sheets, and the plurality of sets are arranged in a direction perpendicular to the beam irradiation direction. Then, the feed screw is rotated by driving each motor 6, and the leaf screwed to the feed screw is moved and arranged to form a beam irradiation field 3 that matches the shape of the affected part.

本実施形態のリーフ4は、リーフ本体部7と、このリーフ本体部7と一体にかつリーフ本体部7より厚みが増すように形成され、ネジ穴8aを有する直方体状のメネジ部8とを有している。リーフ本体部7には、メネジ部8のネジ穴8aに螺合された送りネジ5の移動領域に対応して貫通穴7aが形成されており、送りネジ5がリーフ本体部7に干渉しないようになっている。そして、互いに隣接するリーフ4のメネジ部8及び貫通穴7aの位置を高さ方向に異ならせる(本実施形態では、図4に示すように2つの高さ位置に交互に配置する)とともに、互いに隣接するリーフ4のメネジ部8の相対移動領域に対応してリーフ本体部7の両側側面に溝7bが形成されている。なお、リーフ本体部7の溝7bの深さは、メネジ部8の厚み方向の突出長さ以上になっている。   The leaf 4 of the present embodiment includes a leaf body portion 7 and a rectangular parallelepiped internal thread portion 8 that is integrally formed with the leaf body portion 7 and has a thickness greater than that of the leaf body portion 7 and has a screw hole 8a. is doing. A through hole 7 a is formed in the leaf main body portion 7 so as to correspond to the moving region of the feed screw 5 screwed into the screw hole 8 a of the female screw portion 8 so that the feed screw 5 does not interfere with the leaf main body portion 7. It has become. Then, the positions of the female screw portion 8 and the through hole 7a of the leaf 4 adjacent to each other are made different in the height direction (in this embodiment, they are alternately arranged at two height positions as shown in FIG. 4), and Grooves 7 b are formed on both side surfaces of the leaf main body portion 7 in correspondence with the relative movement region of the female screw portion 8 of the adjacent leaf 4. The depth of the groove 7b of the leaf body 7 is equal to or greater than the protruding length of the female thread 8 in the thickness direction.

以上のように構成された本実施形態においては、リーフ本体部7よりメネジ部8の厚みを大きくするので、メネジ部8のネジ穴8aに螺合する送りネジ5の径寸法を大きくすることができる。これにより、送りネジ5の回転速度を高めることができ、リーフ4の高速駆動を図ることができる。一方、メネジ部8よりリーフ本体部7の厚みを薄くすることができる。また、互いに隣接するリーフ4のメネジ部8及び貫通穴7aの位置を高さ方向に異ならせるとともに、互いに隣接するリーフ4のメネジ部8の相対移動領域に対応してリーフ本体部7に溝7bを形成することにより、複数のリーフ4を厚み方向に隙間なく並べることができる。したがって、リーフ4の厚みを薄くして枚数を多くし、これらリーフ4によるビームの照射野の分割数を増大させることができ、ビームの照射野の形状精度を高めることができる。   In the present embodiment configured as described above, the thickness of the female screw portion 8 is made larger than that of the leaf main body portion 7, so that the diameter dimension of the feed screw 5 screwed into the screw hole 8a of the female screw portion 8 can be increased. it can. Thereby, the rotational speed of the feed screw 5 can be increased, and the leaf 4 can be driven at a high speed. On the other hand, the thickness of the leaf body 7 can be made thinner than the female thread 8. Further, the positions of the female screw portion 8 and the through hole 7a of the leaf 4 adjacent to each other are made different in the height direction, and the groove 7b is formed in the leaf body portion 7 corresponding to the relative movement region of the female screw portion 8 of the leaf 4 adjacent to each other. By forming, the plurality of leaves 4 can be arranged without gaps in the thickness direction. Therefore, the thickness of the leaf 4 can be reduced to increase the number of sheets, the number of divisions of the beam irradiation field by the leaves 4 can be increased, and the shape accuracy of the beam irradiation field can be increased.

また本実施形態においては、送りネジ5の移動領域に対応してリーフ本体部7に貫通穴7aを形成することにより、リーフ本体部7の長さ方向においてメネジ部8及び送りネジ5を重ねて配置することができる。これにより、例えばリーフ本体部から延在するように金具等を取り付け、この金具のネジ穴に送りネジを螺合させてリーフを駆動する構成とは異なり、送りネジ5やモータ6をリーフ4の長さ方向や、下方、左右に大きく張り出さないように配置することができる。また、隣接する送りネジ5に同軸接続されたモータ6の位置を高さ方向に異ならせることができ、モータ6を干渉しないように配置することができる。したがって、装置全体の小型化を図ることができる。   Further, in the present embodiment, by forming a through hole 7 a in the leaf body portion 7 corresponding to the moving region of the feed screw 5, the female screw portion 8 and the feed screw 5 are overlapped in the length direction of the leaf body portion 7. Can be arranged. Thus, for example, unlike a configuration in which a metal fitting or the like is attached so as to extend from the leaf main body, and the feed screw is screwed into the screw hole of the metal fitting to drive the leaf, the feed screw 5 or the motor 6 is attached to the leaf 4. It can arrange | position so that it may not protrude largely in a length direction, a downward direction, and right and left. Further, the position of the motor 6 coaxially connected to the adjacent feed screw 5 can be varied in the height direction, and the motor 6 can be arranged so as not to interfere. Therefore, it is possible to reduce the size of the entire apparatus.

また、メネジ部を隣接するリーフ4のメネジ部8の相対移動領域に対応してリーフ本体部7に溝7bを形成するので、例えば溝7bに代えて貫通穴を形成するような場合と比べ、リーフ4の構造強度を高めることができる。   Further, since the groove 7b is formed in the leaf main body portion 7 corresponding to the relative movement region of the female screw portion 8 of the adjacent leaf 4 as compared with the case where a through hole is formed instead of the groove 7b, for example. The structural strength of the leaf 4 can be increased.

次に、本発明の他の実施形態を図5〜図7により説明する。本実施形態は、リーフ本体部及びメネジ部を別体に形成して取り付けた実施形態である。   Next, another embodiment of the present invention will be described with reference to FIGS. This embodiment is an embodiment in which a leaf main body portion and a female screw portion are separately formed and attached.

図5は、本実施形態のマルチリーフコリメータを構成するリーフの詳細構造を表す斜視図であり、図6は、分解斜視図である。図7は、本実施形態のマルチリーフコリメータの詳細構造を表す部分断面図である。なお、上記一実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。   FIG. 5 is a perspective view showing a detailed structure of a leaf constituting the multi-leaf collimator of the present embodiment, and FIG. 6 is an exploded perspective view. FIG. 7 is a partial cross-sectional view showing the detailed structure of the multi-leaf collimator of this embodiment. In addition, the same code | symbol is attached | subjected to the part equivalent to the said one Embodiment, and description is abbreviate | omitted suitably.

本実施形態のリーフ10は、リーフ本体部11及びメネジ部12を別体として形成し、リーフ本体部11の切欠き11aの端部側にメネジ部12を取り付けている。直方体状のメネジ部12の厚み方向両側(図中左側・右側)には、上下方向に延びたフランジ12aが形成されており、フランジ12aには貫通穴12bが形成されている。リーフ本体部11には、メネジ部12の貫通穴12bに対応する貫通穴11bが形成されている。そして、メネジ部12の貫通穴12b及びリーフ本体部11の貫通穴11bに丸棒13を挿通することにより、メネジ部12がリーフ本体部11に固定される。このとき、リーフ本体部11とメネジ部12で形成される貫通穴14(リーフ本体部11の切欠き11aの一部)は、メネジ部12のネジ穴12cに螺合された送りネジ5の移動領域に対応するものであり、送りネジ5がリーフ本体部11に干渉しないようになっている。   In the leaf 10 of this embodiment, the leaf main body portion 11 and the female screw portion 12 are formed as separate bodies, and the female screw portion 12 is attached to the end side of the notch 11 a of the leaf main body portion 11. A flange 12a extending in the vertical direction is formed on both sides in the thickness direction (left side and right side in the figure) of the rectangular parallelepiped female screw portion 12, and a through hole 12b is formed in the flange 12a. A through hole 11 b corresponding to the through hole 12 b of the female screw part 12 is formed in the leaf main body part 11. Then, by inserting the round bar 13 through the through hole 12 b of the female screw part 12 and the through hole 11 b of the leaf main body part 11, the female screw part 12 is fixed to the leaf main body part 11. At this time, the through hole 14 (a part of the notch 11a of the leaf main body 11) formed by the leaf main body 11 and the female screw 12 moves the feed screw 5 screwed into the screw hole 12c of the female screw 12. This corresponds to the region, and the feed screw 5 does not interfere with the leaf body 11.

以上のように構成された本実施形態においても、上記一実施形態同様、フランジ本体部11よりメネジ部12の厚みを大きくするので、メネジ部12のネジ穴12cに螺合する送りネジ5の径寸法を大きくすることができる。これにより、送りネジ5の回転速度を高めることができ、リーフ10の高速駆動を図ることができる。一方、メネジ部12よりリーフ本体部11の厚みを薄くすることができる。また、互いに隣接するリーフ10のメネジ部12及び貫通穴14の位置を高さ方向に異ならせる(本実施形態では、図7に示すように2つの位置に交互に配置する)とともに、互いに隣接するリーフ10のメネジ部12の相対移動領域に対応してリーフ本体11の両側側面に溝11cを形成することにより、複数のリーフ10を厚み方向に隙間なく並べることができる。したがって、リーフ10の厚みを薄くして枚数を多くし、これらリーフ10によるビームの照射野の分割数を増大させることができ、ビームの照射野の形状精度を高めることができる。   Also in the present embodiment configured as described above, the diameter of the feed screw 5 that is screwed into the screw hole 12c of the female screw portion 12 is increased because the thickness of the female screw portion 12 is larger than that of the flange main body portion 11 as in the above-described one embodiment. The dimensions can be increased. Thereby, the rotational speed of the feed screw 5 can be increased and the leaf 10 can be driven at high speed. On the other hand, the thickness of the leaf body 11 can be made thinner than the female thread 12. Further, the positions of the female screw portion 12 and the through hole 14 of the leaf 10 adjacent to each other are made different in the height direction (in this embodiment, they are alternately arranged at two positions as shown in FIG. 7) and are adjacent to each other. By forming the grooves 11c on both side surfaces of the leaf body 11 corresponding to the relative movement region of the female screw portion 12 of the leaf 10, the plurality of leaves 10 can be arranged without gaps in the thickness direction. Therefore, the thickness of the leaf 10 can be reduced to increase the number of the sheets, the number of divisions of the beam irradiation field by the leaf 10 can be increased, and the shape accuracy of the beam irradiation field can be increased.

また、上記一実施形態同様、装置全体の小型化を図ることができる。また、例えば溝11cに代えて貫通穴を形成するような場合と比べ、リーフ10の構造強度を高めることができる。   Further, as in the above-described embodiment, the entire apparatus can be reduced in size. Further, for example, the structural strength of the leaf 10 can be increased as compared with a case where a through hole is formed instead of the groove 11c.

また、本実施形態においては、リーフ本体部11及びメネジ部12を別体として形成するので、上記一実施形態のようにリーフ本体部11及びメネジ部12を一体として形成する場合に比べ、切削加工代を削減しコスト低減を図ることができる。   Further, in the present embodiment, the leaf body 11 and the female thread 12 are formed as separate bodies, so that cutting work is performed as compared with the case where the leaf body 11 and the female thread 12 are integrally formed as in the above embodiment. The cost can be reduced and the cost can be reduced.

なお、上記実施形態においては、互いに隣接するリーフのメネジ部及び貫通穴の位置が高さ方向に異なるように、2つの位置に交互に配置した構造を例にとって説明したが、これに限られない。すなわち、例えば3つ以上の位置に順番に配置するような構造としてもよい。このような場合も、上記同様の効果を得ることができる。   In the embodiment described above, the structure in which the female screw portions and the through holes of the adjacent leaves are alternately arranged at two positions so that the positions of the through holes are different in the height direction has been described as an example. However, the present invention is not limited thereto. . That is, for example, a structure in which three or more positions are sequentially arranged may be employed. In such a case, the same effect as described above can be obtained.

本発明のマルチリーフコリメータの一実施形態を備えた放射線ビーム照射装置の全体システム構成を表す概念的構成図である。It is a notional block diagram showing the whole system configuration of a radiation beam irradiation apparatus provided with one embodiment of the multi-leaf collimator of the present invention. 本発明のマルチリーフコリメータの一実施形態の全体構造を表す斜視図である。It is a perspective view showing the whole structure of one Embodiment of the multi-leaf collimator of this invention. 本発明のマルチリーフコリメータの一実施形態を構成するリーフの詳細構造を表す斜視図である。It is a perspective view showing the detailed structure of the leaf which comprises one Embodiment of the multi-leaf collimator of this invention. 本発明のマルチリーフコリメータの一実施形態の詳細構造を表す部分断面図である。It is a fragmentary sectional view showing the detailed structure of one Embodiment of the multi-leaf collimator of this invention. 本発明のマルチリーフコリメータの他の実施形態を構成するリーフの詳細構造を表す斜視図である。It is a perspective view showing the detailed structure of the leaf which comprises other embodiment of the multi-leaf collimator of this invention. 本発明のマルチリーフコリメータの他の実施形態を構成するリーフの詳細構造を表す分解斜視図である。It is a disassembled perspective view showing the detailed structure of the leaf which comprises other embodiment of the multi-leaf collimator of this invention. 本発明のマルチリーフコリメータの他の実施形態の詳細構造を表す部分断面図である。It is a fragmentary sectional view showing the detailed structure of other embodiments of the multi-leaf collimator of the present invention.

符号の説明Explanation of symbols

3 照射野
4 リーフ
5 送りネジ
6 モータ(駆動手段)
7 リーフ本体部
7a 貫通穴
7b 溝
8 メネジ部
8a ネジ穴
10 リーフ
11 リーフ本体部
11c 溝
12 メネジ部
12c ネジ穴
14 貫通穴
200 マルチリーフコリメータ
3 Irradiation field 4 Leaf 5 Feed screw 6 Motor (drive means)
7 Leaf body portion 7a Through hole 7b Groove 8 Female thread portion 8a Screw hole 10 Leaf 11 Leaf main body portion 11c Groove 12 Female thread portion 12c Screw hole 14 Through hole 200 Multi-leaf collimator

Claims (3)

複数のリーフと、前記複数のリーフのネジ穴にそれぞれ螺合した複数の送りネジと、前記複数の送りネジを回転させる駆動手段とを有し、前記複数のリーフの配置に応じた放射線ビームの照射野を形成するマルチリーフコリメータにおいて、
前記リーフは、リーフ本体部と、前記リーフ本体部と一体にかつ前記リーフ本体部より厚みが増すように形成され、前記ネジ穴を有するメネジ部と、前記メネジ部のネジ穴に螺合した前記送りネジの移動領域に対応して前記リーフ本体部に形成した貫通穴とを有し、
互いに隣接する前記リーフのメネジ部及び貫通穴の位置を高さ方向に異ならせるとともに、互いに隣接する前記リーフのメネジ部の相対移動領域に対応して前記リーフ本体に溝を形成したことを特徴とするマルチリーフコリメータ。
A plurality of leaves; a plurality of feed screws respectively screwed into screw holes of the plurality of leaves; and a driving means for rotating the plurality of feed screws, and a radiation beam corresponding to the arrangement of the plurality of leaves. In the multi-leaf collimator that forms the irradiation field,
The leaf is formed integrally with the leaf main body portion and the leaf main body portion so as to be thicker than the leaf main body portion, the female screw portion having the screw hole, and the screw screwed into the screw hole of the female screw portion. Having a through hole formed in the leaf body corresponding to the moving region of the feed screw,
The positions of the female screw portion and the through hole of the leaf adjacent to each other are made different in the height direction, and a groove is formed in the leaf body corresponding to the relative movement region of the female screw portion of the leaf adjacent to each other. Multi-leaf collimator.
複数のリーフと、前記複数のリーフのネジ穴にそれぞれ螺合した複数の送りネジと、前記複数の送りネジを回転させる駆動手段とを有し、前記複数のリーフの配置に応じた放射線ビームの照射野を形成するマルチリーフコリメータにおいて、
前記リーフは、リーフ本体部と、前記リーフ本体部より厚みが増すように形成されて前記リーフ本体部に取り付けられ、前記ネジ穴を有するメネジ部と、前記メネジ部のネジ穴に螺合した前記送りネジの移動領域に対応して前記リーフ本体部に形成した貫通穴とを有し、
互いに隣接する前記リーフのメネジ部及び貫通穴の位置を高さ方向に異ならせるとともに、互いに隣接する前記リーフのメネジ部の相対移動領域に対応して前記リーフ本体に溝を形成したことを特徴とするマルチリーフコリメータ。
A plurality of leaves; a plurality of feed screws respectively screwed into screw holes of the plurality of leaves; and a driving means for rotating the plurality of feed screws, and a radiation beam corresponding to the arrangement of the plurality of leaves. In the multi-leaf collimator that forms the irradiation field,
The leaf is formed so as to be thicker than the leaf main body, and is attached to the leaf main body, the female screw having the screw hole, and the screw screwed into the screw hole of the female screw Having a through hole formed in the leaf body corresponding to the moving region of the feed screw,
The positions of the female screw portion and the through hole of the leaf adjacent to each other are made different in the height direction, and a groove is formed in the leaf body corresponding to the relative movement region of the female screw portion of the leaf adjacent to each other. Multi-leaf collimator.
請求項1又は2記載のマルチリーフコリメータにおいて、前記駆動手段は、前記複数の送りネジにそれぞれ同軸接続した複数の回転機であることを特徴とするマルチリーフコリメータ。   3. The multi-leaf collimator according to claim 1, wherein the driving means is a plurality of rotating machines that are coaxially connected to the plurality of feed screws.
JP2007043741A 2007-02-23 2007-02-23 Multi-leaf collimator Active JP4602366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043741A JP4602366B2 (en) 2007-02-23 2007-02-23 Multi-leaf collimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043741A JP4602366B2 (en) 2007-02-23 2007-02-23 Multi-leaf collimator

Publications (2)

Publication Number Publication Date
JP2008206563A true JP2008206563A (en) 2008-09-11
JP4602366B2 JP4602366B2 (en) 2010-12-22

Family

ID=39783409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043741A Active JP4602366B2 (en) 2007-02-23 2007-02-23 Multi-leaf collimator

Country Status (1)

Country Link
JP (1) JP4602366B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518012A (en) * 2008-04-21 2011-06-23 エレクタ・アーベー・(ペーウーベーエル) Improvement on multileaf collimator or improvement on multileaf collimator
KR101057320B1 (en) * 2008-12-24 2011-08-17 스미도모쥬기가이고교 가부시키가이샤 Multileaf Collimators and Radiation Therapy
CN102652861A (en) * 2011-03-03 2012-09-05 苏州雷泰医疗科技有限公司 Optical grating device for radiotherapy equipment
CN103537009A (en) * 2012-07-16 2014-01-29 苏州雷泰医疗科技有限公司 Grating leaf and grating device using same
KR101441522B1 (en) 2012-03-30 2014-09-17 스미도모쥬기가이고교 가부시키가이샤 Collimator for neutron capture therapy and neutron capture therapy apparatus
US8938051B2 (en) 2008-04-21 2015-01-20 Elekta Ab (Publ) Multi-leaf collimators
CN105233428A (en) * 2015-11-12 2016-01-13 成都伊贝基科技有限公司 Concave and convex blade and multi-blade grating structure with blades
JP2016507328A (en) * 2013-02-26 2016-03-10 アキュレイ インコーポレイテッド Electromagnetic multi-leaf collimator
CN105708484A (en) * 2014-12-01 2016-06-29 武汉知微科技有限公司 Collimator, detection device with collimator, and scanning equipment
WO2019047061A1 (en) * 2017-09-06 2019-03-14 西安大医数码科技有限公司 Blade drive mechanism and system
CN111053977A (en) * 2019-12-20 2020-04-24 上海联影医疗科技有限公司 Multi-leaf collimator and radiotherapy device
GB2592982A (en) * 2020-03-13 2021-09-15 Elekta ltd Leaf assembly for a multi-leaf collimator
WO2021180904A1 (en) * 2020-03-13 2021-09-16 Elekta Limited Multi-leaf collimator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146565A (en) * 1987-10-28 1989-06-08 Philips Gloeilampenfab:Nv Multileaf collimator
JPH11507253A (en) * 1995-06-07 1999-06-29 ボード・オブ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・テキサス・システム Small multi-leaf collimator controlled by computer
JP2003210595A (en) * 2002-01-24 2003-07-29 Ishikawajima Harima Heavy Ind Co Ltd Multileaf collimator and radiotherapy equipment using it
JP2006081585A (en) * 2004-09-14 2006-03-30 Ishikawajima Harima Heavy Ind Co Ltd Multileaf collimator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146565A (en) * 1987-10-28 1989-06-08 Philips Gloeilampenfab:Nv Multileaf collimator
JPH11507253A (en) * 1995-06-07 1999-06-29 ボード・オブ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・テキサス・システム Small multi-leaf collimator controlled by computer
JP2003210595A (en) * 2002-01-24 2003-07-29 Ishikawajima Harima Heavy Ind Co Ltd Multileaf collimator and radiotherapy equipment using it
JP2006081585A (en) * 2004-09-14 2006-03-30 Ishikawajima Harima Heavy Ind Co Ltd Multileaf collimator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518012A (en) * 2008-04-21 2011-06-23 エレクタ・アーベー・(ペーウーベーエル) Improvement on multileaf collimator or improvement on multileaf collimator
US8938051B2 (en) 2008-04-21 2015-01-20 Elekta Ab (Publ) Multi-leaf collimators
US9214249B2 (en) 2008-04-21 2015-12-15 Elekta Ab (Publ) Multi-leaf collimators
KR101057320B1 (en) * 2008-12-24 2011-08-17 스미도모쥬기가이고교 가부시키가이샤 Multileaf Collimators and Radiation Therapy
CN102652861A (en) * 2011-03-03 2012-09-05 苏州雷泰医疗科技有限公司 Optical grating device for radiotherapy equipment
KR101441522B1 (en) 2012-03-30 2014-09-17 스미도모쥬기가이고교 가부시키가이샤 Collimator for neutron capture therapy and neutron capture therapy apparatus
CN103537009A (en) * 2012-07-16 2014-01-29 苏州雷泰医疗科技有限公司 Grating leaf and grating device using same
CN103537009B (en) * 2012-07-16 2016-04-13 苏州雷泰医疗科技有限公司 A kind of grating device
JP2016507328A (en) * 2013-02-26 2016-03-10 アキュレイ インコーポレイテッド Electromagnetic multi-leaf collimator
CN105708484A (en) * 2014-12-01 2016-06-29 武汉知微科技有限公司 Collimator, detection device with collimator, and scanning equipment
CN105233428A (en) * 2015-11-12 2016-01-13 成都伊贝基科技有限公司 Concave and convex blade and multi-blade grating structure with blades
WO2019047061A1 (en) * 2017-09-06 2019-03-14 西安大医数码科技有限公司 Blade drive mechanism and system
CN111053977A (en) * 2019-12-20 2020-04-24 上海联影医疗科技有限公司 Multi-leaf collimator and radiotherapy device
CN111053977B (en) * 2019-12-20 2022-08-16 上海联影医疗科技股份有限公司 Multi-leaf collimator and radiotherapy device
GB2592982A (en) * 2020-03-13 2021-09-15 Elekta ltd Leaf assembly for a multi-leaf collimator
WO2021180904A1 (en) * 2020-03-13 2021-09-16 Elekta Limited Multi-leaf collimator
GB2592982B (en) * 2020-03-13 2022-06-08 Elekta ltd Leaf assembly for a multi-leaf collimator

Also Published As

Publication number Publication date
JP4602366B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP4602366B2 (en) Multi-leaf collimator
JP4691576B2 (en) Particle beam therapy system
JP4691583B2 (en) Charged particle beam irradiation system and charged particle beam extraction method
JP3655292B2 (en) Particle beam irradiation apparatus and method for adjusting charged particle beam irradiation apparatus
CN110012585B (en) Accelerator and particle beam irradiation device
JP5450602B2 (en) Tumor treatment device for treating tumor using charged particles accelerated by synchrotron
JP4691574B2 (en) Charged particle beam extraction apparatus and charged particle beam extraction method
JP6452721B2 (en) Accelerator and particle beam irradiation device
WO2016092621A1 (en) Accelerator and particle beam irradiation device
JP2004321830A (en) Adjusting method of particle beam irradiation apparatus and irradiation field forming device
JP6200368B2 (en) Charged particle irradiation system and control method of charged particle beam irradiation system
JP2011523169A (en) Charged particle beam extraction method and apparatus for use with a charged particle cancer treatment system
JP6126153B2 (en) Charged particle beam acceleration method and apparatus as part of a charged particle cancer treatment system
JP5705372B2 (en) Particle beam therapy apparatus and method of operating particle beam therapy apparatus
JP4452848B2 (en) Charged particle beam irradiation apparatus and rotating gantry
WO2015071430A1 (en) Particle therapy system
JP5130175B2 (en) Particle beam irradiation system and control method thereof
JP2007175540A (en) Particle beam radiation system and method of controlling radiation apparatus
JP4650382B2 (en) Charged particle beam accelerator and particle beam irradiation system using the charged particle beam accelerator
JP2017220460A (en) Particle beam medical treatment device
JP2000202047A (en) Charged particle beam irradiation method and apparatus
JP6266092B2 (en) Particle beam therapy system
JP5111233B2 (en) Particle beam therapy system
JP5222566B2 (en) Laminated body irradiation system and particle beam therapy system using the same
JP3964769B2 (en) Medical charged particle irradiation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4602366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150