JP2008293106A - Maintenance plan making method - Google Patents
Maintenance plan making method Download PDFInfo
- Publication number
- JP2008293106A JP2008293106A JP2007135585A JP2007135585A JP2008293106A JP 2008293106 A JP2008293106 A JP 2008293106A JP 2007135585 A JP2007135585 A JP 2007135585A JP 2007135585 A JP2007135585 A JP 2007135585A JP 2008293106 A JP2008293106 A JP 2008293106A
- Authority
- JP
- Japan
- Prior art keywords
- damage
- life
- equipment
- operating
- lifetime
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
本発明は設備機器のメンテナンスを効率的に行う計画を立案するためのもので、例えば原子力プラントの空調設備機器のメンテナンスを効率的に行わせるのに好適なメンテナンス計画立案方法に関する。 The present invention relates to a plan for efficiently performing maintenance of facility equipment. For example, the present invention relates to a maintenance plan planning method suitable for efficiently performing maintenance of air conditioning equipment in a nuclear power plant.
プラントや設備機器のメンテナンスに関し、RBM(Risk Based Maintenance)という手法が知られている。これは故障が起こった時の被害の大きさと、故障の起こり易さ(損傷確率あるいは寿命消費率)とから「リスク」を評価し、その大きさに応じてプラントや設備機器の管理を行おうとするものである。これは、図9に示すように、例えば横軸に被害の大きさを「小」「中」「大」「重大」と設定し、縦軸に損傷確率(寿命消費率)を「微」「低」「中」「高」と設定する。これによってできたマトリックス上でリスクの大きさが小さい方から順に「I」「II」「III」「IV」というように評価した表を作成する。設備機器ごとに被害の大きさと損傷確率を求めてリスク評価し、リスクの大きい機器からメンテナンスに入るようにするのである(特許文献1)。上記RBM手法で、対象機器のリスク管理のためには、被害の大きさや損傷確率といった値を設定しなければならないが、この評価のため、図10に示すような一般的な評価因子を利用して行う。評価項目が被害の大きさであれば、環境汚染に与える影響、爆発毒物といった因子、また、人身被害や経済損失を因子とし、さらに前2者は物質特性とその漏洩量が被害の大きさを左右することになるので、これを評価因子として定める。また、人身被害の場合には怪我の程度や人数、経済損失の場合にはプラントや設備機器の停止期間や補修費用といったものが評価因子となる。 A method called RBM (Risk Based Maintenance) is known for maintenance of plants and equipment. This is to evaluate the “risk” from the magnitude of damage when a failure occurs and the likelihood of the failure (damage probability or lifetime consumption rate), and to manage the plant and equipment according to the magnitude. To do. As shown in FIG. 9, for example, the horizontal axis indicates the magnitude of damage as “small”, “medium”, “large”, and “serious”, and the vertical axis indicates the damage probability (lifetime consumption rate) as “fine” and “ Set low, medium, and high. On the resulting matrix, a table is created in which “I”, “II”, “III”, and “IV” are evaluated in order from the smallest risk. For each facility device, the magnitude of damage and the probability of damage are obtained and risk assessment is performed, and maintenance is started from a device with a high risk (Patent Document 1). In the above RBM method, in order to manage the risk of the target device, values such as the magnitude of damage and damage probability must be set. For this evaluation, general evaluation factors as shown in FIG. 10 are used. Do it. If the evaluation item is the magnitude of damage, factors such as impact on environmental pollution, explosive poisons, personal injury and economic loss are factors, and the first two are based on the material characteristics and the amount of leakage. This will be determined as an evaluation factor. In the case of personal injury, the degree of injury and the number of people, and in the case of economic loss, the stoppage period and repair costs of the plant and equipment are the evaluation factors.
一方、縦軸の損傷確率は、各機器の寿命あるいは使用年数が評価因子となる。この求め方に、検査で肉厚測定等により損傷度を確認、寿命消費率を予測する手法がある(特許文献2)。しかし、空調設備のうち、特に静的機器(例:ダクト、ダンパ等)では検査をそれほど頻繁にしていない。簡易かつ定量的に検査する手法がないことも理由の一つである。更に、直接検査しないで、いままで出荷された同機種の故障の統計を取って確率を求める方法がある(特許文献3)。しかし、これでは、個別の機器の特性が評価できない。使用環境が同じでないので、原子力プラントでは、機器の寿命消費率を正しく割り出すということはできない。
ところが、上述した評価因子によってリスク管理しようとしても、図9に示されている一般的な評価因子という概念が抽象的で広い括りであるため、例えば原子力プラントの空調機器のリスク管理に適用しようとしても、個別具体性がなく、被害の大きさがなかなか特定できない欠点があった。加えて、現場管理者の経験値は評価因子に組み込まれないため、その経験値を利用することができず、現場知識を集約したリスク管理となっていないという問題があった。また、損傷確率の場合についても、設備機器などでは損傷度を確認して寿命消費率を予測することが行われているが、空調設備のうち、特に静的機器(例:ダクト、ダンパ等)では、簡易かつ定量的に検査できないため、寿命消費率の予測が困難となっている。また、いままで出荷された同種機器の故障の統計を取って損傷確率を求める手法もあるが、個別の使用環境にある特性を評価できない。したがって、特に原子力プラントの空調機器ではその寿命消費率を割り出すといったことができないため、RBM手法を適正に利用することができないという問題があった。 However, even if risk management is attempted using the above-described evaluation factors, the concept of the general evaluation factor shown in FIG. 9 is an abstract and wide group. However, there was a disadvantage that there was no individual specificity and it was difficult to determine the magnitude of the damage. In addition, since the experience value of the field manager is not incorporated in the evaluation factor, the experience value cannot be used, and there is a problem that the risk management is not integrated with the field knowledge. In addition, in the case of damage probability, equipment equipment, etc., checks the degree of damage and predicts the lifetime consumption rate. Among air conditioning equipment, static equipment (eg, ducts, dampers, etc.) However, since simple and quantitative inspection cannot be performed, it is difficult to predict the lifetime consumption rate. In addition, there is a method for obtaining the damage probability by taking the statistics of the failure of the same type of equipment shipped so far, but it is not possible to evaluate the characteristics in the individual use environment. Therefore, there is a problem that the RBM method cannot be used properly because the life consumption rate cannot be determined especially in the air conditioner of a nuclear power plant.
本発明は、上記従来の問題点に着目し、RBM手法を行うに際して、被害の大きさや損傷確率(寿命消費率)といった値を数値化処理して重み付けを行って簡単に割り出すことができるようにしたメンテナンス計画立案方法を提供することを目的とする。 The present invention pays attention to the above-mentioned conventional problems, and when performing the RBM method, values such as the magnitude of damage and damage probability (lifetime consumption rate) are numerically processed and weighted so that they can be easily determined. The purpose is to provide a maintenance planning method.
上記目的を達成するため、本発明に係るメンテナンス計画立案方法は、被害の大きさと損傷確率のマトリックスで設備機器のリスク評価をなしてメンテナンス計画を立案する方法であって、前記被害の大きさの要因を階層化処理して細分化し、各階層内の細分化因子の一対比較を行って重み付けをなして数値化処理し、この数値化処理した個別機器ごとに被害の大きさを加算処理することにより被害の大きさを割り出すことを特徴としている。 In order to achieve the above object, a maintenance plan planning method according to the present invention is a method for planning a maintenance plan by evaluating a risk of equipment with a matrix of damage magnitude and damage probability, The factors are hierarchized into subdivisions, and a paired comparison of the subdivision factors in each layer is performed, weighted and digitized, and the amount of damage is added to each digitized individual device. It is characterized by determining the magnitude of damage.
また、本発明に係るメンテナンス計画立案方法は、被害の大きさと損傷確率のマトリックスで設備機器のリスク評価をなしてメンテナンス計画を立案する方法であって、各機器の最短寿命と最長寿命を設定して使用年数に対する一次式として損傷の起こり易さを規定するとともに、各機器の寿命に影響する項目を抽出し、抽出項目ごとの一対比較により重み付けをなして数値化処理するとともに、各抽出項目の機器使用条件により前記抽出項目を選択処理し、各機器の個別寿命線の傾きを前記最長、最短寿命線間に設定して判定をなすことを特徴とする。 The maintenance planning method according to the present invention is a method for making a maintenance plan by evaluating the risk of equipment with a matrix of damage magnitude and damage probability, and setting the shortest life and the longest life of each device. In addition to prescribing the likelihood of damage as a linear expression for the years of service, extract items that affect the life of each device, perform weighting by paired comparison for each extracted item, and perform numerical processing. The extraction item is selected according to device usage conditions, and the inclination of the individual life line of each device is set between the longest and shortest life lines to make a determination.
更には、本発明は、被害の大きさと損傷確率のマトリックスで設備機器のリスク評価をなしてメンテナンス計画を立案する方法であって、前記被害の大きさの要因を階層化処理して細分化し、各階層内の細分化因子の一対比較を行って重み付けをなして数値化処理し、この数値化処理した個別機器ごとに被害の大きさを加算処理することにより被害の大きさを割り出すとともに、各機器の最短寿命と最長寿命を設定して使用年数に対する一次式として損傷の起こり易さを規定し、各機器の寿命に影響する項目を抽出し、抽出項目ごとの一対比較により重み付けをなして数値化処理するとともに、各抽出項目の機器使用条件により前記抽出項目を選択処理し、各機器の個別寿命線の傾きを前記最長、最短寿命線間に設定して判定をなすことを特徴としてなるものである。 Further, the present invention is a method of making a maintenance plan by evaluating the risk of equipment with a matrix of damage magnitude and damage probability, and subdividing the damage factor into a hierarchical process, A pairwise comparison of subdivision factors in each hierarchy is performed, weighted and digitized, and the magnitude of damage is determined by adding the magnitude of damage for each digitized individual device. Set the shortest life and the longest life of the equipment, specify the probability of damage as a primary expression for the years of use, extract the items that affect the life of each equipment, and weight the values by paired comparison for each extracted item In addition, the extraction item is selected and processed according to the device usage conditions of each extraction item, and the slope of the individual life line of each device is set between the longest and shortest life lines to make a determination. It is made as.
上記構成によれば、被害の大きさを決定する要因を階層化処理して細分化し、各階層内の要因同士の一対比較により重み付けをなす作業を最小細分化単位まで行うことにより、現場作業の知識の集約を行うことができ、現場の意見を最大限生かしたメンテナンスを行うことができる。また、損傷確率(寿命消費率)についても、設備機器の各々について最長寿命と最短寿命の各線の傾きを求め、寿命に与える影響要因を割り出して同様に一対比較をなして重み付けを行う。これに使用環境によって「0」から「1」の成分を積算して抽出項目を選択するようにしているので、機器の使用環境に応じたリスク判定を行うことができる。被害の大きさと損傷確率とを上記のように割り出し処理することによって、本発明では、RBM手法を行うに際して、被害の大きさや損傷確率(寿命消費率)といった値を数値化処理して重み付けを行って簡単に割り出すことができるという効果が得られる。 According to the above configuration, the factor that determines the magnitude of damage is divided into layers and subdivided, and the work that is weighted by pairwise comparison of the factors in each layer is performed to the minimum subdivision unit, thereby Knowledge can be gathered and maintenance can be performed by making the most of the opinions of the site. In addition, regarding the probability of damage (lifetime consumption rate), the inclination of each line of the longest life and the shortest life is obtained for each of the equipments, the influence factors on the life are determined, and similarly, a pair comparison is made and weighted. Since the extracted items are selected by integrating the components from “0” to “1” depending on the usage environment, risk determination according to the usage environment of the device can be performed. By calculating the damage magnitude and damage probability as described above, in the present invention, when performing the RBM method, values such as damage magnitude and damage probability (lifetime consumption rate) are numerically processed and weighted. The effect that it can be easily determined.
以下に、本発明に係るメンテナンス計画立案方法の具体的実施の形態につき、図面を参照して詳細に説明する。 Hereinafter, specific embodiments of a maintenance planning method according to the present invention will be described in detail with reference to the drawings.
図1は、実施形態に係るメンテナンス計画立案方法が適用されるRBMにおける被害の大きさを数値化処理するための方法を示している。これは原子力プラントにおける空調設備機器のメンテナンス計画に適用しようとするものである。 FIG. 1 shows a method for quantifying the magnitude of damage in an RBM to which a maintenance planning method according to an embodiment is applied. This is to be applied to a maintenance plan for air conditioning equipment in a nuclear power plant.
この実施形態は、原子力プラントにおける空調設備機器に対して、被害の大きさと損傷確率のマトリックスで設備機器のリスク評価をなすRBM法を利用してメンテナンス計画を立案する方法であって、前記被害の大きさの要因を階層化処理して細分化し、各階層内の細分化因子の一対比較を行って重み付けをなして数値化処理し、この数値化処理した個別機器ごとに被害の大きさを加算処理することにより被害の大きさを割り出すようにしたものである。 This embodiment is a method for drafting a maintenance plan for an air conditioner equipment in a nuclear power plant using an RBM method that performs risk assessment of the equipment with a matrix of damage magnitude and damage probability. The size factor is hierarchized into subdivisions, paired comparisons of subdivision factors in each hierarchy are performed, weighted and digitized, and the amount of damage is added to each digitized device The amount of damage is determined by processing.
このため、最上位階層に被害の大きさを決定する要因10を掲げ、これに最大値「1.00」とする数値を与える。これは最大1の範囲として階層化される各要因のパーセンテージを表示しやすいようにするためである。そして、第2階層では、被害の大きさは、修理費用12と機器故障起因被害14に分かれる。修理費用12は実質的な金額であるため、それ以上の細分化はできない。一方、機器故障起因被害14を決定するのは、それがどの系統の何と言う機種で、停止期間はどれくらいあるのかというように、系統16、機種18、停止期間20に細分化できる。第3階層化処理である。次いで、系統16は、A系統161、B系統162、C系統163、D系統………などのように細分化される。第4階層である。同様に、機種18は、ダンパ181、隔離弁182、コイル183など、最小部品に細分化される。そして、各階層内の細分化因子同士の一対比較を行って重み付けをなすのである。
For this reason, a
重み付けの処理は、図2に示すように、対比する項目を系統16、機種18、停止期間20とで分配する場合、系統16と機種18の比較では、例えば、両者の間を「系統が重要」、「どちらかというと系統が重要」、「どちらも同じくらい重要」、「どちらかというと機種が重要」、「機種が重要」という5段階に振り分け、両者比較の結果、「系統が重要」と判定された場合、系統は機種に対して5倍の重みがあると割り出すのである。この例では5段階評価として判定するようにしているが、この評価段階にはいろいろ設定することができるので、例えば4段階評価もあれば6段階評価もあり得る。このように重要度に応じた段階評価に基づき、各細分化因子同士を一対比較し、図3のように重み付け数値を付ける。この表では横方向に比較対象を並べている。例えば、列上段の「系統」は行方向の同じ「系統」に対しては「1」で等価、機種に対しては機種を「1」とした場合「5」倍の重み、停止期間に対しても停止期間を「1」とした場合「5」倍の重みがあると判断する。これは現場作業者の意見に基づいて定めるようにすればよい。これにより、重み付けされた数値に現場の知識が集約されることになる。このようにして重み付けをなしたのち、各細分化因子同士の幾何平均を求める。系統の場合、対「系統」に対して1、対「機種」に対して5、対「停止期間」に対して5であるから、幾何平均は3√(1×5×5)=2.92となり、同様に、機種と停止期間の幾何平均値は、ともに1.30となる系統の重みは、(2.92)/(2.92+1.30+1.30)=0.53となる。この重みに基づいて、上位階層の重みを割り振る。
As shown in FIG. 2, when the items to be compared are distributed between the
実施形態では、2階層の機器故障起因被害14と、修理費用12との重みは、6段階評価として、前者が5/6=0.83、後者が1/6=0.17とした例を示している。そして、機器故障起因被害14を細分化した因子である系統16、機種18、停止期間20は、上述した重みの値から、各々、0.83の53%(0.53)、24%(0.24)、24%(0.24)となるので、系統16の重みは0.44、機種18の重みは0.20、停止期間20の重みは0.20として求めることができる。以下同様に、系統16を細分化した因子であるA系統161、B系統162、C系統163………や、機種18を細分化したダンパ181、隔離弁182、コイル183………などについても一対比較による優先順位付けをなし、各細分化因子についての重み付けされた数値を求めるのである。
In the embodiment, the weight of the damage due to
このように被害の大きさを決定する要因となる評価因子を階層化処理して細分化を行い、各因子に重み付け処理を行って数値化した後、各因子の重みを係数として、被害の大きさHを次式にて求める。
したがって、細分化された設備構成機器ごとに上記被害の大きさHを数式1に基づいて求めることにより、RBM上の被害の大きさ位置を容易に設定することができる。
Therefore, the damage magnitude position on the RBM can be easily set by obtaining the damage magnitude H based on the
このように、被害の大きさを決定する要因10を階層化処理してこれ以上細分化できない程度まで細分化し、各階層内の要因同士の一対比較を現場作業者の経験値により重み付けをなす作業を最小細分化単位まで行うことにより、現場作業の知識の集約を行うことができる。したがって、現場の意見を最大限生かしたリスク評価に基づいた原子力プラントの空調設備機器のメンテナンスを行うことができる。
In this way, the
次に、原子力プラント設備機器に対してメンテナンス計画を立案するRBMのもう一方の軸となる損傷確率(寿命消費率)を数値化するための手段は次のように行う。すなわち、各機器の最短寿命と最長寿命を設定して使用年数に対する一次式として損傷の起こり易さを規定するとともに、各機器の寿命に影響する項目を抽出し、抽出項目ごとの一対比較により重み付けをなして数値化処理するとともに、各抽出項目の機器使用条件により前記抽出項目を選択処理し、各機器の個別寿命線の傾きを前記最長、最短寿命線間に設定して判定をなすようにしている。 Next, means for quantifying the damage probability (lifetime consumption rate), which is the other axis of the RBM that makes a maintenance plan for nuclear plant equipment, is performed as follows. In other words, the shortest life and the longest life of each device are set to specify the likelihood of damage as a linear expression with respect to the number of years of use, and items that affect the life of each device are extracted and weighted by pairwise comparison for each extracted item The extraction items are selected and processed according to the device usage conditions of each extraction item, and the inclination of the individual life line of each device is set between the longest and shortest life lines for determination. ing.
具体的には、設備機器の各々について、まず、当該機器の設計寿命を最長寿命として設定する。また、実際に使用されている当該機器の破損寿命を最短寿命として設定する。例えば、図4に示しているダンパの場合、設計上の寿命は15年と定められているが、実際に使用されていたものの最短寿命が7年であったという例を示している。破損に至るまでは、軽微な損傷、低位の損傷、中位の損傷、高度の損傷を経るので、これを縦軸とし、横軸に年数をとると、使用開始の「0」年からスタートして縦軸の上端を破損域として、15年と7年を頂点とする一次式が描ける。これにより、最長寿命年の15年までの一次式としての最長寿命線(最小傾きα)が求まり、同様に最短寿命年7年までの最短寿命線(最大傾きβ)が求まる。対象のダンパはこの範囲の中に入るものと規定する。 Specifically, for each facility device, first, the design life of the device is set as the longest life. In addition, the breakage life of the device actually used is set as the shortest life. For example, in the case of the damper shown in FIG. 4, the design life is set to 15 years, but the shortest life of the damper actually used is 7 years. Until the breakage, minor damage, low-level damage, medium-level damage, and high-level damage are passed. If this is the vertical axis and the horizontal axis is the number of years, it starts from “0” year when the service started. Thus, using the upper end of the vertical axis as the damaged area, a linear expression with 15 years and 7 years at the top can be drawn. As a result, the longest life line (minimum slope α) as a primary expression up to 15 years of the longest life year is obtained, and similarly, the shortest life line (maximum slope β) up to 7 years of the shortest life year is obtained. The target damper is defined as falling within this range.
次に、当該機器の劣化速度の決定要因を機器要因と防止対策の観点より割り出す。例えばダンパは風路中に取り付けられるもので、風量調整や逆流防止などの機能を有する。その壊れる要因となる影響項目は、例えば、「腐食環境(a1)」、「材質改善(a2)」、「高風量(a3)」、「強度改善(a4)」、「整流板付きダンパ(a5)」などで表わすことができる。そして、これらの項目のどれが重要かを一対比較し、最終的に重み付けをして数値化処理する。全項目の集計値は「1」である。この図表を図5に示す。 Next, the determinants of the degradation rate of the equipment are determined from the viewpoint of equipment factors and prevention measures. For example, the damper is mounted in the air path and has functions such as air volume adjustment and backflow prevention. The impact items that cause the breakage include, for example, “corrosive environment (a1)”, “material improvement (a2)”, “high air volume (a3)”, “strength improvement (a4)”, “damper with current plate (a5) ) "Or the like. Then, a pairwise comparison is made as to which of these items is important, and finally, weighting is performed to perform numerical processing. The total value of all items is “1”. This chart is shown in FIG.
これらの要因に対し、例えば、a1の腐食環境に対して、直接外気に触れる環境に設置してあればb1=1、そうでなければb1=0と設定する。次に、材質改善に対して、材質改善を行っている場合はb2=0、行っていない場合にはb2=1と設定する。 For these factors, for example, b1 = 1 is set if it is installed in an environment that directly contacts outside air with respect to the corrosive environment of a1, and b1 = 0 is set otherwise. Next, with respect to material improvement, b2 = 0 is set when the material is improved, and b2 = 1 is set when the material is not improved.
以下同様に、各要因に対して、寿命が延びる評価であれば「0」、寿命が縮む評価であれば「1」を設定して、次式に基づいた処理を行う。
また、ダクトの場合を図6、図7に示す。これはダンパの場合と同様に求めたものである。設計寿命線(最長寿命線)の傾きγは最小となり、実際の最短寿命線は最大傾きθを持つ一次式となる。寿命影響因子をダンパの場合と同様にして一対比較し、重み付けを行うと、図7のようになる(c1〜c4)。同様に使用環境に対して許容値以上でdn=0、許容値未満でdn=1を付与し各抽出項目の機器使用条件により前記抽出項目を選択処理し、次式に基づいてダクトの傾きを設定した後、ダクトの個別寿命線の傾きを前記最長、最短寿命線間に設定して判定をなすのである。
このようにして、被害の大きさと、損傷の起こり易さとしての損傷確率(寿命消費率)を数値として各機器ごとに求めることができるので、RBM図表中に各機器のリスク評価として記載することができる。これを例で示したのが図8である。なお、図8の縦軸の余寿命は寿命消費率の反対語であり、残りの寿命を示す指標である。このRBM表では損傷確率を寿命消費率に変えて示している。この結果、機器の使用環境に応じたリスク判定を具体的な数値化処理したことにより、簡単に行うことができる。 In this way, the damage magnitude and the probability of damage (lifetime consumption rate) as the likelihood of damage can be determined for each device as numerical values, and should be described as a risk assessment for each device in the RBM chart. Can do. This is shown in FIG. 8 as an example. Note that the remaining life on the vertical axis in FIG. 8 is the opposite of the life consumption rate and is an index indicating the remaining life. In this RBM table, the damage probability is changed to the life consumption rate. As a result, risk determination according to the usage environment of the device can be easily performed by performing specific numerical processing.
プラント設備機器のメンテナンスに利用することができる。 It can be used for maintenance of plant equipment.
10………被害の大きさを決定する要因、12………修理費用、14………機器故障起因被害、16………系統、18………機種、20………停止期間。 10 ......... Factors that determine the magnitude of damage, 12 ... Repair costs, 14 ... Damage caused by equipment failure, 16 ... System, 18 ... Model, 20 ... Stop period.
Claims (3)
前記被害の大きさの要因を階層化処理して細分化し、各階層内の細分化因子の一対比較を行って重み付けをなして数値化処理し、この数値化処理した個別機器ごとに被害の大きさを加算処理することにより被害の大きさを割り出すとともに、
各機器の最短寿命と最長寿命を設定して使用年数に対する一次式として損傷の起こり易さを規定するとともに、各機器の寿命に影響する項目を抽出し、抽出項目ごとの一対比較により重み付けをなして数値化処理するとともに、各抽出項目の機器使用条件により前記抽出項目を選択処理し、各機器の個別寿命線の傾きを前記最長、最短寿命線間に設定して判定をなす、
ことを特徴とするメンテナンス計画立案方法。 It is a method of making a maintenance plan by evaluating the risk of equipment with a matrix of damage magnitude and damage probability,
The damage factor is hierarchized into subdivisions, and a paired comparison of subdivision factors in each hierarchy is made and weighted to quantify the damage. By calculating the amount of damage,
Set the shortest life and the longest life of each device to define the likelihood of damage as a primary expression for the years of use, extract items that affect the life of each device, and give weights by pairwise comparison for each extracted item In addition, the extraction item is selected and processed according to the device usage conditions of each extraction item, and the inclination of the individual life line of each device is set between the longest and shortest life lines to make a determination.
A maintenance planning method characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007135585A JP2008293106A (en) | 2007-05-22 | 2007-05-22 | Maintenance plan making method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007135585A JP2008293106A (en) | 2007-05-22 | 2007-05-22 | Maintenance plan making method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008293106A true JP2008293106A (en) | 2008-12-04 |
Family
ID=40167789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007135585A Pending JP2008293106A (en) | 2007-05-22 | 2007-05-22 | Maintenance plan making method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008293106A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012048455A (en) * | 2010-08-26 | 2012-03-08 | Jfe Steel Corp | Facility management method |
WO2015166637A1 (en) * | 2014-04-28 | 2015-11-05 | 日本電気株式会社 | Maintenance period determination device, deterioration estimation system, deterioration estimation method, and recording medium |
WO2018179937A1 (en) * | 2017-03-30 | 2018-10-04 | 株式会社テイエルブイ | Risk assessment device, risk assessment method, and risk assessment program |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02208597A (en) * | 1989-02-08 | 1990-08-20 | Hitachi Ltd | Overall preventive maintenance system for plant |
JPH04216164A (en) * | 1990-12-14 | 1992-08-06 | Toshiba Corp | Method for analyzing group decision making and device for supporting information management and decision making |
JP2001312572A (en) * | 2000-04-28 | 2001-11-09 | Railway Technical Res Inst | Crisis management appraisal system, crisis management appraisal method and recording medium with program for executing the method recorded thereon |
JP2002023831A (en) * | 2000-07-11 | 2002-01-25 | Komatsu Ltd | System for controlling machine and method for the same and recording medium |
JP2002123314A (en) * | 2000-10-12 | 2002-04-26 | Chiyoda Corp | Optimization system for facility maintenance |
JP2004234131A (en) * | 2003-01-28 | 2004-08-19 | Railway Technical Res Inst | Work risk estimation system and work risk estimation program |
-
2007
- 2007-05-22 JP JP2007135585A patent/JP2008293106A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02208597A (en) * | 1989-02-08 | 1990-08-20 | Hitachi Ltd | Overall preventive maintenance system for plant |
JPH04216164A (en) * | 1990-12-14 | 1992-08-06 | Toshiba Corp | Method for analyzing group decision making and device for supporting information management and decision making |
JP2001312572A (en) * | 2000-04-28 | 2001-11-09 | Railway Technical Res Inst | Crisis management appraisal system, crisis management appraisal method and recording medium with program for executing the method recorded thereon |
JP2002023831A (en) * | 2000-07-11 | 2002-01-25 | Komatsu Ltd | System for controlling machine and method for the same and recording medium |
JP2002123314A (en) * | 2000-10-12 | 2002-04-26 | Chiyoda Corp | Optimization system for facility maintenance |
JP2004234131A (en) * | 2003-01-28 | 2004-08-19 | Railway Technical Res Inst | Work risk estimation system and work risk estimation program |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012048455A (en) * | 2010-08-26 | 2012-03-08 | Jfe Steel Corp | Facility management method |
WO2015166637A1 (en) * | 2014-04-28 | 2015-11-05 | 日本電気株式会社 | Maintenance period determination device, deterioration estimation system, deterioration estimation method, and recording medium |
JPWO2015166637A1 (en) * | 2014-04-28 | 2017-04-20 | 日本電気株式会社 | Maintenance time determination device, deterioration prediction system, deterioration prediction method, and recording medium |
WO2018179937A1 (en) * | 2017-03-30 | 2018-10-04 | 株式会社テイエルブイ | Risk assessment device, risk assessment method, and risk assessment program |
JP6472581B1 (en) * | 2017-03-30 | 2019-02-20 | 株式会社テイエルブイ | Risk assessment device, risk assessment method, and risk assessment program |
US10670498B2 (en) * | 2017-03-30 | 2020-06-02 | Tlv Co., Ltd. | Risk assessment device, risk assessment method, and risk assessment program |
KR20200103869A (en) * | 2017-03-30 | 2020-09-02 | 가부시키가이샤 티엘브이 | Risk Assessment Device, Risk Assessment Method, and Risk Assessment Program |
KR102411262B1 (en) * | 2017-03-30 | 2022-06-22 | 가부시키가이샤 티엘브이 | Risk Assessment Device, Risk Assessment Method, and Risk Assessment Program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7698076B2 (en) | System to manage maintenance of a pipeline structure, program product, and related methods | |
CN104966141B (en) | Method and system for updating a model used to generate an industrial asset health profile | |
Marzouk et al. | BIM-based framework for managing performance of subway stations | |
Elsawah et al. | Decision support model for integrated risk assessment and prioritization of intervention plans of municipal infrastructure | |
JP4952946B2 (en) | Device degradation degree calculation method and risk assessment method | |
JP2014016691A (en) | Equipment maintenance and management support system, and method for the same | |
Opila et al. | Novel approach in pipe condition scoring | |
JP6729932B2 (en) | Sewer pipe deterioration prediction system and sewer pipe deterioration prediction method | |
Turksezer et al. | Development and implementation of indicators to assess bridge inspection practices | |
Khalil et al. | A numerical procedure to estimate seismic fragility of cylindrical ground-supported steel silos containing granular-like material | |
JP2008293106A (en) | Maintenance plan making method | |
Andersen et al. | Ranking procedure on maintenance tasks for monitoring of embankment dams | |
JP6010059B2 (en) | Equipment maintenance burden evaluation method and apparatus | |
Dawood | BIM based bridge management system | |
Chiu et al. | Probability-based damage assessment for reinforced concrete bridge columns considering the corrosive and seismic hazards in Taiwan | |
Bertola et al. | Sensing the structural behavior: A perspective on the usefulness of monitoring information for bridge examination | |
JP3899089B2 (en) | Building repair plan calculation device | |
JP2020060810A (en) | System for supporting inspections of infrastructure facilities, method and program for supporting inspections of infrastructure facilities | |
Bhargava et al. | Evaluation of seismic fragility of structures—a case study | |
Zuraidi et al. | Important criteria for measuring heritage building condition | |
Alkasisbeh et al. | Building asset management system: A performance evaluation approach | |
Weeks et al. | Discovering Water-and Fuel-System Maintenance Requirements Using Historic Work Order Cost Data: Data and Text-Mining Approach | |
Omenzetter et al. | Prioritisation methodology for application of bridge monitoring systems for quick post-earthquake assessment | |
Makhoul et al. | Integration of information quality assessment in bridge resilience management | |
Daud et al. | Defect on high rise government office buildings in Kelantan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101008 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101101 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110107 |