Nothing Special   »   [go: up one dir, main page]

JP2008291207A - Helical polymers with basic amino acids - Google Patents

Helical polymers with basic amino acids Download PDF

Info

Publication number
JP2008291207A
JP2008291207A JP2007322339A JP2007322339A JP2008291207A JP 2008291207 A JP2008291207 A JP 2008291207A JP 2007322339 A JP2007322339 A JP 2007322339A JP 2007322339 A JP2007322339 A JP 2007322339A JP 2008291207 A JP2008291207 A JP 2008291207A
Authority
JP
Japan
Prior art keywords
poly
polymer
tert
nhco
optical resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007322339A
Other languages
Japanese (ja)
Inventor
Fumio Mita
文雄 三田
Toshio Masuda
俊夫 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Kirin Co Ltd
Kyoto University NUC
Original Assignee
Kyowa Hakko Kirin Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kirin Co Ltd, Kyoto University NUC filed Critical Kyowa Hakko Kirin Co Ltd
Priority to JP2007322339A priority Critical patent/JP2008291207A/en
Publication of JP2008291207A publication Critical patent/JP2008291207A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】温度変化、極性変化に対しても高い高次構造を取ることができ、酸に対する応答性に優れる、光学分割材料、不斉認識材料、pHセンサー等として有用な塩基性アミノ酸を有する新規ならせん状ポリマーおよびその製造方法の提供。
【解決手段】主鎖が実質的に下記の繰り返し単位(I):

Figure 2008291207

(式中、RおよびRは同一または異なって、tert-ブトキシカルボニル (Boc)、ベンジルオキシカルボニル (CBZ)、p-ニトロベンジルオキシカルボニル (Z(NO2))、p-メトキシベンジルオキシカルボニル (Z(OMe))、9-フルオレニルメチルオキシカルボニル (Fmoc)、トリフェニルメチル (Trt)等を表し、mは3または4を表す)からなるポリマー、その製造方法および使用を提供する。
【選択図】なし[PROBLEMS] To provide a novel high-order structure with respect to temperature change and polarity change and excellent basic amino acid useful as an optical resolution material, an asymmetric recognition material, a pH sensor, etc., excellent in responsiveness to acid. Providing helical polymers and methods for their production.
The main chain is substantially the following repeating unit (I):
Figure 2008291207

(Wherein R 1 and R 2 are the same or different, and tert-butoxycarbonyl (Boc), benzyloxycarbonyl (CBZ), p-nitrobenzyloxycarbonyl (Z (NO2)), p-methoxybenzyloxycarbonyl ( Z (OMe)), 9-fluorenylmethyloxycarbonyl (Fmoc), triphenylmethyl (Trt) and the like, and m represents 3 or 4, and a process for producing and using the same.
[Selection figure] None

Description

本発明は、光学分割材料、不斉認識材料、pHセンサー等として有用な塩基性アミノ酸を有する新規ならせん状ポリマー、その製造方法および使用に関する。   The present invention relates to a novel helical polymer having a basic amino acid useful as an optical resolution material, an asymmetric recognition material, a pH sensor, and the like, a production method thereof, and use thereof.

アミノ酸はシンプルな構造ながらアミノ基、カルボキシ基はもとより、各種のアルキル基、アリール基、さらには水酸基、メルカプト基などの修飾可能な官能基を複数個分子内に有する、安価で高純度の光学活性源として有機合成の分野で広く用いられている。アミノ酸から誘導される合成高分子であるペプチドは、タンパク質のモデル化合物として研究されており、その高次構造ならびに種々の反応の触媒作用が検討されている。アミノ酸は医薬品、農薬、飼料、調味料、甘味料、健康栄養食品、香粧品の原料として幅広く用いられており、近年の発酵法、化学合成法の目覚ましい発展により高い光学純度のものが安価に入手可能である。このような状況に鑑み,発明者らはアミノ酸を生体関連機能のみならず、様々な化学的機能を発現する機能性高分子の材料として位置付け検討してきた(非特許文献1)。アミノ酸のポリマーとしてはペプチドが一般的であるが、発明者らはアミノ酸構造を有するアセチレン誘導体がロジウム触媒により効率よく重合し、側鎖にアミノ酸を規則正しく配列する一方向巻き優先のらせん構造を形成すること、このらせんは外部刺激(熱、光、溶媒)により巻き方向を反転させる、あるいはランダム構造に転移すること、また、幾つかのポリマーは不斉認識能、金属捕捉能を有すること、このポリマーの金属錯体は不斉水素移動反応を触媒することを見出し、これによりこれらのアミノ酸のポリマーが光学分割材料、不斉認識材料、pHセンサー等として有用と考えられる。しかしながら、従来に報告されているアミノ酸を側鎖に有するらせんポリマーの安定性は必ずしも高くなく、また酸に応答してその高次構造を転換するものはいまだ報告されていない。   Amino acid has simple structure but amino acid, carboxy group, various alkyl groups, aryl groups, hydroxyl group, mercapto group, etc. As a source, it is widely used in the field of organic synthesis. Peptides, which are synthetic macromolecules derived from amino acids, have been studied as protein model compounds, and their higher-order structures and catalysis of various reactions have been studied. Amino acids are widely used as raw materials for pharmaceuticals, agrochemicals, feeds, seasonings, sweeteners, health nutrition foods, and cosmetics. Due to the remarkable development of recent fermentation and chemical synthesis methods, amino acids with high optical purity are available at low cost. Is possible. In view of such circumstances, the inventors have positioned amino acids as materials for functional polymers that express not only biological functions but also various chemical functions (Non-Patent Document 1). Peptides are common as polymers of amino acids, but the inventors efficiently polymerize acetylene derivatives having an amino acid structure with a rhodium catalyst to form a helical structure in which the amino acids are regularly arranged in the side chain in a one-way winding priority. This spiral can reverse the direction of winding by an external stimulus (heat, light, solvent) or change to a random structure, and some polymers have asymmetric recognition ability and metal capture ability. These metal complexes have been found to catalyze asymmetric hydrogen transfer reactions, and as a result, polymers of these amino acids are considered useful as optical resolution materials, asymmetric recognition materials, pH sensors and the like. However, the stability of helical polymers having amino acids in the side chain that have been reported in the past is not necessarily high, and there has not yet been reported one that changes its higher-order structure in response to acid.

Sanda et al. Macromolecules, Vol. 38, pp. 8149-8154 (2005)Sanda et al. Macromolecules, Vol. 38, pp. 8149-8154 (2005)

本発明の目的は、上記問題に鑑み、温度変化、極性変化に対しても高い高次構造を取ることができ、かつ酸に対する応答性に優れる新規なポリマー、その製造方法および光学分割における使用を提供することにある。   In view of the above problems, an object of the present invention is to provide a novel polymer that can take a high-order structure even with respect to temperature change and polarity change, and has excellent responsiveness to acid, its production method, and use in optical resolution. It is to provide.

より詳しくは、本発明は、以下の[1]〜[11]を提供する。
[1]主鎖が実質的に下記の繰り返し単位(I):
More specifically, the present invention provides the following [1] to [11].
[1] The main chain is substantially the following repeating unit (I):

Figure 2008291207
Figure 2008291207

(式中、RおよびRは同一または異なって、tert-ブチルオキシカルボニル (Boc)、ベンジルオキシカルボニル (CBZ)、p-ニトロベンジルオキシカルボニル (Z(NO2))、p-メトキシベンジルオキシカルボニル (Z(OMe))、9-フルオレニルメチルオキシカルボニル (Fmoc)、トリフェニルメチル (Trt)、ホルミル (HCO)、アセチル (Ac)、トリフルオロアセチル (TFA)、ベンゾイル (Bz)、フタロイル (Pht)または水素を表し、mは3または4を表す)からなるポリマー。
[2] RおよびRが同一または異なり、それぞれ独立して、tert-ブチルオキシカルボニル、9-フルオレニルメチルオキシカルボニル、ベンジルオキシカルボニルおよび水素よりなる群から選択される前記[1]記載のポリマー。
[3] Rがtert-ブチルオキシカルボニルであって、Rが9-フルオレニルメチルオキシカルボニルである前記[2]記載のポリマー。
[4] 一般式(II):
(Wherein R 1 and R 2 are the same or different, and tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (CBZ), p-nitrobenzyloxycarbonyl (Z (NO2)), p-methoxybenzyloxycarbonyl) (Z (OMe)), 9-fluorenylmethyloxycarbonyl (Fmoc), triphenylmethyl (Trt), formyl (HCO), acetyl (Ac), trifluoroacetyl (TFA), benzoyl (Bz), phthaloyl ( Pht) or hydrogen, and m represents 3 or 4.
[2] The above [1], wherein R 1 and R 2 are the same or different and are each independently selected from the group consisting of tert-butyloxycarbonyl, 9-fluorenylmethyloxycarbonyl, benzyloxycarbonyl and hydrogen Polymer.
[3] The polymer according to [2], wherein R 1 is tert-butyloxycarbonyl, and R 2 is 9-fluorenylmethyloxycarbonyl.
[4] General formula (II):

Figure 2008291207
Figure 2008291207

(式中、RおよびRは同一または異なって、tert-ブチルオキシカルボニル (Boc)、ベンジルオキシカルボニル (CBZ)、p-ニトロベンジルオキシカルボニル (Z(NO2))、p-メトキシベンジルオキシカルボニル (Z(OMe))、9-フルオレニルメチルオキシカルボニル (Fmoc)、トリフェニルメチル (Trt)、ホルミル (HCO)、アセチル (Ac)、トリフルオロアセチル (TFA)、ベンゾイル (Bz)、フタロイル (Pht)または水素を表し、mは3または4を表す)で表されるモノマーをロジウム触媒存在下で重合させ、
主鎖が実質的に下記の繰り返し単位(I):
(Wherein R 1 and R 2 are the same or different, and tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (CBZ), p-nitrobenzyloxycarbonyl (Z (NO2)), p-methoxybenzyloxycarbonyl) (Z (OMe)), 9-fluorenylmethyloxycarbonyl (Fmoc), triphenylmethyl (Trt), formyl (HCO), acetyl (Ac), trifluoroacetyl (TFA), benzoyl (Bz), phthaloyl ( Pht) or hydrogen, and m represents 3 or 4) in the presence of a rhodium catalyst.
The main chain is substantially the following repeating unit (I):

Figure 2008291207
Figure 2008291207

(式中、R、Rおよびmは前記定義に同じ)からなるポリマーを得ることを特徴とする
ポリマーの製造方法。
[5] RおよびRが同一または異なり、それぞれ独立して、tert-ブチルオキシカルボニル、9-フルオレニルメチルオキシカルボニル、ベンジルオキシカルボニルおよび水素よりなる群から選択される前記[4]記載の製造方法。
[6] Rがtert-ブチルオキシカルボニルであって、Rが9-フルオレニルメチルオキシカルボニルである前記[5]記載の製造方法。
〔7〕 前記〔1〕〜〔3〕のいずれかに記載のポリマーを含む光学分割剤。
〔8〕 ポリマーをゲル化させた前記〔7〕記載の光学分割剤。
〔9〕 ポリマーを担体に担持させた前記〔7〕または〔8〕記載の光学分割剤。
〔10〕 前記〔7〕〜〔9〕のいずれかに記載の光学分割剤を用いて、光学活性体混合物を分離することを特徴とする光学活性化合物の分離方法。
〔11〕 前記〔7〕〜〔9〕のいずれかに記載の光学分割剤を固定相成分として含む高速液体クロマトグラフィー用カラム充填剤。
A method for producing a polymer, characterized in that a polymer comprising (wherein R 1 , R 2 and m are the same as defined above) is obtained.
[5] The above [4] description, wherein R 1 and R 2 are the same or different and are each independently selected from the group consisting of tert-butyloxycarbonyl, 9-fluorenylmethyloxycarbonyl, benzyloxycarbonyl and hydrogen Manufacturing method.
[6] The production method of the above-mentioned [5], wherein R 1 is tert-butyloxycarbonyl and R 2 is 9-fluorenylmethyloxycarbonyl.
[7] An optical resolution agent comprising the polymer according to any one of [1] to [3].
[8] The optical resolution agent according to [7], wherein the polymer is gelled.
[9] The optical resolution agent according to [7] or [8], wherein a polymer is supported on a carrier.
[10] A method for separating an optically active compound, comprising separating an optically active substance mixture using the optical resolution agent according to any one of [7] to [9].
[11] A column packing material for high performance liquid chromatography comprising the optical resolution agent according to any one of [7] to [9] as a stationary phase component.

本発明により、塩基性アミノ酸を有する新規ならせん状ポリマーおよびその製造方法を提供することができる。また、特に、該ポリマーを光学分割材料、不斉認識材料、pHセンサー等として利用することができる。   According to the present invention, a novel helical polymer having a basic amino acid and a method for producing the same can be provided. In particular, the polymer can be used as an optical resolution material, an asymmetric recognition material, a pH sensor, or the like.

以下、本発明を詳細に説明する。
本発明の化合物は、主鎖が実質的に下記の繰り返し単位(I):
Hereinafter, the present invention will be described in detail.
In the compound of the present invention, the main chain is substantially the following repeating unit (I):

Figure 2008291207
Figure 2008291207

からなる新規なポリマー(以下、ポリマーIという)である。 Is a novel polymer (hereinafter referred to as polymer I).

前記の繰り返し単位(I)からなるポリマーIにおいて、RおよびRは同一または異なって、tert-ブチルオキシカルボニル (Boc)、ベンジルオキシカルボニル (CBZ)、p-ニトロベンジルオキシカルボニル (Z(NO2))、p-メトキシベンジルオキシカルボニル (Z(OMe))、9-フルオレニルメチルオキシカルボニル (Fmoc)、トリフェニルメチル (Trt)、ホルミル (HCO)、アセチル (Ac)、トリフルオロアセチル (TFA)、ベンゾイル (Bz)、フタロイル (Pht)または水素を表し、mは3または4を表す。 In the polymer I comprising the above repeating unit (I), R 1 and R 2 are the same or different, and tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (CBZ), p-nitrobenzyloxycarbonyl (Z (NO 2 )), p-methoxybenzyloxycarbonyl (Z (OMe)), 9-fluorenylmethyloxycarbonyl (Fmoc), triphenylmethyl (Trt), formyl (HCO), acetyl (Ac), trifluoroacetyl ( TFA), benzoyl (Bz), phthaloyl (Pht) or hydrogen, m represents 3 or 4.

前記のポリマーIの化合物の具体例としては、例えば、ポリ(N-α-tert-ブトキシカルボニル-N-δ-ベンジルオキシカルボニル-L-オルニチン N’-プロパルギルアミド)、ポリ(N-α-tert-ブトキシカルボニル-N-ε-ベンジルオキシカルボニル-L-リジン N’-プロパルギルアミド)、ポリ(N-α-ベンジルオキシカルボニル-N-δ-tert-ブトキシカルボニル-L-オルニチン N’-プロパルギルアミド)、ポリ(N-α-ベンジルオキシカルボニル-N-ε-tert-ブトキシカルボニル-L-リジン N’-プロパルギルアミド)、ポリ(N-α-tert-ブトキシカルボニル-N-δ-フルオレニルメトキシカルボニル-L-オルニチン N’-プロパルギルアミド)、ポリ(N-α-tert-ブトキシカルボニル-L-オルニチン N’-プロパルギルアミド)、ポリ(N-α-tert-ブトキシカルボニル-N-ε-フルオレニルメトキシカルボニル-L-リジン N’-プロパルギルアミド)、ポリ(N-α-tert-ブトキシカルボニル-L-リジン N’-プロパルギルアミド)、ポリ(N-α-フルオレニルメトキシカルボニル-N-δ-tert-ブトキシカルボニル-L-オルニチン N’-プロパルギルアミド)、ポリ(N-α-フルオレニルメトキシカルボニル-N-ε-tert-ブトキシカルボニル-L-リジン N’-プロパルギルアミド)が挙げられ、ポリ(N-α-tert-ブトキシカルボニル-N-δ-フルオレニルメトキシカルボニル-L-オルニチン N’-プロパルギルアミド)、ポリ(N-α-tert-ブトキシカルボニル-L-オルニチン N’-プロパルギルアミド)が好ましい。   Specific examples of the compound of the polymer I include, for example, poly (N-α-tert-butoxycarbonyl-N-δ-benzyloxycarbonyl-L-ornithine N′-propargylamide), poly (N-α-tert -Butoxycarbonyl-N-ε-benzyloxycarbonyl-L-lysine N'-propargylamide), poly (N-α-benzyloxycarbonyl-N-δ-tert-butoxycarbonyl-L-ornithine N'-propargylamide) , Poly (N-α-benzyloxycarbonyl-N-ε-tert-butoxycarbonyl-L-lysine N'-propargylamide), poly (N-α-tert-butoxycarbonyl-N-δ-fluorenylmethoxycarbonyl) -L-ornithine N'-propargylamide), poly (N-α-tert-butoxycarbonyl-L-ornithine N'-propargylamide), poly (N-α-tert-butoxycarbonyl-N-ε-fluorenyl) Methoxycarbonyl-L-lysine N'-propa Gilamide), poly (N-α-tert-butoxycarbonyl-L-lysine N'-propargylamide), poly (N-α-fluorenylmethoxycarbonyl-N-δ-tert-butoxycarbonyl-L-ornithine N ' -Propargylamide), poly (N-α-fluorenylmethoxycarbonyl-N-ε-tert-butoxycarbonyl-L-lysine N'-propargylamide), and poly (N-α-tert-butoxycarbonyl- N-δ-fluorenylmethoxycarbonyl-L-ornithine N′-propargylamide) and poly (N-α-tert-butoxycarbonyl-L-ornithine N′-propargylamide) are preferred.

本発明の前記のポリマーIの化合物は、例えば、以下のようにして製造できる。すなわち、一般式(II):   The compound of the polymer I of the present invention can be produced, for example, as follows. That is, the general formula (II):

Figure 2008291207
Figure 2008291207

(式中、RおよびRは同一または異なって、tert-ブチルオキシカルボニル (Boc)、ベンジルオキシカルボニル (CBZ)、p-ニトロベンジルオキシカルボニル (Z(NO2))、p-メトキシベンジルオキシカルボニル (Z(OMe))、9-フルオレニルメチルオキシカルボニル (Fmoc)、トリフェニルメチル (Trt)、ホルミル (HCO)、アセチル (Ac)、トリフルオロアセチル (TFA)、ベンゾイル (Bz)、フタロイル (Pht)または水素を表し、mは3または4を表す)で表されるモノマーをロジウム触媒存在下で重合させて、主鎖が実質的に下記の繰り返し単位(I): (Wherein R 1 and R 2 are the same or different, and tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (CBZ), p-nitrobenzyloxycarbonyl (Z (NO2)), p-methoxybenzyloxycarbonyl) (Z (OMe)), 9-fluorenylmethyloxycarbonyl (Fmoc), triphenylmethyl (Trt), formyl (HCO), acetyl (Ac), trifluoroacetyl (TFA), benzoyl (Bz), phthaloyl ( Pht) or hydrogen, m represents 3 or 4) is polymerized in the presence of a rhodium catalyst, and the main chain is substantially the following repeating unit (I):

Figure 2008291207
Figure 2008291207

(式中、R、Rおよびmは前記定義に同じ)からなるポリマーを得ることができる。 A polymer comprising (wherein R 1 , R 2 and m are the same as defined above) can be obtained.

前記一般式(II)で表されるモノマーの具体例としては、例えば、N-α-tert-ブトキシカルボニル-N-δ-ベンジルオキシカルボニル-L-オルニチン N’-プロパルギルアミド、N-α-tert-ブトキシカルボニル-N-ε-ベンジルオキシカルボニル-L-リジン N’-プロパルギルアミド、N-α-ベンジルオキシカルボニル-N-δ-tert-ブトキシカルボニル-L-オルニチン N’-プロパルギルアミド、N-α-ベンジルオキシカルボニル-N-ε-tert-ブトキシカルボニル-L-リジン N’-プロパルギルアミド、N-α-tert-ブトキシカルボニル-N-δ-フルオレニルメトキシカルボニル-L-オルニチン N’-プロパルギルアミド、N-α-tert-ブトキシカルボニル-N-ε-フルオレニルメトキシカルボニル-L-リジン N’-プロパルギルアミド、N-α-フルオレニルメトキシカルボニル-N-δ-tert-ブトキシカルボニル-L-オルニチン N’-プロパルギルアミド、N-α-フルオレニルメトキシカルボニル-N-ε-tert-ブトキシカルボニル-L-リジン N’-プロパルギルアミドが挙げられ、入手のしやすさ、ポリマー物性の観点からN-α-tert-ブトキシカルボニル-N-δ-フルオレニルメトキシカルボニル-L-オルニチン N’-プロパルギルアミドが好ましい。   Specific examples of the monomer represented by the general formula (II) include, for example, N-α-tert-butoxycarbonyl-N-δ-benzyloxycarbonyl-L-ornithine N′-propargylamide, N-α-tert -Butoxycarbonyl-N-ε-benzyloxycarbonyl-L-lysine N'-propargylamide, N-α-benzyloxycarbonyl-N-δ-tert-butoxycarbonyl-L-ornithine N'-propargylamide, N-α -Benzyloxycarbonyl-N-ε-tert-butoxycarbonyl-L-lysine N'-propargylamide, N-α-tert-butoxycarbonyl-N-δ-fluorenylmethoxycarbonyl-L-ornithine N'-propargylamide N-α-tert-butoxycarbonyl-N-ε-fluorenylmethoxycarbonyl-L-lysine N'-propargylamide, N-α-fluorenylmethoxycarbonyl-N-δ-tert-butoxycarbonyl-L- Ornithine N'- Ropargylamide, N-α-fluorenylmethoxycarbonyl-N-ε-tert-butoxycarbonyl-L-lysine N'-propargylamide, and N-α-tert- from the viewpoint of availability and polymer properties Butoxycarbonyl-N-δ-fluorenylmethoxycarbonyl-L-ornithine N′-propargylamide is preferred.

本発明に用いられる一般式(II)で表されるモノマーには、市販または合成して得られたもののいずれを用いてもよい。   As the monomer represented by the general formula (II) used in the present invention, either a commercially available product or a synthesized product may be used.

また、本発明に用いられるロジウム触媒として、例えば、(nbd)Rh+[η6-C6H5B(C6H5)3]、[(Ph3P)3RhCl]、[(nbd)RhCl]2、[(cod)RhCl]2、[(nbd)Rh(OCH3)]2、[(nbd)Rh{-C(Ph)=CCPh2}{(4-FC6H4)3P}]が挙げられ、入手のしやすさおよび活性の観点から(nbd)Rh+[η6-C6H5B(C6H5)3]が好ましい。 Examples of the rhodium catalyst used in the present invention include (nbd) Rh + [η 6 -C 6 H 5 B (C 6 H 5 ) 3 ], [(Ph 3 P) 3 RhCl], [(nbd) RhCl ] 2 , [(cod) RhCl] 2 , [(nbd) Rh (OCH 3 )] 2 , [(nbd) Rh {-C (Ph) = CCPh 2 } {(4-FC 6 H 4 ) 3 P} (Nbd) Rh + [η 6 -C 6 H 5 B (C 6 H 5 ) 3 ] is preferable from the viewpoint of availability and activity.

ロジウム触媒の使用量は、前記モノマー1モル当たり0.005〜0.1モルの範囲であることが好ましく、より好ましくは、0.01〜0.05モルである。ロジウム触媒の使用量が、0.005モル未満の場合、重合反応が進行しにくく、重合が完結しにくくなるおそれがあり、0.1モルを超える場合、重合が完結するものの経済的でなくなるおそれがある。   The amount of the rhodium catalyst used is preferably in the range of 0.005 to 0.1 mol, more preferably 0.01 to 0.05 mol, per mol of the monomer. When the amount of the rhodium catalyst used is less than 0.005 mol, the polymerization reaction hardly proceeds and the polymerization may be difficult to complete. When the amount exceeds 0.1 mol, the polymerization is completed, but there is a possibility that it is not economical.

本発明のポリマーIの化合物を得るための前記反応に用いられる溶媒は、当該重合反応に不活性な溶媒であれば特に限定されるものではないが、例えば、テトラヒドロフラン(THF)、ジオキサン等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒が挙げられ、好ましくは、重合性の観点からTHF、クロロホルムであり、THFが最も好ましい。   The solvent used in the reaction for obtaining the compound of the polymer I of the present invention is not particularly limited as long as it is an inert solvent for the polymerization reaction, and examples thereof include ethers such as tetrahydrofuran (THF) and dioxane. Solvents: Halogen solvents such as methylene chloride and chloroform are preferable. From the viewpoint of polymerizability, THF and chloroform are preferable, and THF is most preferable.

溶媒の使用量は、重合反応の完結および経済性の観点から、使用されるモノマー、触媒等の種類、使用量、反応温度等に依存して、適宜選定され、特に限定されるものではないが、好ましくは、モノマー1モルに対して0.1〜50Lの範囲であることが好ましく、より好ましくは0.5〜10L、最も好ましくは、1〜5Lである。   The amount of the solvent used is appropriately selected depending on the type of monomer and catalyst used, the amount used, the reaction temperature, etc. from the viewpoint of completion of the polymerization reaction and economy, but is not particularly limited. The amount is preferably in the range of 0.1 to 50 L, more preferably 0.5 to 10 L, and most preferably 1 to 5 L with respect to 1 mol of the monomer.

重合反応の温度は、特に限定されるものではないが、好ましくは-20〜70℃、より好ましくは0〜50℃、最も好ましくは、10〜30℃である。重合反応の温度が、-20℃未満である場合、重合反応が進行しにくく、重合が完結しにくくなるおそれがあり、70℃以上である場合、重合が完結するが、副生成物が生成するおそれがある。   The temperature of the polymerization reaction is not particularly limited, but is preferably -20 to 70 ° C, more preferably 0 to 50 ° C, and most preferably 10 to 30 ° C. When the temperature of the polymerization reaction is less than −20 ° C., the polymerization reaction hardly proceeds and the polymerization may be difficult to complete. When the polymerization reaction temperature is 70 ° C. or more, the polymerization is completed, but a by-product is generated. There is a fear.

重合反応の時間は、特に限定されるものではなく、用いられるモノマー、触媒および溶媒の種類、使用量、ならびに重合反応の温度等に依存して適宜選定することができる。   The time for the polymerization reaction is not particularly limited, and can be appropriately selected depending on the type of monomer, catalyst and solvent used, the amount used, the temperature of the polymerization reaction, and the like.

得られたポリマーIの化合物の数平均分子量は、特に限定されるものではないが、2,000〜1,000,000の範囲が好ましく、より好ましくは3,000〜100,000、最も好ましくは、5,000〜50,000である。数平均分子量が1,000,000を超える場合、重合溶液の粘度が高くなりすぎて実験操作が困難であり、数平均分子量が1000未満である場合、らせん構造の形成が困難であり好ましくない。   The number average molecular weight of the obtained polymer I compound is not particularly limited, but is preferably in the range of 2,000 to 1,000,000, more preferably 3,000 to 100,000, and most preferably 5,000 to 50,000. When the number average molecular weight exceeds 1,000,000, the viscosity of the polymerization solution becomes too high to make an experimental operation difficult, and when the number average molecular weight is less than 1000, formation of a helical structure is difficult, which is not preferable.

本発明のポリマーIは、光学活性体混合物から、光学活性化合物を得るための光学分割活性成分として幅広く使用することができ、この目的で、ポリマーIを光学分割剤に含有させる。
本発明のポリマーIは、そのままの状態でも光学分割活性成分として使用できるが、常法によりゲル化することにより簡便なバッチ式の光学分割活性成分として用いることができる。ポリマーIのゲル化はどのような方法によっても良いが、例えば、ジプロパルギルアジピン酸等の架橋化剤を用いて、架橋化させた状態でTHF等の溶媒を保持させることによりゲル化させることができる。
さらに、耐圧能力の向上、溶媒置換による膨潤、収縮の防止、理論段数の向上等の目的のため、いずれかの担体に担持させてもよい。
The polymer I of the present invention can be widely used as an optical resolution active component for obtaining an optically active compound from an optically active substance mixture. For this purpose, the polymer I is contained in an optical resolution agent.
The polymer I of the present invention can be used as an optical resolution active ingredient as it is, but can be used as a simple batch-type optical resolution active ingredient by gelation by a conventional method. The gelation of the polymer I may be performed by any method. For example, the polymer I may be gelled by using a crosslinking agent such as dipropargyl adipic acid and holding a solvent such as THF in the crosslinked state. it can.
Furthermore, it may be supported on any carrier for the purpose of improving pressure resistance, preventing swelling and shrinkage due to solvent substitution, and improving the number of theoretical plates.

担体としては、例えば、シリカゲル、アルミナ、架橋ポリスチレン、ポリシロキサン等の多孔質担体が好適なものとして挙げられ、光学活性ポリマレイミド誘導体との親和性を向上させるため、有機シラン化合物を用いて表面処理してもよい。   As the carrier, for example, a porous carrier such as silica gel, alumina, crosslinked polystyrene, polysiloxane and the like can be mentioned as a suitable carrier. In order to improve the affinity with the optically active polymaleimide derivative, surface treatment is performed using an organosilane compound. May be.

担体の粒径としては、使用するカラムやプレートの大きさにより異なり、特に限定するものではないが、担持操作の容易さ、光学分割能の観点から、通常1μm〜10mm、好ましくは1〜300μmである。また、平均孔径は10Å〜100μm、好ましくは50〜100000Åである。なお、高速液体クロマトグラフィー用のカラム充填剤の固定相として使用する場合、充填操作の容易さ、光学分割能の観点から、粒径が1〜200μm、平均細孔径が10〜3000Åの範囲の多孔質担体が好ましい。   The particle size of the carrier varies depending on the size of the column or plate to be used and is not particularly limited, but is usually 1 μm to 10 mm, preferably 1 to 300 μm, from the viewpoint of ease of carrying operation and optical resolution. is there. The average pore diameter is 10 to 100 μm, preferably 50 to 100,000. In addition, when used as a stationary phase of a column packing material for high performance liquid chromatography, from the viewpoint of easy packing operation and optical resolution, a porous material having a particle diameter of 1 to 200 μm and an average pore diameter of 10 to 3000 mm. A quality carrier is preferred.

ポリマーIを担体に担持させる方法としては、物理的方法でも化学的方法でもよく、特に限定されない。物理的方法としては、光学活性ポリマレイミド誘導体と多孔質担体を接触させる方法が例示される。また、化学的方法としては、ポリマーIの製造時にそのポリマーの末端に官能基を付与し、多孔質の担体と化学的に結合させる方法が挙げられる。   The method for supporting the polymer I on the carrier may be a physical method or a chemical method, and is not particularly limited. Examples of the physical method include a method in which an optically active polymaleimide derivative and a porous carrier are brought into contact with each other. Moreover, as a chemical method, the functional group is provided to the terminal of the polymer at the time of manufacture of the polymer I, and the method of making it couple | bond with a porous support | carrier is mentioned.

担体におけるポリマーIの担持量としては、用いる担体の種類、物性により異なり、特に限定するものではないが、担持操作の容易さ、光学分割能の観点から、担体の重量に対して、通常1〜100重量%、好ましくは1〜70重量%、とりわけ好ましくは1〜30%の範囲である。   The amount of polymer I supported on the carrier varies depending on the type and physical properties of the carrier used, and is not particularly limited. However, from the viewpoint of ease of carrying operation and optical resolution, the weight is usually 1 to It is in the range of 100% by weight, preferably 1 to 70% by weight, particularly preferably 1 to 30%.

本発明の前記の各光学分割剤を用いて、光学活性体混合物を光学分割する方法としては、特に限定するものではないが、例えば、ガスクロマトグラフィー、高速液体クロマトグラフィー、薄層クロマトグラフィー等のクロマトグラフィー法により、光学活性体混合物を分離することによって、目的とする光学活性化合物を容易に得ることができる。   A method for optically resolving an optically active substance mixture using each of the optical resolution agents of the present invention is not particularly limited, and examples thereof include gas chromatography, high performance liquid chromatography, and thin layer chromatography. The target optically active compound can be easily obtained by separating the optically active substance mixture by chromatography.

本発明の光学分割剤を、例えば、高速液体クロマトグラフィー用のカラム充填剤の固定相成分として使用でき、その場合、溶離液としては、本発明の光学分割剤を溶解またはこれと反応する液体を除いて特に限定するものではなく、ヘキサン−2−プロパノール等を用いる順相系、アルコール−水等を用いる逆相系のいずれも応用可能である。   The optical resolution agent of the present invention can be used, for example, as a stationary phase component of a column packing material for high performance liquid chromatography. In that case, as an eluent, a liquid that dissolves or reacts with the optical resolution agent of the present invention is used. There is no particular limitation, and any of a normal phase system using hexane-2-propanol and a reverse phase system using alcohol-water can be applied.

以下、本発明について実施例および参考例に基づき具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
実施例1〜8において、原料である一般式(II)で表されるモノマー化合物の調製方法を説明する。実施例9および10において、実施例1〜8において調製された各モノマー化合物を用いたポリマーIの製造例および物性値、ならびに酸についての応答性を説明する。また、実施例11および12において、ポリマーゲルの製造および光学分割試験を説明する。なお、以下の合成および分析には、BACHEM社製、和光純薬工業社製、または東京化成工業社製の特級もしくは分析用試薬を用いた。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a reference example, this invention is not limited to these Examples at all.
In Examples 1-8, the preparation method of the monomer compound represented by general formula (II) which is a raw material is demonstrated. In Examples 9 and 10, Production Examples and physical property values of Polymer I using each monomer compound prepared in Examples 1 to 8, and responsiveness to acid will be described. In Examples 11 and 12, the production of polymer gel and the optical resolution test are described. In the following synthesis and analysis, special grades or analytical reagents manufactured by BACHEM, Wako Pure Chemical Industries, or Tokyo Chemical Industry were used.

実施例1:N-α-tert-ブトキシカルボニル-N-δ-ベンジルオキシカルボニル-L-オルニチン N’-プロパルギルアミド(1)の調製
N-α-tert-ブトキシカルボニル-N-δ-ベンジルオキシカルボニル-L-オルニチン (5.5 g, 15 mmol)およびプロパルギルアミン (0.83 g, 15 mmol)をAcOEt (100 mL)に溶解し、得られた溶液を室温にて10分間撹拌した。その溶液に4-[4,6-ジメトキシ-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウム クロリド (TRIAZIMOCH, 4.2 g, 15 mmol)を添加し、得られた混合物を室温にて一晩撹拌した。混合物を引き続いて、0.5 M HCl、飽和NaHCO3水溶液および飽和NaCl水溶液で洗浄し、無水MgSO4で乾燥させ、ロータリーエバポレーターで濃縮した。残渣をn-ヘキサン/AcOEt (1/2, v/v)で溶出するシリカゲルカラムクロマトグラフィーにより精製して、61%の収率で1を得た。融点 118-119 ℃, [α]D = -2.6° (c = 0.1 g/dL, CHCl3, 室温). 1H-NMR (400 MHz, CDCl3): δ 1.43-1.79 [m, 13H, (CH3)3, CH2CH2CH2NH], 2.19 (s, 1H, HC≡), 3.16-3.36 (m, 2H, CH2CH2NH), 3.99 (s, 2H, ≡CCH2), 4.27 (s, 1H, COCHNH), 5.10 (s, 3H, CH2C6H5, NHCO), 5.32 (s, 1H, NHCOO), 6.78 (s, 1H, NHCOO), 7.34 (s, 5H, C6H5). 13C-NMR (100 MHz, CDCl3): δ 26.17, 28.33, 29.01, 39.73, 53.85, 66.70, 71.51, 79.36,79.98, 127.96, 128.49, 155.89 (NHCOO), 156.94 (NHCOO), 172.05 (NHCO). IR (cm-1, KBr): 3332 (HC≡), 2125 (C≡C), 1687 (NHCOO), 1659 (NHCO), 1529, 1465, 1368, 1296, 1274, 1173, 1055, 1020, 868, 644. 元素分析 C21H29N3O5として 計算値: C, 62.51; H, 7.24; N, 10.41. 実測値: C, 62.32; H, 7.20; N, 10.52.
Example 1: Preparation of N-α-tert-butoxycarbonyl-N-δ-benzyloxycarbonyl-L-ornithine N′-propargylamide (1)
N-α-tert-butoxycarbonyl-N-δ-benzyloxycarbonyl-L-ornithine (5.5 g, 15 mmol) and propargylamine (0.83 g, 15 mmol) were dissolved in AcOEt (100 mL) and obtained The solution was stirred at room temperature for 10 minutes. 4- [4,6-Dimethoxy-1,3,5-triazin-2-yl] -4-methylmorpholinium chloride (TRIAZIMOCH, 4.2 g, 15 mmol) was added to the solution, and the resulting mixture was Stir at room temperature overnight. The mixture was subsequently washed with 0.5 M HCl, saturated aqueous NaHCO 3 solution and saturated aqueous NaCl solution, dried over anhydrous MgSO 4 and concentrated on a rotary evaporator. The residue was purified by silica gel column chromatography eluting with n-hexane / AcOEt (1/2, v / v) to give 1 in 61% yield. Melting point 118-119 ° C, [α] D = -2.6 ° (c = 0.1 g / dL, CHCl 3 , room temperature). 1 H-NMR (400 MHz, CDCl 3 ): δ 1.43-1.79 [m, 13H, ( CH 3 ) 3 , CH 2 CH 2 CH 2 NH], 2.19 (s, 1H, HC≡), 3.16-3.36 (m, 2H, CH 2 CH 2 NH), 3.99 (s, 2H, ≡CCH 2 ), 4.27 (s, 1H, COCHNH), 5.10 (s, 3H, CH 2 C 6 H 5 , NHCO), 5.32 (s, 1H, NHCOO), 6.78 (s, 1H, NHCOO), 7.34 (s, 5H, C . 6 H 5) 13 C- NMR (100 MHz, CDCl 3): δ 26.17, 28.33, 29.01, 39.73, 53.85, 66.70, 71.51, 79.36,79.98, 127.96, 128.49, 155.89 (NHCOO), 156.94 (NHCOO), 172.05 (NHCO). IR (cm -1 , KBr): 3332 (HC≡), 2125 (C≡C), 1687 (NHCOO), 1659 (NHCO), 1529, 1465, 1368, 1296, 1274, 1173, 1055 , 1020, 868, 644. Elemental analysis Calculated as C 21 H 29 N 3 O 5 : C, 62.51; H, 7.24; N, 10.41. Found: C, 62.32; H, 7.20; N, 10.52.

実施例2:N-α-tert-ブトキシカルボニル-N-ε-ベンジルオキシカルボニル-L-リジン N’-プロパルギルアミド(2)の調製
表題化合物は、N-α-tert-ブトキシカルボニル-N-ε-ベンジルオキシカルボニル-L-リジンおよびプロパルギルアミンから実施例1と同様に合成した。収率 68% (白色固体)。融点 114-115℃, [α]D = 2.4° (c = 0.1 g/dL, CHCl3, 室温). 1H-NMR (400 MHz, CDCl3): δ 1.43-1.80 [m, 15H, (CH3)3, CH2CH2CH2CH2NH], 2.21 (s, 1H, HC≡), 3.16-3.18 (m, 2H, CH2CH2NH), 4.01 (s, 2H, ≡CCH2), 4.12 (s, 1H, COCHNH), 5.09 (s, 3H, CH2C6H5, NHCO), 5.38 (s, 1H, NHCOO), 6.92 (s, 1H, NHCOO), 7.33 (s, 5H, C6H5). 13C-NMR (100 MHz, CDCl3): δ 22.39, 28.96, 29.36, 31.85, 40.34, 54.03, 66.55, 71.49, 79.32, 80.04, 127.81, 128.02, 128.43, 155.83 (NHCOO), 156.56 (NHCOO), 171.93 (NHCO). IR (cm-1, KBr): 3313 (HC≡), 2125 (C≡C), 1689 (NHCOO), 1658 (NHCO), 1538, 1458, 1373, 1268, 1169, 1068, 1018, 860, 667. 元素分析 C22H31N3O5として 計算値: C, 63.29; H, 7.48; N, 10.06. 実測値: C, 63.19; H, 7.60; N, 10.24.
Example 2: Preparation of N-α-tert-butoxycarbonyl-N-ε-benzyloxycarbonyl-L-lysine N'-propargylamide (2) The title compound is N-α-tert-butoxycarbonyl-N-ε Synthesis was performed in the same manner as in Example 1 from -benzyloxycarbonyl-L-lysine and propargylamine. Yield 68% (white solid). Melting point 114-115 ° C, [α] D = 2.4 ° (c = 0.1 g / dL, CHCl 3 , room temperature). 1 H-NMR (400 MHz, CDCl 3 ): δ 1.43-1.80 [m, 15H, (CH 3 ) 3 , CH 2 CH 2 CH 2 CH 2 NH], 2.21 (s, 1H, HC≡), 3.16-3.18 (m, 2H, CH 2 CH 2 NH), 4.01 (s, 2H, ≡CCH 2 ) , 4.12 (s, 1H, COCHNH), 5.09 (s, 3H, CH 2 C 6 H 5 , NHCO), 5.38 (s, 1H, NHCOO), 6.92 (s, 1H, NHCOO), 7.33 (s, 5H, C 6 H 5 ). 13 C-NMR (100 MHz, CDCl 3 ): δ 22.39, 28.96, 29.36, 31.85, 40.34, 54.03, 66.55, 71.49, 79.32, 80.04, 127.81, 128.02, 128.43, 155.83 (NHCOO), 156.56 (NHCOO), 171.93 (NHCO) .IR (cm -1 , KBr): 3313 (HC≡), 2125 (C≡C), 1689 (NHCOO), 1658 (NHCO), 1538, 1458, 1373, 1268, 1169, 1068, 1018, 860, 667. Elemental analysis Calculated as C 22 H 31 N 3 O 5 : C, 63.29; H, 7.48; N, 10.06. Found: C, 63.19; H, 7.60; N, 10.24 .

実施例3:N-α-ベンジルオキシカルボニル-N-δ-tert-ブトキシカルボニル-L-オルニチン N’-プロパルギルアミド(3)の調製
表題化合物は、N-α-ベンジルオキシカルボニル-N-δ-tert-ブトキシカルボニル-L-オルニチンおよびプロパルギルアミンから実施例1と同様に合成した。収率 57% (白色固体)。融点 129-130 ℃, [α]D = 9.5°(c = 0.1 g/dL, CHCl3, 室温). 1H-NMR (400 MHz, CDCl3): δ 1.44-1.79 [m, 13H, (CH3)3, CH2CH2CH2NH], 2.35 (s, 1H, HC≡), 3.05-3.35 (m, 2H, CH2CH2NH), 4.00 (s, 2H, ≡CCH2), 4.24 (s, 1H, COCHNH), 4.81 (s, 1H, NHCO), 5.09 (s, 2H, CH2C6H5), 5.70 (s, 1H, NHCOO), 7.10 (s, 1H, NHCOO), 7.34 (s, 5H, C6H5). 13C-NMR (100 MHz, CDCl3): δ 26.34, 28.38, 29.03, 38.87, 58.31, 65.84, 67.00, 71.55, 79.42, 123.57, 127.98, 128.48, 156.38 (NHCOO), 156.72 (NHCOO), 171.84 (NHCO). IR (cm-1, KBr): 3296 (HC≡), 2127 (C≡C), 1684 (NHCOO), 1649 (NHCO), 1540, 1449, 1368, 1274, 1254, 1141, 1054, 1030, 863, 670. 元素分析 C21H29N3O5として 計算値: C, 62.51; H, 7.24; N, 10.41. 実測値: C, 62.51; H, 7.13; N, 10.50.
Example 3: Preparation of N-α-benzyloxycarbonyl-N-δ-tert-butoxycarbonyl-L-ornithine N'-propargylamide (3) The title compound is N-α-benzyloxycarbonyl-N-δ- Synthesis was performed in the same manner as in Example 1 from tert-butoxycarbonyl-L-ornithine and propargylamine. Yield 57% (white solid). Melting point 129-130 ℃, [α] D = 9.5 ° (c = 0.1 g / dL, CHCl 3 , room temperature). 1 H-NMR (400 MHz, CDCl 3 ): δ 1.44-1.79 [m, 13H, (CH 3 ) 3 , CH 2 CH 2 CH 2 NH], 2.35 (s, 1H, HC≡), 3.05-3.35 (m, 2H, CH 2 CH 2 NH), 4.00 (s, 2H, ≡CCH 2 ), 4.24 (s, 1H, COCHNH), 4.81 (s, 1H, NHCO), 5.09 (s, 2H, CH 2 C 6 H 5 ), 5.70 (s, 1H, NHCOO), 7.10 (s, 1H, NHCOO), 7.34 . (s, 5H, C 6 H 5) 13 C-NMR (100 MHz, CDCl 3): δ 26.34, 28.38, 29.03, 38.87, 58.31, 65.84, 67.00, 71.55, 79.42, 123.57, 127.98, 128.48, 156.38 ( NHCOO), 156.72 (NHCOO), 171.84 (NHCO) .IR (cm -1 , KBr): 3296 (HC≡), 2127 (C≡C), 1684 (NHCOO), 1649 (NHCO), 1540, 1449, 1368 , 1274, 1254, 1141, 1054, 1030, 863, 670. Elemental analysis Calculated as C 21 H 29 N 3 O 5 : C, 62.51; H, 7.24; N, 10.41. Found: C, 62.51; H, 7.13; N, 10.50.

実施例4:N-α-ベンジルオキシカルボニル-N-ε-tert-ブトキシカルボニル-L-リジン N’-プロパルギルアミド(4)の調製
表題化合物は、N-α-ベンジルオキシカルボニル-N-ε-tert-ブトキシカルボニル-L-リジンおよびプロパルギルアミンから実施例1と同様に合成した。収率 71% (白色固体)。融点 98.5-99.5 ℃, [α]D = 7.3° (c = 0.1 g/dL, CHCl3, 室温). 1H-NMR (400 MHz, CDCl3): δ 1.38-1.67 [m, 15H, (CH3)3, CH2CH2CH2CH2NH], 2.22 (s, 1H, HC≡), 3.08 (s, 2H, CH2CH2NH), 4.01 (s, 2H, ≡CCH2), 4.18 (s, 1H, COCHNH), 4.68 (s, 1H, NHCO), 5.10 (s, 2H, CH2C6H5), 5.66 (s, 1H, NHCOO), 6.78 (s, 1H, NHCOO), 7.34 (s, 5H, C6H5). 13C-NMR (100 MHz, CDCl3): δ 22.34, 28.38, 29.54, 31.93, 39.73, 54.64, 67.11, 71.68, 79.22, 128.04, 128.19, 128.50, 156.20 (NHCOO), 156.37 (NHCOO), 171.56 (NHCO). IR (cm-1, KBr): 3344 (HC≡), 2121 (C≡C), 1689 (NHCOO), 1658 (NHCO), 1535, 1454, 1369, 1268, 1165, 1037, 9933, 872, 660. 元素分析 C22H31N3O5として 計算値: C, 63.29; H, 7.48; N, 10.06. 実測値: C, 63.17; H, 7.57; N, 10.16.
Example 4: Preparation of N-α-benzyloxycarbonyl-N-ε-tert-butoxycarbonyl-L-lysine N'-propargylamide (4) The title compound is N-α-benzyloxycarbonyl-N-ε- Synthesis was performed in the same manner as in Example 1 from tert-butoxycarbonyl-L-lysine and propargylamine. Yield 71% (white solid). Melting point 98.5-99.5 ℃, [α] D = 7.3 ° (c = 0.1 g / dL, CHCl 3 , room temperature). 1 H-NMR (400 MHz, CDCl 3 ): δ 1.38-1.67 [m, 15H, (CH 3 ) 3 , CH 2 CH 2 CH 2 CH 2 NH], 2.22 (s, 1H, HC≡), 3.08 (s, 2H, CH 2 CH 2 NH), 4.01 (s, 2H, ≡CCH 2 ), 4.18 (s, 1H, COCHNH), 4.68 (s, 1H, NHCO), 5.10 (s, 2H, CH 2 C 6 H 5 ), 5.66 (s, 1H, NHCOO), 6.78 (s, 1H, NHCOO), 7.34 . (s, 5H, C 6 H 5) 13 C-NMR (100 MHz, CDCl 3): δ 22.34, 28.38, 29.54, 31.93, 39.73, 54.64, 67.11, 71.68, 79.22, 128.04, 128.19, 128.50, 156.20 ( NHCOO), 156.37 (NHCOO), 171.56 (NHCO) .IR (cm -1 , KBr): 3344 (HC≡), 2121 (C≡C), 1689 (NHCOO), 1658 (NHCO), 1535, 1454, 1369 , 1268, 1165, 1037, 9933, 872, 660. Elemental analysis Calculated as C 22 H 31 N 3 O 5 : C, 63.29; H, 7.48; N, 10.06. Found: C, 63.17; H, 7.57; N, 10.16.

実施例5:N-α-tert-ブトキシカルボニル-N-δ-フルオレニルメトキシカルボニル-L-オルニチン N’-プロパルギルアミド(5)の調製
表題化合物は、N-α-tert-ブトキシカルボニル-N-δ-フルオレニルメトキシカルボニル-L-オルニチンおよびプロパルギルアミンから実施例1と同様に合成した。収率61% (白色固体)。融点 127-128 ℃, [α]D = 5.4° (c = 0.1 g/dL, CHCl3, 室温). 1H-NMR (400 MHz, CDCl3): δ 1.38-2.02 [m, 15H, (CH3)3, CH2CH2CH2NH], 3.13 (s, 1H, HC≡), 3.87 (s, 2H, ≡CCH2), 4.18 (s, 2H, COCHNH, ArCHCH2), 4.33 (s, 2H, ArCHCH2), 5.13 (s, 1H, NHCO), 5.32 (s, 1H, NHCOO), 6.98 (s, 1H, NHCOO), 7.25-7.77 (m, 8H, Ar). 13C-NMR (100 MHz, CDCl3): δ 23.29, 26.44, 28.28, 29.02, 29.90, 41.38, 47.15, 49.62, 67.01, 71.50, 79.22, 119.95, 124.94, 127.00, 127.65, 141.23 (NHCOO), 141.70 (NHCOO), 172.10 (NHCO). IR (cm-1, KBr): 3325 (HC≡), 2108 (C≡C), 1689 (NHCOO), 1655 (NHCO), 1539, 1465, 1369, 1296, 1261, 1164, 1018, 937, 863, 659. 高分解能質量分析 C28H34N3O5 [M+H]+として計算値: 492.2498 実測値: 492.2513.
Example 5: Preparation of N-α-tert-butoxycarbonyl-N-δ-fluorenylmethoxycarbonyl-L-ornithine N'-propargylamide (5) The title compound is N-α-tert-butoxycarbonyl-N Synthesis was performed in the same manner as in Example 1 from -δ-fluorenylmethoxycarbonyl-L-ornithine and propargylamine. Yield 61% (white solid). Melting point 127-128 ℃, [α] D = 5.4 ° (c = 0.1 g / dL, CHCl 3 , room temperature). 1 H-NMR (400 MHz, CDCl 3 ): δ 1.38-2.02 [m, 15H, (CH 3 ) 3 , CH 2 CH 2 CH 2 NH], 3.13 (s, 1H, HC≡), 3.87 (s, 2H, ≡CCH 2 ), 4.18 (s, 2H, COCHNH, ArCHCH 2 ), 4.33 (s, 2H, ArCHCH 2), 5.13 ( s, 1H, NHCO), 5.32 (s, 1H, NHCOO), 6.98 (s, 1H, NHCOO), 7.25-7.77 (m, 8H, Ar). 13 C-NMR (100 (MHz, CDCl 3 ): δ 23.29, 26.44, 28.28, 29.02, 29.90, 41.38, 47.15, 49.62, 67.01, 71.50, 79.22, 119.95, 124.94, 127.00, 127.65, 141.23 (NHCOO), 141.70 (NHCOO), 172.10 (NHCO IR (cm -1 , KBr): 3325 (HC≡), 2108 (C≡C), 1689 (NHCOO), 1655 (NHCO), 1539, 1465, 1369, 1296, 1261, 1164, 1018, 937, 863, 659. High resolution mass spectrometry Calculated as C 28 H 34 N 3 O 5 [M + H] + : 492.2498 Found: 492.2513.

実施例6:N-α-tert-ブトキシカルボニル-N-ε-フルオレニルメトキシカルボニル-L-リジン N’-プロパルギルアミド(6)の調製
表題化合物は、N-α-tert-ブトキシカルボニル-N-ε-フルオレニルメトキシカルボニル-L-リジンおよびプロパルギルアミンから実施例1と同様に合成した。収率 54% (白色固体)。 融点 142-143 ℃, [α]D = 8.3° (c = 0.1 g/dL, CHCl3, 室温). 1H-NMR (400 MHz, CDCl3): δ 1.43-1.85 [m, 17H, (CH3)3, CH2CH2CH2CH2NH], 3.19 (s, 1H, HC≡), 3.98 (s, 2H, ≡CCH2), 4.04 (s, 2H, COCHNH, ArCHCH2), 4.24 (s, 2H, ArCHCH2), 4.97 (s, 1H, NHCO), 5.25 (s, 1H, NHCOO), 6.72 (s, 1H, NHCOO), 7.29-7.82 (m, 8H, Ar). 13C-NMR (100 MHz, CDCl3): δ 22.40, 28.37, 29.05, 31.95, 40.34, 47.00, 67.06, 71.63, 79.15, 81.72, 119.90, 125.00, 127.00, 127.67, 141.26, 143.64, 156.65 (NHCOO), 158.95 (NHCOO), 171.61 (NHCO). IR (cm-1, KBr): 3313 (HC≡), 2112 (C≡C), 1683 (NHCOO), 1654 (NHCO), 1542, 1473, 1373, 1261, 1157, 933, 814, 740, 659. 高分解能質量分析 C29H36N3O5 [M + H]+として 計算値: 506.2655. 実測値: 506.2658.
Example 6: Preparation of N-α-tert-butoxycarbonyl-N-ε-fluorenylmethoxycarbonyl-L-lysine N'-propargylamide (6) The title compound is N-α-tert-butoxycarbonyl-N Synthesis was performed in the same manner as in Example 1 from -ε-fluorenylmethoxycarbonyl-L-lysine and propargylamine. Yield 54% (white solid). Melting point 142-143 ℃, [α] D = 8.3 ° (c = 0.1 g / dL, CHCl 3 , room temperature). 1 H-NMR (400 MHz, CDCl 3 ): δ 1.43-1.85 [m, 17H, (CH 3 ) 3 , CH 2 CH 2 CH 2 CH 2 NH], 3.19 (s, 1H, HC≡), 3.98 (s, 2H, ≡CCH 2 ), 4.04 (s, 2H, COCHNH, ArCHCH 2 ), 4.24 ( s, 2H, ArCHCH 2 ), 4.97 (s, 1H, NHCO), 5.25 (s, 1H, NHCOO), 6.72 (s, 1H, NHCOO), 7.29-7.82 (m, 8H, Ar). 13 C-NMR (100 MHz, CDCl 3 ): δ 22.40, 28.37, 29.05, 31.95, 40.34, 47.00, 67.06, 71.63, 79.15, 81.72, 119.90, 125.00, 127.00, 127.67, 141.26, 143.64, 156.65 (NHCOO), 158.95 (NHCOO) , 171.61 (NHCO). IR (cm -1 , KBr): 3313 (HC≡), 2112 (C≡C), 1683 (NHCOO), 1654 (NHCO), 1542, 1473, 1373, 1261, 1157, 933, 814, 740, 659. High resolution mass spectrometry As C 29 H 36 N 3 O 5 [M + H] + Calculated value: 506.2655. Found: 506.2658.

実施例7:N-α-フルオレニルメトキシカルボニル-N-δ-tert-ブトキシカルボニル-L-オルニチン N’-プロパルギルアミド(7)の調製
表題化合物は、N-α-フルオレニルメトキシカルボニル-N-δ-tert-ブトキシカルボニル-L-オルニチンおよびプロパルギルアミンから実施例1と同様に合成した。収率 47% (白色固体)。 融点 118.5-119.5 ℃, [α]D = 7.9°(c = 0.1 g/dL, CHCl3, 室温). 1H-NMR (400 MHz, CDCl3): δ 1.46-2.17 [m, 15H, (CH3)3, CH2CH2CH2NH], 3.08 (s, 1H, HC≡), 4.01 (s, 2H, ≡CCH2), 4.21 (s, 2H, COCHNH, ArCHCH2), 4.38 (s, 2H, ArCHCH2), 4.81 (s, 1H, NHCO), 5.77 (s, 1H, NHCOO), 7.08 (s, 1H, NHCOO), 7.29-7.76 (m, 8H, Ar). 13C-NMR (100 MHz, CDCl3): δ 23.17, 26.42, 28.43, 29.03, 30.87, 41.38, 47.09, 49.68, 66.95, 71.50, 79.22, 79.41, 119.92, 125.08, 127.02, 127.65, 144.23 (NHCOO), 143.70 (NHCOO), 172.01 (NHCO). IR (cm-1, KBr): 3305 (HC≡), 2114 (C≡C), 1689 (NHCOO), 1657 (NHCO), 1531, 1465, 1368, 1296, 1249, 1170, 1057, 1022, 863, 740. 高分解能質量分析 C28H34N3O5 [M + H]+として 計算値: 492.2498. 実測値: 492.2508.
Example 7: Preparation of N-α-fluorenylmethoxycarbonyl-N-δ-tert-butoxycarbonyl-L-ornithine N'-propargylamide (7) The title compound is N-α-fluorenylmethoxycarbonyl- Synthesis was performed in the same manner as in Example 1 from N-δ-tert-butoxycarbonyl-L-ornithine and propargylamine. Yield 47% (white solid). Melting point 118.5-119.5 ℃, [α] D = 7.9 ° (c = 0.1 g / dL, CHCl 3 , room temperature). 1 H-NMR (400 MHz, CDCl 3 ): δ 1.46-2.17 [m, 15H, (CH 3 ) 3 , CH 2 CH 2 CH 2 NH], 3.08 (s, 1H, HC≡), 4.01 (s, 2H, ≡CCH 2 ), 4.21 (s, 2H, COCHNH, ArCHCH 2 ), 4.38 (s, 2H, ArCHCH 2), 4.81 ( s, 1H, NHCO), 5.77 (s, 1H, NHCOO), 7.08 (s, 1H, NHCOO), 7.29-7.76 (m, 8H, Ar). 13 C-NMR (100 (MHz, CDCl 3 ): δ 23.17, 26.42, 28.43, 29.03, 30.87, 41.38, 47.09, 49.68, 66.95, 71.50, 79.22, 79.41, 119.92, 125.08, 127.02, 127.65, 144.23 (NHCOO), 143.70 (NHCOO), 172.01 (NHCO). IR (cm -1 , KBr): 3305 (HC≡), 2114 (C≡C), 1689 (NHCOO), 1657 (NHCO), 1531, 1465, 1368, 1296, 1249, 1170, 1057, 1022, 863, 740. High resolution mass spectrometry As C 28 H 34 N 3 O 5 [M + H] + Calculated value: 492.2498. Found: 492.2508.

実施例8:N-α-フルオレニルメトキシカルボニル-N-ε-tert-ブトキシカルボニル-L-リジン N’-プロパルギルアミド(8)の調製
表題化合物は、N-α-フルオレニルメトキシカルボニル-N-ε-tert-ブトキシカルボニル-L-リジンおよびプロパルギルアミンから実施例1と同様に合成した。収率 42% (白色固体)。 融点 158-159 ℃, [α]D = 10.1° (c = 0.1 g/dL, CHCl3, 室温). 1H-NMR (400 MHz, CDCl3): δ 1.47-2.16 [m, 17H, (CH3)3, CH2CH2CH2CH2NH], 3.09 (s, 1H, HC≡), 4.01 (s, 2H, ≡CCH2), 4.20 (s, 2H, COCHNH, ArCHCH2), 4.40 (s, 2H, ArCHCH2), 4.67 (s, 1H, NHCO), 5.62 (s, 1H, NHCOO), 6.71 (s, 1H, NHCOO), 7.30-7.77 (m, 8H, Ar). 13C-NMR (100 MHz, CDCl3): δ 22.39, 28.38, 29.12, 30.88, 40.34, 47.07, 67.04, 71.70, 79.15, 80.92, 119.95, 125.02, 127.06, 127.71, 141.25, 143.66, 156.18 (NHCOO), 171.46 (NHCO). IR (cm-1, KBr): 3301 (HC≡), 2103 (C≡C), 1685 (NHCOO), 1653 (NHCO), 1535, 1458, 1369, 1246, 1169, 1064, 1018, 744, 651. 高分解能質量分析 C29H36N3O5 [M + H]+として 計算値: 506.2655. 実測値: 506.2653.
Example 8: Preparation of N-α-fluorenylmethoxycarbonyl-N-ε-tert-butoxycarbonyl-L-lysine N'-propargylamide (8) The title compound is N-α-fluorenylmethoxycarbonyl- Synthesis was performed in the same manner as in Example 1 from N-ε-tert-butoxycarbonyl-L-lysine and propargylamine. Yield 42% (white solid). Melting point 158-159 ℃, [α] D = 10.1 ° (c = 0.1 g / dL, CHCl 3 , room temperature). 1 H-NMR (400 MHz, CDCl 3 ): δ 1.47-2.16 [m, 17H, (CH 3 ) 3 , CH 2 CH 2 CH 2 CH 2 NH], 3.09 (s, 1H, HC≡), 4.01 (s, 2H, ≡CCH 2 ), 4.20 (s, 2H, COCHNH, ArCHCH 2 ), 4.40 ( s, 2H, ArCHCH 2 ), 4.67 (s, 1H, NHCO), 5.62 (s, 1H, NHCOO), 6.71 (s, 1H, NHCOO), 7.30-7.77 (m, 8H, Ar). 13 C-NMR (100 MHz, CDCl 3 ): δ 22.39, 28.38, 29.12, 30.88, 40.34, 47.07, 67.04, 71.70, 79.15, 80.92, 119.95, 125.02, 127.06, 127.71, 141.25, 143.66, 156.18 (NHCOO), 171.46 (NHCO) IR (cm -1 , KBr): 3301 (HC≡), 2103 (C≡C), 1685 (NHCOO), 1653 (NHCO), 1535, 1458, 1369, 1246, 1169, 1064, 1018, 744, 651 High resolution mass spectrometry C 29 H 36 N 3 O 5 As [M + H] + Calculated value: 506.2655. Found: 506.2653.

実施例9: ポリマーIの製造
重合反応は、窒素下、三方コックを備え付けた10mL容のガラス管において行った。(nbd)Rh+[η6-C6H5B(C6H5)3] (0.02 mmol)をTHF (5.0 mL)中の実施例1〜8で製造された各モノマー(0.20 mmol)の溶液に添加し、得られた混合物を激しく撹拌した。混合物を水浴中で30℃に3時間保った。得られた混合物をn-ヘキサン (250 mL)に注ぎ、ポリマーを沈殿させた。沈殿物をメンブランフィルター(ADVANTEC H100A047A)を用いるろ過により分離し、減圧下で乾燥させ、上記モノマーに対応するポリマーI、Poly(1)〜Poly(8)を得た。
Example 9 Production of Polymer I The polymerization reaction was carried out in a 10 mL glass tube equipped with a three-way cock under nitrogen. (nbd) Rh + [η 6 -C 6 H 5 B (C 6 H 5 ) 3 ] (0.02 mmol) in THF (5.0 mL) solution of each monomer (0.20 mmol) prepared in Examples 1-8 And the resulting mixture was stirred vigorously. The mixture was kept in a water bath at 30 ° C. for 3 hours. The resulting mixture was poured into n-hexane (250 mL) to precipitate the polymer. The precipitate was separated by filtration using a membrane filter (ADVANTEC H100A047A) and dried under reduced pressure to obtain Polymers I, Poly (1) to Poly (8) corresponding to the above monomers.

ポリマーIの分光学的データ
1)Poly(1).
1H-NMR (400 MHz, CDCl3): δ 1.37 [br, 13H, (CH3)3, CH2CH2CH2NH], 3.02 (br, 2H, CH2CH2NH), 4.02 (br, 3H, CH2NHCO, COCHNH), 5.03 (br, 3H, CH2C6H5, NHCO), 5.92 (br, 1H, CH=), 6.45 (br, 2H, CH2NHCOO, CHNHCOO), 7.26 (br, 5H, C6H5). IR (cm-1, KBr): 3307 (NHCO), 1697 (C=O), 1651 (NHCO), 1250, 1169, 1027.
2)Poly(2).
1H-NMR (400 MHz, CDCl3): δ 1.33 [br, 15H, (CH3)3, CH2CH2CH2CH2NH], 3.10 (br, 2H, CH2CH2NH), 4.05 (br, 3H, CH2NHCO, COCHNH), 5.02 (br, 3H, CH2C6H5, NHCO), 6.01 (br, 1H, CH=), 6.14 (br, 2H, CH2NHCOO, CHNHCOO), 7.26 (br, 5H, C6H5). IR (cm-1, KBr): 3313 (NHCO), 1700 (C=O), 1654 (NHCO), 1254, 1169, 1022.
3)Poly(3).
1H-NMR (400 MHz, CDCl3): δ 1.37 [br, 13H, (CH3)3, CH2CH2CH2NH], 3.03 (br, 2H, CH2CH2NH), 4.03 (br, 3H, CH2NH, COCHNH), 4.92 (br, 3H, CH2C6H5, NHCO), 5.84 (br, 1H, CH=), 6.38 (br, 2H, CH2NHCOO, CHNHCOO), 7.26 (br, 5H, C6H5). IR (cm-1, KBr): 3307 (NHCO), 1701 (C=O), 1655 (NHCO), 1254, 1168, 1026.
4)Poly(4).
1H-NMR (400 MHz, CDCl3): δ 1.39 [br, 15H,(CH3)3, CH2CH2CH2CH2NH], 2.98 (br, 2H, CH2CH2NH), 3.75 (br, 3H, CH2NHCO, COCHNH), 5.06 (br, 3H, CH2C6H5, NHCO), 5.96 (br, 1H, CH=), 6.25 (br, 2H, CH2NHCOO, CHNHCOO), 7.26 (br, 5H, C6H5). IR (cm-1, KBr): 3320 (NHCO), 1700 (C=O), 1654 (NHCO), 1257, 1168, 1037.
5)Poly(5).
1H-NMR (400 MHz, CDCl3): δ 1.39 [br, 15H, (CH3)3, CH2CH2CH2NH], 4.21 (br, 6H, CH2NHCO, COCHNH, CH2COONH, CHCH2COONH,), 5.06 (br, 1H, NHCO), 6.15 (br, 1H, CH=), 6.87 (br, 2H, CH2NHCOO, CHNHCOO), 7.39 (br, 8H, Ar). IR (cm-1, KBr): 3325 (NHCO), 1701 (C=O), 1651 (NHCO), 1531, 1253, 1169.
6)Poly(6).
1H-NMR (400 MHz, CDCl3): δ 1.42 [br, 17H,(CH3)3, CH2CH2CH2CH2NH], 4.04 (br, 6H, CH2NHCO, COCHNH, CH2COONH, CHCH2COONH,), 5.89 (br, 1H, CH=), 6.51 (br, 2H, CH2NHCOO, CHNHCOO), 7.39 (br, 8H, Ar). IR (cm-1, KBr): 3316 (NHCO), 1701 (C=O), 1649 (NHCO), 1531, 1369, 1249, 1165.
7)Poly(7).
1H-NMR (400 MHz, CDCl3): δ 1.37 [br, 15H, (CH3)3, CH2CH2CH2NH], 4.00 (br, 6H, CH2NHCO, COCHNH, CH2COONH, CHCH2COONH,), 5.01 (br, 1H, NHCO), 6.17 (br, 1H, CH=), 6.58 (br, 2H, CH2NHCOO, CHNHCOO), 7.32 (br, 8H, Ar). IR (cm-1, KBr): 3309 (NHCO), 1697 (C=O), 1653 (NHCO), 1519, 1249, 1169, 868, 744.
8)Poly(8).
1H-NMR (400 MHz, CDCl3): δ 1.34 [br, 17H, (CH3)3, CH2CH2CH2CH2NH], 3.99 (br, 6H, CH2NHCO, COCHNH, CH2COONH, CHCH2COONH,), 6.07 (br, 1H, CH=), 6.34 (br, 2H, CH2NHCOO, CHNHCOO), 7.36 (br, 8H, Ar). IR (cm-1, KBr): 3301 (NHCO), 1697 (C=O), 1652 (NHCO), 1246, 1167, 1012, 864.
Spectroscopic data of polymer I 1) Poly (1).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.37 [br, 13H, (CH 3 ) 3 , CH 2 CH 2 CH 2 NH], 3.02 (br, 2H, CH 2 CH 2 NH), 4.02 (br , 3H, CH 2 NHCO, COCHNH), 5.03 (br, 3H, CH 2 C 6 H 5 , NHCO), 5.92 (br, 1H, CH =), 6.45 (br, 2H, CH 2 NHCOO, CHNHCOO), 7.26 (br, 5H, C 6 H 5 ). IR (cm -1 , KBr): 3307 (NHCO), 1697 (C = O), 1651 (NHCO), 1250, 1169, 1027.
2) Poly (2).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.33 [br, 15H, (CH 3 ) 3 , CH 2 CH 2 CH 2 CH 2 NH], 3.10 (br, 2H, CH 2 CH 2 NH), 4.05 (br, 3H, CH 2 NHCO, COCHNH), 5.02 (br, 3H, CH 2 C 6 H 5 , NHCO), 6.01 (br, 1H, CH =), 6.14 (br, 2H, CH 2 NHCOO, CHNHCOO) , 7.26 (br, 5H, C 6 H 5 ) .IR (cm -1 , KBr): 3313 (NHCO), 1700 (C = O), 1654 (NHCO), 1254, 1169, 1022.
3) Poly (3).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.37 [br, 13H, (CH 3 ) 3 , CH 2 CH 2 CH 2 NH], 3.03 (br, 2H, CH 2 CH 2 NH), 4.03 (br , 3H, CH 2 NH, COCHNH), 4.92 (br, 3H, CH 2 C 6 H 5 , NHCO), 5.84 (br, 1H, CH =), 6.38 (br, 2H, CH 2 NHCOO, CHNHCOO), 7.26 (br, 5H, C 6 H 5 ). IR (cm -1 , KBr): 3307 (NHCO), 1701 (C = O), 1655 (NHCO), 1254, 1168, 1026.
4) Poly (4).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.39 [br, 15H, (CH 3 ) 3 , CH 2 CH 2 CH 2 CH 2 NH], 2.98 (br, 2H, CH 2 CH 2 NH), 3.75 (br, 3H, CH 2 NHCO, COCHNH), 5.06 (br, 3H, CH 2 C 6 H 5 , NHCO), 5.96 (br, 1H, CH =), 6.25 (br, 2H, CH 2 NHCOO, CHNHCOO) , 7.26 (br, 5H, C 6 H 5 ) .IR (cm -1 , KBr): 3320 (NHCO), 1700 (C = O), 1654 (NHCO), 1257, 1168, 1037.
5) Poly (5).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.39 [br, 15H, (CH 3 ) 3 , CH 2 CH 2 CH 2 NH], 4.21 (br, 6H, CH 2 NHCO, COCHNH, CH 2 COONH, CHCH 2 COONH,), 5.06 (br, 1H, NHCO), 6.15 (br, 1H, CH =), 6.87 (br, 2H, CH 2 NHCOO, CHNHCOO), 7.39 (br, 8H, Ar). IR (cm -1 , KBr): 3325 (NHCO), 1701 (C = O), 1651 (NHCO), 1531, 1253, 1169.
6) Poly (6).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.42 [br, 17H, (CH 3 ) 3 , CH 2 CH 2 CH 2 CH 2 NH], 4.04 (br, 6H, CH 2 NHCO, COCHNH, CH 2 COONH, CHCH 2 COONH,), 5.89 (br, 1H, CH =), 6.51 (br, 2H, CH 2 NHCOO, CHNHCOO), 7.39 (br, 8H, Ar). IR (cm -1 , KBr): 3316 (NHCO), 1701 (C = O), 1649 (NHCO), 1531, 1369, 1249, 1165.
7) Poly (7).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.37 [br, 15H, (CH 3 ) 3 , CH 2 CH 2 CH 2 NH], 4.00 (br, 6H, CH 2 NHCO, COCHNH, CH 2 COONH, CHCH 2 COONH,), 5.01 (br, 1H, NHCO), 6.17 (br, 1H, CH =), 6.58 (br, 2H, CH 2 NHCOO, CHNHCOO), 7.32 (br, 8H, Ar). IR (cm -1 , KBr): 3309 (NHCO), 1697 (C = O), 1653 (NHCO), 1519, 1249, 1169, 868, 744.
8) Poly (8).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.34 [br, 17H, (CH 3 ) 3 , CH 2 CH 2 CH 2 CH 2 NH], 3.99 (br, 6H, CH 2 NHCO, COCHNH, CH 2 COONH, CHCH 2 COONH,), 6.07 (br, 1H, CH =), 6.34 (br, 2H, CH 2 NHCOO, CHNHCOO), 7.36 (br, 8H, Ar). IR (cm -1 , KBr): 3301 (NHCO), 1697 (C = O), 1652 (NHCO), 1246, 1167, 1012, 864.

物性値   Physical property value

Figure 2008291207
a 条件: [M]0 = 0.2 M, 触媒 (nbd)Rh+6-C6H5B-(C6H5)3], [M]0/[cat] = 50
(30℃のTHF中で3時間)。 b n-ヘキサン-不溶性部分。
c ポリスチレン標準により較正したTHFで溶出するGPCにより測定。
Figure 2008291207
a condition: [M] 0 = 0.2 M , the catalyst (nbd) Rh + [η 6 -C 6 H 5 B - (C 6 H 5) 3], [M] 0 / [cat] = 50
(3 hours in THF at 30 ° C). b n-Hexane-insoluble part.
c Measured by GPC eluting with THF calibrated with polystyrene standards.

Figure 2008291207
a室温での偏光測定により測定 (c = 0.1-0.11 g/dL)。b 測定せず。
Figure 2008291207
measured by the polarization measurement at a room temperature (c = 0.1-0.11 g / dL) . b Not measured.

実施例1〜8の各モノマーをより得られたポリマーIの数平均分子量(Mn)は、4900〜12600の範囲にあり、分子量分布(Mw/Mn )は、1.59〜3.22の範囲であった(表1)。これは、重合が効率的に副反応無く進行したことを示している。 The number average molecular weight (Mn) of the polymer I obtained from each monomer of Examples 1 to 8 was in the range of 4900 to 12600, and the molecular weight distribution (M w / M n ) was in the range of 1.59 to 3.22. (Table 1). This indicates that the polymerization proceeded efficiently without side reactions.

また、温度変化、極性変化に対しても高い高次構造を取ることができる。表2に示すように、各種溶媒中でモノマーに比べて一桁大きい比旋光度を示すこと、図1に示すようにいずれのポリマーもクロロホルム中およびTHF中、主鎖ポリアセチレンの共役に基づくCDシグナル、UV-可視シグナルを400nm近辺に示したことから、主鎖がらせん構造を形成していることが分かる。図2、図3に示すように、これらのシグナルは0〜60℃の温度範囲ではほとんど強度変化を示さず、ポリマーのらせん構造が熱に対して安定であることが分かる。図4に示すように、ポリマーのクロロホルム溶液にメタノールを添加した場合、Poly(1)、Poly(2)、Poly(5)、Poly(6)はほとんどCDシグナル、UV-可視シグナルの変化を示さず、極性溶媒に対して安定ならせんであることが分かる。   In addition, a high-order structure can be taken with respect to temperature change and polarity change. As shown in Table 2, the specific optical rotation is an order of magnitude greater than that of the monomer in various solvents, and as shown in FIG. 1, the CD signals based on the conjugation of the main chain polyacetylene in chloroform and THF as shown in FIG. The UV-visible signal was shown around 400 nm, indicating that the main chain forms a helical structure. As shown in FIGS. 2 and 3, these signals show almost no intensity change in the temperature range of 0 to 60 ° C., indicating that the helical structure of the polymer is stable to heat. As shown in Fig. 4, when methanol was added to the polymer chloroform solution, Poly (1), Poly (2), Poly (5), and Poly (6) showed almost no change in CD signal and UV-visible signal. It can be seen that the helix is stable against polar solvents.

実施例10: 他のポリマーIの製造および酸に対する応答性
応答性の試験のための使用に際して、ポリマーのFMOC基を塩基性条件下で除去し、本願発明のポリマーIの範囲内のポリマーを調製した。典型的な製造例を下記に示す。
ピペリジン(10 mL)をCH2Cl2 (10 mL)中のPoly(5) (982 mg, 2 mmol)の溶液に添加した。得られた混合物を室温にて45分間撹拌し、次いでn-ヘキサン(150 mL)中に注いで、ポリマーを沈殿させた。沈殿物をメンブランフィルター(ADVANTEC H100A047A)を用いるろ過により集め、減圧下で乾燥させ、Poly(5a)を得た。
Example 10: Production of other polymers I and responsiveness to acid In use for responsiveness testing, the FMOC group of the polymer is removed under basic conditions to prepare a polymer within the scope of polymer I of the present invention. did. A typical production example is shown below.
Piperidine (10 mL) was added to a solution of Poly (5) (982 mg, 2 mmol) in CH 2 Cl 2 (10 mL). The resulting mixture was stirred at room temperature for 45 minutes and then poured into n-hexane (150 mL) to precipitate the polymer. The precipitate was collected by filtration using a membrane filter (ADVANTEC H100A047A) and dried under reduced pressure to obtain Poly (5a).

Figure 2008291207
Figure 2008291207

Poly(5a): 1H NMR (400 MHz, CDCl3): δ 1.54 [br, 13H, (CH3)3, CH2CH2CH2NH2], 2.80 (br, 2H, CH2NH2), 3.88 (br, 7H, CH2NHCO, COCHNHCOO, CH2NH2), 6.15 (br, 1H, CH=).
Poly(6a): 1H NMR (400 MHz, CDCl3): δ 1.54 [br, 15H, (CH3)3, CH2CH2CH2CH2NH2], 2.81 (br, 2H, CH2NH2), 3.89 (br, 7H, CH2NHCO, COCHNHCOO, CH2NH2), 6.16 (br, 1H, CH=).
図5に示すように、Poly(5a)について、フタル酸の添加量に依存してらせん状態が大きく変化し、酸に対する応答性が確認された。また、同様の結果が、Poly(6)から上記手順により得られたPoly(6a)についても観察された。
Poly (5a): 1 H NMR (400 MHz, CDCl 3 ): δ 1.54 [br, 13H, (CH 3 ) 3 , CH 2 CH 2 CH 2 NH 2 ], 2.80 (br, 2H, CH 2 NH 2 ) , 3.88 (br, 7H, CH 2 NHCO, COCHNHCOO, CH 2 NH 2 ), 6.15 (br, 1H, CH =).
Poly (6a): 1 H NMR (400 MHz, CDCl 3 ): δ 1.54 [br, 15H, (CH 3 ) 3 , CH 2 CH 2 CH 2 CH 2 NH 2 ], 2.81 (br, 2H, CH 2 NH 2 ), 3.89 (br, 7H, CH 2 NHCO, COCHNHCOO, CH 2 NH 2 ), 6.16 (br, 1H, CH =).
As shown in FIG. 5, for Poly (5a), the helical state changed greatly depending on the amount of phthalic acid added, and responsiveness to acid was confirmed. Similar results were observed for Poly (6a) obtained from Poly (6) by the above procedure.

実施例11:ポリマーゲルIの製造と光学分割試験
光学活性を簡便に試験するためポリマーIのゲル化を行った。
実施例5〜8で製造したモノマー(5)〜(8)(各0.95 mmol)とジプロパギルアジペート(0.050 mmol)をTHF 1mlに溶解し、窒素下、三方コックを備え付けたガラス管の中で、(nbd)Rh+6-C6H5B(C6H5)3] (0.010 mmol)を滴下して重合反応を行った。反応溶液は30℃で1時間保った後、重合混合物をメタノール中で2.5時間、クロロホルム中で2.5時間攪拌した後、減圧乾燥、ろ過により、poly(6)gel (収率86%)、poly(5)gel (収率80%)、poly(8)gel (収率 91%)およびpoly(7)gel (収率93%)を得た。
各ポリマーゲルのIR値は以下の通りであった。
poly(6)gel: IR (cm-1, KBr): 3343, 2939, 1725, 1652, 1582, 1479, 1365, 1249, 1166, 816, 759, 740. poly(5)gel: IR (cm-1, KBr): 3323, 2940, 1720, 1584, 1478, 1365, 1247, 1162, 817, 759, 741. poly(8)gel: IR (cm-1, KBr): 3342, 2919, 1654, 1523, 1368, 1240, 1168, 817, 759, 741, 621, 540. poly(7)gel: IR (cm-1, KBr): 3320, 2941, 1691, 1523, 1365, 1252, 1169, 816, 760, 741.
ポリマーゲルに光学分割活性があるかどうかの確認は、エナンチオマーの選択的吸着試験により行った。
N-ベンジルオキシカルボニル L-およびD-アラニン (Z-L-AlaおよびZ-D-Ala)、N-ベンジルオキシカルボニル L-およびD-アラニンメチルエステル (Z-L-Ala-OMeおよびZ-D-Ala-OMe)、(R)-()-および(S)-(+)-1-フェニル-1,2-エタンジオールを吸着質として、以下のように評価試験を行った。
poly(5)gel〜poly(8)gel(20 mg)の各々を試験管の中に入れ、THF(1 ml)で3回洗浄した。吸着質を含んだTHF溶液(C=10 mg/mL)とヘキシルベンゼン(C=5 mg/mL)をゲルに加え、混合溶液を所定の時間放置した。
混合溶液をHPLC (カラム: DAICEL CHIRALPAK IA)に付し、THF溶出液中の分割部分(10μl)をUVで測定することに分析した。HPLCによる分析はヘキシルベンゼンを内部標準として用い、吸着前後における吸着質とヘキシルベンゼンのピーク面積比から吸着率を算出した。結果を表3に示した。
Example 11: Production of polymer gel I and optical resolution test Gelation of polymer I was performed to easily test optical activity.
Monomers (5) to (8) (0.95 mmol each) prepared in Examples 5 to 8 and dipropagyl adipate (0.050 mmol) were dissolved in 1 ml of THF, and placed in a glass tube equipped with a three-way cock under nitrogen. , (Nbd) Rh +6 -C 6 H 5 B (C 6 H 5 ) 3 ] (0.010 mmol) was added dropwise to carry out the polymerization reaction. After maintaining the reaction solution at 30 ° C. for 1 hour, the polymerization mixture was stirred in methanol for 2.5 hours and in chloroform for 2.5 hours, dried under reduced pressure, and filtered to obtain poly (6) gel (yield 86%). ), Poly (5) gel (yield 80%), poly (8) gel (yield 91%) and poly (7) gel (yield 93%).
The IR value of each polymer gel was as follows.
poly (6) gel: IR (cm -1 , KBr): 3343, 2939, 1725, 1652, 1582, 1479, 1365, 1249, 1166, 816, 759, 740.poly (5) gel: IR (cm -1 , KBr): 3323, 2940, 1720, 1584, 1478, 1365, 1247, 1162, 817, 759, 741.poly (8) gel: IR (cm -1 , KBr): 3342, 2919, 1654, 1523, 1368 , 1240, 1168, 817, 759, 741, 621, 540.poly (7) gel: IR (cm -1 , KBr): 3320, 2941, 1691, 1523, 1365, 1252, 1169, 816, 760, 741.
Whether or not the polymer gel has optical resolution activity was confirmed by a selective adsorption test of enantiomers.
N-benzyloxycarbonyl L- and D-alanine (ZL-Ala and ZD-Ala), N-benzyloxycarbonyl L- and D-alanine methyl esters (ZL-Ala-OMe and ZD-Ala-OMe), (R )-()-And (S)-(+)-1-phenyl-1,2-ethanediol were used as an adsorbate, and an evaluation test was performed as follows.
Each of poly (5) gel to poly (8) gel (20 mg) was placed in a test tube and washed three times with THF (1 ml). A THF solution containing an adsorbate (C = 10 mg / mL) and hexylbenzene (C = 5 mg / mL) were added to the gel, and the mixed solution was allowed to stand for a predetermined time.
The mixed solution was subjected to HPLC (column: DAICEL CHIRALPAK IA), and analyzed by measuring a divided portion (10 μl) in the THF eluate with UV. In the analysis by HPLC, hexylbenzene was used as an internal standard, and the adsorption rate was calculated from the peak area ratio of adsorbate and hexylbenzene before and after adsorption. The results are shown in Table 3.

Figure 2008291207
Figure 2008291207

表3によれば、poly(5)gel、poly(6)gel、poly(7)gelおよびpoly(8)gelとも良好な光学分割活性を示した。   According to Table 3, poly (5) gel, poly (6) gel, poly (7) gel and poly (8) gel all showed good optical resolution activity.

実施例12:脱フルオレニルメトキシカルボニル(FMOC)ポリマーゲルの製造と光学分割試験
poly(5)gel、poly(6)gel、poly(7)gelおよびpoly(8)gelからFMOC基を脱離させ、ポリマーIゲルを作成した。ポリマーゲルからのFMOCの脱離は塩基条件下において容易に行うことができるが、具体的には、5 mL THF溶液中のpoly(5)gel〜poly(8)gel 450mgにピペリジン5 mLを加えた。得られた反応溶液を室温で45分間攪拌した。得られたゲルを乾燥減圧下にろ過し、poly(5)gel〜poly(8)gelの脱FMOC体(各々、poly(5a)gel、poly(6a)gel、poly(7a)gelおよびpoly(8a)gelという)を得た。
実施例11と同様の方法により、Z-L-AlaおよびZ-D-Ala、Z-L-Ala-OMeおよびZ-D-Ala-OMe、(R)-()-および(S)-(+)-1-フェニル-1,2-エタンジオールを吸着質としてpoly(5a)gel、poly(6a)gel、poly(7a)gel、poly(8a)gelの光学分割活性を測定した。結果を表4に示した。
Example 12: Preparation of defluorenylmethoxycarbonyl (FMOC) polymer gel and optical resolution test
The FMOC group was removed from poly (5) gel, poly (6) gel, poly (7) gel and poly (8) gel to prepare a polymer I gel. Desorption of FMOC from the polymer gel can be easily performed under basic conditions. Specifically, 5 mL of piperidine is added to 450 mg of poly (5) gel to poly (8) gel in 5 mL of THF solution. It was. The resulting reaction solution was stirred at room temperature for 45 minutes. The obtained gel was filtered under reduced pressure, and poly (5) gel to poly (8) gel de-FMOC bodies (poly (5a) gel, poly (6a) gel, poly (7a) gel and poly (7, respectively) 8a) called gel).
In the same manner as in Example 11, ZL-Ala and ZD-Ala, ZL-Ala-OMe and ZD-Ala-OMe, (R)-()-and (S)-(+)-1-phenyl-1 The optical resolution activity of poly (5a) gel, poly (6a) gel, poly (7a) gel, and poly (8a) gel was measured using 2-ethanediol as an adsorbate. The results are shown in Table 4.

Figure 2008291207
Figure 2008291207

表4によれば、各ポリマーゲルとも光学分割活性を示したものの、poly(5)gel、poly(6)gel、poly(7)gelおよびpoly(8)gelほど強い活性は示さなかった。   According to Table 4, although each polymer gel showed optical resolution activity, it was not as strong as poly (5) gel, poly (6) gel, poly (7) gel and poly (8) gel.

本発明のポリマーは、光学分割材料、不斉認識材料、pHセンサーに用いることができる。   The polymer of the present invention can be used for an optical resolution material, an asymmetric recognition material, and a pH sensor.

図1は、室温にてCHCl3およびTHF(c = 2.48×104 mol/L)中で測定したPoly(1)〜Poly(8)のCDおよびUV-可視スペクトルを示す。FIG. 1 shows CD and UV-visible spectra of Poly (1) -Poly (8) measured in CHCl 3 and THF (c = 2.48 × 10 4 mol / L) at room temperature. 図2−1は、CHCl3 (c = 2.48×104 mol/L)中で測定したPoly(1)-Poly(2)の温度−可視CDおよびUV-可視スペクトルを示す。FIG. 2-1 shows the temperature-visible CD and UV-visible spectrum of Poly (1) -Poly (2) measured in CHCl 3 (c = 2.48 × 10 4 mol / L). 図2−2は、CHCl3 (c = 2.48×104 mol/L)中で測定したPoly(3)-Poly(4)の温度−可視CDおよびUV-可視スペクトルを示す。FIG. 2-2 shows the temperature-visible CD and UV-visible spectrum of Poly (3) -Poly (4) measured in CHCl 3 (c = 2.48 × 10 4 mol / L). 図2−3は、CHCl3 (c = 2.48×104 mol/L)中で測定したPoly(5)-Poly(6)の温度−可視CDおよびUV-可視スペクトルを示す。FIG. 2-3 shows the temperature-visible CD and UV-visible spectrum of Poly (5) -Poly (6) measured in CHCl 3 (c = 2.48 × 10 4 mol / L). 図2−4は、CHCl3 (c = 2.48×104 mol/L)中で測定したPoly(7)-Poly(8)の温度−可視CDおよびUV-可視スペクトルを示す。FIG. 2-4 shows the temperature-visible CD and UV-visible spectrum of Poly (7) -Poly (8) measured in CHCl 3 (c = 2.48 × 10 4 mol / L). 図3−1は、THF (c = 2.48×104 mol/L)中で測定したPoly(1)-Poly(2)の温度−可視CDおよびUV-可視スペクトルを示す。FIG. 3-1 shows the temperature-visible CD and UV-visible spectrum of Poly (1) -Poly (2) measured in THF (c = 2.48 × 10 4 mol / L). 図3−2は、THF (c = 2.48×104 mol/L)中で測定したPoly(3)-Poly(4)の温度−可視CDおよびUV-可視スペクトルを示す。FIG. 3-2 shows the temperature-visible CD and UV-visible spectrum of Poly (3) -Poly (4) measured in THF (c = 2.48 × 10 4 mol / L). 図3−3は、THF (c = 2.48×104 mol/L)中で測定したPoly(5)-Poly(6)の温度−可視CDおよびUV-可視スペクトルを示す。FIG. 3-3 shows the temperature-visible CD and UV-visible spectrum of Poly (5) -Poly (6) measured in THF (c = 2.48 × 10 4 mol / L). 図3−4は、THF (c = 2.48×104 mol/L)中で測定したPoly(7)-Poly(8)の温度−可視CDおよびUV-可視スペクトルを示す。FIG. 3-4 shows the temperature-visible CD and UV-visible spectrum of Poly (7) -Poly (8) measured in THF (c = 2.48 × 10 4 mol / L). 図4−1は、種々の組成を持つTHF/MeOH(c = 2.48×104 mol/L)中で測定したPoly(1)-Poly(2)のCDおよびUV-可視スペクトルを示す。FIG. 4-1 shows the CD and UV-visible spectra of Poly (1) -Poly (2) measured in THF / MeOH (c = 2.48 × 10 4 mol / L) with various compositions. 図4−2は、種々の組成を持つTHF/MeOH(c = 2.48×104 mol/L)中で測定したPoly(3)-Poly(4)のCDおよびUV-可視スペクトルを示す。FIG. 4-2 shows the CD and UV-visible spectra of Poly (3) -Poly (4) measured in THF / MeOH (c = 2.48 × 10 4 mol / L) with various compositions. 図4−3は、種々の組成を持つTHF/MeOH(c = 2.48×104 mol/L)中で測定したPoly(5)-Poly(6)のCDおよびUV-可視スペクトルを示す。FIG. 4-3 shows CD and UV-visible spectra of Poly (5) -Poly (6) measured in THF / MeOH (c = 2.48 × 10 4 mol / L) having various compositions. 図4−4は、種々の組成を持つTHF/MeOH(c = 2.48×104 mol/L)中で測定したPoly(7)-Poly(8)のCDおよびUV-可視スペクトルを示す。FIG. 4-4 shows CD and UV-visible spectra of Poly (7) -Poly (8) measured in THF / MeOH (c = 2.48 × 10 4 mol / L) with various compositions. 図5は、20℃、THF/MeOH = 1/1 (v/v, c = 2.48×104 mol/L)中で測定したm-またはo-フタル酸添加時のPoly(5a)のCDおよびUV-可視スペクトルを示す。FIG. 5 shows the Poly (5a) CD and the addition of m- or o-phthalic acid measured at 20 ° C. in THF / MeOH = 1/1 (v / v, c = 2.48 × 10 4 mol / L). The UV-visible spectrum is shown.

Claims (11)

主鎖が実質的に下記の繰り返し単位(I):
Figure 2008291207
(式中、RおよびRは同一または異なって、tert-ブチルオキシカルボニル (Boc)、ベンジルオキシカルボニル (CBZ)、p-ニトロベンジルオキシカルボニル (Z(NO2))、p-メトキシベンジルオキシカルボニル (Z(OMe))、9-フルオレニルメチルオキシカルボニル (Fmoc)、トリフェニルメチル (Trt)、ホルミル (HCO)、アセチル (Ac)、トリフルオロアセチル (TFA)、ベンゾイル (Bz)、フタロイル (Pht)または水素を表し、mは3または4を表す)からなるポリマー。
The main chain is substantially the following repeating unit (I):
Figure 2008291207
(Wherein R 1 and R 2 are the same or different, and tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (CBZ), p-nitrobenzyloxycarbonyl (Z (NO2)), p-methoxybenzyloxycarbonyl) (Z (OMe)), 9-fluorenylmethyloxycarbonyl (Fmoc), triphenylmethyl (Trt), formyl (HCO), acetyl (Ac), trifluoroacetyl (TFA), benzoyl (Bz), phthaloyl ( Pht) or hydrogen, and m represents 3 or 4.
およびRが同一または異なり、それぞれ独立して、tert-ブチルオキシカルボニル、9-フルオレニルメチルオキシカルボニル、ベンジルオキシカルボニルおよび水素よりなる群から選択される請求項1記載のポリマー。 The polymer of claim 1, wherein R 1 and R 2 are the same or different and are each independently selected from the group consisting of tert-butyloxycarbonyl, 9-fluorenylmethyloxycarbonyl, benzyloxycarbonyl and hydrogen. がtert-ブチルオキシカルボニルであって、Rが9-フルオレニルメチルオキシカルボニルである請求項2記載のポリマー。 A polymer according to claim 2, wherein R 1 is tert-butyloxycarbonyl and R 2 is 9-fluorenylmethyloxycarbonyl. 一般式(II):
Figure 2008291207
(式中、RおよびRは同一または異なって、tert-ブチルオキシカルボニル (Boc)、ベンジルオキシカルボニル (CBZ)、p-ニトロベンジルオキシカルボニル (Z(NO2))、p-メトキシベンジルオキシカルボニル (Z(OMe))、9-フルオレニルメチルオキシカルボニル (Fmoc)、トリフェニルメチル (Trt)、ホルミル (HCO)、アセチル (Ac)、トリフルオロアセチル (TFA)、ベンゾイル (Bz)、フタロイル (Pht)または水素を表し、mは3または4を表す)で表されるモノマーをロジウム触媒存在下で重合させ、
主鎖が実質的に下記の繰り返し単位(I):
Figure 2008291207
(式中、R、Rおよびmは前記定義に同じ)からなるポリマーを得ることを特徴とする
ポリマーの製造方法。
General formula (II):
Figure 2008291207
(Wherein R 1 and R 2 are the same or different, and tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (CBZ), p-nitrobenzyloxycarbonyl (Z (NO2)), p-methoxybenzyloxycarbonyl) (Z (OMe)), 9-fluorenylmethyloxycarbonyl (Fmoc), triphenylmethyl (Trt), formyl (HCO), acetyl (Ac), trifluoroacetyl (TFA), benzoyl (Bz), phthaloyl ( Pht) or hydrogen, and m represents 3 or 4) in the presence of a rhodium catalyst.
The main chain is substantially the following repeating unit (I):
Figure 2008291207
A method for producing a polymer, characterized in that a polymer comprising (wherein R 1 , R 2 and m are the same as defined above) is obtained.
およびRが同一または異なり、それぞれ独立して、tert-ブチルオキシカルボニル、9-フルオレニルメチルオキシカルボニル、ベンジルオキシカルボニルおよび水素よりなる群から選択される請求項4記載の製造方法。 The process according to claim 4, wherein R 1 and R 2 are the same or different and are each independently selected from the group consisting of tert-butyloxycarbonyl, 9-fluorenylmethyloxycarbonyl, benzyloxycarbonyl, and hydrogen. がtert-ブチルオキシカルボニルであって、Rが9-フルオレニルメチルオキシカルボニルである請求項5記載の製造方法。 6. The process according to claim 5, wherein R 1 is tert-butyloxycarbonyl and R 2 is 9-fluorenylmethyloxycarbonyl. 請求項1〜3のいずれかに記載のポリマーを含む光学分割剤。 The optical resolution agent containing the polymer in any one of Claims 1-3. ポリマーをゲル化させた請求項7記載の光学分割剤。 The optical resolution agent according to claim 7, wherein the polymer is gelled. ポリマーを担体に担持させた請求項7または8記載の光学分割剤。 The optical resolution agent according to claim 7 or 8, wherein a polymer is supported on a carrier. 請求項7〜9のいずれかに記載の光学分割剤を用いて、光学活性体混合物を分離することを特徴とする光学活性化合物の分離方法。 A method for separating an optically active compound, wherein the optically active substance mixture is separated using the optical resolution agent according to any one of claims 7 to 9. 請求項7〜9のいずれかに記載の光学分割剤を固定相成分として含む高速液体クロマトグラフィー用カラム充填剤。 A column packing material for high performance liquid chromatography comprising the optical resolution agent according to any one of claims 7 to 9 as a stationary phase component.
JP2007322339A 2007-04-27 2007-12-13 Helical polymers with basic amino acids Pending JP2008291207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007322339A JP2008291207A (en) 2007-04-27 2007-12-13 Helical polymers with basic amino acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007118236 2007-04-27
JP2007322339A JP2008291207A (en) 2007-04-27 2007-12-13 Helical polymers with basic amino acids

Publications (1)

Publication Number Publication Date
JP2008291207A true JP2008291207A (en) 2008-12-04

Family

ID=40166270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322339A Pending JP2008291207A (en) 2007-04-27 2007-12-13 Helical polymers with basic amino acids

Country Status (1)

Country Link
JP (1) JP2008291207A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667466A (en) * 2009-08-26 2012-09-12 株式会社大赛璐 Separating agent for optical isomer
WO2014057072A1 (en) * 2012-10-12 2014-04-17 Spirogen Sàrl Synthesis and intermediates of pyrrolobenzodiazepine derivatives for conjugation
CN103772569A (en) * 2014-01-16 2014-05-07 华东师范大学 Spiral polyallylene containing azobenzene dipoles and preparation method thereof
CN105675743A (en) * 2015-12-31 2016-06-15 天津市敬业精细化工有限公司 Dimethylamine aqueous solution detection method
WO2024154690A1 (en) * 2023-01-16 2024-07-25 株式会社ダイセル Separation agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667466A (en) * 2009-08-26 2012-09-12 株式会社大赛璐 Separating agent for optical isomer
WO2014057072A1 (en) * 2012-10-12 2014-04-17 Spirogen Sàrl Synthesis and intermediates of pyrrolobenzodiazepine derivatives for conjugation
US9745303B2 (en) 2012-10-12 2017-08-29 Medimmune Limited Synthesis and intermediates of pyrrolobenzodiazepine derivatives for conjugation
CN103772569A (en) * 2014-01-16 2014-05-07 华东师范大学 Spiral polyallylene containing azobenzene dipoles and preparation method thereof
CN105675743A (en) * 2015-12-31 2016-06-15 天津市敬业精细化工有限公司 Dimethylamine aqueous solution detection method
CN105675743B (en) * 2015-12-31 2019-03-01 天津市敬业精细化工有限公司 A kind of dimethylamine agueous solution detection method
WO2024154690A1 (en) * 2023-01-16 2024-07-25 株式会社ダイセル Separation agent

Similar Documents

Publication Publication Date Title
Maier et al. Enantioselective anion exchangers based on cinchona alkaloid‐derived carbamates: Influence of C8/C9 stereochemistry on chiral recognition
JP3995260B2 (en) Protein displacement chromatography using a low molecular weight displacer
JP2008291207A (en) Helical polymers with basic amino acids
Tamura et al. Separation of enantiomers on diastereomeric right-and left-handed helical poly (phenyl isocyanide) s bearing L-alanine pendants immobilized on silica gel by HPLC
Krawinkler et al. Novel cinchona carbamate selectors with complementary enantioseparation characteristics for N‐acylated amino acids
JPH0357816B2 (en)
US5541342A (en) Separation of amino acids, amino-acid-based monomer, and process for the preparation thereof, as well as polymer material and process for the preparation thereof
US5739383A (en) Resolution of racemic mixtures using polymers containing chiral units
CN104910046B (en) Phenylacetylene derivative with double chiral carbon atoms on pendant group and preparation method and application thereof
JP3926662B2 (en) Polyarylacetylene derivative and chiral sensor using the same
Wu et al. Comparison of monofunctional and multifunctional monomers in phosphate binding molecularly imprinted polymers
Sugimoto et al. Enantiomeric discrimination by novel optically active isocyanurates having peripheral amino acid units
JP2002241317A (en) Optical activity recognizing agent, optical resolution column packing material using the same, and optical resolution method
JP4167296B2 (en) Polyacrylamide gel for electrophoresis, polyacrylamide gel electrophoresis method using the same, method for producing the same, and acrylamide compound
KR101915010B1 (en) Chiral stationary phases for the resolution of racemic compounds and preperation method of the same
CN104428667B (en) Agent for separating optical isomers
US8362237B2 (en) Optical-isomer separating agent for chromatography and process for producing the same
US20240132776A1 (en) Supramolecular chirality in redox metallopolymers
JP4647153B2 (en) Novel polyacetylene derivative and chiral sensor using the same
Spivak et al. Development of an aspartic acid-based cross-linking monomer for improved bioseparations
JPS6238238A (en) Optical separation method
JPH11335306A (en) Optically resolving agent and optical resolution using the same
Sibrian-Vazquez Design, synthesis, and applications of bio-derived crosslinking monomers for molecular imprinting
Sibrian-Vazquez LSU Scholarly Repositor y
CN105175305B (en) Optically active compound and synthesis and methods for using them

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081017

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090317