Nothing Special   »   [go: up one dir, main page]

JP2008281338A - エジェクタサイクル - Google Patents

エジェクタサイクル Download PDF

Info

Publication number
JP2008281338A
JP2008281338A JP2008220125A JP2008220125A JP2008281338A JP 2008281338 A JP2008281338 A JP 2008281338A JP 2008220125 A JP2008220125 A JP 2008220125A JP 2008220125 A JP2008220125 A JP 2008220125A JP 2008281338 A JP2008281338 A JP 2008281338A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
ejector
evaporators
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008220125A
Other languages
English (en)
Inventor
Hiroshi Oshitani
洋 押谷
Yasushi Yamanaka
康司 山中
Hirotsugu Takeuchi
裕嗣 武内
Katsuya Kusano
勝也 草野
Makoto Ikegami
真 池上
Yoshiaki Takano
義昭 高野
Naohisa Ishizaka
直久 石坂
Takayuki Sugiura
崇之 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008220125A priority Critical patent/JP2008281338A/ja
Publication of JP2008281338A publication Critical patent/JP2008281338A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】エジェクタ下流側蒸発器15と、エジェクタ吸引側蒸発器18とを組み合わせて、共通の冷却対象空間21を冷却するエジェクタサイクルにおいて、2つの蒸発器15、18による冷却性能の向上を図る。
【解決手段】エジェクタ14の下流側に接続される第1蒸発器15と、冷媒吸引口14bに接続される第2蒸発器18とを備え、第1蒸発器15の冷媒蒸発温度に比較して第2蒸発器18の冷媒蒸発温度が低くなるようになっており、第1、第2蒸発器15、18により共通の冷却対象空間21を冷却するとともに、被冷却空気の流れ方向Aの上流側に第1蒸発器15を配置し、被冷却空気の流れ方向Aの下流側に第2蒸発器18を配置する。
【選択図】図1

Description

本発明は、冷媒減圧手段の役割および冷媒循環手段の役割を果たすエジェクタと、複数の蒸発器とを有するエジェクタサイクルに関するもので、例えば、車両用空調装置、あるいは車載の荷物を冷凍、冷蔵する車両用冷凍装置等に適用して有効である。
従来、この種のエジェクタサイクルは特許文献1等にて知られている。この特許文献1では、図7に示すように冷媒減圧手段および冷媒循環手段の役割を果たすエジェクタ14の冷媒下流側と気液分離器30との間に第1蒸発器15を配置するともに、気液分離器30の液冷媒出口側とエジェクタ14の冷媒吸引口14bとの間に第2蒸発器18を配置したエジェクタサイクルが開示されている。
特許文献1のエジェクタサイクルによると、膨張時の冷媒の高速な流れにより生じる圧力低下を利用して、第2蒸発器18から排出される気相冷媒を吸引するとともに、膨張時の冷媒の速度エネルギーをディフューザ部(昇圧部)14dにて圧力エネルギーに変換して冷媒圧力を上昇させるので、圧縮機12の駆動動力を低減できる。このため、サイクルの運転効率を向上することができる。
また、2つの蒸発器15、18により別々の空間、または2つの蒸発器15、18で同一の空間から吸熱(冷却)作用を発揮することができる。そして、2つの蒸発器15、18にて室内の冷房を行ってもよい旨の記載もある(特許文献1の段落0192参照)。
特許第3322263号公報
ところで、特許文献1には2つの蒸発器15、18にて室内の冷房を行う際における具体的な蒸発器構成が何ら開示されていない。
本発明は、上記点に鑑み、エジェクタ下流側蒸発器とエジェクタ吸引側蒸発器とを組み合わせて、共通の冷却対象空間を冷却するエジェクタサイクルにおいて、2つの蒸発器の搭載性の向上を図ることを目的とする。
また、本発明は、エジェクタサイクルにおける2つの蒸発器による冷却性能の向上を図ることを他の目的とする。
本発明は上記目的を達成するためなされたもので、請求項1に記載の発明では、放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、ノズル部(14a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(14b)、ノズル部(14a)からの高い速度の冷媒流と冷媒吸引口(14b)の吸引冷媒とを混合する混合部(14c)、および混合部(14c)で混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(14d)を有するエジェクタ(14)と、
エジェクタ(14)の下流側に接続される第1蒸発器(15)と、
冷媒吸引口(14b)に接続される第2蒸発器(18)とを備え、
第1蒸発器(15)および第2蒸発器(18)は一体に構成され、共通の冷却対象空間(21)に向かって送風される空気流れを冷却するようになっていることを特徴としている。
このようにエジェクタ下流側第1蒸発器(15)とエジェクタ吸引側第2蒸発器(18)とを一体に構成することにより、第1、第2蒸発器(15、18)を一体物として取り扱うことができる。このため、第1、第2蒸発器(15、18)の空気通路内への搭載作業が容易であるとともに、第1、第2蒸発器(15、18)の組み合わせを小型簡潔に構成できる。
なお、本発明における第1、第2蒸発器(15、18)の「一体構成」とは、2つの蒸発器が機械的に「一体構造物」として結合されていることを意味している。そして、この2つの蒸発器の一体構成は種々な態様で具体化することができる。
具体的には、請求項2に記載の発明のように、第1蒸発器(15)および第2蒸発器(18)を、一連の構成として接合することができる。
より具体的には、請求項3に記載の発明のように、第1蒸発器(15)および第2蒸発器(18)をろう付けにより接合すれば、第1、第2蒸発器(15、18)を一体ろう付けにて効率よく製造できる。
また、請求項4に記載の発明のように、第1蒸発器(15)および第2蒸発器(18)を、エジェクタ(14)を経由する冷媒配管(140)によって接合してもよい。ここで、冷媒配管(140)を介在する「一体構成」とは、図6に示すように第1、第2蒸発器(15、18)が密着せず、所定の空隙を介して一体化される構造を包含し、かつ、第1、第2蒸発器(15、18)が冷媒配管(140)により分解不能な状態に一体結合されていることを意味している。
請求項5に記載の発明のように、請求項1ないし4のいずれか1つに記載のエジェクタサイクルにおいて、第1蒸発器(15)および第2蒸発器(18)は具体的には、空気流れ中に直列に配置すればよい。
請求項6に記載の発明では、請求項5に記載のエジェクタサイクルにおいて、第1蒸発器(15)の冷媒蒸発温度に比較して第2蒸発器(18)の冷媒蒸発温度が低くなるようになっており、
空気流れの上流側に第1蒸発器(15)を配置し、空気流れの下流側に第2蒸発器(18)を配置することを特徴とする。
これによると、冷媒蒸発温度が高い第1蒸発器(15)が空気流れ上流側に位置し、冷媒蒸発温度が低い第2蒸発器(18)が空気流れ下流側に位置しているので、被冷却空気の温度が空気流れ方向(A)の上流側から下流側へ向かって次第に低下しても、第1、第2蒸発器(15、18)の双方で、冷媒蒸発温度と空気温度との温度差を確保できる。
これにより、共通の冷却対象空間(21)に対する冷却性能を2つの蒸発器(15、18)の組み合わせで効果的に発揮できる。
請求項7に記載の発明のように、請求項1ないし6のいずれか1つに記載のエジェクタサイクルにおいて、第1蒸発器(15)および第2蒸発器(18)は、具体的には、それぞれ冷媒通路を構成する複数のチューブ(22)と複数のチューブ(22)の外面側に接合され空気側伝熱面積を拡大する複数のフィン(23)との積層構造からなる熱交換コア部(15a、18a)、および複数のチューブ(22)の端部に接合され、複数のチューブ(22)に対する冷媒の分配、集合の役割を果たすタンク部(15b、15c、18b、18c)を有する構成にすることができる。
請求項8に記載の発明のように、請求項7に記載のエジェクタサイクルにおいて、第1蒸発器(15)および第2蒸発器(18)の複数のチューブ(22)、複数のフィン(23)およびタンク部(15b、15c、18b、18c)をろう付けにて一体構造に組み付ければ、第1、第2蒸発器(15、18)の一体構造を効率よく製造できる。
請求項9に記載の発明では、請求項7または8に記載のエジェクタサイクルにおいて、エジェクタ(14)は、ノズル部(14a)、混合部(14c)および昇圧部(14d)が一直線上に並んだ細長形状であり、
エジェクタ(14)の長手方向を熱交換コア部(15a、18a)の側面と平行にして、エジェクタ(14)を熱交換コア部(15a、18a)の側面に一体構造に組み付けることを特徴とする。
これによると、エジェクタ(14)を第1、第2蒸発器(15、18)に一体化して、これらの三者(14、15、18)を一体物として取り扱うことができるので、これらの三者を空気通路内に容易に組み込むことができる。
また、エジェクタ(14)を第1、第2蒸発器(15、18)の側面と平行に配置することにより、エジェクタ(14)を第1、第2蒸発器(15、18)の側面に沿って省スペースにて配置できる。このため、エジェクタ(14)を含む第1、第2蒸発器(15、18)の外形状をコンパクトにまとめることができるとともに、エジェクタ(14)と第1、第2蒸発器(15、18)との冷媒通路接続部を近接させることができ、冷媒通路接続を簡単に行うことができる。
請求項10に記載の発明のように、請求項7または8に記載のエジェクタサイクルにおいて、エジェクタ(14)は、ノズル部(14a)、混合部(14c)および昇圧部(14d)が一直線上に並んだ細長形状であり、
エジェクタ(14)の長手方向をタンク部(15b、15c、18b、18c)の長手方向と平行にして、エジェクタ(14)をタンク部(15b、15c、18b、18c)に一体構造に組み付けるようにしてもよい。
これによると、エジェクタ(14)の組み付け部位がタンク部(15b、15c、18b、18c)に変更されるものの、請求項9と同様の作用効果を発揮できる。
請求項11に記載の発明では、請求項1ないし10のいずれか1つに記載のエジェクタサイクルにおいて、エジェクタ(14)の上流部から分岐され冷媒吸引口(14b)に至る冷媒分岐通路(16)を有し、
この冷媒分岐通路(16)に絞り機構(17)を設け、この絞り機構(17)の下流側に第2蒸発器(18)を設けることを特徴とする。
これによると、エジェクタ(14)の上流部から分岐した冷媒を絞り機構(17)で減圧して第2蒸発器(18)に供給できるから、第1蒸発器(15)の冷媒流れ下流側に気液分離器(30)を設定する必要がない。また、第2蒸発器(18)への冷媒流量を絞り機構(17)で独立に調整できる。
請求項12に記載の発明のように、請求項1ないし10のいずれか1つに記載のエジェクタサイクルにおいて、第1蒸発器(15)の冷媒流れ下流側に冷媒の気液を分離する気液分離器(30)を設け、
この気液分離器(30)の気相冷媒出口側を前記圧縮機(11)の吸入側に接続し、
気液分離器(30)の液相冷媒出口側は冷媒分岐通路(31)により冷媒吸引口(14b)に接続し、
冷媒分岐通路(31)に絞り機構(17)を設け、この絞り機構(17)の下流側に第2蒸発器(18)を設けてもよい。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
図1〜図2は本発明の第1実施形態を示すもので、図1は第1実施形態によるエジェクタサイクル10を車両用冷凍サイクル装置に適用した例を示す。本実施形態のエジェクタサイクル10において、冷媒を吸入圧縮する圧縮機11は、電磁クラッチ12、ベルト等を介して図示しない車両走行用エンジンにより回転駆動される。
この圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチ12の断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを使用してもよい。また、圧縮機11として電動圧縮機を使用すれば、電動モータの回転数調整により冷媒吐出能力を調整できる。
この圧縮機11の冷媒吐出側には放熱器13が配置されている。放熱器13は圧縮機12から吐出された高圧冷媒と図示しない冷却ファンにより送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。
ここで、エジェクタサイクル10の冷媒として、通常のフロン系冷媒を用いる場合は、高圧圧力が臨界圧力を超えない亜臨界サイクルとなるので、放熱器13は冷媒を凝縮する凝縮器として作用する。一方、冷媒として二酸化炭素(CO)のように高圧圧力が臨界圧力を超える冷媒を用いる場合はエジェクタサイクル10が超臨界サイクルとなるので、冷媒は超臨界状態のまま放熱するだけで、凝縮しない
放熱器13よりもさらに冷媒流れ下流側部位には、エジェクタ14が配置されている。このエジェクタ14は冷媒を減圧する減圧手段であるとともに、高速で噴出する冷媒流の吸引作用(巻き込み作用)によって冷媒の循環を行う流体輸送を冷媒循環手段(運動量輸送式ポンプ)でもある(JIS Z 8126 番号2.1.2.3等参照)。
エジェクタ14には、放熱器13から流入する高圧冷媒の通路面積を小さく絞って、高圧冷媒を等エントロピ的に減圧膨張させるノズル部14aと、ノズル部14aの冷媒噴出口と同一空間に配置され、後述する第2蒸発器18からの気相冷媒を吸引する冷媒吸引口14bが備えられている。
さらに、ノズル部14aおよび冷媒吸引口14bの冷媒流れ下流側部位には、ノズル部14aからの高速度の冷媒流と冷媒吸引口14bの吸引冷媒とを混合する混合部14cが設けられている。そして、混合部14cの冷媒流れ下流側に昇圧部をなすディフューザ部14dが配置されている。このディフューザ部14dは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。
エジェクタ14のディフューザ部14dの下流側に第1蒸発器15が接続され、この第1蒸発器15の冷媒流れ下流側は圧縮機11の吸入側に接続される。
一方、エジェクタ14の上流部(放熱器13とエジェクタ14との間の中間部位)から冷媒分岐通路16が分岐され、この冷媒分岐通路16の下流側はエジェクタ14の冷媒吸引口14bに接続される。Zは冷媒分岐通路16の分岐点を示す。
この冷媒分岐通路16には絞り機構17が配置され、この絞り機構17よりも冷媒流れ下流側部位には第2蒸発器18が配置されている。絞り機構17は第2蒸発器18への冷媒流量の調節作用をなす減圧手段であって、具体的にはオリフィスのような固定絞りで構成できる。また、電動アクチュエータにより弁開度(通路絞り開度)が調整可能になっている電気制御弁を絞り機構17として用いてもよい。
本実施形態では、2つの蒸発器15、18を後述のごとく一体構造に組み付けて、2つの蒸発器15、18を1つのケース19内に収納するようになっている。そして、ケース19内に構成される空気通路に共通の電動送風機20により空気(被冷却空気)を矢印Aのごとく送風し、この送風空気を2つの蒸発器15、18で冷却するようなっている。
2つの蒸発器15、18で冷却された冷風を共通の冷却対象空間21に送り込み、これにより、2つの蒸発器15、18にて共通の冷却対象空間21を冷却するようになっている。ここで、2つの蒸発器15、18のうち、エジェクタ14下流側の主流路に接続される第1蒸発器15を空気流れAの上流側に配置し、エジェクタ14の冷媒吸引口14bに接続される第2蒸発器18を空気流れAの下流側に配置している。
なお、本実施形態のエジェクタサイクル10を車両空調用冷凍サイクル装置に適用する場合は車室内空間が冷却対象空間21となる。また、本実施形態のエジェクタサイクル10を冷凍車用冷凍サイクル装置に適用する場合は冷凍車の冷凍冷蔵庫内空間が冷却対象空間21となる。
次に、2つの蒸発器15、18の一体化構造の具体例を図2により説明する。この図2の例では、2つの蒸発器15、18が完全に1つの蒸発器構造として一体化されるようになっている。そのため、第1蒸発器15は1つの蒸発器構造のうち空気流れAの上流側領域を構成し、そして、第2蒸発器18は1つの蒸発器構造のうち空気流れAの下流側領域を構成するようになっている。
第1蒸発器15および第2蒸発器18の基本的構成は同一であり、それぞれ熱交換コア部15a、18aと、この熱交換コア部15a、18aの上下両側に位置するタンク部15b、15c、18b、18cとを備えている。
ここで、熱交換コア部15a、18aは、それぞれ上下方向に延びる複数のチューブ22とこの複数のチューブ22相互間に接合されるフィン23との積層構造からなる。なお、図2では、空気流れ上流側に位置する第1蒸発器15の熱交換コア部15aにおけるチューブ22とフィン23のみ図示して、空気流れ下流側に位置する第2蒸発器18の熱交換コア部18aにおけるチューブ22とフィン23を図示していないが、両熱交換コア部15a、18aの構成は同一である。
チューブ22は冷媒通路を構成するもので、断面形状が空気流れ方向Aに沿って扁平な扁平チューブよりなる。フィン23は薄板材を波状に曲げ成形したコルゲートフィンであり、チューブ22の平坦な外面側に接合され空気側伝熱面積を拡大する。
チューブ22とフィン23は熱交換コア部15a、18aの左右方向に交互に積層配置され、このチューブ・フィン積層方向(コア部左右方向)の両端部には熱交換コア部15a、18aを補強するサイドプレート15d、15e、18d、18eが配置されている。このサイドプレート15d、15e、18d、18eは、コア部左右方向の最も外側に位置するコルゲートフィン23および上下両側のタンク部15b、15c、18b、18cに接合される。
第1蒸発器15の上下両側のタンク部15b、15cと、第2蒸発器18の上下両側のタンク部18b、18cは互いに独立した冷媒通路空間を構成する。第1蒸発器15の上下両側のタンク部15b、15cは熱交換コア部15aのチューブ22の上下両端部が挿入され、接合されるチューブ嵌合穴部(図示せず)を有し、チューブ22の上下両端部がタンク部15b、15cの内部空間に連通するようになっている。
同様に、第2蒸発器18の上下両側のタンク部18b、18cは熱交換コア部18aのチューブ22の上下両端部が挿入され、接合されるチューブ嵌合穴部(図示せず)を有し、チューブ22の上下両端部がタンク部15b、15cの内部空間に連通するようになっている。
これにより、上下両側のタンク部15b、15c、18b、18cは、それぞれ対応する熱交換コア部15a、18aの複数のチューブ22へ冷媒流れを分配したり、複数のチューブ22からの冷媒流れを集合する役割を果たす。
このタンク部15b、15c、18b、18cによる冷媒流れの分配・集合機能を図2により具体的に説明すると、エジェクタ14下流側の低圧冷媒が流入する入口部24が第1蒸発器15の下側タンク部15cの左端部に配置され、この下側タンク部15cの右端部に出口部25が配置されている。そして、この下側タンク部15cの内部空間の長手方向(コア部のチューブ・フィン積層方向)の中間部には仕切板26が配置され、この仕切板26により下側タンク部15cの内部空間を図示左側領域と右側領域とに仕切っている。
これにより、入口部24から下側タンク部15c内部の左側領域に流入した低圧冷媒は、熱交換コア部15aの左側領域のチューブ22群を矢印aのごとく上昇して上側タンク部15bの内部空間に流入し、この内部空間を矢印bのごとく左側から右側へと流れる。
次に、上側タンク部15bの内部空間の右側領域の冷媒が熱交換コア部15aの右側領域のチューブ22群を矢印cのごとく下降して下側タンク部15c内部の右側領域に流入する。そして、下側タンク部15cの右端部の出口部25から冷媒が矢印dのごとく流出して圧縮機11の吸入側へ向かう。
これに対し、第2蒸発器18においては、その上側タンク部18bの右端部に冷媒分岐通路16の絞り機構17を通過した低圧冷媒が流入する入口部27が配置され、この上側タンク部18bの左端部に出口部28が配置されている。そして、この上側タンク部18bの内部空間の長手方向(コア部のチューブ・フィン積層方向)の中間部には仕切板29が配置され、この仕切板29により上側タンク部18bの内部空間を図示右側領域と左側領域とに仕切っている。
これにより、入口部27から上側タンク部18b内部の右側領域に流入した低圧冷媒は、熱交換コア部18aの右側領域のチューブ22群を矢印eのごとく下降して下側タンク部18cの内部空間に流入し、この内部空間を矢印fのごとく右側から左側へと流れる。
次に、下側タンク部18cの内部空間の左側領域の冷媒が熱交換コア部18aの左側領域のチューブ22群を矢印gのごとく上昇して上側タンク部18b内部の左側領域に流入する。そして、上側タンク部18bの左端部の出口部25から冷媒が矢印hのごとく流出してエジェクタ14の冷媒吸引口14bへ向かう。
次に、2つの蒸発器15、18におけるチューブ22、フィン23、およびタンク部15b、15c、18b、18cの具体的な一体化構造例について述べる。
まず、フィン23として、空気流れ前後の2つの熱交換コア部15a、18aごとにそれぞれ別のフィンを設定してもよいが、空気流れ前後の2つの熱交換コア部15a、18aの両方に共通の一体フィンを設定してもよい。
同様に、チューブ22として、空気流れ前後の2つの熱交換コア部15a、18aごとにそれぞれ別のチューブを設定してもよいが、空気流れ前後の2つの熱交換コア部15a、18aの両方に共通の一体チューブを設定してもよい。
但し、第1蒸発器15側のチューブ22と、第2蒸発器18側のチューブ22は完全に独立した冷媒通路を構成する必要があるので、一体チューブの場合は、一体チューブ内部に第1蒸発器15側の冷媒通路と、第2蒸発器18側の冷媒通路とを仕切壁により区分して独立に形成し、第1蒸発器15側のチューブ内冷媒通路を第1蒸発器15側のタンク部15b、15cの内部空間に独立に接続し、第2蒸発器18側のチューブ内冷媒通路を第2蒸発器18側のタンク部18b、18cの内部空間に独立に接続する必要がある。
また、タンク部15b、15c、18b、18cについてもそれぞれ独立に形成してもよいが、2つの上側タンク部15b、18bを一体構造で構成し、2つの下側タンク部15c、18cを一体構造で構成してもよい。但し、この場合も、2つの上側タンク部15bと18bの互いの内部空間を互いに独立に形成し、2つの下側タンク部15c、18cの互いの内部空間を互いに独立に形成する必要がある。
また、左右両側のサイドプレート15d、15e、18d、18eについてもそれぞれ独立に形成してもよいが、2つの左側サイドプレート15d、18dを1枚のプレートで一体に構成し、2つの右側サイドプレート15e、18eを1枚のプレートで一体に構成してもよい。
上記のごとく、第1、第2蒸発器15、18におけるチューブ22、フィン23、タンク部15b、15c、18b、18cおよびサイドプレート15d、15e、18d、18eとして一体構造のものを用いれば、2つの蒸発器15、18を少ない部品点数にて簡潔に低コストにて製造できる。
なお、チューブ22、フィン23、タンク部15b、15c、18b、18cおよびサイドプレート15d、15e、18d、18eの具体的材質としては、熱伝導性やろう付け性に優れた金属であるアルミニウムが好適であり、このアルミニウム材にて各部品を成形するこにより、第1、第2蒸発器15、18の全体構成を一体ろう付けにて組み付けることができる。
そして、本実施形態では、第1、第2蒸発器15、18の一体ろう付けによる組み付け後に、エジェクタ14を第1、第2蒸発器15、18側に組み付けて、エジェクタ14を第1、第2蒸発器15、18と一体化している。
エジェクタ14は、図2に示すように前記したノズル部14a、混合部14cおよびディフューザ部14dが一直線上に並んだ細長の円柱形状になっている。そこで、本実施形態では、エジェクタ14の長手方向を熱交換コア部15a、18aの側面と平行にして、エジェクタ14を熱交換コア部15a、18aの側面に一体構造に組み付けるようにしている。
より具体的には、エジェクタ14の長手方向を熱交換コア部左側のサイドプレート15d、18dと平行に配置して、この左側のサイドプレート15d、18dにエジェクタ14を組み付けるようにしている。ここで、エジェクタ14はサイドプレート15d、18dに図示しない固定手段、例えば、ねじ止め、金属ばねクリップ、ろう付け等の手段を用いて固定される。
このようなエジェクタ組み付け構造によると、エジェクタ14のディフューザ部14dの出口部を下側タンク部15cの入口部24に、また、エジェクタ14の冷媒吸引口14bを上側タンク部18bの出口部28にそれぞれ近接配置できる。従って、エジェクタ14と第1蒸発器15との冷媒通路接続およびエジェクタ14と第2蒸発器18との冷媒通路接続をともに簡単に行うことができる。
しかも、細長の円柱形状からなるエジェクタ14の長手方向を第1、第2蒸発器15、18の熱交換コア部側面部に沿って配置しているから、エジェクタ14が第1、第2蒸発器15、18の外形状から大きく突き出すことがない。その結果、エジェクタ14を含めた第1、第2蒸発器15、18全体の体格をコンパクトにまとめることができる。
次に、第1実施形態の作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮され吐出された高温高圧状態の冷媒は放熱器13に流入する。放熱器13では高温の冷媒が外気により冷却されて凝縮する。放熱器13から流出した高圧液相冷媒は、分岐点Zにてエジェクタ14に向かう冷媒流れと、分岐冷媒通路16に向かう冷媒流れとに分流する。
エジェクタ14に流入した冷媒流れはノズル部14aで減圧され膨張する。従って、ノズル部14aで冷媒の圧力エネルギーが速度エネルギーに変換され、このノズル部14aの噴出口から冷媒は高速度となって噴出する。この際の冷媒圧力低下により、冷媒吸引口14bから分岐冷媒通路16の第2蒸発器18通過後の冷媒(気相冷媒)を吸引する。
ノズル部14aから噴出した冷媒と冷媒吸引口14bに吸引された冷媒は、ノズル部14a下流側の混合部14cで混合してディフューザ部14dに流入する。このディフューザ部14dでは通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。
そして、エジェクタ14のディフューザ部14dから流出した冷媒は第1蒸発器15に流入する。第1蒸発器15では、図2に示す矢印a〜dの冷媒経路にて冷媒が流れる間に、低温の低圧冷媒が熱交換コア部15aにて矢印A方向の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は、圧縮機11に吸入され、再び圧縮される。
一方、分岐冷媒通路16に流入した冷媒流れは絞り機構17で減圧されて低圧冷媒となり、この低圧冷媒が第2蒸発器18に流入する。第2蒸発器18では、図2に示す矢印e〜hの冷媒経路にて冷媒が流れる間に、矢印A方向の送風空気から冷媒が吸熱して蒸発する。この蒸発後の気相冷媒は冷媒吸引口14bからエジェクタ14内に吸引される。
以上のごとく、本実施形態によると、エジェクタ14のディフューザ部14dの下流側冷媒を第1蒸発器15に供給するととともに、分岐通路16側の冷媒を絞り機構17を通して第2蒸発器18にも供給できるので、第1、第2蒸発器15、18で同時に冷却作用を発揮できる。そのため、第1、第2蒸発器15、18の両方で冷却された冷風を冷却対象空間21に吹き出して、冷却対象空間21を冷房(冷却)できる。
その際に、第1蒸発器15の冷媒蒸発圧力はディフューザ部14dで昇圧した後の圧力であり、一方、第2蒸発器18の出口側はエジェクタ14の冷媒吸引口14bに接続されているから、ノズル部14aでの減圧直後の最も低い圧力を第2蒸発器18に作用させることができる。
これにより、第1蒸発器15の冷媒蒸発圧力(冷媒蒸発温度)よりも第2蒸発器18の冷媒蒸発圧力(冷媒蒸発温度)を低くすることができる。そして、送風空気の流れ方向Aに対して冷媒蒸発温度が高い第1蒸発器15を上流側に配置し、冷媒蒸発温度が低い第2蒸発器18を下流側に配置しているから、第1蒸発器15における冷媒蒸発温度と送風空気との温度差および第2蒸発器18における冷媒蒸発温度と送風空気との温度差を両方とも確保できる。
このため、第1、第2蒸発器15、18の冷却性能を両方とも有効に発揮できる。従って、共通の冷却対象空間21に対する冷却性能を第1、第2蒸発器15、18の組み合わせにて効果的に向上できる。また、ディフューザ部14dでの昇圧作用により圧縮機11の吸入圧を上昇して、圧縮機11の駆動動力を低減できる。
また、本実施形態のエジェクタサイクルでは、エジェクタ14の上流部の分岐点Zから分岐した冷媒分岐通路16をエジェクタ14の冷媒吸引口14bに接続し、この冷媒分岐通路16に絞り機構17および第2蒸発器18を設けているから、第2蒸発器18には冷媒分岐通路16を通して低圧の気液2相冷媒を独立して供給できる。このため、第1蒸発器15の冷媒流れ下流側に特許文献1のような気液分離器を設定する必要がない。
なお、特許文献1のように気液分離器を設定し、冷媒としてCO冷媒のようにサイクル高圧圧力が臨界圧力を超える冷媒を用いる超臨界サイクルの場合には、高外気温時にサイクル運転を停止すると、高圧側のみならず、低圧側も超臨界状態となる。
この結果、サイクル運転の再起動時に気液分離器による冷媒の気液分離ができないので、気液分離器内の超臨界状態の高温冷媒がそのまま冷媒吸引側の第2蒸発器18に流入して第2蒸発器18の冷却性能が大幅に低下する。これに対し、本実施形態によると、エジェクタ14の上流部で高圧冷媒を分岐し、この分岐冷媒を絞り機構17で減圧して低温冷媒を冷媒吸引側の第2蒸発器18に流入できるので、サイクル運転の再起動時にも第2蒸発器18の冷却性能を素早く発揮できる。
また、通常のフロン系の冷媒を用いる亜臨界サイクル(高圧圧力が臨界圧力を超えないサイクル)においても、サイクル熱負荷が小さい条件では、サイクルの高低圧差が小さくなって、エジェクタ14の入力が小さくなる。この場合に、特許文献1のサイクルでは、第2蒸発器18を通過する冷媒流量がエジェクタ14の冷媒吸引能力のみに依存するので、エジェクタ14の入力低下→エジェクタ14の冷媒吸引能力の低下→第2蒸発器18の冷媒流量の減少が発生して、第2蒸発器18の冷却性能を確保しにくい。
これに対し、本実施形態によると、エジェクタ14の上流部で高圧冷媒を分岐し、この分岐冷媒を冷媒分岐通路16を通して冷媒吸引口14bに吸引させるから、冷媒分岐通路16がエジェクタ14に対して並列的な接続関係となる。
このため、冷媒分岐通路16にエジェクタ14の冷媒吸引能力だけでなく、圧縮機11の冷媒吸入、吐出能力をも利用して冷媒を供給できる。これにより、エジェクタ14の入力低下→エジェクタ14の冷媒吸引能力の低下という現象が発生しても、第2蒸発器18側の冷媒流量の減少度合いを特許文献1のサイクルよりも小さくできる。よって、低熱負荷条件でも、第2蒸発器18の冷却性能を確保しやすい。
また、第2蒸発器18側の冷媒流量をエジェクタ14の機能に依存することなく、絞り機構17にて独立に調整でき、第1蒸発器15への冷媒流量は圧縮機11の冷媒吐出能力の制御とエジェクタ14の絞り特性とにより調整できる。このため、第1、第2蒸発器15、18への冷媒流量をそれぞれの熱負荷に対応して容易に調整できる。
(第2実施形態)
第1実施形態では、エジェクタ14の長手方向を熱交換コア部15a、18aの側面と平行にして、エジェクタ14を熱交換コア部15a、18aの側面に一体構造に組み付けているが、第2実施形態では図3に示すように、エジェクタ14の長手方向をタンク部15b、15c、18b、18cと平行に配置して、エジェクタ14をタンク部15b、15c、18b、18cに一体構造に組み付けている。
具体的には、図3の例では、エジェクタ14の長手方向を上側タンク部15b、18bの上面と平行にして、エジェクタ14を上側タンク部15b、18bの上面に一体構造に組み付けるようにしている。エジェクタ14を上側タンク部15b、18bの上面に固定する固定手段は第1実施形態と同じでよい。
次に、第2実施形態における第1、第2蒸発器15、18の冷媒通路構成を述べると、第1蒸発器15では、上側タンク部15bに仕切り板26を設けて、上側タンク部15bの内部空間を図示の左側領域と右側領域とに仕切っている。そして、上側タンク部15bの上面部のうち右側領域に入口部24を配置し、この入口部24にエジェクタ14のディフューザ部14d下流側の通路を接続する。また、上側タンク部15bの左側領域の側面に出口部25が配置されている。
入口部24から上側タンク部15bの右側領域に流入した冷媒は、矢印i、k、m、nに示すように、熱交換コア部15aの右側領域→下側タンク部15c→熱交換コア部15aの左側領域→上側タンク部15bの左側領経路の経路を通過して、出口部25から圧縮機11の吸入側へ向かう。
第2蒸発器15では、第1実施形態と同様に上側タンク部18bに仕切り板29を設けて、上側タンク部18bの内部空間を図示の左側領域と右側領域とに仕切っている。そして、上側タンク部18bの右側領域の後面に入口部27を配置し、この入口部27に、冷媒分岐通路16の絞り機構17下流側の接続パイプ16aを接続する。
入口部27から上側タンク部18bの右側領域に流入した冷媒は、矢印p、q、r、sに示すように、熱交換コア部18aの右側領域→下側タンク部18c→熱交換コア部18aの左側領域→上側タンク部18bの左側領域の経路を通過して、エジェクタ14の冷媒吸引口14bに流入する。
第2実施形態は、第1実施形態に対してエジェクタ14の配置場所および第1、第2蒸発器15、18の冷媒通路構成が相違しているが、空気流れ方向Aに対する第1、第2蒸発器15、18の配置の仕方、エジェクタサイクル10の通路構成等は第1実施形態と同じであるので、第2実施形態においても第1実施形態と同様の作用効果を発揮できる。
(第3実施形態)
第1、第2実施形態では、エジェクタ14の上流部から分岐され、エジェクタ14の冷媒吸引口14bに接続される冷媒分岐通路16を設け、この冷媒分岐通路16に第2蒸発器18を設けているが、第3実施形態では、この冷媒分岐通路16を設けない構成にしている。
すなわち、第3実施形態では図4に示すように、第1蒸発器15の冷媒流れ下流側に冷媒の気液を分離する気液分離器30を設け、この気液分離器30の気相冷媒の出口部を圧縮機11の吸入側に接続するとともに、この気液分離器30の液相冷媒の出口部を冷媒分岐通路31によりエジェクタ14の冷媒吸引口14bに接続する。そして、この冷媒分岐通路31に絞り機構17と第2蒸発器18を設けている。
第1蒸発器15と第2蒸発器18の空気流れ方向Aに対する配置は第1、第2実施形態と同じであり、冷媒蒸発温度が高い第1蒸発器15を空気流れ方向Aの上流側に配置し、冷媒蒸発温度が低い第2蒸発器18を空気流れ方向Aの下流側に配置している。そして、第1蒸発器15と第2蒸発器18は、図2または図3に示す構造にて一体化されている。
第3実施形態においても、冷媒蒸発温度が異なる第1、第2蒸発器15、18の組み合わせにて冷却対象空間21の冷却性能を効果的に向上できる。
(第4実施形態)
第4実施形態は第1、第2実施形態におけるサイクル構成を変更するもので、図5に示すように、エジェクタ14の下流部から分岐され、圧縮機11の吸入側に接続される第1、第2低圧通路32、33を並列に設けている。また、エジェクタ14の上流部から分岐され、エジェクタ14の冷媒吸引口14bに接続される第1、第2冷媒分岐通路16a、16bを並列に設けている。
エジェクタ下流側の第1、第2低圧通路32、33にはそれぞれ第1蒸発器15a、15bが設けられている。そして、第1、第2冷媒分岐通路16a、16bにはそれぞれ絞り機構17a、17bを設け、この絞り機構17a、17bの下流側に第2蒸発器18a、18bをそれぞれ設けている。
本第4実施形態では、第1蒸発器15aと第2蒸発器18aとを一体構造に組み付けて、2つの蒸発器15a、18aを1つのケース19a内に収納するようになっている。そして、ケース19a内に構成される空気通路に共通の電動送風機(図示せず、図1の送風機20に相当)により空気(被冷却空気)を矢印A1のごとく送風し、この送風空気を2つの蒸発器15a、18aで冷却するようなっている。
同様に、第1蒸発器15bと第2蒸発器18bとを一体構造に組み付けて、2つの蒸発器15b、18bを1つのケース19b内に収納するようになっている。そして、ケース19b内に構成される空気通路に共通の電動送風機(図示せず、図1の送風機20に相当)により空気(被冷却空気)を矢印A2のごとく送風し、この送風空気を2つの蒸発器15b、18bで冷却するようなっている。
なお、第4実施形態における第1蒸発器15aと第2蒸発器18aとの一体化、および第1蒸発器15bと第2蒸発器18bとの一体化は、具体的には、図2または図3に示す構造にて行えばよい。ここで、エジェクタ14は、2組の第1、第2蒸発器15a、18aおよび第1、第2蒸発器15b、18bの一体構造のいずれか一方に一体化すればよい。
ケース19a内の2つの蒸発器15a、18aで冷却された冷風を共通の冷却対象空間(図示せず)に送り込み、これにより、2つの蒸発器15a、18aにて共通の冷却対象空間を冷却するようになっている。
同様に、ケース19b側においても、2つの蒸発器15b、18bで冷却された冷風を共通の冷却対象空間(図示せず)に送り込み、これにより、2つの蒸発器15b、18bにて共通の冷却対象空間を冷却するようになっている。
ケース19a側の冷却対象空間とケース19b側の冷却対象空間はそれぞれ独立に形成された別のものであり、ケース19a側の冷却対象空間は例えば車室内空間であり、また、ケース19b側の冷却対象空間は例えば冷凍車の冷凍冷蔵庫内空間である。
なお、第4実施形態においても、空気流れ方向A1、A2の上流側に冷媒蒸発温度が高い第1蒸発器15a、15bを配置し、空気流れ方向A1、A2の下流側に冷媒蒸発温度が低い第2蒸発器18a、18bを配置している。
(他の実施形態)
なお、本発明は上述の実施形態に限定されることなく、以下述べるごとく種々変形可能である。
(1)図1、図5に示す第1、第4実施形態のエジェクタサイクルでは、冷媒の気液を分離して余剰冷媒を液として蓄える気液分離器を設けていないが、例えば、放熱器13の出口側に高圧冷媒の気液を分離して液冷媒を蓄える気液分離器(レシーバ)を設け、この気液分離器から液冷媒をエジェクタ14側へ導出するようにしてもよい。また、冷媒の気液を分離して余剰冷媒を液として蓄える気液分離器(アキュムレータ)を圧縮機11の吸入側に設け、この気液分離器から気相冷媒を圧縮機11の吸入側へ導出するようにしてもよい。
(2)上述の各実施形態では、車両用の冷凍サイクルについて説明したが、車両用に限らず、定置用等の冷凍サイクルに対しても本発明を同様に適用できることはもちろんである。
(3)上述の各実施形態では、冷媒の種類を特定しなかったが、冷媒はフロン系、HC系の代替フロン、二酸化炭素(CO)など蒸気圧縮式の超臨界サイクルおよび亜臨界サイクルのいずれに適用できるものであってもよい。
なお、ここでフロンとは炭素、フッ素、塩素、水素からなる有機化合物の総称であり、冷媒として広く使用されているものである。フロン系冷媒には、HCFC(ハイドロ・クロロ・フルオロ・カーボン)系冷媒、HFC(ハイドロ・フルオロ・カーボン)系冷媒等が含まれており、これらはオゾン層を破壊しないため代替フロンと呼ばれる冷媒である。
また、HC(炭化水素)系冷媒とは、水素、炭素を含み、自然界に存在する冷媒物質のことである。このHC系冷媒には、R600a(イソブタン)、R290(プロパン)などがある。
(4)上述の各実施形態において、エジェクタ14としてノズル14aの冷媒流路面積、つまり流量を調節する可変流量型のエジェクタを使用してもよい。
(5)上述の各実施形態とは逆に、冷媒蒸発温度が高い第1蒸発器15、15a、15bを空気流れ方向A、A1、A2の下流側に配置し、冷媒蒸発温度が低い第2蒸発器18、18a、18bを空気流れ方向A1、A2の上流側に配置してもよい。
本発明の第1実施形態による車両用エジェクタサイクルを示すサイクル構成図である。 第1実施形態による第1、第2蒸発器の一体化構成を示す概略斜視図である。 第2実施形態による第1、第2蒸発器の一体化構成を示す概略斜視図である。 第3実施形態による車両用エジェクタサイクルを示すサイクル構成図である。 第4実施形態による車両用エジェクタサイクルを示すサイクル構成図である。 本発明による第1、第2蒸発器の一体化構成の変形例を示す概略斜視図である。 従来技術(特許文献1)によるエジェクタサイクルを示すサイクル構成図である。
符号の説明
11…圧縮機、13…放熱器、14…エジェクタ、14a…ノズル部、14b…冷媒吸引口、14c…混合部、14d…ディフューザ部、15…第1蒸発器、16、31…冷媒分岐通路、17…絞り機構、18…第2蒸発器。

Claims (12)

  1. 冷媒を吸入し圧縮する圧縮機(11)と、
    前記圧縮機(11)から吐出された高圧冷媒の放熱を行う放熱器(13)と、
    前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、前記ノズル部(14a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(14b)、前記高い速度の冷媒流と前記冷媒吸引口(14b)の吸引冷媒とを混合する混合部(14c)、および前記混合部(14c)で混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(14d)を有するエジェクタ(14)と、
    前記エジェクタ(14)の下流側に接続される第1蒸発器(15)と、
    前記冷媒吸引口(14b)に接続される第2蒸発器(18)とを備え、
    前記第1蒸発器(15)および前記第2蒸発器(18)は一体に構成され、共通の冷却対象空間(21)に向かって送風される空気流れを冷却するようになっていることを特徴とするエジェクタサイクル。
  2. 前記第1蒸発器(15)および前記第2蒸発器(18)は、一連の構成として接合されていることを特徴とする請求項1に記載のエジェクタサイクル。
  3. 前記第1蒸発器(15)および前記第2蒸発器(18)は、ろう付けにより接合されていることを特徴とする請求項2に記載のエジェクタサイクル。
  4. 前記第1蒸発器(15)および前記第2蒸発器(18)は、前記エジェクタ(14)を経由する冷媒配管(140)によって接合されていることを特徴とする請求項2に記載のエジェクタサイクル。
  5. 前記第1蒸発器(15)および前記第2蒸発器(18)は、前記空気流れ中に直列に配置されていることを特徴とする請求項1ないし4のいずれか1つに記載のエジェクタサイクル。
  6. 前記第1蒸発器(15)の冷媒蒸発温度に比較して前記第2蒸発器(18)の冷媒蒸発温度が低くなるようになっており、
    前記空気流れの上流側に前記第1蒸発器(15)が配置され、前記空気流れの下流側に前記第2蒸発器(18)が配置されることを特徴とする請求項5に記載のエジェクタサイクル。
  7. 前記第1蒸発器(15)および前記第2蒸発器(18)は、それぞれ冷媒通路を構成する複数のチューブ(22)と前記複数のチューブ(22)の外面側に接合され空気側伝熱面積を拡大する複数のフィン(23)との積層構造からなる熱交換コア部(15a、18a)、および前記複数のチューブ(22)の端部に接合され、前記複数のチューブ(22)に対する冷媒の分配、集合の役割を果たすタンク部(15b、15c、18b、18c)を有していることを特徴とする請求項1ないし6のいずれか1つに記載のエジェクタサイクル。
  8. 前記第1蒸発器(15)および前記第2蒸発器(18)の前記複数のチューブ(22)、前記複数のフィン(23)および前記タンク部(15b、15c、18b、18c)をろう付けにて一体構造に組み付けることを特徴とする請求項7に記載のエジェクタサイクル。
  9. 前記エジェクタ(14)は、前記ノズル部(14a)、前記混合部(14c)および前記昇圧部(14d)が一直線上に並んだ細長形状であり、
    前記エジェクタ(14)の長手方向を前記熱交換コア部(15a、18a)の側面と平行にして、前記エジェクタ(14)を前記熱交換コア部(15a、18a)の側面に一体構造に組み付けることを特徴とする請求項7または8に記載のエジェクタサイクル。
  10. 前記エジェクタ(14)は、前記ノズル部(14a)、前記混合部(14c)および前記昇圧部(14d)が一直線上に並んだ細長形状であり、
    前記エジェクタ(14)の長手方向を前記タンク部(15b、15c、18b、18c)の長手方向と平行にして、前記エジェクタ(14)を前記タンク部(15b、15c、18b、18c)に一体構造に組み付けることを特徴とする請求項7または8に記載のエジェクタサイクル。
  11. 前記エジェクタ(14)の上流部から分岐され前記冷媒吸引口(14b)に至る冷媒分岐通路(16)を有し、
    前記冷媒分岐通路(16)に絞り機構(17)が設けられ、この絞り機構(17)の下流側に前記第2蒸発器(18)が設けられていることを特徴とする請求項1ないし10のいずれか1つに記載のエジェクタサイクル。
  12. 前記第1蒸発器(15)の冷媒流れ下流側に冷媒の気液を分離する気液分離器(30)が設けられ、
    前記気液分離器(30)の気相冷媒出口側は前記圧縮機(11)の吸入側に接続され、
    前記気液分離器(30)の液相冷媒出口側は冷媒分岐通路(31)により前記冷媒吸引口(14b)に接続され、
    前記冷媒分岐通路(31)に絞り機構(17)が設けられ、この絞り機構(17)の下流側に前記第2蒸発器(18)が設けられていることを特徴とする請求項1ないし10のいずれか1つに記載のエジェクタサイクル。
JP2008220125A 2004-02-18 2008-08-28 エジェクタサイクル Pending JP2008281338A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008220125A JP2008281338A (ja) 2004-02-18 2008-08-28 エジェクタサイクル

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004041163 2004-02-18
JP2004087066 2004-03-24
JP2008220125A JP2008281338A (ja) 2004-02-18 2008-08-28 エジェクタサイクル

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005037645A Division JP4259478B2 (ja) 2004-02-18 2005-02-15 蒸発器構造およびエジェクタサイクル

Publications (1)

Publication Number Publication Date
JP2008281338A true JP2008281338A (ja) 2008-11-20

Family

ID=40142290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220125A Pending JP2008281338A (ja) 2004-02-18 2008-08-28 エジェクタサイクル

Country Status (1)

Country Link
JP (1) JP2008281338A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133606A (ja) * 2008-12-03 2010-06-17 Denso Corp エジェクタ式冷凍サイクル
JP2010236707A (ja) * 2009-03-30 2010-10-21 Daikin Ind Ltd 熱交換器
CN102930775A (zh) * 2012-10-31 2013-02-13 无锡商业职业技术学院 一种变排量汽车空调压缩机工作演示实验台架电路
JP2021188521A (ja) * 2020-05-26 2021-12-13 学校法人幾徳学園 エネルギー回生装置および回生方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236354A (en) * 1975-09-17 1977-03-19 Matsushita Electric Ind Co Ltd Refrigerant circuit
JPS5526275U (ja) * 1978-08-05 1980-02-20
JPH06137695A (ja) * 1992-10-22 1994-05-20 Nippondenso Co Ltd 冷凍サイクル
JPH11337293A (ja) * 1998-05-26 1999-12-10 Showa Alum Corp 蒸発器
JP2002022295A (ja) * 2000-07-06 2002-01-23 Denso Corp エジェクタサイクル
JP2002228299A (ja) * 2001-02-05 2002-08-14 Showa Denko Kk 複合型熱交換器
JP2003343932A (ja) * 2002-05-24 2003-12-03 Denso Corp エジェクタサイクル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236354A (en) * 1975-09-17 1977-03-19 Matsushita Electric Ind Co Ltd Refrigerant circuit
JPS5526275U (ja) * 1978-08-05 1980-02-20
JPH06137695A (ja) * 1992-10-22 1994-05-20 Nippondenso Co Ltd 冷凍サイクル
JPH11337293A (ja) * 1998-05-26 1999-12-10 Showa Alum Corp 蒸発器
JP2002022295A (ja) * 2000-07-06 2002-01-23 Denso Corp エジェクタサイクル
JP2002228299A (ja) * 2001-02-05 2002-08-14 Showa Denko Kk 複合型熱交換器
JP2003343932A (ja) * 2002-05-24 2003-12-03 Denso Corp エジェクタサイクル

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133606A (ja) * 2008-12-03 2010-06-17 Denso Corp エジェクタ式冷凍サイクル
JP2010236707A (ja) * 2009-03-30 2010-10-21 Daikin Ind Ltd 熱交換器
CN102930775A (zh) * 2012-10-31 2013-02-13 无锡商业职业技术学院 一种变排量汽车空调压缩机工作演示实验台架电路
JP2021188521A (ja) * 2020-05-26 2021-12-13 学校法人幾徳学園 エネルギー回生装置および回生方法
JP7496595B2 (ja) 2020-05-26 2024-06-07 学校法人幾徳学園 エネルギー回生装置

Similar Documents

Publication Publication Date Title
JP4259478B2 (ja) 蒸発器構造およびエジェクタサイクル
JP4626531B2 (ja) エジェクタ式冷凍サイクル
JP4259531B2 (ja) エジェクタ式冷凍サイクル用ユニット
JP4692295B2 (ja) 蒸発器ユニットおよびエジェクタ式冷凍サイクル
US8973394B2 (en) Dual evaporator unit with integrated ejector having refrigerant flow adjustability
US7987685B2 (en) Refrigerant cycle device with ejector
JP4595607B2 (ja) エジェクタを使用した冷凍サイクル
US8099978B2 (en) Evaporator unit
JP4600200B2 (ja) エジェクタ式冷凍サイクル
US7726150B2 (en) Ejector cycle device
JP5050563B2 (ja) エジェクタ及びエジェクタ式冷凍サイクル用ユニット
US7694529B2 (en) Refrigerant cycle device with ejector
JP2009097771A (ja) エジェクタ式冷凍サイクル
JP4952830B2 (ja) エジェクタ式冷凍サイクル
JP5062066B2 (ja) エジェクタ式冷凍サイクル用蒸発器ユニット
JP4770891B2 (ja) エジェクタ式冷凍サイクル用ユニット
JP2008281338A (ja) エジェクタサイクル
JP4400522B2 (ja) エジェクタ式冷凍サイクル
JP2008138895A (ja) 蒸発器ユニット
JP5540816B2 (ja) 蒸発器ユニット
JP4725449B2 (ja) エジェクタ式冷凍サイクル
JP2009138952A (ja) ブライン式冷却装置
JP2007040612A (ja) 蒸気圧縮式サイクル
JP4548266B2 (ja) 蒸気圧縮式冷凍サイクル装置
JP2008261512A (ja) エジェクタ式冷凍サイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607