JP2008279335A - Apparatus and method for water reclamation - Google Patents
Apparatus and method for water reclamation Download PDFInfo
- Publication number
- JP2008279335A JP2008279335A JP2007124343A JP2007124343A JP2008279335A JP 2008279335 A JP2008279335 A JP 2008279335A JP 2007124343 A JP2007124343 A JP 2007124343A JP 2007124343 A JP2007124343 A JP 2007124343A JP 2008279335 A JP2008279335 A JP 2008279335A
- Authority
- JP
- Japan
- Prior art keywords
- water
- microorganism
- membrane
- containing liquid
- reverse osmosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
Description
本発明は、膜分離型生物処理工程と逆浸透膜処理工程を含み、生物処理工程からの生物処理水を逆浸透膜によって膜分離を行う造水方法および造水装置に関する。 The present invention relates to a fresh water generation method and a fresh water generating apparatus that include a membrane separation type biological treatment step and a reverse osmosis membrane treatment step, and perform biological separation of biologically treated water from the biological treatment step with a reverse osmosis membrane.
近年、世界規模で水不足が深刻な問題となりつつあり、そうした中、産業廃水、生活廃水などを含む有機性廃水の再利用技術に対する要望が社会的に高まってきており、中でも逆浸透膜を用いることにより、工業用、農業用、あるいは家庭用の用水として利用可能な極めて良好な水質を持つ再生水を造水する方法が注目されている。 In recent years, water shortages are becoming a serious problem on a global scale, and in such a situation, there is a growing demand for technologies for recycling organic wastewater, including industrial wastewater and domestic wastewater. Therefore, a method for producing reclaimed water having extremely good water quality that can be used as industrial, agricultural, or household water is attracting attention.
逆浸透膜は、被ろ過液の浸透圧よりも高い圧力を被ろ過液側から加えることにより、被ろ過液中の一価イオンまで排除可能な膜であり、逆浸透膜を用いて処理することにより得られる再生水は工業用水、農業用水、更には飲料水としても再利用可能な高品位な水である。但し、逆浸透膜に供給される被ろ過液には、水中の汚濁物質であるBOD(Biochemical Oxygen Demand=生物化学的酸素要求量)の濃度やSS(Suspended Solid=浮遊物質)の濃度が低く、良好でかつ安定した水質が要求されるので、有機性廃水をそのまま逆浸透膜に供することができない。そこで、有機性廃水を活性汚泥によって処理することによりBOD成分濃度を低減し、更にSS成分をほぼ完全に除去可能な精密ろ過膜、限外ろ過膜などの分離膜を用いて活性汚泥を固液分離する前処理を行い、得られる前処理水を、逆浸透膜の被ろ過液として用いる方法(膜分離活性汚泥法)が注目されている。 The reverse osmosis membrane is a membrane that can eliminate even monovalent ions in the filtrate by applying a pressure higher than the osmotic pressure of the filtrate to be filtered from the side of the filtrate. The reclaimed water obtained by this is high quality water that can be reused as industrial water, agricultural water, and even drinking water. However, the liquid to be filtered supplied to the reverse osmosis membrane has a low concentration of BOD (Biochemical Oxygen Demand) which is a pollutant in water and SS (Suspended Solid). Since good and stable water quality is required, the organic waste water cannot be directly applied to the reverse osmosis membrane. Therefore, by treating organic wastewater with activated sludge, the concentration of BOD components is reduced, and activated sludge is solid-liquid using separation membranes such as microfiltration membranes and ultrafiltration membranes that can remove SS components almost completely. A method (membrane separation activated sludge method) in which pretreatment for separation is performed and the pretreated water obtained is used as a filtrate for a reverse osmosis membrane has attracted attention.
しかし、逆浸透膜を用いてろ過を行う場合、極めて良質な再生水が得られる反面、逆浸透膜を透過せずに残留するBOD成分、COD(ChemicalOxygen Demand=化学的酸素要求量)成分、塩分などが濃縮された水(以下、濃縮水という)が発生し、この濃縮水はそのまま利用することも廃棄することも困難であるので、この濃縮水をさらに処理することが必要となる。濃縮水の処理方法については、濃縮水を電気分解し、濃縮水中のBOD、CODを除去する方法(特許文献1)、塩分を50%程度通すルーズな低圧逆浸透膜によって処理する方法(特許文献2)、オゾン処理、紫外線処理、過酸化水素処理、触媒処理などの酸化処理によって処理する方法(特許文献3)などがこれまでに提案されている。 However, when filtration is performed using a reverse osmosis membrane, an extremely high quality reclaimed water can be obtained, but a BOD component remaining without permeating the reverse osmosis membrane, a COD (Chemical Oxygen Demand) component, salt content, etc. Concentrated water (hereinafter referred to as concentrated water) is generated, and it is difficult to use or discard the concentrated water as it is, so that it is necessary to further process the concentrated water. Concentrated water is treated by electrolyzing the concentrated water to remove BOD and COD in the concentrated water (Patent Document 1), or by a loose low-pressure reverse osmosis membrane that passes about 50% of the salt content (Patent Document) 2) A method of treatment by oxidation treatment such as ozone treatment, ultraviolet treatment, hydrogen peroxide treatment, catalyst treatment (Patent Document 3) has been proposed so far.
また、有機性廃水を活性汚泥によって処理する際には、活性汚泥中の微生物が有機成分を摂取・分解するために必要な酸素を供給する必要がある。そのために、ブロアなどにより、活性汚泥中に浸漬させた散気管を通して、活性汚泥中にエア(酸素を含む気体、空気)を供給する。このとき、活性汚泥中に浸漬させた散気管を用いて散気を継続すると、活性汚泥中の固形成分が散気管内部に侵入し、散気エアによって乾燥するなどして、散気管が次第に閉塞する。散気管が閉塞すると、散気のために必要な圧力が増大するだけでなく、散気に偏りが発生し、効率的な散気が困難となる。膜分離活性汚泥法では、精密ろ過膜や限外ろ過膜の下部に散気管を配し、散気管から供給されるエアバブル、あるいはエアバブルの供給によって発生する上向流を利用して膜表面に付着する物質を除去しながら活性汚泥を膜ろ過するため、散気に偏りが発生すると、膜表面の洗浄が不十分となり、膜ろ過の継続が困難となる。よって散気管の閉塞を抑制することが、膜分離活性汚泥法の安定運転のためには重要となり、かかる散気管閉塞の抑制方法として、例えば、曝気と同時あるいは間欠曝気時に、洗浄液に圧力をかけて、洗浄液を散気管に供給する方法(特許文献4)や、洗浄水用タンクを活性汚泥の水位より上部に設け、その水頭差を利用して洗浄水を散気管内に供給する方法(特許文献5)などがある。 Further, when treating organic wastewater with activated sludge, it is necessary to supply oxygen necessary for microorganisms in the activated sludge to ingest and decompose organic components. For that purpose, air (gas containing oxygen, air) is supplied into the activated sludge through a diffuser tube immersed in the activated sludge by a blower or the like. At this time, if the air diffuser is continued using the diffuser pipe immersed in the activated sludge, the solid component in the activated sludge enters the diffuser pipe and is dried by the diffused air. To do. When the air diffuser is blocked, not only the pressure required for air diffusion increases, but also the air diffuses unevenly, making efficient air diffusion difficult. In the membrane-separated activated sludge method, an air diffuser is placed below the microfiltration membrane or ultrafiltration membrane, and the air bubbles supplied from the air diffuser or the upward flow generated by the supply of air bubbles are attached to the membrane surface. Since the activated sludge is subjected to membrane filtration while removing the substances to be removed, if the air diffuses unevenly, the membrane surface is not sufficiently cleaned, and it is difficult to continue membrane filtration. Therefore, it is important for the stable operation of the membrane separation activated sludge method to suppress the blockage of the diffuser tube. As a method for suppressing the blockage of the diffuser tube, for example, pressure is applied to the cleaning liquid at the same time or intermittent aeration. A method of supplying cleaning liquid to the air diffuser (Patent Document 4) and a method of supplying a cleaning water tank into the air diffuser using the water head difference by providing a cleaning water tank above the water level of the activated sludge (Patent Document 4) Reference 5).
しかしながら、特許文献1〜3における濃縮水の処理方法を採用した場合、濃縮水の処理のために別途処理装置が必要となるため、その建設・運転・維持管理に相当のコスト、エネルギーが必要となり、結果的に再生水の造水コスト増大という問題を招く。また、特許文献4による散気管の洗浄方法は、洗浄液を圧力をかけて供給する際に、別途、送液ポンプ等の圧力付加装置を利用するため、運転・維持管理にコスト、エネルギーが必要となる。また、特許文献5による散気管の洗浄方法は、洗浄水用タンクを別途用意する必要があり、また、十分な圧力を洗浄水に与えるには、洗浄水用タンクを活性汚泥の水位より非常に高い位置に設ける必要があり、現実的ではない。 However, when the concentrated water treatment method in Patent Documents 1 to 3 is adopted, a separate treatment device is required for the treatment of the concentrated water, so that considerable cost and energy are required for its construction, operation, and maintenance. As a result, there arises a problem that the production cost of reclaimed water is increased. In addition, the method for cleaning an air diffuser according to Patent Document 4 requires a cost and energy for operation and maintenance because a pressure applying device such as a liquid feed pump is separately used when supplying the cleaning liquid under pressure. Become. Further, in the method for cleaning the air diffuser according to Patent Document 5, it is necessary to separately prepare a tank for cleaning water, and in order to give sufficient pressure to the cleaning water, the tank for cleaning water is much more than the water level of activated sludge. It is necessary to install at a high position, which is not realistic.
そこで、本発明は、前記した従来技術の問題点を解消し、高い圧力を有する、逆浸透膜の濃縮水をそのまま効率的に利用することができ、しかも、散気管内の洗浄を効率的に行うことができ、散気管洗浄のためのエネルギー消費を抑制することができる造水装置及び造水方法を提供することを目的とする。 Therefore, the present invention solves the above-mentioned problems of the prior art, can efficiently use the concentrated water of the reverse osmosis membrane having a high pressure as it is, and moreover, the cleaning of the air diffuser can be efficiently performed. An object of the present invention is to provide a fresh water generating apparatus and a fresh water generating method that can be performed and can suppress energy consumption for cleaning a diffuser.
上記目的を達成するために、本発明における再生水の造水装置及び造水方法は、以下の構成のいずれかからなる。
(1) 微生物含有液を収容する微生物含有液収容槽と、前記微生物含有液収容槽内の前記微生物含有液に気泡を噴出させるための散気管と、前記散気管に酸素含有気体を連続的あるいは断続的に供給するための気体供給手段と、前記散気管と前記気体供給手段とを接続する気体供給配管と、前記微生物含有液に浸漬するように設置される分離膜と、前記分離膜によって前記微生物含有液を固液分離し、生物処理水を取得するための処理水取得手段と、取得された生物処理水を処理するための逆浸透膜と、前記逆浸透膜に供給される前記生物処理水を加圧するための加圧手段とを備え、かつ、前記逆浸透膜にて濃縮された濃縮水を送液するための濃縮水送液配管が前記気体供給配管に連通していることを特徴とする造水装置。
In order to achieve the above-mentioned object, a reclaimed water freshwater generator and a fresh water generation method according to the present invention have any of the following configurations.
(1) A microorganism-containing liquid storage tank for storing a microorganism-containing liquid, an air diffuser pipe for injecting bubbles into the microorganism-containing liquid in the microorganism-containing liquid storage tank, and an oxygen-containing gas continuously or Gas supply means for intermittently supplying, gas supply piping connecting the diffuser pipe and the gas supply means, a separation membrane installed so as to be immersed in the microorganism-containing liquid, and the separation membrane Solid-liquid separation of the microorganism-containing liquid to obtain biological treated water, a reverse osmosis membrane for treating the obtained biological treated water, and the biological treatment supplied to the reverse osmosis membrane And a pressurizing means for pressurizing water, and a concentrated water feed pipe for feeding the concentrated water concentrated by the reverse osmosis membrane communicates with the gas supply pipe. A fresh water generator.
(2) 逆流防止手段が、前記濃縮水送液配管と前記気体供給配管との連結部と、前記気体供給手段との間に備えられていることを特徴とする(1)に記載の造水装置。
(3) 前記濃縮水送液配管が、前記気体供給配管と、前記逆浸透における前記濃縮水の排出部とを連通するように配されていることを特徴とする(1)または(2)に記載の造水装置。
(4) 前記散気管が2〜6mmφの吐出孔を有していることを特徴とする(1)〜(3)のいずれかに記載の造水装置。
(5) 前記散気管が、前記分離膜の下部に設置され、かつ、吐出孔が散気管上部にあることを特徴とする(4)に記載の造水装置。
(6) 原水を微生物含有液が貯留された槽内に流入させ、微生物含有液に散気管を通して酸素含有気体を供給しながら生物処理し、前記微生物含有液に浸漬された分離膜によって微生物含有液を固液分離することによって生物処理水を取得し、取得した生物処理水を逆浸透膜によって濃縮水と膜透過水とに膜分離する造水方法であって、前記濃縮水の一部あるいは全部を、前記散気管を通して前記微生物含有液に還流させることを特徴とする造水方法。
(7)前記散気管を通した気体の供給と、前記散気管を通した濃縮水の供給とを、同時に行うことを特徴とする(6)に記載の造水方法。
(2) The fresh water generation apparatus according to (1), characterized in that a backflow prevention means is provided between a connecting portion between the concentrated water feeding pipe and the gas supply pipe and the gas supply means. apparatus.
(3) The (1) or (2) is characterized in that the concentrated water feeding pipe is arranged so as to communicate with the gas supply pipe and the discharge portion of the concentrated water in the reverse osmosis. The fresh water generator described.
(4) The fresh water generator according to any one of (1) to (3), wherein the air diffuser has a discharge hole of 2 to 6 mmφ.
(5) The fresh water generator according to (4), wherein the air diffuser is installed in a lower part of the separation membrane, and a discharge hole is in the upper part of the air diffuser.
(6) The raw water is introduced into a tank in which the microorganism-containing liquid is stored, the biological treatment is performed while supplying the oxygen-containing gas to the microorganism-containing liquid through an air diffuser, and the microorganism-containing liquid is separated by the separation membrane immersed in the microorganism-containing liquid. The biological treatment water is obtained by solid-liquid separation, and the obtained biological treatment water is membrane-separated into concentrated water and membrane permeated water using a reverse osmosis membrane, and part or all of the concentrated water Is recirculated to the microorganism-containing liquid through the aeration tube.
(7) The fresh water generation method according to (6), wherein the gas supply through the air diffuser and the concentrated water supply through the air diffuser are simultaneously performed.
本発明の効果は以下に示す通りである。
(1)散気管洗浄水として逆浸透膜の濃縮水を利用することによって、散気管の洗浄を行うと同時に濃縮水は微生物含有液内に還流されるので濃縮水を生物学的に処理することができる。
(2)逆浸透膜の濃縮水に加わる圧力を利用することにより、新たにエネルギーを加えることなく、高効率の散気管洗浄を行うことができる。
(3)分離膜の下部に散気管を配し、該散気管の吐出孔を上向きにすることにより、高流速で吐出される濃縮水とエアの影響で分離膜の表面が効率よく洗浄される。
The effects of the present invention are as follows.
(1) By using the concentrated water of the reverse osmosis membrane as the diffuser cleaning water, the concentrated water is refluxed into the microorganism-containing liquid at the same time as the diffuser is cleaned, so that the concentrated water is biologically treated. Can do.
(2) By using the pressure applied to the concentrated water of the reverse osmosis membrane, highly efficient air diffuser cleaning can be performed without newly adding energy.
(3) The surface of the separation membrane is efficiently washed by the influence of concentrated water and air discharged at a high flow rate by disposing a diffusion tube below the separation membrane and making the discharge hole of the diffusion tube upward. .
以下、本発明に係る造水装置を図1に基づいて説明する。 Hereinafter, the fresh water generator according to the present invention will be described with reference to FIG.
本発明に係る造水装置は、微生物含有液4を収容する微生物含有液収容槽3と、前記微生物含有液収容槽3内の前記微生物含有液4に気泡を噴出させるための散気管5と、前記散気管5に酸素含有気体を連続的あるいは断続的に供給するための気体供給手段6と、前記散気管5と前記気体供給手段6とを接続する気体供給配管14と、前記微生物含有液4に浸漬するように設置される分離膜2と、前記分離膜2によって前記微生物含有液4を固液分離し、生物処理水8を取得するための処理水取得手段7と、取得された前記生物処理水を処理するための逆浸透膜9と、前記逆浸透膜9に供給される前記生物処理水を加圧するための加圧圧手段17とを備え、かつ、前記逆浸透膜9にて濃縮された濃縮水を送液するための濃縮水送液配管13が前記気体供給配管14に連通している。
The fresh water generating apparatus according to the present invention includes a microorganism-containing
本装置の構造および使用方法を以下に具体的に述べる。 The structure and use method of this apparatus will be specifically described below.
微生物含有液4を収容した微生物含有液収容槽3内に、原水流入管1を通して原水が連続的あるいは断続的に流入される。ここにおいて、微生物含有液とは、微生物を含んだ混合液のことであり、例えば、活性汚泥や微生物培養液である。また、原水は、微生物含有液中の微生物の基質となる物質を含む液体であり、例えば、家庭廃水、都市下水、工場廃水などの有機性廃液である。
Raw water is continuously or intermittently introduced into the microorganism-containing
また、前記微生物含有液4の中に浸漬されるように散気管5が設置され、前記散気管5と気体供給手段6は、気体供給配管14により接続している。これにより、微生物反応に必要な酸素を供給するとともに、前記散気管を後述の分離膜の下部に備える場合には、散気管から発生する気泡とそれによる上向流によって膜表面への物質付着を抑制する。ここにおいて、散気管は、空気のような酸素含有気体を分散させて気泡として微生物含有液中に散気させることができる構造であることが必要であり、かつ、後述のように濃縮水を散気管の吐出孔から流出させるので、これを効率的に行うために、図2のような、中空のパイプに2〜6mmφの吐出孔5aを複数個〜多数個設けることが好ましい。また、散気管の上部に分離膜を設置し、散気管の上部に吐出孔が備えられていることが好ましい。これにより、吐出孔から吐出される濃縮水が分離膜表面に接触し、分離膜表面への物質付着をさらに抑制する効果がある。気体供給手段としては、例えばブロアなどが挙げられる。
Further, a diffuser pipe 5 is installed so as to be immersed in the microorganism-containing liquid 4, and the diffuser pipe 5 and the gas supply means 6 are connected by a
また、前記微生物含有液4の中には分離膜2が浸漬設置され、前記分離膜2の透過液側に、処理水取得手段としての吸引手段7が設けられ、この吸引手段7は、生物処理水貯留槽18内の分離膜の透過水側と配管により連通されている。吸引手段7を作動させることによって分離膜により微生物含有液がろ過され、生物処理・ろ過された生物処理水8が配管を通って、生物処理水貯留槽18内に貯留される。
Further, the
ここにおいて、分離膜とは、微生物含有液4に圧力を加えることにより、もしくは透過側からポンプで吸引することにより、微生物含有液中に含まれる一定粒子径以上の物質を捕捉し、それらの物質が除かれた生物処理水を生成する機能を有するものであり、その捕捉粒子径の違いにより、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などがある。本発明で用いられる分離膜としては、精密ろ過膜、限外ろ過膜、ナノろ過膜が好ましい。 Here, the separation membrane captures substances having a certain particle diameter or more contained in the microorganism-containing liquid by applying pressure to the microorganism-containing liquid 4 or sucking with a pump from the permeation side, and these substances. There is a function of generating biologically treated water from which water is removed, and there are microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, etc., depending on the difference in trapped particle size. The separation membrane used in the present invention is preferably a microfiltration membrane, an ultrafiltration membrane, or a nanofiltration membrane.
精密ろ過膜、限外ろ過膜の素材としては、ポリアクリロニトリル、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、酢酸セルロース、ポリエチレン、ポリプロピレン、塩素化ポリエチレン等の有機素材や、セラミック等の無機素材などを挙げることができる。本発明においては、その素材は特に限定しないが、微生物含有液を膜ろ過する精密ろ過膜、限外ろ過膜の素材としては、ポリフッ化ビニリデン、塩素化ポリエチレン、ポリアクリロニトリル、酢酸セルロース、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォンが耐汚れ性や洗浄回復性が良いため好ましい。 Materials for microfiltration membranes and ultrafiltration membranes include organic materials such as polyacrylonitrile, polysulfone, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, cellulose acetate, polyethylene, polypropylene, and chlorinated polyethylene, and inorganic materials such as ceramics Materials can be listed. In the present invention, the material is not particularly limited, but as a material for a microfiltration membrane for filtering a microorganism-containing liquid and an ultrafiltration membrane, polyvinylidene fluoride, chlorinated polyethylene, polyacrylonitrile, cellulose acetate, polyphenylenesulfone, Polyphenylene sulfide sulfone is preferable because it has good stain resistance and good cleaning recovery.
ナノろ過膜の素材としては、ポリアミド系、ポリピペラジンアミド系、ポリエステルアミド系、あるいは水溶性のビニルポリマーを架橋したものなどがある。本発明においては、その素材は特に限定しないが、透過水量、耐薬品性などの点からポリアミド系やポリピペラジンアミド系の膜が好ましい。 Examples of the material for the nanofiltration membrane include polyamide-based, polypiperazine amide-based, polyester amide-based, and water-soluble vinyl polymer crosslinked. In the present invention, the material is not particularly limited, but a polyamide-based or polypiperazine amide-based film is preferable from the viewpoint of the amount of permeated water and chemical resistance.
分離膜の形態には中空糸膜、管状膜、平膜などが存在するが、いずれの形態のものでも本発明に用いることができる。ここで、中空糸膜とは外径2mm未満の円管状の分離膜、管状膜とは外径2mm以上の円管状の分離膜である。そしてこれらの分離膜は、中空糸膜の場合は中空糸膜をU字状やI字状に束ねてケースに収納した中空糸膜エレメントに、管状膜の場合はチューブラー型エレメントに、平膜の場合はスパイラル型エレメントやプレート・アンド・フレーム型エレメントにし、単独、あるいは複数個を組み合わせてモジュール化することが好ましい。 The form of the separation membrane includes a hollow fiber membrane, a tubular membrane, a flat membrane, and the like, and any form can be used in the present invention. Here, the hollow fiber membrane is a tubular separation membrane having an outer diameter of less than 2 mm, and the tubular membrane is a tubular separation membrane having an outer diameter of 2 mm or more. In the case of hollow fiber membranes, these separation membranes are hollow fiber membrane elements that are bundled in a U-shape or I-shape and accommodated in a case. In the case of tubular membranes, tubular-type elements are used. In this case, it is preferable that a spiral type element or a plate-and-frame type element is used, and a single element or a combination of a plurality of elements are modularized.
分離膜による固液分離方式には、微生物含有液を濃縮しながら全量を固液分離する全量ろ過と、分離膜表面において微生物含有液の流れを発生させながら固液分離を行うクロスフローろ過がある。本発明ではいずれの固液分離方式でも構わないが、クロスフローろ過は微生物含有液を膜面に循環させることで、膜面の流れによるせん断応力で、固液分離に伴い膜面に付着する微生物含有液中成分を剥離させながら運転することが可能なので、より好ましい。特に、分離膜の下部に散気管を配し、散気管の吐出孔から吐出される気泡を分離膜表面に接触させることによって、微生物含有液中成分を膜表面から剥離させる効果が大きくなるので、さらに好ましい。 Solid-liquid separation methods using separation membranes include total-volume filtration that separates the entire amount while concentrating the microorganism-containing liquid, and cross-flow filtration that performs solid-liquid separation while generating a flow of the microorganism-containing liquid on the surface of the separation membrane. . In the present invention, any solid-liquid separation method may be used, but the cross-flow filtration circulates a microorganism-containing liquid on the membrane surface, so that the microorganisms adhere to the membrane surface due to the solid-liquid separation due to the shear stress caused by the flow of the membrane surface. Since it is possible to operate while peeling off the components in the contained liquid, it is more preferable. In particular, by arranging an air diffuser at the bottom of the separation membrane and bringing bubbles discharged from the discharge holes of the air diffuser into contact with the surface of the separation membrane, the effect of separating the microorganism-containing liquid components from the surface of the membrane increases. Further preferred.
また、分離膜の原水側と透過水側とに圧力差を発生させることによって、分離膜の透過水である生物処理水を取得するが、ここにおいて、該圧力差を発生させるための処理水取得手段としては、例えば、原水側を加圧するための加圧手段でもよいし、透過水側から吸引ポンプによって負圧を加えるための吸引手段でもよいし、また、微生物含有液と配管出口などとの水頭差を利用して圧力差を発生させる手段でもよい。図1においては吸引手段7を用いている。 Further, by generating a pressure difference between the raw water side and the permeated water side of the separation membrane, biological treated water that is the permeated water of the separation membrane is obtained. Here, the treated water for generating the pressure difference is obtained. The means may be, for example, a pressurizing means for pressurizing the raw water side, a suction means for applying a negative pressure from the permeate water side by a suction pump, or a microorganism-containing liquid and a pipe outlet. A means for generating a pressure difference using a water head difference may be used. In FIG. 1, the suction means 7 is used.
生物処理水貯留槽18内に貯留された生物処理水8は、加圧手段17によって、ろ過に必要な圧力が加えられ、逆浸透膜9に供給され、膜透過水10と濃縮水11とに分離される。この加圧手段としては、例えば高圧ポンプなどがある。なお、前記生物処理水の一部を、逆浸透膜に供給せずにそのまま放流してもよい。
The biologically treated
逆浸透膜とは、被ろ過液の浸透圧よりも高い圧力を加えることにより、被ろ過液中の一価イオンまで排除する膜である。逆浸透膜の構造としては、例えば、膜の少なくとも片面に緻密層を備え、緻密層から離れるに従って孔径が徐々に大きくなる非対称膜や、この非対称膜の緻密層の上に別の素材からなる厚みの薄い活性層を備えた複合膜がある。また膜素材としては、酢酸セルロース、セルロース系のポリマ、ポリアミド、及びビニルポリマなどの高分子材料を用いることができる。代表的な逆浸透膜としては、酢酸セルロース系またはポリアミド系の非対称膜、及び、ポリアミド系またはポリ尿素系の活性層を有する複合膜を挙げることができる。中でも、塩分の排除性能が高い、酢酸セルロース系非対称膜、ポリアミド系活性層を有する複合膜または芳香族ポリアミド系の活性層を有する複合膜が好ましく、特に、芳香族ポリアミド複合膜を用いると、取り扱いが容易で更に好ましい。 The reverse osmosis membrane is a membrane that excludes even monovalent ions in the filtrate by applying a pressure higher than the osmotic pressure of the filtrate. The structure of the reverse osmosis membrane includes, for example, an asymmetric membrane having a dense layer on at least one side of the membrane and the pore diameter gradually increasing as the distance from the dense layer is increased, or a thickness made of another material on the dense layer of the asymmetric membrane. There are composite membranes with a thin active layer. As the film material, polymer materials such as cellulose acetate, cellulose polymer, polyamide, and vinyl polymer can be used. Typical reverse osmosis membranes include cellulose acetate or polyamide asymmetric membranes and composite membranes having polyamide or polyurea active layers. Among them, a cellulose acetate asymmetric membrane, a composite membrane having a polyamide active layer, or a composite membrane having an aromatic polyamide active layer, which has a high salt rejection performance, is preferable. Is more preferable.
逆浸透膜の形態には中空糸膜、管状膜、平膜などが存在するが、いずれの形態のものでも本発明に用いることができる。そして逆浸透膜は、中空糸膜の場合は中空糸膜エレメントに、管状膜の場合はチューブラー型エレメントに、平膜の場合はスパイラル型エレメントやプレート・アンド・フレーム型エレメントにし、単独、あるいは複数個を組み合わせてモジュール化することが好ましい。 The reverse osmosis membrane includes hollow fiber membranes, tubular membranes, flat membranes and the like, and any of them can be used in the present invention. The reverse osmosis membrane is a hollow fiber membrane element in the case of a hollow fiber membrane, a tubular element in the case of a tubular membrane, a spiral type element or a plate-and-frame type element in the case of a flat membrane, alone or It is preferable to make a module by combining a plurality.
逆浸透膜でろ過することにより得られる膜透過水10は、水質としては水道水以上のものが得られるため、工業用水、農業用水、更には飲料水などの目的で利用可能である。一方、濃縮水11は、逆浸透膜を透過せずに残留するBOD、COD、塩分などが濃縮された水であり、濃縮水送液配管13によって高圧のまま送液される。濃縮水送液配管の途中には、濃縮水の流量や、濃縮水と膜ろ過水との流量比率を調整できるように、濃縮水流量調整手段12が組み込まれているのが好ましい。濃縮水流量調整手段としては、例えばバルブなどが挙げられる。
Membrane permeated
本発明では、前記気体供給配管14の途中に、前記濃縮水送液配管13を連通させることにより、濃縮水を、気体供給配管14を経由して散気管5内に供給し、散気管の吐出孔5aから前記微生物含有液4の中に吐出させることができる。これにより、散気管内部の洗浄が行えるとともに、濃縮水中の有機物成分を微生物含有液収容槽3内で生物分解させることが可能となる。また、前記濃縮水送液配管13は、前記気体供給配管14と、前記逆浸透膜9における前記濃縮水の排出部16との間を連通させるように配管されていることが好ましい。これにより、逆浸透膜の濃縮水に加わる圧力を有効に利用することができ、新たにエネルギーを加えることなく、高効率の散気管洗浄を行うことができる。また、濃縮水には高い圧力が加わっているため、濃縮水が前記気体供給手段6に流入することを防止するための逆流防止手段15が、前記濃縮水送液配管と前記気体供給配管との連結部19よりも前記気体供給手段6に近い位置に備えられていることが好ましい。逆流防止手段としては、例えば、逆止弁などが挙げられる。
In the present invention, the concentrated
また、本装置を使用する場合には、散気管洗浄用濃縮水流量調整手段20を用いて、散気管洗浄を行うための濃縮水の流量を調整し、残りの濃縮水は本発明に係る造水装置外に排出できるようにすることが好ましい。これにより、散気管洗浄を効率よく行うことが可能となる。散気管洗浄用濃縮水流量調整手段としては、例えばバルブなどが挙げられる。また、前記造水装置外に排出した濃縮水は別途処理を行った後、放流してもよい。また、散気管5を通した気体の供給と、前記散気管を通した濃縮水の供給は同時に行うことが好ましい。これにより、散気管内を高圧の気水混合流体で効果的に洗浄できるとともに、気水混合流体が高流速で吐出されて上昇し、高流速の気水混合流の作用により分離膜の表面が効率よく洗浄される。 When this apparatus is used, the flow rate of the concentrated water for performing the diffuser tube cleaning is adjusted using the concentrated water flow rate adjusting means 20 for cleaning the diffuser tube, and the remaining concentrated water is produced according to the present invention. It is preferable that the water can be discharged out of the water device. Thereby, it is possible to efficiently perform the air diffuser cleaning. Examples of the flow rate adjusting means for cleaning the diffuser tube include a valve. The concentrated water discharged out of the fresh water generator may be discharged after being treated separately. Moreover, it is preferable that the supply of gas through the air diffuser 5 and the supply of concentrated water through the air diffuser are performed simultaneously. As a result, the inside of the air diffuser can be effectively washed with a high-pressure air-water mixed fluid, and the air-water mixed fluid is discharged at a high flow rate and rises. It is cleaned efficiently.
本発明における再生水の造水装置及び造水方法によると有機廃液を効率的に再利用でき、廃棄水量を少なくできるので例えば、浄水使用量を削減したい工場、灌漑用水の不足している農業地域、飲料水不足の都市域などで適用することが可能である。 According to the reclaimed water desalination apparatus and the desalination method in the present invention, the organic waste liquid can be efficiently reused, and the amount of waste water can be reduced.For example, factories that want to reduce the amount of purified water used, agricultural areas where irrigation water is insufficient, It can be applied in urban areas where there is a shortage of drinking water.
1 原水流入管
2 分離膜
3 微生物含有液収容槽
4 微生物含有液
5 散気管
6 気体供給手段
7 処理水取得手段(吸引手段)
8 生物処理水
9 逆浸透膜
10 膜透過水取出管
12 濃縮水流量調整手段
13 濃縮水送液配管
14 気体供給配管
15 逆流防止手段
16 濃縮水の排出部
17 加圧手段
18 生物処理水貯留槽
19 濃縮水送液配管と気体供給配管との連結部
20 散気管洗浄用濃縮水流量調整手段
DESCRIPTION OF SYMBOLS 1 Raw
8 Biologically treated
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007124343A JP2008279335A (en) | 2007-05-09 | 2007-05-09 | Apparatus and method for water reclamation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007124343A JP2008279335A (en) | 2007-05-09 | 2007-05-09 | Apparatus and method for water reclamation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008279335A true JP2008279335A (en) | 2008-11-20 |
Family
ID=40140620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007124343A Pending JP2008279335A (en) | 2007-05-09 | 2007-05-09 | Apparatus and method for water reclamation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008279335A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011072939A (en) * | 2009-09-30 | 2011-04-14 | Hitachi Ltd | Membrane treatment equipment |
JP2013056298A (en) * | 2011-09-08 | 2013-03-28 | Fuji Electric Co Ltd | Filtering apparatus and method for operating the apparatus |
CN108623085A (en) * | 2017-03-18 | 2018-10-09 | 深圳市深水生态环境技术有限公司 | A kind of high nitrogen organic wastewater film-filter concentration liquid advanced treatment system and method |
JP2020032351A (en) * | 2018-08-29 | 2020-03-05 | 株式会社神戸製鋼所 | Mobile water purification device |
JP2020199424A (en) * | 2019-06-06 | 2020-12-17 | 日本ソリッド株式会社 | Water cleaning sheet for cleaning city water |
JP2022159423A (en) * | 2018-08-29 | 2022-10-17 | 株式会社神戸製鋼所 | Mobile water purification device |
-
2007
- 2007-05-09 JP JP2007124343A patent/JP2008279335A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011072939A (en) * | 2009-09-30 | 2011-04-14 | Hitachi Ltd | Membrane treatment equipment |
JP2013056298A (en) * | 2011-09-08 | 2013-03-28 | Fuji Electric Co Ltd | Filtering apparatus and method for operating the apparatus |
CN108623085A (en) * | 2017-03-18 | 2018-10-09 | 深圳市深水生态环境技术有限公司 | A kind of high nitrogen organic wastewater film-filter concentration liquid advanced treatment system and method |
CN108623085B (en) * | 2017-03-18 | 2022-05-31 | 深圳市深水生态环境技术有限公司 | Advanced treatment method for high-nitrogen organic wastewater membrane filtration concentrate |
JP2020032351A (en) * | 2018-08-29 | 2020-03-05 | 株式会社神戸製鋼所 | Mobile water purification device |
JP2022159423A (en) * | 2018-08-29 | 2022-10-17 | 株式会社神戸製鋼所 | Mobile water purification device |
JP7311690B2 (en) | 2018-08-29 | 2023-07-19 | 株式会社神戸製鋼所 | mobile water purifier |
JP2020199424A (en) * | 2019-06-06 | 2020-12-17 | 日本ソリッド株式会社 | Water cleaning sheet for cleaning city water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5804228B1 (en) | Water treatment method | |
JP5691522B2 (en) | Fresh water generation system and operation method thereof | |
CN106132518B (en) | Water treatment method and water treatment device using membrane | |
AU2018249566B2 (en) | Wastewater treatment system and method | |
SG186047A1 (en) | Immersion type membrane module unit and membrane separation activated sludge process equipment | |
AU2009231909A1 (en) | Environmentally friendly hybrid microbiological control technologies for cooling towers | |
JP2008279335A (en) | Apparatus and method for water reclamation | |
JP2015077530A (en) | Water production method and water production device | |
KR101179489B1 (en) | Low-energy system for purifying waste water using forward osmosis | |
JP4859170B2 (en) | Nitrogen-containing organic wastewater treatment system | |
KR100538126B1 (en) | Ds-mt system | |
RU2480414C2 (en) | Method of treating process water | |
JP2011041907A (en) | Water treatment system | |
JP5999087B2 (en) | Water treatment apparatus and water treatment method | |
JP5269331B2 (en) | Waste water treatment equipment | |
WO2016136957A1 (en) | Method for treating water containing organic material, and device for treating water containing organic material | |
JP2006081979A (en) | Membrane washing method | |
JP2007260532A (en) | Method for cleaning regenerated water manufacturing apparatus | |
JP2008073622A (en) | Method and apparatus for producing recycled water | |
JP7284545B1 (en) | MEMBRANE FILTRATION DEVICE AND WATER PURIFICATION SYSTEM USING THE SAME | |
JP6118668B2 (en) | Water treatment system | |
JP2006247481A (en) | Membrane treatment apparatus | |
JP2005040661A (en) | Method and apparatus for treating fresh water or salt water | |
JP2009095760A (en) | Method of removing filter membrane element | |
JP2017023969A (en) | Water treatment system and method |