Nothing Special   »   [go: up one dir, main page]

JP2008275387A - X-ray single crystal orientation measuring device and measuring method therefor - Google Patents

X-ray single crystal orientation measuring device and measuring method therefor Download PDF

Info

Publication number
JP2008275387A
JP2008275387A JP2007117477A JP2007117477A JP2008275387A JP 2008275387 A JP2008275387 A JP 2008275387A JP 2007117477 A JP2007117477 A JP 2007117477A JP 2007117477 A JP2007117477 A JP 2007117477A JP 2008275387 A JP2008275387 A JP 2008275387A
Authority
JP
Japan
Prior art keywords
ray
incident
sample
single crystal
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007117477A
Other languages
Japanese (ja)
Other versions
JP2008275387A5 (en
JP4908303B2 (en
Inventor
Tetsuo Kikuchi
哲夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP2007117477A priority Critical patent/JP4908303B2/en
Publication of JP2008275387A publication Critical patent/JP2008275387A/en
Publication of JP2008275387A5 publication Critical patent/JP2008275387A5/ja
Application granted granted Critical
Publication of JP4908303B2 publication Critical patent/JP4908303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray single crystal orientation measuring device and a measuring method capable of performing highly accurately at high speed, orientation determination of all the three axes for examining the fitting state of a crystal axis with respect to the outer shape of a crystal. <P>SOLUTION: This device has characteristics wherein a diffractometer method utilizing diffraction by a characteristic X-ray is used as a base, and a two-dimensional detector based on CCD operated in a TDI reading-out mode is adopted as an X-ray detector, and orientation determination of all the three axes is performed by capturing at two points, reflection of a specified (aimed) index by the two-dimensional detector. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、結晶の外形に対し結晶軸がどのように取り付いているかを調べる、全3軸方位決定を行うX線単結晶方位測定装置およびその測定方法に関する。   The present invention relates to an X-ray single crystal orientation measuring apparatus and a measuring method thereof for determining all three-axis orientations for examining how crystal axes are attached to the outer shape of a crystal.

全3軸の結晶方位測定には、従来から、特性X線を用いるディフラクトメータ法の4軸回折計および連続X線を用いるラウエ法が使用されている。   For all three-axis crystal orientation measurement, a diffractometer method four-axis diffractometer using characteristic X-rays and a Laue method using continuous X-rays have been used.

特性X線を用いるディフラクトメータ法の改良としては、特開平5−312736号公報(特許文献1)において知られている。即ち、特許文献1には、(1)試料となる単結晶の任意の一つの結晶格子面を選択して、その結晶格子面に対応する回折角度の位置に、試料への入射X線に対して同軸な円弧状の検出面を配置する過程と、(2)試料に入射X線を照射して、入射X線に対して垂直な軸の回りに試料を回転させることにより、試料からの回折X線を前記検出器で検出し、そのときの試料の回転角度ω1を求める過程と、(3)前記円弧状の検出面のどの位置に回折X線が当たったかを検出して、その検出位置を、入射X線を含む基準平面からの角度φ1として求める過程と、(4)試料となる単結晶の任意のもう一つの結晶格子面を選択して、上記(1)(2)(3)の過程を繰り返し、そのときの試料の回転角度ω2と検出位置の角度φ2とを求める過程と、(5)ω1、φ1、ω2、φ2を用いて計算により単結晶試料の方位を求める過程とを有するX線単結晶方位測定方法が記載されている。   An improvement of the diffractometer method using characteristic X-rays is known in JP-A-5-312736 (Patent Document 1). That is, in Patent Document 1, (1) an arbitrary single crystal lattice plane of a single crystal serving as a sample is selected, and a diffraction angle corresponding to the crystal lattice plane is selected with respect to incident X-rays to the sample. And (2) diffracting from the sample by irradiating the sample with incident X-rays and rotating the sample about an axis perpendicular to the incident X-rays. The process of detecting X-rays with the detector and obtaining the rotation angle ω1 of the sample at that time, and (3) detecting the position on the arc-shaped detection surface where the diffracted X-rays hit, Is determined as an angle φ1 from the reference plane including the incident X-ray, and (4) any other crystal lattice plane of the single crystal to be the sample is selected, and the above (1), (2), (3) The process of repeating the process of obtaining the sample rotation angle ω2 and the detection position angle φ2 at that time, 5) ω1, φ1, ω2, X-ray single crystal orientation measuring method and a process of obtaining the orientation of the single crystal sample by calculation using φ2 is been described.

また、連続X線を用いるラウエ法の改良として、特開昭58−75051号公報(特許文献2)が知られている。   Japanese Patent Laid-Open No. 58-75051 (Patent Document 2) is known as an improvement of the Laue method using continuous X-rays.

特開平5−312736号公報JP-A-5-312736 特開昭58−75051号公報JP 58-75051 A W.C Hamilton,“International Table for X-ray Crystallography Vol.IV”,Kyonch Press,Birmingham (1974) P274-284W.C Hamilton, “International Table for X-ray Crystallography Vol. IV”, Kyonch Press, Birmingham (1974) P274-284

上記特許文献1および2は、タービンブレードの方位測定に適用され、ディフラクトメータ法の改良では1分程度の測定時間、ラウエ法の改良では、数十秒の測定時間に短縮化され、それなりの高速化が図られた。   The above Patent Documents 1 and 2 are applied to turbine blade azimuth measurement. The improvement of the diffractometer method shortens the measurement time to about 1 minute, and the improvement of the Laue method shortens the measurement time to several tens of seconds. Speedup was achieved.

本発明の目的は、結晶の外形に対して結晶軸がどのように取り付いているかを調べる全3軸の方位決定を高速で、かつ高精度に行うことのできるX線単結晶方位測定装置および測定方法を提供することにある。   An object of the present invention is to provide an X-ray single crystal orientation measuring apparatus and measurement capable of determining all three axes of orientation at high speed and with high accuracy to examine how the crystal axes are attached to the outer shape of the crystal. It is to provide a method.

上記目的を達成するために、本発明は、特性X線による回折を利用する、ディフラクトメータ法を基本とし、X線検出器として、TDI(Time Delay Integration)読み出しモードで動作するCCDをベースにした2次元検出器を採用したことと、該2次元検出器により特定の(狙った)指数の反射を2点で捕らえることにより全3軸の方位決定を行うX線単結晶方位測定装置および測定方法である。   In order to achieve the above object, the present invention is based on a diffractometer method using diffraction by characteristic X-rays, and based on a CCD operating in a TDI (Time Delay Integration) readout mode as an X-ray detector. X-ray single crystal orientation measuring apparatus and measurement that determine the orientation of all three axes by using the two-dimensional detector and capturing the reflection of a specific (targeted) index at two points by the two-dimensional detector. Is the method.

また、本発明は、特性X線を細く絞って単結晶の試料の格子面にXZ軸平面内においてX軸に対して入射角ωで入射する入射X線部と、前記入射角ωが回折条件を満足する入射角ωを中心にして適宜な範囲で変化するように前記入射X線部と前記試料との間で相対的にY軸周りに回転させて走査する走査手段と、該走査手段によって前記入射X線部から前記試料に入射される前記入射角ωを走査しながら前記試料の格子面上の照射点から得られる回折角2θの円錐面に沿って出射する特定の指数の少なくとも2つの回折スポットの像を含む2次元画像を撮像する、TDI読み出しモードで動作するCCDから構成された2次元検出器を有するX線検出部と、該X線検出部の前記2次元検出器から得られる2次元画像を基に前記2つの回折スポットの各々が生じた入射角ω1、ωs2を求め、該求められた入射角ω1、ωs2の各々から前記試料の外形を代表する(XYZ)座標系での少なくとも2つの格子面の法線ベクトルV1,V2を算出し、該算出された少なくとも2つの格子面の法線ベクトルV1,V2を基に前記試料の3軸の結晶方位を決定する演算処理部とを備えたことを特徴とするX線単結晶方位測定装置である。 The present invention also provides an incident X-ray portion that narrows the characteristic X-ray and enters the lattice plane of a single crystal sample at an incident angle ω with respect to the X axis in the XZ axis plane, and the incident angle ω is determined by the diffraction condition. Scanning means for scanning by rotating around the Y axis relatively between the incident X-ray part and the sample so as to change within an appropriate range centering on an incident angle ω 0 satisfying By scanning at least the incident angle ω incident on the sample from the incident X-ray portion, at least 2 of a specific index emitted along a conical surface having a diffraction angle 2θ obtained from an irradiation point on the lattice plane of the sample An X-ray detector having a two-dimensional detector composed of a CCD operating in a TDI readout mode for capturing a two-dimensional image including images of two diffraction spots, and obtained from the two-dimensional detector of the X-ray detector The two diffraction spots based on the two-dimensional image Incident angle omega s 1 each bet has occurred, determine the omega s 2, the incident angle omega s 1 obtained, representing the outer shape of the sample from each of the omega s 2 (XYZ) of at least 2 in the coordinate system An arithmetic processing unit that calculates normal vectors V1 and V2 of two lattice planes and determines the triaxial crystal orientation of the sample based on the calculated normal vectors V1 and V2 of at least two lattice planes. An X-ray single crystal orientation measuring apparatus characterized by the above.

また、本発明は、前記演算処理部において、前記2つの回折スポットの各々が生じた入射角ω1、ωs2の各々を、前記2次元検出器から得られる2次元画像のV方向及びW方向の画素アドレスに基づいてω角度に変換して求めるように構成したことを特徴とする。 Further, according to the present invention, in the arithmetic processing unit, each of the incident angles ω s 1 and ω s 2 at which each of the two diffraction spots is generated is expressed in the V direction of the two-dimensional image obtained from the two-dimensional detector and It is characterized in that it is obtained by converting to an ω angle based on the pixel address in the W direction.

また、本発明は、前記X線検出部は、X線像を可視光像に変換する細帯形状又は弓なり形状の蛍光板と、該蛍光板から得られる可視光像について少なくともV方向には縮小して結像させるレンズ系と、該レンズ系で結像された光像の輝度を増倍するイメージインテンシファイヤと、該イメージインテンシファイヤとカップリングされた前記TDI読み出しモードで動作するCCDで構成された2次元検出器とを有し、前記V方向の撮像幅を増大させたことを特徴とする。   According to the present invention, the X-ray detection unit reduces a strip-shaped or bow-shaped fluorescent plate for converting an X-ray image into a visible light image, and a visible light image obtained from the fluorescent plate at least in the V direction. A lens system that forms an image, an image intensifier that multiplies the luminance of a light image formed by the lens system, and a CCD that is coupled to the image intensifier and operates in the TDI readout mode. And an imaging width in the V direction is increased.

また、本発明は、前記X線検出部は、X線像を可視光像に変換する細帯形状又は弓なり形状の蛍光板を有し、該蛍光板から得られる可視光像について結像させるレンズ系と、該レンズ系で結像された光像の輝度を増倍するイメージインテンシファイヤと、該イメージインテンシファイヤとカップリングされた前記TDI読み出しモードで動作するCCDで構成された2次元検出器とから構成されるチャンネルを少なくとも2つ並べて構成したことを特徴とする。   According to the present invention, the X-ray detection unit has a thin band-shaped or bow-shaped fluorescent plate for converting an X-ray image into a visible light image, and forms a visible light image obtained from the fluorescent plate; An image intensifier for multiplying the brightness of the light image formed by the lens system, and a two-dimensional detector composed of a CCD operating in the TDI readout mode coupled with the image intensifier; It is characterized in that at least two channels constituted by are arranged side by side.

また、本発明は、前記TDI読み出しモードで動作するCCDで構成された2次元検出器の受光面の形状を細帯形状で形成したことを特徴とする。   Further, the present invention is characterized in that the shape of the light receiving surface of the two-dimensional detector composed of the CCD operating in the TDI readout mode is formed in a narrow band shape.

また、本発明は、特性X線を細く絞って単結晶の試料の格子面にXZ軸平面内においてX軸に対して入射角ωで入射する入射X線部と、前記入射角ωが回折条件を満足する入射角ωを中心にして適宜な範囲で変化するように前記入射X線部と前記試料との間で相対的にY軸周りに回転させて走査する走査手段と、該走査手段によって前記入射X線部から前記試料に入射される前記入射角ωを走査しながら前記試料の格子面上の照射点から得られる回折角2θの円錐面に沿って出射する特定の指数の少なくとも2つの回折スポットの像を含む2次元画像を撮像する、TDI読み出しモードで動作するCCDで構成された2次元検出器を有するX線検出部とを備えたX線単結晶方位測定装置を用いて、
前記X線検出部の前記CCDから得られる2次元画像を基に前記2つの回折スポットの各々が生じた入射角ω1、ωs2を求め、該求められた入射角ω1、ωs2の各々から前記試料の外形を代表する(XYZ)座標系での少なくとも2つの格子面の法線ベクトルV1,V2を算出し、該算出された少なくとも2つの格子面の法線ベクトルV1,V2を基に前記試料の3軸の結晶方位を決定することを特徴とするX線単結晶方位測定方法である。
The present invention also provides an incident X-ray portion that narrows the characteristic X-ray and enters the lattice plane of a single crystal sample at an incident angle ω with respect to the X axis in the XZ axis plane, and the incident angle ω is determined by the diffraction condition. Scanning means for scanning by rotating around the Y axis relatively between the incident X-ray part and the sample so as to change within an appropriate range centering on an incident angle ω 0 satisfying By scanning at least the incident angle ω incident on the sample from the incident X-ray part, at least 2 of a specific index emitted along a conical surface having a diffraction angle 2θ obtained from an irradiation point on the lattice plane of the sample Using an X-ray single crystal orientation measuring apparatus including an X-ray detector having a two-dimensional detector configured with a CCD operating in a TDI readout mode, which captures a two-dimensional image including images of two diffraction spots,
Based on the two-dimensional image obtained from the CCD of the X-ray detector, the incident angles ω s 1 and ω s 2 generated by the two diffraction spots are obtained, and the obtained incident angles ω s 1 and ω The normal vectors V1 and V2 of at least two lattice planes in the (XYZ) coordinate system representing the outer shape of the sample are calculated from each of s2 , and the calculated normal vectors V1 and V1 of the at least two lattice planes are calculated. An X-ray single crystal orientation measuring method characterized in that the triaxial crystal orientation of the sample is determined based on V2.

また、本発明は、前記試料が方向性珪素鋼板であることを特徴とする。   Further, the present invention is characterized in that the sample is a grain-oriented silicon steel plate.

以上説明したように、本発明によれば、例えば方向性珪素鋼板などの3軸の方位分布測定が高速化され、短時間のマップ測定が可能となった。   As described above, according to the present invention, for example, a three-axis orientation distribution measurement of a directional silicon steel plate or the like has been speeded up, and a short-time map measurement has become possible.

本発明に係るX線単結晶方位測定装置および測定方法の実施の形態について図面を用いて説明する。   Embodiments of an X-ray single crystal orientation measuring apparatus and measuring method according to the present invention will be described with reference to the drawings.

ところで、単結晶は、結晶方位により機械的、光学的、電磁気的性質が異なっている(異方性がある)。このような結晶の特性を積極的に利用するとき、結晶方位を調べる必要がある。結晶の異方性を積極的に利用する試料としては、例えば、方向性珪素鋼板があげられる。方向性珪素鋼板は、変圧器等の鉄芯として利用されている材料であり、変圧器の鉄損や騒音を大幅に減らす目的で使用されている。この材料では、圧延と熱処理により二次再結晶粒が形成される。個々の結晶粒は、表面が結晶格子面の{110}と平行に、圧延方向が<001>方向と平行に集積させたとき最も高い磁束密度と低鉄損の磁気特性が得られる。この理想的な方位分布組織は、{110}<001>と表記され、Gossにより発見されたので、Goss方位と呼んでいる。   By the way, single crystals have different mechanical, optical, and electromagnetic properties depending on crystal orientation (there is anisotropy). When actively utilizing such crystal characteristics, it is necessary to examine the crystal orientation. An example of a sample that positively utilizes crystal anisotropy is a grain-oriented silicon steel sheet. Directional silicon steel sheet is a material that is used as an iron core for transformers and the like, and is used for the purpose of significantly reducing iron loss and noise of transformers. In this material, secondary recrystallized grains are formed by rolling and heat treatment. When the individual crystal grains are accumulated in parallel with {110} of the crystal lattice plane and the rolling direction in parallel with the <001> direction, the highest magnetic flux density and low iron loss magnetic characteristics can be obtained. This ideal orientation distribution structure is expressed as {110} <001> and discovered by Goss, so it is called Goss orientation.

以上説明したように方向性珪素鋼板の製造でも、磁気特性と結晶方位が関連付けて議論されるため、X線による結晶粒の方位測定がマップ測定のかたちで行われる。そして、方位測定の結果をもとに評価が加えられ、圧延の条件、熱処理条件の設定にフィードバックされている。   As described above, in the manufacture of grain-oriented silicon steel sheets, since magnetic characteristics and crystal orientation are discussed in association with each other, crystal grain orientation measurement by X-ray is performed in the form of map measurement. And evaluation is added based on the result of orientation measurement, and it is fed back to the setting of rolling conditions and heat treatment conditions.

このように、高度で精緻な制御で作られる方向性珪素鋼板は、“鉄の芸術品”といわれるほどである。昨今の、省エネルギーや二酸化炭素削減などの強い要求に応えるため、より低鉄損、高磁束密度の製品開発を目指して研究が続けられている。評価の手法として、X線による方位測定が行われているが、より高速でマップ測定が可能なX線単結晶方位測定装置が求められている。   In this way, grain oriented silicon steel sheets made with advanced and precise control are said to be “art of iron”. In order to meet the recent strong demands for energy saving and carbon dioxide reduction, research is being continued with the aim of developing products with lower iron loss and higher magnetic flux density. As an evaluation method, orientation measurement by X-rays is performed, but an X-ray single crystal orientation measuring apparatus capable of map measurement at higher speed is demanded.

そこで、本発明に係るX線単結晶方位測定装置および測定方法を試料片(被測定結晶)1として例えば方向性珪素鋼板に適用した実施の形態について説明する。ここで、本発明に係る単結晶試料とは、X線照射(φ1mm程度)に比べて十分に領域が単結晶から成り立っている、集合体材料(物質)のことを言う。この試料の一例としては、方向性珪素鋼板がある。   An embodiment in which the X-ray single crystal orientation measuring apparatus and measuring method according to the present invention are applied to, for example, a grain-oriented silicon steel sheet as a sample piece (crystal to be measured) 1 will be described. Here, the single crystal sample according to the present invention refers to an aggregate material (substance) whose region is sufficiently composed of a single crystal as compared to X-ray irradiation (about φ1 mm). An example of this sample is a grain-oriented silicon steel plate.

図1には、理想方位の方向性珪素鋼板(Goss方位:{110}<001>組織)の方位関係を示す。面法線方向Z軸をND(Normal Direction)と呼び、結晶軸の[110]と平行である。試料長手方向X軸をRD(Rolling Direction)と呼び、結晶軸の[001]と平行である。そして、それらと互いに直交する横方向Y軸はTD(Transverse Direction)と呼び、結晶軸の[−110]と平行である。   FIG. 1 shows the orientation relationship of a directional silicon steel sheet with ideal orientation (Goss orientation: {110} <001> structure). The surface normal direction Z-axis is called ND (Normal Direction) and is parallel to the crystal axis [110]. The sample longitudinal direction X-axis is called RD (Rolling Direction) and is parallel to the crystal axis [001]. The transverse Y-axis perpendicular to them is called TD (Transverse Direction) and is parallel to the crystal axis [−110].

実際の珪素鋼板は5mmから30mm程度の結晶粒の集合体で、結晶粒の方位のばらつきがある。そのばらつき量は、理想方位を中心に10°程度存在する。   An actual silicon steel sheet is an aggregate of crystal grains of about 5 mm to 30 mm, and there are variations in crystal grain orientation. The amount of variation is about 10 ° around the ideal orientation.

図1には、さらに、本発明の特徴であるX線検出器であるTDI(Time Delay Integration)読み出しモードで動作するCCD(TDI−CCD)200をベースにした2次元検出器により、特定の狙った指数の反射を2点で捕らえるその特定の格子面法線方向[21−1]と[12−1]の配置を示した。これらの反射面(=格子面)による回折を21−1反射および12−1反射と呼ぶ。この反射面に対し、XZ面内でωの入射角で特性X線13を入射すると、理想方位の場合、両反射面で同時に回折条件を満足し同時に回折線(回折X線)を生じる。図1では、12−1反射に対する回折線(回折X線)だけを示している。使用する特性X線として波長1.937ÅのFeKα線を用いた場合、これらの反射指数のブラッグ角θは55.8°、回折角2θは111.62°である。また、然るべき計算によれば、回折条件を満足する入射角ωは34.5°となる。回折線(回折X線)の方向は、Z軸より約30°傾いた方向で、かつ、回折線のXY平面投影線とX軸のなす角εが107.3°の方向になる。もう一方の21−1反射による回折線は、XZ面による鏡面対称位置に起きる。また、両方の回折線のなす角ηは57°程度である。 FIG. 1 further shows a specific target by a two-dimensional detector based on a CCD (TDI-CCD) 200 operating in a TDI (Time Delay Integration) readout mode, which is an X-ray detector that is a feature of the present invention. The specific lattice plane normal directions [21-1] and [12-1] that capture the reflection of the index at two points are shown. Diffraction by these reflection surfaces (= lattice surfaces) is called 21-1 reflection and 12-1 reflection. When the characteristic X-rays 13 are incident on the reflecting surface at an incident angle of ω 0 in the XZ plane, in the case of the ideal orientation, the diffraction conditions are satisfied at the same time on both reflecting surfaces and diffraction lines (diffracted X-rays) are generated simultaneously. In FIG. 1, only the diffraction lines (diffracted X-rays) for 12-1 reflection are shown. When FeKα rays having a wavelength of 1.937 mm are used as characteristic X-rays to be used, the Bragg angle θ of these reflection indices is 55.8 °, and the diffraction angle 2θ is 111.62 °. Further, according to appropriate calculations, the incident angle ω 0 that satisfies the diffraction conditions is 34.5 °. The direction of the diffraction line (diffracted X-ray) is a direction inclined about 30 ° from the Z-axis, and the angle ε between the X-ray projection line of the diffraction line and the X-axis is 107.3 °. The other diffraction line due to the 21-1 reflection occurs at a mirror symmetry position by the XZ plane. The angle η formed by both diffraction lines is about 57 °.

次に、TDI−CCDを用いた方位測定装置の一実施の形態を示す構成について図2を用いて説明する。即ち、点状のX線源(図示せず)より発生した特性X線(入射X線)13を、φ0.2〜0.5mm程度のピンホールコリメータ11で細く絞って試料片1に照射する。X線源としては、Feターゲットなどが用いられる。また、図示はしていないが、Kβカットフィルタを配置して擬似的にKα線に単色化しておく。所定の格子面による回折角(2θ)の方向にはX線検出器20が配置され、回折X線を待ち受ける。X線検出器20としてTDI−CCDをベースにした2次元検出器200を用いている。X線源(図示せず)とコリメータ11からなる入射X線部10とX線検出器20とは、一体となってY軸の周りに回転でき、X線の入射角(ω)を変えることができる(ω回転)。試料片1は、XYステージ(図示せず)の上にのせられ、X線の照射点の位置を変えることができる。勿論、上記一体となった入射X線部10とX線検出器20をY軸の周りに回転させる代わりに、試料片1をY軸の周りに回転させても良い。   Next, a configuration showing an embodiment of an azimuth measuring apparatus using a TDI-CCD will be described with reference to FIG. That is, characteristic X-rays (incident X-rays) 13 generated from a point-shaped X-ray source (not shown) are finely focused by a pinhole collimator 11 having a diameter of about 0.2 to 0.5 mm and irradiated to the sample piece 1. . An Fe target or the like is used as the X-ray source. Although not shown in the figure, a Kβ cut filter is arranged to pseudo-colorize the Kα line. An X-ray detector 20 is arranged in the direction of the diffraction angle (2θ) by a predetermined grating surface, and waits for diffracted X-rays. A two-dimensional detector 200 based on a TDI-CCD is used as the X-ray detector 20. An incident X-ray unit 10 and an X-ray detector 20 including an X-ray source (not shown) and a collimator 11 can rotate together around the Y axis and change the incident angle (ω) of the X-ray. (Ω rotation). The sample piece 1 is placed on an XY stage (not shown), and the position of the X-ray irradiation point can be changed. Of course, instead of rotating the integrated incident X-ray part 10 and X-ray detector 20 around the Y axis, the sample piece 1 may be rotated around the Y axis.

ω角を、ωを中心に適宜な範囲でスキャンする。例えば、±20°程度の一定範囲をスキャンする。図2の構成で、TDI読み出しの方向は、赤道面内矢印の方向(または,その逆)に設定する。赤道面とは、入射X線13を含みω回転軸(Y軸)に垂直な平面で、図2のXZ軸平面である。ω回転を一定の範囲で一定の速度で回転すると、回折条件を満足した瞬間回折線が生じ、TDI−CCD200に入射する。ω回転の開始と終了に同期させてTDI読み出しを実行すると、図3に示すような帯状の画像203の中に黒丸で示すように2つの回折スポットが記録される。この2つの回折スポットは、21−1反射および12−1反射の回折スポットで、これらの位置から具体的には後述するように試料の外形に対して全3軸方位([100]、[010]、[001]からなる格子面法線ベクトル)を決定するのである。 The ω angle is scanned in an appropriate range around ω 0 . For example, a certain range of about ± 20 ° is scanned. In the configuration of FIG. 2, the TDI readout direction is set in the direction of the equator plane arrow (or vice versa). The equatorial plane is a plane that includes the incident X-ray 13 and is perpendicular to the ω rotation axis (Y axis), and is the XZ axis plane of FIG. When the ω rotation is rotated at a constant speed within a certain range, an instantaneous diffraction line that satisfies the diffraction condition is generated and incident on the TDI-CCD 200. When TDI reading is executed in synchronization with the start and end of ω rotation, two diffraction spots are recorded in the belt-like image 203 as shown in FIG. These two diffraction spots are 21-1 reflection and 12-1 reflection diffraction spots. Specifically, from these positions, as will be described later, all three axial directions ([100], [010] ] (Lattice plane normal vector consisting of [001]).

なお、図3に示すように、ω角はωを中心に適宜な範囲でスキャンされる関係で、TDI−CCD200で撮像される画像の長手方向は、ω角の情報を持っていることは明らかである。画像の長手方向の画素数は、ω角のスキャン幅と関係があるから1画素あたりのω角が求まる。ω角の基準を決めるには、理想方位に調整された標準試料による校正が簡便である。このような標準試料では、ω角が所定の角度のときに同時に2つの回折スポットを生じるからである。標準試料を使用しない校正の仕方もできる。例えば、2次元検出器200の中心を機械的に正確に配置し、2θ角を正確に設定し、読み出し開始から画像中心まで何ライン分の遅延があるか予め調べておくことで校正可能である。 As shown in FIG. 3, the ω angle is scanned in an appropriate range centering on ω 0, and the longitudinal direction of an image captured by the TDI-CCD 200 has information on the ω angle. it is obvious. Since the number of pixels in the longitudinal direction of the image is related to the scan width of the ω angle, the ω angle per pixel can be obtained. In order to determine the standard of the ω angle, calibration with a standard sample adjusted to the ideal orientation is simple. This is because such a standard sample produces two diffraction spots simultaneously when the ω angle is a predetermined angle. You can also calibrate without using a standard sample. For example, the center of the two-dimensional detector 200 can be mechanically accurately arranged, the 2θ angle can be accurately set, and the number of lines corresponding to the delay from the start of reading to the center of the image can be calibrated in advance. .

ここで、図4により試料結晶によるX線回折条件についてさらに詳細に説明する。図4(a)(b)は、X線検出面202の配置と回折スポットベクトルkの位置を示す見取り図である。X線が所定の格子面で回折条件が満たされ、赤道反射の2θ方向(U軸)に垂直に配置されたX線検出面202で回折スポットを捉えた状態を示している。   Here, the X-ray diffraction conditions by the sample crystal will be described in more detail with reference to FIG. 4A and 4B are sketches showing the arrangement of the X-ray detection surface 202 and the position of the diffraction spot vector k. The X-ray shows a state where a diffraction spot is captured by the X-ray detection surface 202 arranged in a direction perpendicular to the 2θ direction (U-axis) of the equatorial reflection when the diffraction condition is satisfied by a predetermined grating surface.

回折線スポットベクトルkは、必ず2θコーン(回折角2θの円錐面)に沿って出射し、検出器200の検出面202に回折スポットを生じる。ここで、2θコーン(回折角2θの円錐面)とは図4(a)に示すようにoを頂点とし、x軸(入射X線13と逆向きである。)を回転軸とした、半頂角がαの円錐面のことである。この場合、回折角2θは90°を超えているので逆さ傘状態になっているので、αを半頂角とした円錐を考えている。ここで、α=π−2θの関係にある。   The diffraction line spot vector k always exits along a 2θ cone (conical surface having a diffraction angle 2θ), and generates a diffraction spot on the detection surface 202 of the detector 200. Here, the 2θ cone (conical surface having a diffraction angle 2θ) is a half having an o as a vertex and an x axis (in the opposite direction to the incident X-ray 13) as a rotation axis as shown in FIG. It is a conical surface with an apex angle α. In this case, since the diffraction angle 2θ exceeds 90 °, it is in an inverted umbrella state, so a cone having α as a half apex angle is considered. Here, there is a relationship of α = π−2θ.

2θコーン(回折角2θの円錐面)をX線検出面202で切った切り口の曲線は、円錐曲線(conic section)または2次曲線と呼ばれる。この曲線上に回折スポットが生じるのである。この様子を、図3で示したTDI−CCD出力画像203に、回折スポットを黒丸、円錐曲線を破線で示している。   A curved surface obtained by cutting a 2θ cone (conical surface having a diffraction angle 2θ) by the X-ray detection surface 202 is called a conic section or a quadratic curve. A diffraction spot is generated on this curve. This is shown in the TDI-CCD output image 203 shown in FIG. 3 where the diffraction spots are indicated by black circles and the conic curves are indicated by broken lines.

そこで、図2に示す演算処理部(画像処理部)30によりこの曲線の式を求めることにする。2θコーンの式は、図4及び図5に示すように、頂点oを基準にした(xyz)座標を用いて次の(1)式で与えられる。但し、x軸は、入射X線13と逆向きである。このように頂点oを基準にした(xyz)座標は、試料片(結晶)1の外形に対して回転軸をY軸として設定される(XYZ)座標とωを中心とする回転ω角との関係から設定されることになる。ここで、α=π−2θの関係にある。 Therefore, an equation of this curve is obtained by the arithmetic processing unit (image processing unit) 30 shown in FIG. As shown in FIGS. 4 and 5, the 2θ cone equation is given by the following equation (1) using the (xyz) coordinates based on the vertex o. However, the x-axis is opposite to the incident X-ray 13. In this way, the (xyz) coordinates with respect to the vertex o are the (XYZ) coordinates set with the rotation axis as the Y axis with respect to the outer shape of the sample piece (crystal) 1, the rotation ω angle around ω 0 , and It will be set from the relationship. Here, there is a relationship of α = π−2θ.

Figure 2008275387
Figure 2008275387

2θコーンをX線検出面202で切った切り口の曲線は、図4及び図5に示すように、上記(1)式を検出面202に平行移動によりo'を基準にした(pqr)座標に変換した後、座標の回転により検出面202の(UVW)座標に変換し、U=0と置くことにより得られる。計算の結果を次の(2)式に示す。   As shown in FIGS. 4 and 5, the curve of the cut surface obtained by cutting the 2θ cone at the X-ray detection surface 202 has coordinates (pqr) based on the above equation (1) with o ′ as a reference to the detection surface 202. After conversion, it is obtained by converting to (UVW) coordinates of the detection surface 202 by rotating the coordinates and placing U = 0. The result of the calculation is shown in the following equation (2).

Figure 2008275387
Figure 2008275387

該(2)式を用いて計算した曲線の形状を、図6に実線205で示す。回折角2θが111.62°、カメラ長Lが100mmの場合で、Z方向±100mmの範囲で計算しプロットした図である。回折スポットは必ずこの曲線上に乗ることになる。   The shape of the curve calculated using the equation (2) is shown by a solid line 205 in FIG. It is the figure which computed and plotted in the direction of Z direction +/- 100mm when diffraction angle 2theta is 111.62 degrees and camera length L is 100 mm. The diffraction spot always lies on this curve.

次に、図6を用いて、21−1反射による回折スポットが生じたω角を決定する手順について説明する。図2に示す演算処理部30が帯状に記録された画像203を処理することにより、回折スポットの位置は、画素のアドレスで知ることができる。これに有効画素サイズを掛けることによりV方向及びW方向の距離に変換できるであろう。また、演算処理部30は、ωを中心にω角を適宜な範囲でスキャンする機構(図示せず)を制御する制御部35から得られるω角の情報を基にωstart位置からの距離W0が分かる。さらに、演算処理部30において、Vsは赤道面からの距離であり、Vsを上記(2)式に代入することによりWsが計算される。さらに、演算処理部30において、W方向については、制御部35から得られるω角の情報を基にω角に変換可能である。その結果、演算処理部30は、距離W0−|Ws|を角度に変換してΔωを得る。そして、演算処理部30において、回折スポットが生じた入射角ωを、次の(3)式によって得ることができる。 Next, a procedure for determining the ω angle at which a diffraction spot caused by 21-1 reflection has occurred will be described with reference to FIG. When the arithmetic processing unit 30 shown in FIG. 2 processes the image 203 recorded in a band shape, the position of the diffraction spot can be known from the address of the pixel. By multiplying this by the effective pixel size, the distance in the V direction and the W direction could be converted. The arithmetic processing unit 30, the distance from ωstart position based on information of omega angle obtained from the control unit 35 for controlling a mechanism for scanning an appropriate range omega corners around the omega 0 (not shown) W0 I understand. Further, in the arithmetic processing unit 30, Vs is a distance from the equator plane, and Ws is calculated by substituting Vs into the above equation (2). Further, the arithmetic processing unit 30 can convert the W direction into the ω angle based on the ω angle information obtained from the control unit 35. As a result, the arithmetic processing unit 30 converts the distance W0− | Ws | into an angle to obtain Δω. In the arithmetic processing unit 30, the incident angle ω s at which the diffraction spot is generated can be obtained by the following equation (3).

Figure 2008275387
Figure 2008275387

図4において、回折X線を示すベクトルkは、oを原点とし、(UVW)と平行な(U'V'W')座標系で表現すると、単位ベクトルで次の(4)式により表すことができる。   In FIG. 4, a vector k indicating a diffracted X-ray is expressed by the following equation (4) as a unit vector when expressed in a (U′V′W ′) coordinate system with o as the origin and parallel to (UVW). Can do.

Figure 2008275387
Figure 2008275387

これを座標変換により(xyz)座標系で表現してkxyzとすると、kxyzは、次の(5)式で与えられる。 If this is expressed in the (xyz) coordinate system by coordinate transformation and expressed as k xyz , k xyz is given by the following equation (5).

Figure 2008275387
Figure 2008275387

一方、kは、同じ(xyz)座標で、次の(6)式と表すことができる。 On the other hand, k 0 can be expressed by the following equation (6) with the same (xyz) coordinates.

Figure 2008275387
Figure 2008275387

xyzとkより、図4に示す格子面法線ベクトルVを表すことができる。そこで、格子面法線ベクトルVを(xyz)座標で表した単位ベクトルで扱い、Vxyzとすると、次の(7)式で与えられる。 From k xyz and k 0 , the lattice plane normal vector V shown in FIG. 4 can be expressed. Therefore, when the lattice plane normal vector V is handled as a unit vector expressed in (xyz) coordinates and is expressed as V xyz , the following equation (7) is given.

Figure 2008275387
Figure 2008275387

次に、(xyz)座標で表したVxyzを、試料(試料片)1の外形を代表する座標系(XYZ)で表現したVXYZに変換する。結晶の外形を代表する座標系(XYZ)で表現したVXYZは、上記(3)式のωを用いて、次の(8)式で与えられる。このようにして、21−1反射に対する格子面法線ベクトルを求めることができた。これを一番目の反射ということで、V1と表示することにする。 Next, V xyz expressed in (xyz) coordinates is converted into V XYZ expressed in a coordinate system (XYZ) representing the outer shape of the sample (sample piece) 1. V XYZ expressed in a coordinate system (XYZ) representing the outer shape of the crystal is given by the following equation (8) using ω s of the above equation (3). In this way, the lattice plane normal vector for 21-1 reflection could be obtained. Since this is the first reflection, V1 is displayed.

Figure 2008275387
Figure 2008275387

さらに、演算処理部30は、帯状に記録された画像203に対して同様に、2つ目の反射、12−1反射についても適宜処理をすることにより、2番目の反射に対する格子面法線ベクトルV2を求めることができる。   Further, similarly to the image 203 recorded in the band shape, the arithmetic processing unit 30 also appropriately processes the second reflection and the 12-1 reflection to thereby obtain a lattice normal vector for the second reflection. V2 can be obtained.

一般に、試料の外形を代表する座標(XYZ)で表した格子面法線ベクトルをVと反射指数の関係は以下のように扱われている。   In general, the relationship between V and the reflection index of a lattice plane normal vector represented by coordinates (XYZ) representing the outer shape of a sample is handled as follows.

即ち、[100]をa軸、[010]をb軸、そして[001]をc軸とする(abc)座標で(hkl)格子面法線を表す場合、次の(9)式で示される指数ベクトルhを導入する。   That is, when (100) is the a axis, [010] is the b axis, and [001] is the c axis (abc) coordinates and the (hkl) lattice plane normal is expressed by the following equation (9): An exponent vector h is introduced.

Figure 2008275387
Figure 2008275387

その結果、Vとhの関係を、次の(10)式で表すことが可能となる。   As a result, the relationship between V and h can be expressed by the following equation (10).

Figure 2008275387
Figure 2008275387

Uは3行3列のマトリックスで、その各要素は、X,Y,Z軸とa,b,c軸の方向余弦で構成されており、それ自身方位を表すものである。Vとhの変換マトリックスUは、方位マトリックスと呼ばれる正規直交行列である。いったんUが決まれば、上記(10)式によりあらゆる(hkl)に対しその面法線ベクトルVが決まり、[100]をa軸、[010]をb軸、そして[001]をc軸とする(abc)座標で(hkl)格子面法線を表す指数ベクトルhである試料結晶の方位が決定される。   U is a matrix of 3 rows and 3 columns, and each element is composed of X, Y, Z axes and direction cosines of a, b, c axes, and represents its own direction. The transformation matrix U of V and h is an orthonormal matrix called an orientation matrix. Once U is determined, the surface normal vector V is determined for all (hkl) by the above equation (10), [100] is the a axis, [010] is the b axis, and [001] is the c axis. The orientation of the sample crystal, which is the exponent vector h representing the (hkl) lattice plane normal in (abc) coordinates, is determined.

Uを決定するためには、原理的には3つの共面でない(一次独立な)指数の分かったベクトルV1,V2,V3が必要である。しかし、前述の特許文献1および非特許文献1のP280ページ 3.4項 Determination of U,the Orientation Matrix に示されているように、2つの指数の分かったベクトルV1,V2で処理することが可能である。   In order to determine U, in principle, three vectors V1, V2, V3 with known non-coplanar (primary independent) indices are required. However, as described in the above-mentioned Patent Document 1 and Non-Patent Document 1, page 280, Section 3.4 Determination of U, the Orientation Matrix, it is possible to process with vectors V1 and V2 whose two indices are known. .

即ち、本発明に係る方法は、TDI−CCDの画像に含まれる21−1および12−1の2つの反射の面法線ベクトルV1,V2を求めることにより、全3軸方位を決定するものである。実際の装置では、結晶方位の出力として、演算処理部30又は全体制御部(図示せず)に接続された表示装置装置(図示せず)の画面に、ステレオ投影図や極点図およびオイラー角で出力することができる。   That is, the method according to the present invention determines all the three-axis directions by obtaining the surface normal vectors V1 and V2 of the two reflections 21-1 and 12-1 included in the TDI-CCD image. is there. In an actual apparatus, as a crystal orientation output, a stereo projection diagram, a pole figure, and Euler angles are displayed on the screen of a display device (not shown) connected to the arithmetic processing unit 30 or the overall control unit (not shown). Can be output.

次に、CCDのTDI読み出しについて説明する。CCDの読み取りの仕方に、TDI(Time Delay Integration)と呼ばれる読み出しモードがある。なお、上記のTDI読み出しに使われるCCDの種類は、主にFFT(Full Frame Transfer)型のCCDであり、FFT−CCDと呼ばれている。通常のFFT読み出しでは、先ず、一定時間露出し、被写体像をCCD上の画素に電荷像として蓄積する。次に、露光を遮断し、その間に読み出しを行う。読み取りは、全画素を一画面分一気に読み出す方式である。得られる画像の大きさも画素サイズである。例えば、512×512pixelsである。通常のFFT読み出しでは、被写体の移動速度に比べて露出時間が長い場合、被写体像は、移動方向に複数の画素に分散するので、画像のボケを生じる。これに対し、TDI読み出しはこの不都合はない。   Next, TDI reading of the CCD will be described. There is a reading mode called TDI (Time Delay Integration) as a method of reading the CCD. The type of CCD used for the TDI readout is mainly an FFT (Full Frame Transfer) type CCD, and is called an FFT-CCD. In normal FFT readout, first, a subject image is exposed for a certain period of time, and a subject image is accumulated as a charge image in a pixel on the CCD. Next, the exposure is interrupted, and readout is performed during that time. Reading is a method of reading all pixels at once for one screen. The size of the obtained image is also the pixel size. For example, 512 × 512 pixels. In normal FFT readout, if the exposure time is longer than the moving speed of the subject, the subject image is dispersed in a plurality of pixels in the moving direction, resulting in image blurring. In contrast, TDI reading does not have this inconvenience.

また、TDI読み出しは、CCD上で画像の蓄積(露光=電荷蓄積)と、一番底の一行分の画素の読み取りとを、連続的に行う方式である。各一行の読み取りデータをメモリに収納するとともに、残ったCCDの画素中の信号は、すべて一行分だけシフトダウンさせる。この動作を続けて繰り返すと、蓄積された画像(電荷)は読み出しの度に移動(電荷転送)を繰り返すことになる。電荷転送速度と前述のω角のスキャン速度を同期させて行えば、画像のボケは生じないし、同じ画像が加算されるので信号強度が増強される。得られる画像は、画素サイズを越えて、一定幅で、例えば512pixels幅で、TDI動作を行っている時間分だけ帯状に長く取れる。いわば、「流し撮り」ができるのである。即ち、本発明によるTDI読み出しCCDの使い方は、ωスキャンと同期させてTDI読み出し動作を行う。そして、図3に示しように、帯状に伸びる画像の長手方向に角度情報(ω角)を持たせたのが特徴である。   Also, TDI readout is a method in which image accumulation (exposure = charge accumulation) on the CCD and pixel reading for the bottom row are continuously performed. Each row of read data is stored in the memory, and all the remaining signals in the CCD pixels are shifted down by one row. If this operation is repeated continuously, the stored image (charge) repeats movement (charge transfer) every time it is read out. If the charge transfer rate is synchronized with the scan speed of the above-mentioned ω angle, the image is not blurred and the same image is added, so that the signal intensity is enhanced. The obtained image exceeds the pixel size and has a certain width, for example, a 512 pixels width, and can be taken long in a band shape for the duration of the TDI operation. In other words, you can do “panning”. That is, the TDI readout CCD according to the present invention performs a TDI readout operation in synchronization with the ω scan. Then, as shown in FIG. 3, the feature is that angle information (ω angle) is provided in the longitudinal direction of the image extending in a strip shape.

次に、上述したX線検出器20の具体的な構造の実施例について図7及び図8を用いて説明する。本発明に係るX線検出器20としては、高感度であり、しかも一回のωスキャンによる、特定の狙った指数の反射(回折スポット)を2点で捕らえることが必要となる。図7に示す第1の実施例では、X線検出器20aは、X線像を可視光像に変換する蛍光板21と、該蛍光板21で変換された可視光像をイメージインテンシファイヤ(I.I)23のフェイスプレートに結像させるレンズ系22と、I.I電源24を接続して、結像された可視光像の輝度を数万倍に増倍するイメージインテンシファイヤ(I.I)23と、該イメージインテンシファイヤ(I.I)23で増倍した光像をファイバーやレンズ等でカップリングして撮像するTDI−CCD200とを先細りに形成した暗箱25内に備えて構成される。そして、CPU(演算処理部)30との接続は、画像取り込みボード27を介して行われる。   Next, an example of a specific structure of the above-described X-ray detector 20 will be described with reference to FIGS. The X-ray detector 20 according to the present invention is highly sensitive and needs to capture reflections (diffraction spots) of a specific target index by one ω scan at two points. In the first embodiment shown in FIG. 7, the X-ray detector 20a includes a fluorescent screen 21 that converts an X-ray image into a visible light image, and an image intensifier (II) that converts the visible light image converted by the fluorescent screen 21. A lens system 22 for forming an image on the face plate 23; An image intensifier (II) 23 that multiplies the brightness of the formed visible light image by several tens of thousands by connecting an I power source 24, and the image intensifier (II) 23 increases the luminance. A TDI-CCD 200 that captures a doubled optical image by coupling with a fiber, a lens, or the like is provided in a dark box 25 that is tapered. Connection with the CPU (arithmetic processing unit) 30 is made via the image capturing board 27.

特に、一回のωスキャンによる、特定の狙った指数の反射(回折スポット)を2点で捕らえるために、蛍光板21の寸法を、縦(L)200mm程度で、横(S)20mm程度の細帯形状で形成し、蛍光板21とイメージインテンシファイヤ(I.I)23との間に設けたレンズ系22によりV方向には縮小して結像するように構成した。より好ましいのは、蛍光板21の形状を円錐曲線205に沿った弓なりの形状にするのが良い。この場合は、Sは5mm程度にすることができる。   In particular, in order to capture reflection (diffraction spot) of a specific target index by one ω scan at two points, the dimensions of the fluorescent screen 21 are about 200 mm in length (L) and about 20 mm in width (S). It is formed in a band shape, and is configured such that an image is reduced in the V direction by a lens system 22 provided between the fluorescent plate 21 and the image intensifier (II) 23. More preferably, the fluorescent plate 21 should have a bow shape along the conic curve 205. In this case, S can be about 5 mm.

TDI−CCD200は蛍光板21の形状に合せて縦横の画素比が10:1程度の帯状形状の素子を用いるのが良い。具体的には、1024×128画素で、画素サイズが15μm程度のものを用いる。   The TDI-CCD 200 is preferably a strip-shaped element having a vertical / horizontal pixel ratio of about 10: 1 in accordance with the shape of the fluorescent screen 21. Specifically, a pixel having 1024 × 128 pixels and a pixel size of about 15 μm is used.

以上説明したように、X線検出器20aを構成することによってV方向の撮像幅を広げることができ、撮像視野内に2つの回折スポットを確実に入れることが可能となる。   As described above, by configuring the X-ray detector 20a, the imaging width in the V direction can be widened, and two diffraction spots can be reliably placed in the imaging field.

なお、X線検出器20aの全体は、遮光された暗箱25の中に配置されるが、図7(a)に示すように、先端をスリム(先細り)にして、ωスキャンによる試料1との干渉を避ける必要もある。   The entire X-ray detector 20a is arranged in a dark box 25 that is shielded from light. However, as shown in FIG. 7A, the tip is slim (tapered) and the sample 1 is scanned with the sample 1 by ω scanning. There is also a need to avoid interference.

図8に示す第2の実施例では、X線検出器20bを構成する、蛍光板21を帯状形状又は弓なり形状で形成し、レンズ22、I.I23及びTDI−CCD200を、V方向に少なくとも2チャンネルで構成した。その結果、チャンネル毎に、各特定の狙った指数の反射(各回折スポット)を捕らえて撮像できることになる。なお、第2の実施例によれば、2チャンネルで構成したことにより、レンズ22の縮小率を低減することが可能となる。   In the second embodiment shown in FIG. 8, the fluorescent plate 21 constituting the X-ray detector 20b is formed in a band shape or a bow shape, and the lens 22, I.V. I23 and TDI-CCD 200 were configured with at least two channels in the V direction. As a result, for each channel, it is possible to capture and capture the reflection (each diffraction spot) of each specific target index. According to the second embodiment, the reduction ratio of the lens 22 can be reduced by using two channels.

本発明に係る方向性珪素鋼板の理想方位と特性X線をωで入射させたときの回折X線の発生状況とを示す図である。It is a figure which shows the generation | occurrence | production condition of the diffraction X-ray when the ideal azimuth | direction of the grain-oriented silicon steel plate which concerns on this invention, and characteristic X-rays are made to inject into (omega) 0 . 本発明に係るX線単結晶方位測定装置の一実施の形態を示す概略構成斜視図である。1 is a schematic configuration perspective view showing an embodiment of an X-ray single crystal orientation measuring apparatus according to the present invention. 本発明に係る入射特性X線を試料に対してωスキャンした際、発生する2つの回折スポットを、TDI−CCDをベースにした2次元検出器で捕らえた(撮像した)画像を示す図である。It is a figure which shows the image which picked up the two diffraction spots which generate | occur | produce when the incident characteristic X-ray based on this invention (omega | ohm) scan was carried out with respect to the sample with the two-dimensional detector based on TDI-CCD. . 本発明に係る2θコーンと2次元検出器で捕らえる回折スポットとの位置関係を示す図である。It is a figure which shows the positional relationship of the 2theta cone which concerns on this invention, and the diffraction spot caught with a two-dimensional detector. 本発明に係る試料面に対する検出面での座標の定義を示す図である。It is a figure which shows the definition of the coordinate in the detection surface with respect to the sample surface which concerns on this invention. 本発明に係るTDI−CCDをベースにした2次元検出器で捕らえた(撮像した)画像において円錐曲線と21−1反射の回折スポットの位置との関係を示す図である。It is a figure which shows the relationship between the cone curve and the position of the diffraction spot of 21-1 reflection in the image captured (imaged) with the two-dimensional detector based on TDI-CCD which concerns on this invention. 本発明に係るX線検出器の具体的な第1の実施例を示す図である。It is a figure which shows the specific 1st Example of the X-ray detector which concerns on this invention. 本発明に係るX線検出器の具体的な第2の実施例を示す図である。It is a figure which shows the specific 2nd Example of the X-ray detector which concerns on this invention.

符号の説明Explanation of symbols

1…試料片(被測定結晶)、10…入射X線部、11…コリメータ、13…入射X線(入射特性X線)、20、20a、20b…X線検出器、21…蛍光板、22…レンズ系、23…イメージインテンシファイヤ(I.I)、24…I.I電源、25…暗箱、30…CPU(演算処理部)、35…制御部、200…TDI−CCD(2次元検出器)、202…X線検出面、203…画像、205…円錐曲線。 DESCRIPTION OF SYMBOLS 1 ... Sample piece (crystal to be measured), 10 ... Incident X-ray part, 11 ... Collimator, 13 ... Incident X-ray (incident characteristic X-ray), 20, 20a, 20b ... X-ray detector, 21 ... Fluorescent plate, 22 ... Lens system, 23... Image intensifier (II), 24. I power source, 25 ... dark box, 30 ... CPU (arithmetic processing unit), 35 ... control unit, 200 ... TDI-CCD (two-dimensional detector), 202 ... X-ray detection surface, 203 ... image, 205 ... conical curve.

Claims (7)

特性X線を細く絞って単結晶の試料の格子面にXZ軸平面内においてX軸に対して入射角ωで入射する入射X線部と、
前記入射角ωが回折条件を満足する入射角ωを中心にして適宜な範囲で変化するように前記入射X線部と前記試料との間で相対的にY軸周りに回転させて走査する走査手段と、
該走査手段によって前記入射X線部から前記試料に入射される前記入射角ωを走査しながら前記試料の格子面上の照射点から得られる回折角2θの円錐面に沿って出射する特定の指数の少なくとも2つの回折スポットの像を含む2次元画像を撮像する、TDI読み出しモードで動作するCCDから構成された2次元検出器を有するX線検出部と、
該X線検出部の前記2次元検出器から得られる2次元画像を基に前記2つの回折スポットの各々が生じた入射角ω1、ωs2を求め、該求められた入射角ω1、ωs2の各々から前記試料の外形を代表する(XYZ)座標系での少なくとも2つの格子面の法線ベクトルV1,V2を算出し、該算出された少なくとも2つの格子面の法線ベクトルV1,V2を基に前記試料の3軸の結晶方位を決定する演算処理部とを備えたことを特徴とするX線単結晶方位測定装置。
An incident X-ray portion that narrows the characteristic X-ray and enters the lattice plane of the single crystal sample at an incident angle ω with respect to the X axis in the XZ axis plane;
Scanning is performed by relatively rotating around the Y axis between the incident X-ray part and the sample so that the incident angle ω changes within an appropriate range around the incident angle ω 0 satisfying the diffraction condition. Scanning means;
A specific index emitted along a conical surface having a diffraction angle 2θ obtained from an irradiation point on the lattice plane of the sample while scanning the incident angle ω incident on the sample from the incident X-ray portion by the scanning means. An X-ray detector having a two-dimensional detector composed of a CCD operating in a TDI readout mode for capturing a two-dimensional image including images of at least two diffraction spots;
Based on the two-dimensional image obtained from the two-dimensional detector of the X-ray detector, the incident angles ω s 1 and ω s 2 generated by the two diffraction spots are obtained, and the obtained incident angle ω s is obtained. 1, normal vectors V1 and V2 of at least two lattice planes in the (XYZ) coordinate system representing the outer shape of the sample are calculated from each of ω s 2, and the calculated normal lines of the at least two lattice planes An X-ray single crystal orientation measuring apparatus comprising: an arithmetic processing unit that determines a triaxial crystal orientation of the sample based on vectors V1 and V2.
前記演算処理部において、前記2つの回折スポットの各々が生じた入射角ω1、ωs2の各々を、前記2次元検出器から得られる2次元画像のV方向及びW方向の画素アドレスに基づいてω角度に変換して求めるように構成したことを特徴とする請求項1に記載のX線単結晶方位測定装置。 In the arithmetic processing unit, each of the incident angles ω s 1 and ω s 2 generated by the two diffraction spots is used as a pixel address in the V direction and W direction of the two-dimensional image obtained from the two-dimensional detector. 2. The X-ray single crystal orientation measuring apparatus according to claim 1, wherein the X-ray single crystal orientation measuring apparatus is configured to convert the angle into a ω angle based on the obtained angle. 前記X線検出部は、X線像を可視光像に変換する細帯形状又は弓なり形状の蛍光板と、該蛍光板から得られる可視光像について少なくともV方向には縮小して結像させるレンズ系と、該レンズ系で結像された光像の輝度を増倍するイメージインテンシファイヤと、該イメージインテンシファイヤとカップリングされた前記TDI読み出しモードで動作するCCDで構成された2次元検出器とを有することを特徴とする請求項1に記載のX線単結晶方位測定装置。   The X-ray detection unit includes a strip-shaped or bow-shaped fluorescent plate that converts an X-ray image into a visible light image, and a lens system that forms a visible light image obtained from the fluorescent plate by reducing the image in at least the V direction. An image intensifier for multiplying the brightness of the light image formed by the lens system, and a two-dimensional detector composed of a CCD operating in the TDI readout mode coupled with the image intensifier; The X-ray single crystal orientation measuring apparatus according to claim 1, wherein: 前記X線検出部は、X線像を可視光像に変換する細帯形状又は弓なり形状の蛍光板を有し、該蛍光板から得られる可視光像について結像させるレンズ系と、該レンズ系で結像された光像の輝度を増倍するイメージインテンシファイヤと、該イメージインテンシファイヤとカップリングされた前記TDI読み出しモードで動作するCCDで構成された2次元検出器とから構成されるチャンネルを少なくとも2つ並べて構成したことを特徴とする請求項1に記載のX線単結晶方位測定装置。   The X-ray detection unit includes a thin band-shaped or bow-shaped fluorescent plate that converts an X-ray image into a visible light image, and forms a visible light image obtained from the fluorescent plate with a lens system. A channel composed of an image intensifier for multiplying the brightness of the imaged light image and a two-dimensional detector composed of a CCD operating in the TDI readout mode coupled with the image intensifier. The X-ray single crystal orientation measuring apparatus according to claim 1, wherein at least two are arranged side by side. 前記TDI読み出しモードで動作するCCDで構成された2次元検出器の受光面の形状を細帯形状で形成したことを特徴とする請求項3または4に記載のX線単結晶方位測定装置。   5. The X-ray single crystal orientation measuring apparatus according to claim 3, wherein a light receiving surface of a two-dimensional detector composed of a CCD operating in the TDI readout mode is formed in a narrow band shape. 特性X線を細く絞って単結晶の試料の格子面にXZ軸平面内においてX軸に対して入射角ωで入射する入射X線部と、前記入射角ωが回折条件を満足する入射角ωを中心にして適宜な範囲で変化するように前記入射X線部と前記試料との間で相対的にY軸周りに回転させて走査する走査手段と、該走査手段によって前記入射X線部から前記試料に入射される前記入射角ωを走査しながら前記試料の格子面上の照射点から得られる回折角2θの円錐面に沿って出射する特定の指数の少なくとも2つの回折スポットの像を含む2次元画像を撮像する、TDI読み出しモードで動作するCCDで構成された2次元検出器を有するX線検出部とを備えたX線単結晶方位測定装置を用いて、
前記X線検出部の前記2次元検出器から得られる2次元画像を基に前記2つの回折スポットの各々が生じた入射角ω1、ωs2を求め、該求められた入射角ω1、ωs2の各々から前記試料の外形を代表する(XYZ)座標系での少なくとも2つの格子面の法線ベクトルV1,V2を算出し、該算出された少なくとも2つの格子面の法線ベクトルV1,V2を基に前記試料の3軸の結晶方位を決定することを特徴とするX線単結晶方位測定方法。
An incident X-ray portion that narrows the characteristic X-ray and enters the lattice plane of the single crystal sample at an incident angle ω with respect to the X axis in the XZ axis plane, and an incident angle ω that satisfies the diffraction condition. Scanning means for scanning by rotating around the Y axis relatively between the incident X-ray part and the sample so as to change within an appropriate range centering on 0 , and the incident X-ray part by the scanning means The images of at least two diffraction spots having specific indices emitted from the irradiation point on the lattice plane of the sample along the conical surface of the diffraction angle 2θ while scanning the incident angle ω incident on the sample from Using an X-ray single crystal orientation measuring device including an X-ray detector having a two-dimensional detector configured with a CCD operating in a TDI readout mode for capturing a two-dimensional image including
Based on the two-dimensional image obtained from the two-dimensional detector of the X-ray detector, the incident angles ω s 1 and ω s 2 generated by the two diffraction spots are obtained, and the obtained incident angle ω s is obtained. 1, normal vectors V1 and V2 of at least two lattice planes in the (XYZ) coordinate system representing the outer shape of the sample are calculated from each of ω s 2, and the calculated normal lines of the at least two lattice planes A method for measuring an X-ray single crystal orientation, wherein a triaxial crystal orientation of the sample is determined based on vectors V1 and V2.
前記試料が方向性珪素鋼板であることを特徴とする請求項6に記載のX線単結晶方位測定方法。   The X-ray single crystal orientation measuring method according to claim 6, wherein the sample is a grain-oriented silicon steel plate.
JP2007117477A 2007-04-26 2007-04-26 X-ray single crystal orientation measuring apparatus and measuring method thereof Active JP4908303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117477A JP4908303B2 (en) 2007-04-26 2007-04-26 X-ray single crystal orientation measuring apparatus and measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117477A JP4908303B2 (en) 2007-04-26 2007-04-26 X-ray single crystal orientation measuring apparatus and measuring method thereof

Publications (3)

Publication Number Publication Date
JP2008275387A true JP2008275387A (en) 2008-11-13
JP2008275387A5 JP2008275387A5 (en) 2009-06-04
JP4908303B2 JP4908303B2 (en) 2012-04-04

Family

ID=40053521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117477A Active JP4908303B2 (en) 2007-04-26 2007-04-26 X-ray single crystal orientation measuring apparatus and measuring method thereof

Country Status (1)

Country Link
JP (1) JP4908303B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073193A (en) * 2010-09-29 2012-04-12 Rigaku Corp X-ray crystal orientation measuring device and x-ray crystal orientation measuring method
CN106442582A (en) * 2015-08-07 2017-02-22 埃克诺瓦技术公司 X-ray multigrain crystallography
JP2019039681A (en) * 2017-08-22 2019-03-14 国立大学法人金沢大学 Diffraction ring measurement apparatus
CN114184629A (en) * 2021-10-09 2022-03-15 中国航发北京航空材料研究院 Single crystal material pole figure pole calibration method based on orientation distribution function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106124542B (en) * 2016-07-22 2019-03-01 东北大学 The method for carrying out crystal non-destructive testing using Multifunctional X-ray direction finder

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875051A (en) * 1981-10-07 1983-05-06 ロ−ルス・ロイス・リミテツド Method and device for determining orientation of crystal
JPH01240842A (en) * 1988-03-23 1989-09-26 Hikari Gijutsu Kenkyu Kaihatsu Kk Detector for diffracted corpuscular beam
JPH02145948A (en) * 1988-11-28 1990-06-05 Kawasaki Steel Corp Measurement of texture by energy scattering
JPH05312736A (en) * 1992-05-13 1993-11-22 Rigaku Corp Apparatus and method of x-ray measurement of single crystal orientation
JP2004257884A (en) * 2003-02-26 2004-09-16 Nittetsu Elex Co Ltd X-ray method and apparatus for inspecting foreign substance
JP2005069769A (en) * 2003-08-21 2005-03-17 Rigaku Corp X-ray crystal orientation measuring instrument, crystal sample holding device used therein and crystal oriented cutting method used therein
JP2005121372A (en) * 2003-10-14 2005-05-12 Rigaku Corp X-ray crystal orientation measuring instrument, and x-ray crystal orientation measuring method
JP2005121511A (en) * 2003-10-17 2005-05-12 Rigaku Corp X-ray analyzer
JP2005241578A (en) * 2004-02-27 2005-09-08 Rigaku Corp X-ray apparatus for measuring crystal orientation, system for holding crystal sample using the same, and method for cutting crystal along constant orientation used therefor
JP2005265502A (en) * 2004-03-17 2005-09-29 Rigaku Corp X-ray crystal orientation measuring instrument, and x-ray crystal orientation measuring method
WO2007052688A1 (en) * 2005-11-02 2007-05-10 Rigaku Corporation Method and device for measuring microcrystal grain orientation distribution

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875051A (en) * 1981-10-07 1983-05-06 ロ−ルス・ロイス・リミテツド Method and device for determining orientation of crystal
JPH01240842A (en) * 1988-03-23 1989-09-26 Hikari Gijutsu Kenkyu Kaihatsu Kk Detector for diffracted corpuscular beam
JPH02145948A (en) * 1988-11-28 1990-06-05 Kawasaki Steel Corp Measurement of texture by energy scattering
JPH05312736A (en) * 1992-05-13 1993-11-22 Rigaku Corp Apparatus and method of x-ray measurement of single crystal orientation
JP2004257884A (en) * 2003-02-26 2004-09-16 Nittetsu Elex Co Ltd X-ray method and apparatus for inspecting foreign substance
JP2005069769A (en) * 2003-08-21 2005-03-17 Rigaku Corp X-ray crystal orientation measuring instrument, crystal sample holding device used therein and crystal oriented cutting method used therein
JP2005121372A (en) * 2003-10-14 2005-05-12 Rigaku Corp X-ray crystal orientation measuring instrument, and x-ray crystal orientation measuring method
JP2005121511A (en) * 2003-10-17 2005-05-12 Rigaku Corp X-ray analyzer
JP2005241578A (en) * 2004-02-27 2005-09-08 Rigaku Corp X-ray apparatus for measuring crystal orientation, system for holding crystal sample using the same, and method for cutting crystal along constant orientation used therefor
JP2005265502A (en) * 2004-03-17 2005-09-29 Rigaku Corp X-ray crystal orientation measuring instrument, and x-ray crystal orientation measuring method
WO2007052688A1 (en) * 2005-11-02 2007-05-10 Rigaku Corporation Method and device for measuring microcrystal grain orientation distribution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073193A (en) * 2010-09-29 2012-04-12 Rigaku Corp X-ray crystal orientation measuring device and x-ray crystal orientation measuring method
CN106442582A (en) * 2015-08-07 2017-02-22 埃克诺瓦技术公司 X-ray multigrain crystallography
JP2019039681A (en) * 2017-08-22 2019-03-14 国立大学法人金沢大学 Diffraction ring measurement apparatus
JP7050273B2 (en) 2017-08-22 2022-04-08 国立大学法人金沢大学 Diffractive ring measuring device
CN114184629A (en) * 2021-10-09 2022-03-15 中国航发北京航空材料研究院 Single crystal material pole figure pole calibration method based on orientation distribution function
CN114184629B (en) * 2021-10-09 2024-04-09 中国航发北京航空材料研究院 Orientation distribution function-based single crystal material pole figure pole point calibration method

Also Published As

Publication number Publication date
JP4908303B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
Grünzweig et al. Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems
KR100435108B1 (en) Radiation inspection system and method thereof
US6882739B2 (en) Method and apparatus for rapid grain size analysis of polycrystalline materials
TW202006747A (en) Super-resolution X-ray imaging method and apparatus
JP4685877B2 (en) Method and apparatus for measuring orientation distribution of microcrystalline grains
JP4908303B2 (en) X-ray single crystal orientation measuring apparatus and measuring method thereof
JP2005121372A (en) X-ray crystal orientation measuring instrument, and x-ray crystal orientation measuring method
JP3834652B2 (en) X-ray diffraction microscope apparatus and X-ray diffraction measurement method using X-ray diffraction microscope apparatus
JP5024973B2 (en) X-ray topography equipment
CN106706157B (en) ICF hot spot electronic temperature detection equipment based on quasi-synoptic axis
JP2006153894A (en) Observation apparatus and method using electron beam
JP6242185B2 (en) Correction information generation method and correction information generation apparatus
Bortel et al. Measurement of synchrotron-radiation-excited Kossel patterns
US9417195B2 (en) Method and its apparatus for x-ray diffraction
JP4909154B2 (en) Method and apparatus for measuring pole figure of crystal grains
JP3759524B2 (en) X-ray analyzer
JP2009047440A (en) Nondestructive inspection device and nondestructive inspection method
JP4563701B2 (en) X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method
Carini et al. High-energy X-ray diffraction and topography investigation of CdZnTe
JP2007240510A (en) X-ray topography measuring instrument, and x-ray topography measuring method
JP4823125B2 (en) X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method
JP2007278792A (en) Radiation detecting apparatus and system
JP2002286660A (en) Method and apparatus for observing crystal by using x-ray diffraction
JP6671413B2 (en) Radiation image acquisition device
JP2009168496A (en) High-speed computerized tomography method and device therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250