Nothing Special   »   [go: up one dir, main page]

JP2008261557A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2008261557A
JP2008261557A JP2007104788A JP2007104788A JP2008261557A JP 2008261557 A JP2008261557 A JP 2008261557A JP 2007104788 A JP2007104788 A JP 2007104788A JP 2007104788 A JP2007104788 A JP 2007104788A JP 2008261557 A JP2008261557 A JP 2008261557A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
storage tank
refrigerant
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007104788A
Other languages
Japanese (ja)
Inventor
Kazuhiko Marumoto
一彦 丸本
Kazuo Nakatani
和生 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007104788A priority Critical patent/JP2008261557A/en
Publication of JP2008261557A publication Critical patent/JP2008261557A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater having an inexpensive configuration and being easily achieved as a product. <P>SOLUTION: The heat pump water heater is provided with a refrigeration cycle unit 1 constituted by annularly connecting a compressor 2, a heat exchanger 3 for hot water supply, a decompression device 4 and an air heat exchanger 6; an internal heat exchanger 8 for performing heat exchange between a refrigerant from a refrigerant outlet side of the heat exchanger 3 for hot water supply to an inlet side of the decompression device 4 and a refrigerant from a refrigerant outlet side of the air heat exchanger 6 to a suction side of the compressor 2; and a bypass circuit 28 for connecting the refrigerant outlet side of the heat exchanger 3 for hot water supply to the outlet side of the decompression device 4. Water is circulated from a bottom part of a storage tank 11 in the heat exchanger 3 for hot water supply by a boiling-up pump 10, and the water inside the storage tank 11 is heated and stored as hot water. The heat pump water heater is further provided with a heat exchange quantity control means 29 for controlling the heat exchange quantity of the internal heat exchanger 8 based on at least one of flowing-in water temperature of water flowing in the heat exchanger 3 for hot water supply and the outside air temperature. Thus, the heat exchange quantity of the internal heat exchanger 8 can be accurately controlled in a more inexpensive method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は加熱した湯水を貯湯タンクに蓄えて給湯を行うヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater that supplies hot water by storing heated hot water in a hot water storage tank.

従来のこの種のヒートポンプ給湯機として、図5に示されるようなものがあった(例えば、特許文献1参照)。   As a conventional heat pump water heater of this type, there is one shown in FIG. 5 (see, for example, Patent Document 1).

図5は、前記特許文献1に記載された従来のヒートポンプ給湯機の回路図、図6は、同ヒートポンプ給湯機のバイパス弁制御フロー図である。   FIG. 5 is a circuit diagram of a conventional heat pump water heater described in Patent Document 1, and FIG. 6 is a bypass valve control flow diagram of the heat pump water heater.

図5において、従来のヒートポンプ給湯機の冷凍サイクルユニット1は、水に熱を与えて加熱する加熱源となるもので、圧縮機2と、給湯用熱交換器3と、減圧装置4と、空気熱交換器6を環状に接続して構成されている。   In FIG. 5, a refrigeration cycle unit 1 of a conventional heat pump water heater is a heating source that heats and heats water, and includes a compressor 2, a hot water heat exchanger 3, a decompressor 4, an air The heat exchanger 6 is connected in a ring shape.

また、給湯用熱交換器3の冷媒出口側から減圧装置4の入口側までの冷媒と、空気熱交換器6の冷媒出口側から圧縮機2の吸入側までの冷媒を熱交換する内部熱交換器8が設けられ、さらに給湯用熱交換器3の冷媒出口側と減圧装置4の出口側を接続する内部熱交換器8のバイパス回路27には、バイパス弁5が設けられている。   Further, internal heat exchange is performed to exchange heat between the refrigerant from the refrigerant outlet side of the hot water supply heat exchanger 3 to the inlet side of the decompression device 4 and the refrigerant from the refrigerant outlet side of the air heat exchanger 6 to the suction side of the compressor 2. The bypass valve 5 is provided in the bypass circuit 27 of the internal heat exchanger 8 that connects the refrigerant outlet side of the hot water supply heat exchanger 3 and the outlet side of the decompression device 4.

空気熱交換器6は、送風装置7により送風された外気と内部に流れる冷媒との熱交換を行う。   The air heat exchanger 6 performs heat exchange between the outside air blown by the blower 7 and the refrigerant flowing inside.

また、水を循環して、冷凍サイクルユニット1で加熱された湯を貯留し給湯する貯湯ユニット9は、沸き上げポンプ10により、貯湯タンク11の底部より水を給湯用熱交換器3を循環させることによって、貯湯タンク11内の水を加熱し、高温の湯を貯湯タンク11内に貯めるようにしている。   Further, the hot water storage unit 9 that circulates water and stores hot water heated by the refrigeration cycle unit 1 and supplies hot water circulates water from the bottom of the hot water storage tank 11 to the hot water supply heat exchanger 3 by the boiling pump 10. Thus, the water in the hot water storage tank 11 is heated, and hot water is stored in the hot water storage tank 11.

沸き上げ運転では、圧縮機2で加圧された高温高圧のガス冷媒が、給湯用熱交換器3に送られる。沸き上げポンプ10で搬送されてきた貯湯タンク11の底部の冷水と熱交換して低温冷媒となる。そして、給湯用熱交換器3で冷水に放熱した冷媒は、減圧装置4で減圧され、二相の冷媒となり、そして空気熱交換器6に送られて大気と熱交換し低温のガス冷媒となり圧縮機2に循環する。   In the boiling operation, the high-temperature and high-pressure gas refrigerant pressurized by the compressor 2 is sent to the hot water supply heat exchanger 3. Heat exchange with the cold water at the bottom of the hot water storage tank 11 conveyed by the boiling pump 10 becomes a low-temperature refrigerant. Then, the refrigerant radiated to the cold water in the hot water supply heat exchanger 3 is decompressed by the decompression device 4 to become a two-phase refrigerant, and is sent to the air heat exchanger 6 to exchange heat with the atmosphere to become a low-temperature gas refrigerant and compressed. Circulate to machine 2.

一方、貯湯タンク11の底部の冷水は、沸き上げポンプ9で給湯用熱交換器6に搬送され冷媒の熱を吸熱して高温の湯となって沸き上げ管13を通って貯湯タンク11の上部に送られる。この時、高温の湯は、密度差により水とほぼ混合されることなく高温の湯は貯湯タンク11内上部より積層していき貯湯タンク11内を高温の湯が溜まることになる。   On the other hand, the cold water at the bottom of the hot water storage tank 11 is conveyed to the hot water supply heat exchanger 6 by the boiling pump 9 and absorbs the heat of the refrigerant to become hot water, passes through the boiling pipe 13 and the upper part of the hot water storage tank 11. Sent to. At this time, the hot water is not mixed with the water due to the density difference, and the hot water is stacked from the upper part of the hot water storage tank 11 so that the hot water is accumulated in the hot water storage tank 11.

この時、コントローラ34は、図6に示されるような処理を行う。   At this time, the controller 34 performs processing as shown in FIG.

圧縮機2の吐出圧力を検出する圧力センサ−35からの圧力信号、圧縮機2の吐出温度を検出する吐出温度センサ−36からの信号、空気熱交換器6にかかる負荷を例えば空気熱交換器6出口の冷媒温度として検出する蒸発器温度センサ37からの信号を入力し(STEP50)、これら信号に基づいてCOPを最大とする最適圧力を演算したり、高圧圧力が危険領域まで上昇したか否か、吐出温度が危険温度まで上昇したか否か等を判定し(STEP51)、それに基づいてバイパス弁5の開度を決定して、そのような開度となる
ようにバイパス弁5の開度を駆動制御する(STEP52)ようになっている。
特開平11−193967号公報
The pressure signal from the pressure sensor 35 that detects the discharge pressure of the compressor 2, the signal from the discharge temperature sensor 36 that detects the discharge temperature of the compressor 2, and the load applied to the air heat exchanger 6, for example, an air heat exchanger A signal from the evaporator temperature sensor 37 that is detected as the refrigerant temperature at the 6 outlets is input (STEP 50). Based on these signals, an optimum pressure that maximizes the COP is calculated, and whether or not the high pressure has risen to a dangerous area. Whether or not the discharge temperature has risen to the dangerous temperature is determined (STEP 51), the opening degree of the bypass valve 5 is determined based on the determination, and the opening degree of the bypass valve 5 is set to such an opening degree. Is controlled (STEP 52).
JP 11-193967 A

しかしながら、上記従来のヒートポンプ給湯機の構成では、圧力センサー35を使用して内部熱交換器8の熱交換量を制御しているが、圧力センサー35は、例えば臨界圧力以上で使用する様な高圧の炭酸ガス等の場合には、圧力センサー35の精度が悪く、精度が向上した圧力センサー35は高価なため、現在製品化されているヒートポンプ給湯機に圧力センサー35を取り付けている例は希である。   However, in the configuration of the conventional heat pump water heater, the pressure sensor 35 is used to control the heat exchange amount of the internal heat exchanger 8, but the pressure sensor 35 is a high pressure that is used at a critical pressure or higher, for example. In the case of carbon dioxide gas or the like, the accuracy of the pressure sensor 35 is poor, and the pressure sensor 35 with improved accuracy is expensive. Therefore, it is rare that the pressure sensor 35 is attached to a heat pump water heater that is currently commercialized. is there.

従って、圧力センサー35を使用して内部熱交換器8の熱交換量を制御するのは実現が容易でないという課題があった。   Therefore, there is a problem that it is not easy to control the heat exchange amount of the internal heat exchanger 8 using the pressure sensor 35.

本発明は、上記従来の課題を解決するもので、圧力センサーの代りに、温度センサーを使用して内部熱交換器の熱交換量を制御することにより、即ち、より安価な方法で精度良く制御できる、実現容易なヒートポンプ給湯機を提供することを目的とするものである。   The present invention solves the above-described conventional problems, and uses a temperature sensor instead of a pressure sensor to control the amount of heat exchange of the internal heat exchanger, that is, accurately controls in a less expensive manner. An object of the present invention is to provide a heat pump water heater that can be easily realized.

上記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機、給湯用熱交換器、減圧装置及び空気熱交換器を環状に接続して構成した冷凍サイクルユニットと、前記給湯用熱交換器の冷媒出口側から前記減圧装置の入口側までの冷媒と前記空気熱交換器の冷媒出口側から前記圧縮機の吸入側までの冷媒を熱交換する内部熱交換器と、前記給湯用熱交換器の冷媒出口側と前記減圧装置の出口側を接続するバイパス回路とを備え、沸き上げポンプにより貯湯タンクの底部より水を前記給湯用熱交換器を循環させることによって、前記貯湯タンク内の水を加熱し高温の湯を前記貯湯タンク内に貯めるヒートポンプ給湯機において、前記給湯用熱交換器に流入する水の入水温度と、外気温度の少なくとも一つにより、前記内部熱交換器の熱交換量を制御する熱交換量制御手段を設けたもので、より安価な方法で精度良く内部熱交換器の熱交換量を制御することができる。   In order to solve the above-described conventional problems, a heat pump water heater of the present invention includes a refrigeration cycle unit configured by connecting a compressor, a hot water heat exchanger, a decompression device, and an air heat exchanger in an annular shape, and the hot water supply An internal heat exchanger for exchanging heat between the refrigerant from the refrigerant outlet side of the heat exchanger to the inlet side of the decompression device and the refrigerant from the refrigerant outlet side of the air heat exchanger to the suction side of the compressor; A bypass circuit connecting the refrigerant outlet side of the heat exchanger and the outlet side of the decompression device, and circulating water through the hot water heat exchanger from the bottom of the hot water tank by a boiling pump, In a heat pump water heater for heating hot water in the hot water storage tank and storing hot water in the hot water storage tank, the internal heat exchanger is controlled by at least one of an incoming water temperature flowing into the hot water heat exchanger and an outside air temperature. Which was provided with a heat exchange quantity control means for controlling the amount of heat exchange, you are possible to control the amount of heat exchange accurately internal heat exchanger in a more inexpensive way.

本発明のヒートポンプ給湯機は、高価な圧力センサーを使用せず、温度センサーを使用して内部熱交換器の熱交換量を制御することにより、即ち、より安価な方法で精度良く制御できる、実現容易なヒートポンプ給湯機を提供することができる。   The heat pump water heater of the present invention does not use an expensive pressure sensor, but can control the heat exchange amount of the internal heat exchanger using a temperature sensor, that is, can be accurately controlled by a cheaper method. An easy heat pump water heater can be provided.

第1の発明は、圧縮機、給湯用熱交換器、減圧装置及び空気熱交換器を環状に接続して構成した冷凍サイクルユニットと、前記給湯用熱交換器の冷媒出口側から前記減圧装置の入口側までの冷媒と前記空気熱交換器の冷媒出口側から前記圧縮機の吸入側までの冷媒を熱交換する内部熱交換器と、前記給湯用熱交換器の冷媒出口側と前記減圧装置の出口側を接続するバイパス回路とを備え、沸き上げポンプにより貯湯タンクの底部より水を前記給湯用熱交換器を循環させることによって、前記貯湯タンク内の水を加熱し高温の湯を前記貯湯タンク内に貯めるヒートポンプ給湯機において、前記給湯用熱交換器に流入する水の入水温度と、外気温度の少なくとも一つにより、前記内部熱交換器の熱交換量を制御する熱交換量制御手段を設けたもので、より安価な方法で精度良く内部熱交換器の熱交換量を制御することができる。   According to a first aspect of the present invention, there is provided a refrigeration cycle unit configured by annularly connecting a compressor, a hot water supply heat exchanger, a decompression device, and an air heat exchanger, and the decompression device from the refrigerant outlet side of the hot water supply heat exchanger. An internal heat exchanger that exchanges heat between the refrigerant up to the inlet side and the refrigerant from the refrigerant outlet side of the air heat exchanger to the suction side of the compressor, the refrigerant outlet side of the hot water supply heat exchanger, and the decompression device A bypass circuit connected to the outlet side, and by circulating water through the hot water heat exchanger from the bottom of the hot water storage tank by means of a boiling pump, the water in the hot water storage tank is heated and hot water is supplied to the hot water storage tank. In the heat pump water heater to be stored inside, a heat exchange amount control means is provided for controlling the heat exchange amount of the internal heat exchanger according to at least one of an incoming temperature of water flowing into the hot water heat exchanger and an outside air temperature. Food , It is possible to control the amount of heat exchange accurately internal heat exchanger in a more inexpensive way.

第2の発明は、特に、第1の発明のバイパス回路にバイパス弁を配し、熱交換量制御手段は、前記バイパス弁の開度を加減して内部熱交換器の熱交換量を制御するもので、これにより、より安価な方法で精度良く内部熱交換器の熱交換量を制御することができる。   In the second invention, in particular, a bypass valve is arranged in the bypass circuit of the first invention, and the heat exchange amount control means controls the heat exchange amount of the internal heat exchanger by adjusting the opening degree of the bypass valve. Thus, the heat exchange amount of the internal heat exchanger can be accurately controlled by a cheaper method.

第3の発明は、特に、第1又は第2の発明のヒートポンプ給湯機は、臨界圧力以上で用いられる冷媒を使用するもので、給湯用熱交換器を流れる冷媒は、圧縮機で臨界圧力以上に加圧されているので、給湯用熱交換器で熱を奪われて温度低下しても凝縮することがない。したがって給湯用熱交換器全域で冷媒と水とに温度差を形成しやすくなり熱交換効率を高くできる。   In the third invention, in particular, the heat pump water heater of the first or second invention uses a refrigerant used at a critical pressure or higher, and the refrigerant flowing through the hot water heat exchanger is higher than the critical pressure by a compressor. Therefore, it does not condense even if the temperature drops due to heat removal from the hot water supply heat exchanger. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire hot water supply heat exchanger, and the heat exchange efficiency can be increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯機の回路図、図2は、同ヒートポンプ給湯機のバイパス弁5の開度とCOPの関係図、図3は、同ヒートポンプ給湯機の入水温度、外気温度とバイパス弁5の開度の関係図、図4は、同ヒートポンプ給湯機のバイパス弁制御フロー図である。
(Embodiment 1)
FIG. 1 is a circuit diagram of a heat pump water heater in the first embodiment of the present invention, FIG. 2 is a relationship diagram of the opening degree of the bypass valve 5 and the COP of the heat pump water heater, and FIG. 3 is the heat pump water heater. FIG. 4 is a bypass valve control flow diagram of the heat pump water heater.

本実施の形態におけるヒートポンプ給湯機は、低温の湯水と高温の湯水とが層を成した状態で貯えられる貯湯タンク11を有する貯湯ユニット9と、貯湯タンク11の水を加熱して沸き上げる冷凍サイクルユニット1からなり、沸き上げた湯を貯湯タンク11に貯湯して給湯に利用するものである。   The heat pump water heater in the present embodiment includes a hot water storage unit 9 having a hot water storage tank 11 in which low temperature hot water and high temperature hot water are stored in a layered state, and a refrigeration cycle that heats and heats the water in the hot water storage tank 11. The unit 1 is configured to store hot water that has been boiled in a hot water storage tank 11 and use it for hot water supply.

先ず、冷凍サイクルユニット1の構成について説明する。   First, the configuration of the refrigeration cycle unit 1 will be described.

冷凍サイクルユニット1は、冷媒を圧縮する圧縮機2と、冷媒を冷却する給湯用熱交換器3と、冷媒を減圧する減圧装置4と、冷媒を蒸発気化する空気熱交換器6で構成されている。   The refrigeration cycle unit 1 includes a compressor 2 that compresses a refrigerant, a hot water supply heat exchanger 3 that cools the refrigerant, a decompression device 4 that decompresses the refrigerant, and an air heat exchanger 6 that evaporates and evaporates the refrigerant. Yes.

圧縮機2の吐出側より給湯用熱交換器3を介して減圧装置4に接続し、さらに圧縮機2の吸入側に接続している。   The compressor 2 is connected to the pressure reducing device 4 through the hot water supply heat exchanger 3 from the discharge side, and further connected to the suction side of the compressor 2.

また、給湯用熱交換器3の冷媒出口側から減圧装置4の入口側までの冷媒と、空気熱交換器6の冷媒出口側から圧縮機2の吸入側までの冷媒を熱交換する内部熱交換器8が設けられ、さらに給湯用熱交換器3の冷媒出口側と減圧装置4の出口側を接続する内部熱交換器8のバイパス回路28が設けられ、そのバイパス回路28の途中にバイパス弁5が設けられている。   Further, internal heat exchange is performed to exchange heat between the refrigerant from the refrigerant outlet side of the hot water supply heat exchanger 3 to the inlet side of the decompression device 4 and the refrigerant from the refrigerant outlet side of the air heat exchanger 6 to the suction side of the compressor 2. And a bypass circuit 28 of the internal heat exchanger 8 that connects the refrigerant outlet side of the hot water supply heat exchanger 3 and the outlet side of the pressure reducing device 4 is provided, and the bypass valve 5 is provided in the middle of the bypass circuit 28. Is provided.

そして、この冷凍サイクルユニット1においては、冷媒として炭酸ガスが用いられており、圧縮機2によって圧縮された冷媒は、高温高圧の超臨界状態の冷媒として給湯用熱交換器3に入り、ここで放熱して冷却する。その後、減圧装置4において減圧されて低温低圧の湿り蒸気となり、空気熱交換器6で外気と熱交換して蒸発気化し圧縮機2へ戻される。この時、送風装置7により、外気との熱交換が促進される。また外気温度を検知する外気温度センサー31を設置している。   In this refrigeration cycle unit 1, carbon dioxide gas is used as the refrigerant, and the refrigerant compressed by the compressor 2 enters the hot water supply heat exchanger 3 as a high-temperature and high-pressure refrigerant in a supercritical state. Dissipate heat to cool. Thereafter, the pressure is reduced in the pressure reducing device 4 to become low-temperature and low-pressure wet steam, and the air heat exchanger 6 exchanges heat with outside air to evaporate and return to the compressor 2. At this time, heat exchange with the outside air is promoted by the blower 7. In addition, an outside air temperature sensor 31 for detecting the outside air temperature is installed.

熱交換量制御手段29は、外気温度センサー31の検知温度と給湯用熱交換器3に入る水の入水温度を検知する入水温度センサー15の検知温度から、バイパス弁5の開度を決定し動作させるものである。   The heat exchange amount control means 29 operates by determining the opening degree of the bypass valve 5 from the detected temperature of the outside air temperature sensor 31 and the detected temperature of the incoming water temperature sensor 15 that detects the incoming temperature of the water entering the hot water supply heat exchanger 3. It is something to be made.

外気温度センサー31及び入水温度センサー15は、例えば安価なサーミスタを用いて良い。   For example, an inexpensive thermistor may be used as the outside air temperature sensor 31 and the incoming water temperature sensor 15.

一方、湯の沸き上げに関する構成として、沸き上げ管13は、貯湯タンク11の下部から冷凍サイクルユニット1の給湯用熱交換器3と接続し、貯湯タンク11上部へ接続している。   On the other hand, as a configuration related to boiling of hot water, the boiling pipe 13 is connected from the lower part of the hot water storage tank 11 to the hot water supply heat exchanger 3 of the refrigeration cycle unit 1 and is connected to the upper part of the hot water storage tank 11.

沸き上げ管13が接続されている貯湯タンク11の上部とは、湯水が貯湯タンク11の高温層側であればよく、また、貯湯タンク11の下部とは、湯水が貯湯タンク11の低温層側であればよい。   The upper part of the hot water storage tank 11 to which the boiling pipe 13 is connected is sufficient if the hot water is on the high temperature layer side of the hot water storage tank 11, and the lower part of the hot water storage tank 11 is on the low temperature layer side of the hot water storage tank 11. If it is.

貯湯タンク11から冷凍サイクルユニット1に湯水を送り貯湯タンク11に戻すために、沸き上げ管13の途中には、出力を任意に変化させることができる沸き上げポンプ10を設けている。   In order to send hot water from the hot water storage tank 11 to the refrigeration cycle unit 1 and return it to the hot water storage tank 11, a boiling pump 10 capable of arbitrarily changing the output is provided in the middle of the boiling pipe 13.

また、冷凍サイクルユニット1において加熱する前の低湯水の温度を検知する入水温度センサー15を、沸き上げ管13の給湯用熱交換器3の入口側近傍に、加熱した高湯水の温度を検知する出湯温度センサー16を、沸き上げ管13の給湯用熱交換器3の出口近傍に設けている。   In addition, a water temperature sensor 15 that detects the temperature of the low-temperature hot water before heating in the refrigeration cycle unit 1 is detected in the vicinity of the inlet side of the hot water supply heat exchanger 3 of the boiling pipe 13. A hot water temperature sensor 16 is provided in the vicinity of the outlet of the hot water supply heat exchanger 3 of the boiling pipe 13.

そして、貯湯タンク11の温度分布を把握するため、外側壁面の垂直方向に貯湯温度検知手段12a〜12dを備えている。   And in order to grasp | ascertain the temperature distribution of the hot water storage tank 11, the hot water storage temperature detection means 12a-12d is provided in the orthogonal | vertical direction of an outer wall surface.

また、供給された水は冷凍サイクルユニット1で加熱される際に膨張するため、貯湯タンク11や水利用回路の耐圧強度を超えないように圧力逃し弁14を、貯湯タンク11の頭頂部近傍に設置しており、圧力逃し弁14には、膨張水を排水するための排水管26が接続されている。   Since the supplied water expands when heated by the refrigeration cycle unit 1, the pressure relief valve 14 is placed near the top of the hot water storage tank 11 so as not to exceed the pressure resistance of the hot water storage tank 11 or the water utilization circuit. The pressure relief valve 14 is connected to a drain pipe 26 for draining the expanded water.

給湯に関する構成としては、貯湯タンク11の底部に給水源(図示せず)から給水を行う給水管19が接続され、給水源からは、減圧弁20にて適度な圧力に減圧されて給水管19に給水される。   As a configuration relating to hot water supply, a water supply pipe 19 for supplying water from a water supply source (not shown) is connected to the bottom of the hot water storage tank 11, and the water supply pipe 19 is decompressed to an appropriate pressure by a pressure reducing valve 20. To be supplied with water.

貯湯タンク11の上部には、貯湯された高温水を出湯し給湯に利用するための給湯管21が接続され、その途中には、給水管19からの給水バイパス管22が接続されている。また、給湯管21からの高温水と給水バイパス管22からの低温水を任意の比率で混合可能な給湯用混合弁23が設けられている。   A hot water supply pipe 21 for discharging the hot water stored in the hot water tank 11 and using it for hot water supply is connected to the upper part of the hot water storage tank 11, and a water supply bypass pipe 22 from the water supply pipe 19 is connected in the middle thereof. Further, a hot water supply mixing valve 23 capable of mixing high temperature water from the hot water supply pipe 21 and low temperature water from the water supply bypass pipe 22 at an arbitrary ratio is provided.

給湯用混合弁23の下流側には、混合された給湯温度を検知するために給湯温度センサー25が設けられ、その先に蛇口やシャワーに代表される給湯端末24が接続されている。   A hot water supply temperature sensor 25 is provided on the downstream side of the hot water supply mixing valve 23 to detect the mixed hot water supply temperature, and a hot water supply terminal 24 typified by a faucet or a shower is connected to the tip thereof.

この様に構成された本実施の形態におけるヒートポンプ給湯機の動作、作用について説明する。   The operation and action of the heat pump water heater in the present embodiment configured as described above will be described.

沸き上げ運転では、圧縮機2で加圧された高温高圧のガス冷媒が給湯用熱交換器3に送られる。沸き上げポンプ10で搬送されてきた貯湯タンク11の底部の冷水と熱交換して低温冷媒となる。そして、給湯用熱交換器3で冷水に放熱した冷媒は減圧装置4で減圧され、二相の冷媒となる。そして空気熱交換器6に送られて大気と熱交換し低温のガス冷媒となり圧縮機2に循環する。   In the boiling operation, the high-temperature and high-pressure gas refrigerant pressurized by the compressor 2 is sent to the hot water supply heat exchanger 3. Heat exchange with the cold water at the bottom of the hot water storage tank 11 conveyed by the boiling pump 10 becomes a low-temperature refrigerant. And the refrigerant | coolant which thermally radiated to cold water with the heat exchanger 3 for hot water supply is pressure-reduced by the decompression device 4, and becomes a two-phase refrigerant. Then, it is sent to the air heat exchanger 6 to exchange heat with the atmosphere and becomes a low-temperature gas refrigerant, which is circulated to the compressor 2.

この時、熱交換量制御手段29は、COPを最適に制御するためバイパス弁5の開度を決定し、その開度に動作させる。   At this time, the heat exchange amount control means 29 determines the opening degree of the bypass valve 5 in order to optimally control the COP and operates the opening degree.

次に、バイパス弁5の開度決定についてより詳細に説明する。   Next, the determination of the opening degree of the bypass valve 5 will be described in more detail.

図2に一定の入水温度、外気温度条件の下で測定したバイパス弁5の開度とCOP関係図を示す。図2に示すように一定条件下では、あるバイパス弁5の開度でCOPが最大となることが判る。   FIG. 2 shows a relationship between the degree of opening of the bypass valve 5 and the COP measured under conditions of constant water temperature and outside air temperature. As shown in FIG. 2, it can be seen that the COP is maximized at a certain opening degree of the bypass valve 5 under a certain condition.

図3に、COPが最大となる入水温度、外気温度とバイパス弁5の開度の関係図を示す。図2に示すデータを、条件を変えて測定し、COPが最大となる入水温度、外気温度とバイパス弁5の開度の関係を求めたのが図4である。   FIG. 3 shows a relationship diagram between the incoming water temperature at which COP is maximized, the outside air temperature, and the opening degree of the bypass valve 5. The data shown in FIG. 2 was measured under different conditions, and FIG. 4 shows the relationship between the incoming water temperature and the outside air temperature at which the COP is maximum and the opening degree of the bypass valve 5.

予め測定された図3のデータは、例えば、近似式或いはマトリックスなどの形式で熱交換量制御手段29に記憶されており、熱交換量制御手段29では、図4に示す処理がなされる。   The data of FIG. 3 measured in advance is stored in the heat exchange amount control means 29 in the form of an approximate expression or a matrix, for example, and the heat exchange amount control means 29 performs the processing shown in FIG.

図4に示すように、STEP60で入水温度センサー15で検知された入水温度と、外気温度センサー31で検知された外気温度を検知する。STEP61でCOPが最大となる入水温度、外気温度とバイパス弁5の開度を算出する。STEP62では算出されたバイパス弁5の開度が予め決めておいた最大値から最小値の間となるように開度を決定する。STEP63ではバイパス弁5を動作させる。   As shown in FIG. 4, the incoming water temperature detected by the incoming water temperature sensor 15 in STEP 60 and the outside air temperature detected by the outside air temperature sensor 31 are detected. In STEP 61, the incoming water temperature, the outside air temperature and the opening degree of the bypass valve 5 at which the COP is maximized are calculated. In STEP 62, the opening degree is determined so that the calculated opening degree of the bypass valve 5 is between a predetermined maximum value and a minimum value. In STEP63, the bypass valve 5 is operated.

この様にして、冷凍サイクルユニット1のCOPが最適になるよう内部熱交換器8の熱交換量を調整している。   In this way, the heat exchange amount of the internal heat exchanger 8 is adjusted so that the COP of the refrigeration cycle unit 1 is optimized.

一方、貯湯タンク11の底部の冷水は、沸き上げポンプ10で給湯用熱交換器3に搬送され冷媒の熱を吸熱して高温の湯となって沸き上げ管13を通って貯湯タンクの上部に送られる。この時、高温の湯は、密度差により水とほぼ混合されることなく高温の湯は貯湯タンク11内上部より積層していき貯湯タンク11内に高温の湯が溜まることになる。貯湯温度検知手段12a〜12dにより、貯湯タンク11内が高温の湯で満たされたことを検知すると、冷凍サイクルユニット1を停止して加熱を止める。   On the other hand, the cold water at the bottom of the hot water storage tank 11 is conveyed to the hot water supply heat exchanger 3 by the boiling pump 10 and absorbs the heat of the refrigerant to become hot water, passes through the boiling pipe 13 and reaches the upper part of the hot water storage tank. Sent. At this time, the hot water is not mixed with water due to the density difference, and the hot water is stacked from the upper part of the hot water storage tank 11 so that the hot water is accumulated in the hot water storage tank 11. When the hot water storage temperature detection means 12a to 12d detects that the hot water storage tank 11 is filled with hot water, the refrigeration cycle unit 1 is stopped and heating is stopped.

また沸き上げ運転時に、沸き上げ管13を通って、貯湯タンク11の上部に送られた湯水は、冷凍サイクルユニット1で加熱される際に膨張するため、貯湯タンク11内の内圧が上昇する。この時、耐圧強度を超えないように圧力逃がし弁14が開成され、排水管26を通って、貯湯タンク内11の湯水の一部が外部に排水され、貯湯タンク11内の内圧は低下する。   Moreover, since the hot water sent to the upper part of the hot water storage tank 11 through the boiling pipe 13 at the time of a boiling operation expand | swells when heated with the refrigerating cycle unit 1, the internal pressure in the hot water storage tank 11 rises. At this time, the pressure relief valve 14 is opened so as not to exceed the pressure resistance, and part of the hot water in the hot water storage tank 11 is drained to the outside through the drain pipe 26, and the internal pressure in the hot water storage tank 11 is reduced.

給湯のために利用者が蛇口などの給湯端末24を開けると、先ず貯湯タンク11内の湯水が給湯管21から出湯されるとともに、給水管19から貯湯タンク11に給水される。   When a user opens the hot water supply terminal 24 such as a faucet for hot water supply, hot water in the hot water storage tank 11 is first discharged from the hot water supply pipe 21 and supplied from the water supply pipe 19 to the hot water storage tank 11.

給湯は、給水バイパス管22により給水を分岐し、貯湯タンク11と給湯用熱交換器3で加熱された湯水を混合した湯水と、給水からの低温水を混合弁23において混合比を変えて混合することで、給湯温度を変化させて、給湯端末24に給湯する。この時の混合比は給湯温度センサー25で検知される給湯温度に応じて制御され、所定の給湯温度に保たれる。   Hot water is branched from the water supply bypass pipe 22 and mixed with hot water mixed with hot water heated by the hot water storage tank 11 and the heat exchanger 3 for hot water and low temperature water from the water supply at a mixing valve 23 at different mixing ratios. By doing so, the hot water supply temperature is changed and hot water is supplied to the hot water supply terminal 24. The mixing ratio at this time is controlled in accordance with the hot water temperature detected by the hot water temperature sensor 25 and is kept at a predetermined hot water temperature.

尚、本実施の形態では、入水温度と外気温度の関係によって、バイパス弁5の開度を決定するよう説明したが、入水温度の代わりに、給湯用熱交換器3の出口から内部熱交換器8の入口温度を、また、外気温度の代わりに空気熱交換器6の入口冷媒温度を用いても同様の効果が得られる。   In the present embodiment, the opening degree of the bypass valve 5 is determined based on the relationship between the incoming water temperature and the outside air temperature. However, instead of the incoming water temperature, an internal heat exchanger is provided from the outlet of the hot water supply heat exchanger 3. The same effect can be obtained by using the inlet temperature of 8 and the inlet refrigerant temperature of the air heat exchanger 6 instead of the outside air temperature.

さらに、入水温度単独、外気温度単独でバイパス弁5の開度を決定しても良い。   Furthermore, the opening degree of the bypass valve 5 may be determined by the incoming water temperature alone or the outside air temperature alone.


以上のように、本発明にかかるヒートポンプ給湯機は、圧力センサーを使用せず、温度センサーを使用して内部熱交換器の熱交換量を制御することにより、より安価な方法で制御することで、実現容易なヒートポンプ給湯機として有用である。

As described above, the heat pump water heater according to the present invention does not use a pressure sensor, but uses a temperature sensor to control the heat exchange amount of the internal heat exchanger, thereby controlling the heat pump in a less expensive manner. It is useful as an easily realized heat pump water heater.

本発明の実施の形態1におけるヒートポンプ給湯機の回路図Circuit diagram of heat pump water heater in Embodiment 1 of the present invention 同ヒートポンプ給湯機のバイパス弁の開度とCOPの関係図Relationship between opening of bypass valve and COP of heat pump water heater 同ヒートポンプ給湯機の入水温度、外気温度とバイパス弁の開度の関係図Relationship diagram of incoming water temperature, outside air temperature and bypass valve opening of the heat pump water heater 同ヒートポンプ給湯機のバイパス弁制御フローチャートBypass valve control flowchart of the heat pump water heater 従来のヒートポンプ給湯機の回路図Circuit diagram of conventional heat pump water heater 同ヒートポンプ給湯機のバイパス弁制御フローチャートBypass valve control flowchart of the heat pump water heater

符号の説明Explanation of symbols

1 冷凍サイクルユニット
2 圧縮機
3 給湯用熱交換器
4 減圧装置
5 バイパス弁
6 空気熱交換器
8 内部熱交換器
10 沸き上げポンプ
11 貯湯タンク
28 バイパス回路
29 熱交換量制御手段
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle unit 2 Compressor 3 Heat exchanger for hot water supply 4 Decompression device 5 Bypass valve 6 Air heat exchanger 8 Internal heat exchanger 10 Boiling pump 11 Hot water storage tank 28 Bypass circuit 29 Heat exchange amount control means

Claims (3)

圧縮機、給湯用熱交換器、減圧装置及び空気熱交換器を環状に接続して構成した冷凍サイクルユニットと、前記給湯用熱交換器の冷媒出口側から前記減圧装置の入口側までの冷媒と前記空気熱交換器の冷媒出口側から前記圧縮機の吸入側までの冷媒を熱交換する内部熱交換器と、前記給湯用熱交換器の冷媒出口側と前記減圧装置の出口側を接続するバイパス回路とを備え、沸き上げポンプにより貯湯タンクの底部より水を前記給湯用熱交換器を循環させることによって、前記貯湯タンク内の水を加熱し高温の湯を前記貯湯タンク内に貯めるヒートポンプ給湯機において、前記給湯用熱交換器に流入する水の入水温度と、外気温度の少なくとも一つにより、前記内部熱交換器の熱交換量を制御する熱交換量制御手段を設けたことを特徴とするヒートポンプ給湯機。 A refrigeration cycle unit configured by annularly connecting a compressor, a hot water supply heat exchanger, a decompression device, and an air heat exchanger; and a refrigerant from a refrigerant outlet side of the hot water heat exchanger to an inlet side of the decompression device; An internal heat exchanger for exchanging heat from the refrigerant outlet side of the air heat exchanger to the suction side of the compressor, and a bypass connecting the refrigerant outlet side of the hot water supply heat exchanger and the outlet side of the decompression device And a heat pump water heater that heats the water in the hot water storage tank and circulates the hot water in the hot water storage tank by circulating the water from the bottom of the hot water storage tank by a boiling pump to store hot water in the hot water storage tank. The heat exchange amount control means for controlling the heat exchange amount of the internal heat exchanger according to at least one of an incoming water temperature of the water flowing into the hot water supply heat exchanger and an outside air temperature is provided. Hi Toponpu water heater. バイパス回路にバイパス弁を配し、熱交換量制御手段は、前記バイパス弁の開度を加減して内部熱交換器の熱交換量を制御することを特徴とする請求項1に記載のヒートポンプ給湯機。 The heat pump hot water supply according to claim 1, wherein a bypass valve is arranged in the bypass circuit, and the heat exchange amount control means controls the heat exchange amount of the internal heat exchanger by adjusting the opening degree of the bypass valve. Machine. 臨界圧力以上で用いられる冷媒を使用することを特長とする請求項1又は2に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 1 or 2, wherein a refrigerant used at a critical pressure or higher is used.
JP2007104788A 2007-04-12 2007-04-12 Heat pump water heater Pending JP2008261557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104788A JP2008261557A (en) 2007-04-12 2007-04-12 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104788A JP2008261557A (en) 2007-04-12 2007-04-12 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2008261557A true JP2008261557A (en) 2008-10-30

Family

ID=39984164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104788A Pending JP2008261557A (en) 2007-04-12 2007-04-12 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2008261557A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118308A (en) * 2019-01-18 2020-08-06 株式会社富士通ゼネラル Heat pump type water heater and control device
WO2022209739A1 (en) * 2021-03-30 2022-10-06 ダイキン工業株式会社 Heat source unit and refrigeration device
JP2022155464A (en) * 2021-03-30 2022-10-13 ダイキン工業株式会社 Heat source unit and refrigerating device
WO2023248706A1 (en) * 2022-06-20 2023-12-28 サンデン株式会社 Vehicle air conditioning device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118308A (en) * 2019-01-18 2020-08-06 株式会社富士通ゼネラル Heat pump type water heater and control device
JP7293661B2 (en) 2019-01-18 2023-06-20 株式会社富士通ゼネラル Heat pump water heater and controller
WO2022209739A1 (en) * 2021-03-30 2022-10-06 ダイキン工業株式会社 Heat source unit and refrigeration device
JP2022155464A (en) * 2021-03-30 2022-10-13 ダイキン工業株式会社 Heat source unit and refrigerating device
JP7168894B2 (en) 2021-03-30 2022-11-10 ダイキン工業株式会社 Heat source unit and refrigerator
US12085320B2 (en) 2021-03-30 2024-09-10 Daikin Industries, Ltd. Heat source unit and refrigeration apparatus
WO2023248706A1 (en) * 2022-06-20 2023-12-28 サンデン株式会社 Vehicle air conditioning device

Similar Documents

Publication Publication Date Title
JP4059616B2 (en) Heat pump water heater
JP5011713B2 (en) Heat pump type water heater
JP4678518B2 (en) Hot water storage water heater
JP2009204251A (en) Heat pump type water heater and its control method
JP5034367B2 (en) Heat pump water heater
JP2005134070A (en) Heat pump water heater
JP5245217B2 (en) Hot water storage hot water heater
JP2008121977A (en) Heat pump water heater
JP2003176957A (en) Refrigerating cycle device
JP2008261557A (en) Heat pump water heater
JP2005098546A (en) Heat pump type water heater
JP2011257098A (en) Heat pump cycle device
JP2008082601A (en) Heat pump hot water supply device
JP5151626B2 (en) Heat pump water heater
JP2010071603A (en) Heat pump water heater
JP2008039289A (en) Heat pump type water heater
JP2011149568A (en) Heat pump device
JP2004340419A (en) Heat pump type water-heater
JP4910559B2 (en) Heat pump water heater
JP5401913B2 (en) Heat pump water heater
JP2009216335A (en) Heat pump water heater
JP4950004B2 (en) Heat pump type water heater
JP2008039288A (en) Heat pump type water heater
JP2007192439A (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater