Nothing Special   »   [go: up one dir, main page]

JP2008261275A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2008261275A
JP2008261275A JP2007104102A JP2007104102A JP2008261275A JP 2008261275 A JP2008261275 A JP 2008261275A JP 2007104102 A JP2007104102 A JP 2007104102A JP 2007104102 A JP2007104102 A JP 2007104102A JP 2008261275 A JP2008261275 A JP 2008261275A
Authority
JP
Japan
Prior art keywords
exhaust gas
reducing agent
refrigerant
addition valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007104102A
Other languages
Japanese (ja)
Other versions
JP4628392B2 (en
Inventor
Shinichiro Kawakita
晋一郎 川北
Yoshiaki Nishijima
義明 西島
Keiji Oshima
圭司 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2007104102A priority Critical patent/JP4628392B2/en
Priority to DE102008001090A priority patent/DE102008001090A1/en
Publication of JP2008261275A publication Critical patent/JP2008261275A/en
Application granted granted Critical
Publication of JP4628392B2 publication Critical patent/JP4628392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/11Adding substances to exhaust gases the substance or part of the dosing system being cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1473Overflow or return means for the substances, e.g. conduits or valves for the return path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a fear of insufficient purification of an exhaust gas due to drop of the temperature of the exhaust gas, in an exhaust emission control device 1 purifying an exhaust gas of an engine by a reducer. <P>SOLUTION: This exhaust emission control device 1 is provided with a valve device 15 operating the opening of a passage 10, and an exhaust gas temperature sensor 16 detecting the temperature of the exhaust gas. An ECU 16 controls the valve device 15 in accordance with the value detected from the exhaust gas temperature sensor 16. Thereby, a heat removing amount from the injected reducing agent can be reduced by reducing the supply amount of the reducing agent as a cooling medium. Thereby, even when the temperature of the exhaust gas is dropped and the heat quantity of the exhaust gas is reduced, heat of vaporization of the reducer can be secured by reducing the supply amount of the reducer as a coolant and restraining heat removed from the injected reducer itself. As a result, purification of the exhaust gas can be surely executed by preventing vaporization of the reducer and NH<SB>3</SB>generation by decomposition of urea from becoming insufficient even when the temperature of the exhaust gas is dropped. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エンジンの排ガスを還元剤により浄化する排ガス浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus that purifies exhaust gas of an engine with a reducing agent.

従来から、エンジンの排ガスに含まれる窒素酸化物(NO)を還元剤により還元して浄化する排ガス浄化装置が公知である。この還元剤は、例えば、尿素水であり、尿素の分解により発生するアンモニア(NH)が、触媒によりNOと反応して無害な窒素(N)や水(HO)を生成することで、NOが浄化される。 Conventionally, exhaust gas purification apparatuses that reduce and purify nitrogen oxide (NO x ) contained in engine exhaust gas with a reducing agent are known. This reducing agent is, for example, urea water, and ammonia (NH 3 ) generated by decomposition of urea reacts with NO x by a catalyst to generate harmless nitrogen (N 2 ) and water (H 2 O). Thus, NO x is purified.

ところで、この排ガス浄化装置には、還元剤を噴射する添加弁が、排気管に直接装着されるものがあり、このような排ガス浄化装置では、噴射孔を含む添加弁の先端部が排気管の内部に突出する。そして、還元剤は、直接、排ガスが通る排気管の内部に噴射され、排ガスと混合した後に触媒に導かれる。   By the way, in this exhaust gas purification device, there is an exhaust valve in which an addition valve for injecting a reducing agent is directly attached to the exhaust pipe. In such an exhaust gas purification device, the tip of the addition valve including the injection hole is the exhaust pipe. Protrusively inside. The reducing agent is directly injected into the exhaust pipe through which the exhaust gas passes, and after being mixed with the exhaust gas, is guided to the catalyst.

このため、添加弁は、先端部が高温の排ガスに曝されて加熱され、さらに、排ガスからの受熱により高温になる管壁からも熱伝達され高温化している。そこで、添加弁のボディに冷媒が流動するジャケットを設け、このジャケットに冷媒を循環させることで、添加弁を冷却している(例えば、特許文献1参照)。   For this reason, the tip of the addition valve is heated by being exposed to high-temperature exhaust gas, and further, heat is transferred from the tube wall that becomes high temperature by receiving heat from the exhaust gas, and the temperature is increased. Therefore, a jacket through which the refrigerant flows is provided in the body of the addition valve, and the addition valve is cooled by circulating the refrigerant in the jacket (see, for example, Patent Document 1).

ところで、尿素からNHへの分解反応は、還元剤としての尿素水が気化していないと促進されない。このため、排ガス浄化装置では、排ガスの熱を尿素水の気化熱として利用し、添加弁の冷却操作に反する尿素水の加熱操作を別途に行わない構成が採用されている。 By the way, the decomposition reaction from urea to NH 3 is not promoted unless urea water as a reducing agent is vaporized. For this reason, the exhaust gas purification apparatus employs a configuration in which the heat of the exhaust gas is used as the vaporization heat of the urea water, and the urea water heating operation contrary to the cooling operation of the addition valve is not performed separately.

しかし、排ガスの温度はエンジンの運転状態に応じて変動する。このため、排ガスの温度が低く、排ガスが尿素水に充分な気化熱を与えることができない場合、尿素水の気化が不十分になり、結果的に、NHの生成量が少なくなりNOの浄化も不十分になる虞がある。
特表2002−503783号公報
However, the temperature of the exhaust gas varies depending on the operating state of the engine. For this reason, when the temperature of the exhaust gas is low and the exhaust gas cannot give sufficient heat of vaporization to the urea water, the urea water is insufficiently vaporized. As a result, the amount of NH 3 produced is reduced and NO x is reduced. There is a risk that purification will be insufficient.
Japanese translation of PCT publication No. 2002-503783

本発明は、上記の問題点を解決するためになされたものであり、その目的は、エンジンの排ガスを還元剤により浄化する排ガス浄化装置において、排ガス温度の低下により排ガスの浄化が不十分になる虞を低減することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to exhaust gas purification apparatus for purifying engine exhaust gas with a reducing agent, and exhaust gas purification becomes insufficient due to a decrease in exhaust gas temperature. It is to reduce the fear.

〔請求項1の手段〕
請求項1に記載の排ガス浄化装置は、エンジンの排ガスが通る排気管に装着され、所定の供給源に貯留された還元剤を排気管の内部に噴射するとともに冷媒により冷却される添加弁と、冷媒を添加弁の方に供給する冷媒供給手段と、添加弁への冷媒の供給量を可変する冷却能力可変手段と、添加弁の温度を検出する温度検出手段と、温度検出手段から得られる検出値に応じて冷却能力可変手段を制御する制御手段とを備える。
[Means of Claim 1]
The exhaust gas purifying apparatus according to claim 1 is attached to an exhaust pipe through which exhaust gas from an engine passes, and an addition valve that injects a reducing agent stored in a predetermined supply source into the exhaust pipe and is cooled by a refrigerant; Refrigerant supply means for supplying refrigerant to the addition valve, cooling capacity variable means for varying the amount of refrigerant supplied to the addition valve, temperature detection means for detecting the temperature of the addition valve, and detection obtained from the temperature detection means And a control means for controlling the cooling capacity variable means according to the value.

これにより、排ガス浄化装置は、添加弁の温度に応じて添加弁への冷媒供給量を増減することができる。そして、添加弁の温度は、排ガスの温度に応じて変動するため、排ガス浄化装置は、添加弁の温度に応じて添加弁への冷媒供給量を増減することで、結果的に、排ガスの熱量に応じて添加弁への冷媒供給量を増減することができる。   Thereby, the exhaust gas purification apparatus can increase or decrease the amount of refrigerant supplied to the addition valve in accordance with the temperature of the addition valve. Since the temperature of the addition valve fluctuates according to the temperature of the exhaust gas, the exhaust gas purification device increases or decreases the amount of refrigerant supplied to the addition valve according to the temperature of the addition valve, resulting in the amount of heat of the exhaust gas. Accordingly, the amount of refrigerant supplied to the addition valve can be increased or decreased.

ここで、冷媒は、添加弁を冷却することにより添加弁の内部を流れる還元剤をも除熱しているので、添加弁への冷媒供給量が減ると、冷媒による還元剤からの除熱量が低減する。このため、排ガス温度が低下して排ガスの熱量が低減しても、添加弁への冷媒供給量を減らして還元剤自体からの除熱を抑えることで、尿素水の気化熱を確保することができる。   Here, since the refrigerant also removes heat from the reducing agent flowing inside the addition valve by cooling the addition valve, if the amount of refrigerant supplied to the addition valve decreases, the amount of heat removed from the reducing agent by the refrigerant decreases. To do. For this reason, even if the exhaust gas temperature decreases and the amount of heat of the exhaust gas decreases, the heat of vaporization of urea water can be ensured by reducing the amount of refrigerant supplied to the addition valve and suppressing the heat removal from the reducing agent itself. it can.

以上により、エンジンの排ガスを還元剤により浄化する排ガス浄化装置において、排ガス温度が低下しても排ガスの浄化が不十分になる虞を低減することができる。
なお、触媒でのNHによるNOの浄化反応も、低温になるほど促進されなくなる。つまり、還元剤噴射後の排ガス温度が低いほどNOの浄化率が低減するので、この浄化反応促進の点からも、請求項1に記載の排ガス浄化装置は有効である。
As described above, in the exhaust gas purification device that purifies the exhaust gas of the engine with the reducing agent, it is possible to reduce the possibility that the exhaust gas purification becomes insufficient even if the exhaust gas temperature is lowered.
Note that the NO x purification reaction by NH 3 in the catalyst is also not promoted as the temperature decreases. That is, the lower the exhaust gas temperature after injection of the reducing agent, the lower the NO x purification rate. Therefore, the exhaust gas purification device according to claim 1 is also effective in terms of promoting this purification reaction.

〔請求項2の手段〕
請求項2に記載の排ガス浄化装置によれば、冷媒は還元剤であり、冷媒供給手段は、供給源から還元剤を吸引して添加弁の方に圧送する供給ポンプである。また、この排ガス浄化装置は、供給ポンプにより圧送された還元剤を冷媒として添加弁の方に導くとともに、添加弁を冷却した還元剤を供給源に戻すように設けられる還元剤流通路を備え、冷却能力可変手段は、還元剤流通路のいずれかの位置に配されて還元剤流通路における還元剤の流量を可変する弁装置である。
[Means of claim 2]
According to the exhaust gas purification apparatus of the second aspect, the refrigerant is a reducing agent, and the refrigerant supply means is a supply pump that sucks the reducing agent from a supply source and pumps it toward the addition valve. Further, the exhaust gas purification apparatus includes a reducing agent flow passage provided to return the reducing agent pumped by the supply pump to the addition valve as a refrigerant and to return the reducing agent that has cooled the addition valve to the supply source, The cooling capacity variable means is a valve device that is arranged at any position of the reducing agent flow passage and changes the flow rate of the reducing agent in the reducing agent flow passage.

これにより、添加弁と還元剤との間の熱交換部を還元剤流通路に含ませ、熱交換部と供給源との間で還元剤を循環させることができる。このため、添加弁の冷却を効率的に行うことができる。   Thereby, the heat exchange part between an addition valve and a reducing agent can be included in a reducing agent flow path, and a reducing agent can be circulated between a heat exchange part and a supply source. For this reason, the addition valve can be efficiently cooled.

〔請求項3の手段〕
請求項3に記載の排ガス浄化装置は、還元剤流通路から分岐し、排気管の内部に噴射される還元剤が流れる噴射用流路を備える。
[Means of claim 3]
According to a third aspect of the present invention, the exhaust gas purifying apparatus includes an injection flow path that branches from the reducing agent flow passage and through which the reducing agent injected into the exhaust pipe flows.

〔請求項4の手段〕
請求項4に記載の排ガス浄化装置によれば、温度検出手段は、排気管を通る排ガスの温度を検出する排ガス温度検出手段である。
これにより、排ガス浄化装置は、排ガスの熱量に相当する排ガスの温度を直接的に把握することができる。このため、尿素水の気化熱を確保するための制御を、さらに高精度に行うことができる。
[Means of claim 4]
According to the exhaust gas purification apparatus of the fourth aspect, the temperature detection means is exhaust gas temperature detection means for detecting the temperature of the exhaust gas passing through the exhaust pipe.
Thereby, the exhaust gas purification apparatus can directly grasp the temperature of the exhaust gas corresponding to the heat quantity of the exhaust gas. For this reason, the control for ensuring the heat of vaporization of the urea water can be performed with higher accuracy.

〔請求項5の手段〕
請求項5に記載の排ガス浄化装置によれば、冷媒はエンジンの冷却水であり、冷媒供給手段は、エンジンの方に冷却水を吐出するウォーターポンプである。また、冷却能力可変手段は、ウォーターポンプから添加弁に向かう冷却水の流量を可変する弁装置である。
この手段は、冷媒にエンジンの冷却水を用いる排ガス浄化装置の一形態を示すものである。
[Means of claim 5]
According to the exhaust gas purifying apparatus of the fifth aspect, the refrigerant is engine cooling water, and the refrigerant supply means is a water pump that discharges the cooling water toward the engine. The cooling capacity varying means is a valve device that varies the flow rate of cooling water from the water pump toward the addition valve.
This means shows one form of the exhaust gas purifying apparatus using engine cooling water as the refrigerant.

最良の形態1の排ガス浄化装置は、エンジンの排ガスが通る排気管に装着され、所定の供給源に貯留された還元剤を排気管の内部に噴射するとともに冷媒により冷却される添加弁と、冷媒を添加弁の方に供給する冷媒供給手段と、添加弁への冷媒の供給量を可変する冷却能力可変手段と、添加弁の温度を検出する温度検出手段と、温度検出手段から得られる検出値に応じて冷却能力可変手段を制御する制御手段とを備える。   The exhaust gas purification apparatus of the best mode 1 is mounted on an exhaust pipe through which exhaust gas of an engine passes, and an addition valve that injects a reducing agent stored in a predetermined supply source into the exhaust pipe and is cooled by the refrigerant, and a refrigerant Is supplied to the addition valve, a cooling capacity variable means for changing the amount of refrigerant supplied to the addition valve, a temperature detection means for detecting the temperature of the addition valve, and a detection value obtained from the temperature detection means And a control means for controlling the cooling capacity variable means according to the above.

そして、この排ガス浄化装置によれば、冷媒は還元剤であり、冷媒供給手段は、供給源から還元剤を吸引して添加弁の方に圧送する供給ポンプである。また、この排ガス浄化装置は、供給ポンプにより圧送された還元剤を冷媒として添加弁の方に導くとともに、添加弁を冷却した還元剤を供給源に戻すように設けられる還元剤流通路を備え、冷却能力可変手段は、還元剤流通路のいずれかの位置に配されて還元剤流通路における還元剤の流量を可変する弁装置である。   According to this exhaust gas purifying apparatus, the refrigerant is a reducing agent, and the refrigerant supply means is a supply pump that sucks the reducing agent from a supply source and pumps it toward the addition valve. Further, the exhaust gas purification apparatus includes a reducing agent flow passage provided to return the reducing agent pumped by the supply pump to the addition valve as a refrigerant and to return the reducing agent that has cooled the addition valve to the supply source, The cooling capacity variable means is a valve device that is arranged at any position of the reducing agent flow passage and changes the flow rate of the reducing agent in the reducing agent flow passage.

さらに、この排ガス浄化装置は、還元剤流通路から分岐し、排気管の内部に噴射される還元剤が流れる噴射用流路を備える。
また、温度検出手段は、排気管を通る排ガスの温度を検出する排ガス温度検出手段である。
Further, the exhaust gas purification apparatus includes an injection flow path that branches from the reducing agent flow passage and through which the reducing agent injected into the exhaust pipe flows.
The temperature detection means is exhaust gas temperature detection means for detecting the temperature of the exhaust gas passing through the exhaust pipe.

最良の形態2の排ガス浄化装置によれば、冷媒はエンジンの冷却水であり、冷媒供給手段は、エンジンの方に冷却水を吐出するウォーターポンプである。また、冷却能力可変手段は、ウォーターポンプから添加弁に向かう冷却水の流量を可変する弁装置である。   According to the exhaust gas purification apparatus of the best mode 2, the refrigerant is engine cooling water, and the refrigerant supply means is a water pump that discharges cooling water toward the engine. The cooling capacity varying means is a valve device that varies the flow rate of cooling water from the water pump toward the addition valve.

〔実施例1の構成〕
実施例1の排ガス浄化装置1の構成を、図1を用いて説明する。
排ガス浄化装置1は、エンジンの排ガスに還元剤を供給するものであり、排ガスに含まれる窒素酸化物(NO)を還元して浄化する。還元剤は、例えば、尿素水であり、尿素の分解により発生するアンモニア(NH)が、触媒によりNOと反応して無害な窒素(N)や水(HO)を生成することで、NOが浄化される。
[Configuration of Example 1]
The structure of the exhaust gas purification apparatus 1 of Example 1 is demonstrated using FIG.
The exhaust gas purification device 1 supplies a reducing agent to the exhaust gas of the engine, and reduces and purifies nitrogen oxides (NO x ) contained in the exhaust gas. The reducing agent is, for example, urea water, and ammonia (NH 3 ) generated by decomposition of urea reacts with NO x by a catalyst to generate harmless nitrogen (N 2 ) and water (H 2 O). Thus, NO x is purified.

排ガス浄化装置1は、排ガスが通る排気管2の内部に還元剤を噴射する添加弁3と、所定のタンク4から還元剤を吸引して添加弁3の方に吐出する供給ポンプ5と、添加弁3や供給ポンプ5等の作動を制御する電子制御装置(ECU)6とを備える。   The exhaust gas purification apparatus 1 includes an addition valve 3 that injects a reducing agent into an exhaust pipe 2 through which exhaust gas passes, a supply pump 5 that sucks the reducing agent from a predetermined tank 4 and discharges the reducing agent toward the addition valve 3, And an electronic control unit (ECU) 6 that controls the operation of the valve 3 and the supply pump 5.

添加弁3は、排気管2に直接的に装着されており、噴射孔(図示せず)を含む先端部9は、排気管2の内部に突出する。そして、先端部9には、冷媒としての還元剤が流動するジャケット(図示せず)が設けられ、ジャケットに還元剤が供給されることで添加弁3が冷却される。すなわち、先端部9は、エンジン運転中、高温の排ガスに曝されて加熱され、さらに、排ガスからの受熱により高温になる管壁からも熱伝達される。   The addition valve 3 is directly attached to the exhaust pipe 2, and a tip portion 9 including an injection hole (not shown) projects into the exhaust pipe 2. And the front-end | tip part 9 is provided with the jacket (not shown) in which the reducing agent as a refrigerant | coolant flows, and the addition valve 3 is cooled by supplying a reducing agent to a jacket. That is, the tip portion 9 is heated by being exposed to high-temperature exhaust gas during engine operation, and further, heat is transferred from the tube wall that is heated by heat received from the exhaust gas.

そこで、先端部9にジャケットを設けて、ジャケットに冷媒として還元剤を循環させることで、排ガスから直接的に伝わる熱、および管壁を経由して伝わる熱を除去している。冷媒としての還元剤は、流路10により供給ポンプ5からジャケットに導かれる。そして、ジャケットから流出した還元剤は、流路11を通ってタンク4に戻される。すなわち、流路10、11は、供給ポンプ5により圧送された還元剤を冷媒として添加弁3の方に導くとともに、添加弁3を冷却した還元剤をタンク4に戻すように設けられる還元剤流通路として機能する。   Therefore, a jacket is provided at the tip 9 and a reducing agent is circulated through the jacket as a refrigerant to remove heat directly transmitted from the exhaust gas and heat transmitted through the tube wall. The reducing agent as the refrigerant is guided from the supply pump 5 to the jacket through the flow path 10. Then, the reducing agent flowing out from the jacket is returned to the tank 4 through the flow path 11. That is, the flow paths 10 and 11 are provided so that the reducing agent pumped by the supply pump 5 is guided to the addition valve 3 as a refrigerant, and the reducing agent that has cooled the addition valve 3 is returned to the tank 4. Functions as a road.

また、還元剤は、流路10から分岐する流路12により、噴射孔に通じる添加弁3の内部流路(図示せず)に導かれ、排気管2の内部に噴射される。すなわち、流路12および噴射孔に通じる添加弁3の内部流路は、排気管2の内部に噴射される還元剤が流れる噴射用流路として機能する。そして、噴射された還元剤は、排ガスと混合するとともに排ガスの熱により気化し、さらに、気化した尿素がNHに分解する。そして、NHを含む排ガスが触媒に導かれ、NHによるNOの浄化が行われる。 Further, the reducing agent is guided to the internal flow path (not shown) of the addition valve 3 that leads to the injection hole by the flow path 12 branched from the flow path 10 and is injected into the exhaust pipe 2. That is, the internal flow path of the addition valve 3 communicating with the flow path 12 and the injection hole functions as an injection flow path through which the reducing agent injected into the exhaust pipe 2 flows. The injected reducing agent is mixed with the exhaust gas and vaporized by the heat of the exhaust gas, and the vaporized urea is further decomposed into NH 3 . Then, the exhaust gas containing NH 3 is guided to the catalyst, and NO x is purified by NH 3 .

供給ポンプ5は、噴射される還元剤を添加弁3の方に供給するとともに、冷媒としての還元剤を流路10により添加弁3のジャケットに供給する冷媒供給手段として機能する。この供給ポンプ5は、例えば、永久磁石が装着されたロータとコイルが巻線されたステータとを有し、永久磁石による磁界とコイルに通電される電流との相互作用によりトルクを発生するブラシレスモータ(図示せず)をアクチュエータとする。そして、ECU6は、コイルへの通電を制御することで、ブラシレスモータの回転数を可変して還元剤の吐出量を操作する。   The supply pump 5 functions as a refrigerant supply unit that supplies the reducing agent to be injected to the addition valve 3 and supplies the reducing agent as a refrigerant to the jacket of the addition valve 3 through the flow path 10. The supply pump 5 includes, for example, a rotor having a permanent magnet and a stator around which a coil is wound, and generates a torque by the interaction between a magnetic field generated by the permanent magnet and a current supplied to the coil. (Not shown) is an actuator. Then, the ECU 6 controls the energization of the coil, thereby changing the rotation speed of the brushless motor and operating the discharge amount of the reducing agent.

ECU6は、制御機能および演算機能を発揮するCPU、ROMおよびRAM等の記憶装置、入力装置ならびに出力装置等により構成される周知のマイクロコンピュータであり、エンジンの運転状態に応じて添加弁3や供給ポンプ5等の各種機器のアクチュエータに指令して機器の駆動制御を行うものである。   The ECU 6 is a well-known microcomputer including a CPU, a ROM, a RAM, and other storage devices, an input device, an output device, and the like that perform a control function and an arithmetic function. The actuators of various devices such as the pump 5 are commanded to control the drive of the devices.

また、排ガス浄化装置1は、流路12との分岐点よりも下流側の流路10の開度を操作して流路10、11における還元剤の流量を可変する弁装置15と、排気管2を通る排ガスの温度を検出する排ガス温度センサ16とを備える。弁装置15は、添加弁3への冷媒としての還元剤の供給量を可変する冷却能力可変手段として機能する。また、排ガス温度センサ16は、排ガスの温度を検出することで添加弁3の温度を検出する温度検出手段として機能する。そして、ECU6は、排ガス温度センサ16から得られる検出値に応じて、冷却能力可変手段としての弁装置15を制御する制御手段として機能する。   Further, the exhaust gas purification apparatus 1 includes a valve device 15 that changes the flow rate of the reducing agent in the flow paths 10 and 11 by manipulating the opening degree of the flow path 10 downstream of the branch point with the flow path 12, and an exhaust pipe 2 and an exhaust gas temperature sensor 16 for detecting the temperature of the exhaust gas passing through 2. The valve device 15 functions as a cooling capacity varying unit that varies the supply amount of the reducing agent as the refrigerant to the addition valve 3. Further, the exhaust gas temperature sensor 16 functions as temperature detection means for detecting the temperature of the addition valve 3 by detecting the temperature of the exhaust gas. The ECU 6 functions as a control unit that controls the valve device 15 as a cooling capacity variable unit in accordance with a detection value obtained from the exhaust gas temperature sensor 16.

ここで、弁装置15は、例えば、ソレノイドコイル(図示せず)への通電量に応じて流路10の開度を操作できる周知のソレノイド電磁弁である。そして、ECU6は、排ガス温度センサ16から得られる検出値に応じて、弁装置15のソレノイドコイルへの通電量を可変することで流路10の開度を制御する。   Here, the valve device 15 is, for example, a well-known solenoid electromagnetic valve capable of operating the opening degree of the flow path 10 in accordance with an energization amount to a solenoid coil (not shown). Then, the ECU 6 controls the opening degree of the flow path 10 by varying the energization amount to the solenoid coil of the valve device 15 according to the detection value obtained from the exhaust gas temperature sensor 16.

〔実施例1の効果〕
実施例1の排ガス浄化装置1は、流路12との分岐点よりも下流側の流路10の開度を操作して冷媒としての還元剤の流量を可変する弁装置15と、排気管2を通る排ガスの温度を検出する排ガス温度センサ16とを備え、ECU6は、排ガス温度センサ16から得られる検出値に応じて弁装置15を制御する。
これにより、排ガス浄化装置1は、排ガスの熱量に応じて冷媒としての還元剤の供給量を増減することができる。ここで、冷媒としての還元剤は、添加弁3を冷却することにより添加弁3の内部を流れて噴射される還元剤をも除熱している。このため、冷媒としての還元剤の供給量を減らすことで、噴射される還元剤からの除熱量を低減することができる。この結果、排ガス温度が低下して排ガスの熱量が低減しても、冷媒としての還元剤の供給量を減らし、噴射される還元剤自体からの除熱を抑えることで、還元剤の気化熱を確保することができる。
[Effect of Example 1]
The exhaust gas purification apparatus 1 according to the first embodiment includes a valve device 15 that varies the flow rate of a reducing agent as a refrigerant by operating the opening degree of the flow path 10 downstream from the branch point with the flow path 12, and the exhaust pipe 2. The exhaust gas temperature sensor 16 for detecting the temperature of the exhaust gas passing through the ECU 6 controls the valve device 15 according to the detection value obtained from the exhaust gas temperature sensor 16.
Thereby, the exhaust gas purification apparatus 1 can increase / decrease the supply amount of the reducing agent as the refrigerant according to the heat quantity of the exhaust gas. Here, the reducing agent as the refrigerant also removes heat from the reducing agent injected through the addition valve 3 by cooling the addition valve 3. For this reason, the amount of heat removal from the injected reducing agent can be reduced by reducing the supply amount of the reducing agent as the refrigerant. As a result, even if the exhaust gas temperature decreases and the amount of heat of the exhaust gas decreases, the amount of reducing agent supplied as a refrigerant is reduced, and the heat of vaporization of the reducing agent is reduced by suppressing heat removal from the injected reducing agent itself. Can be secured.

以上により、排ガス浄化装置1において、排ガス温度が低下しても、還元剤の気化および尿素の分解によるNH生成が不十分になるのを回避して、排ガスの浄化を確実に行うことができる。
なお、触媒でのNHによるNOの浄化反応も、低温になるほど促進されなくなる。つまり、還元剤噴射後の排ガス温度が低いほどNOの浄化率が低減するので、この浄化反応促進の点からも、排ガス浄化装置1の上記の構成は有効である。
As described above, in the exhaust gas purifying apparatus 1, even if the exhaust gas temperature is lowered, it is possible to reliably purify the exhaust gas by avoiding insufficient generation of NH 3 due to vaporization of the reducing agent and decomposition of urea. .
Note that the NO x purification reaction by NH 3 in the catalyst is also not promoted as the temperature decreases. That is, since the purification rate of about exhaust gas temperature after the reducing agent injection is low NO x is reduced, in terms of the purification reaction promotion, the above construction of an exhaust gas purification device 1 is effective.

還元剤流通路は、添加弁3と冷媒としての還元剤との間の熱交換部(つまり、上記のジャケット)を含むように流路構成される。
これにより、熱交換部としてのジャケットとタンク4との間で還元剤を循環させることができるので、添加弁3の冷却を効率的に行うことができる。
The reducing agent flow passage is configured to include a heat exchange portion (that is, the above-described jacket) between the addition valve 3 and the reducing agent as the refrigerant.
Thereby, since a reducing agent can be circulated between the jacket as a heat exchange part, and the tank 4, the addition valve 3 can be cooled efficiently.

実施例2の排ガス浄化装置1は、添加弁3を冷却するための冷媒にエンジンの冷却水を利用するものである。すなわち、この排ガス浄化装置1によれば、図2に示すように、エンジンの方に冷却水を吐出するウォーターポンプ18が冷媒供給手段として機能する。   The exhaust gas purifying apparatus 1 according to the second embodiment uses engine cooling water as a coolant for cooling the addition valve 3. That is, according to this exhaust gas purification apparatus 1, as shown in FIG. 2, the water pump 18 that discharges cooling water toward the engine functions as a refrigerant supply means.

また、ウォーターポンプ18からエンジンに向かう冷却水の流路20から、添加弁3に冷却水を導くための流路21が分岐し、流路21の開度を可変する弁装置22が装備されている。弁装置22は、実施例1の弁装置15と同様の周知のソレノイド電磁弁であり、冷却能力可変手段として機能する。すなわち、弁装置22は、ECU6から指令により流路21の開度を操作することで、添加弁3の冷媒としての冷却水の供給量を可変する。
なお、実施例2の排ガス浄化装置1では、噴射用流路をなす流路12が、直接、供給ポンプ5の吐出口に接続している。
In addition, a flow path 21 for guiding the cooling water to the addition valve 3 is branched from a flow path 20 of the cooling water from the water pump 18 toward the engine, and a valve device 22 for changing the opening degree of the flow path 21 is provided. Yes. The valve device 22 is a known solenoid electromagnetic valve similar to the valve device 15 of the first embodiment, and functions as a cooling capacity varying means. That is, the valve device 22 varies the supply amount of the cooling water as the refrigerant of the addition valve 3 by operating the opening degree of the flow path 21 according to a command from the ECU 6.
In the exhaust gas purification apparatus 1 according to the second embodiment, the flow path 12 forming the injection flow path is directly connected to the discharge port of the supply pump 5.

〔変形例〕
実施例1、2の排ガス浄化装置1によれば、冷却能力可変手段は弁装置15、22であったが、温度に反応して自動的に流路10や流路21の開度を操作するサーモスタットにより冷却能力可変手段を構成してもよい。この場合、ECU6による制御を介さずに流路10、21の開度を操作できるため、サーモスタットは制御手段の機能をも具備する。
[Modification]
According to the exhaust gas purifying apparatus 1 of the first and second embodiments, the cooling capacity variable means is the valve devices 15 and 22, but automatically operates the opening degree of the flow path 10 and the flow path 21 in response to the temperature. The cooling capacity variable means may be constituted by a thermostat. In this case, since the opening degree of the flow paths 10 and 21 can be operated without being controlled by the ECU 6, the thermostat also has a function of a control means.

また、実施例1、2の排ガス浄化装置1によれば、流路10または流路21の開度は、弁装置15または弁装置22のソレノイドコイルへの通電量に応じて連続的に可変できるものであったが、排ガスの温度に対して閾値(例えば、300℃)を設定し、排ガス温度センサ16からの検出値が閾値以上のときに流路10、21を全開とし、閾値未満のときに全閉とするようにしてもよい。   Further, according to the exhaust gas purification apparatus 1 of the first and second embodiments, the opening degree of the flow path 10 or the flow path 21 can be continuously changed according to the energization amount to the solenoid coil of the valve device 15 or the valve device 22. However, when a threshold value (for example, 300 ° C.) is set with respect to the temperature of the exhaust gas, and the detection value from the exhaust gas temperature sensor 16 is equal to or higher than the threshold value, the flow paths 10 and 21 are fully opened. Alternatively, it may be fully closed.

また、実施例1の排ガス浄化装置1によれば、弁装置15は、流路12の分岐点よりも下流側、かつジャケットよりも上流側の流路10に配されていたが、例えば、弁装置15を流路11に配してもよい。   Further, according to the exhaust gas purification apparatus 1 of the first embodiment, the valve device 15 is disposed in the flow path 10 on the downstream side of the branch point of the flow path 12 and on the upstream side of the jacket. The device 15 may be disposed in the flow path 11.

また、実施例1の排ガス浄化装置1によれば、噴射用流路は、添加弁3の外部で還元剤流通路としての流路10から分岐していたが、添加弁3の内部で噴射用流路を分岐させてもよい。つまり、ジャケット等の添加弁3の内部における還元剤流通路から噴射用流路を分岐させてもよい。   In addition, according to the exhaust gas purification apparatus 1 of Example 1, the injection flow path was branched from the flow path 10 as the reducing agent flow path outside the addition valve 3, but the injection flow path was used inside the addition valve 3. The flow path may be branched. That is, the injection flow path may be branched from the reducing agent flow path inside the addition valve 3 such as a jacket.

また、実施例1、2の排ガス浄化装置1によれば、温度検出手段は、排ガス温度を検出する排ガス温度センサ16であったが、添加弁3に温度センサを、直接、装着することで温度検出手段を構成してもよく、エンジンの運転状態(例えば、回転数や負荷)を検出するセンサを温度検出手段として利用し、このセンサから得られる検出値に基づいて添加弁3の温度を推定するようにしてもよい。   Further, according to the exhaust gas purifying apparatus 1 of Examples 1 and 2, the temperature detecting means is the exhaust gas temperature sensor 16 that detects the exhaust gas temperature, but the temperature can be increased by directly attaching the temperature sensor to the addition valve 3. A detecting means may be configured, and a sensor for detecting the operating state of the engine (for example, rotation speed or load) is used as the temperature detecting means, and the temperature of the addition valve 3 is estimated based on a detection value obtained from the sensor. You may make it do.

排ガス浄化装置の構成図である(実施例1)。It is a block diagram of an exhaust gas purification apparatus (Example 1). 排ガス浄化装置の構成図である(実施例2)。(Example 2) which is a block diagram of an exhaust gas purification apparatus.

符号の説明Explanation of symbols

1 排ガス浄化装置
2 排気管
3 添加弁
4 タンク(供給源)
5 供給ポンプ(冷媒供給手段)
6 ECU(制御手段)
10 流路(還元剤流通路)
11 流路(還元剤流通路)
12 流路(噴射用流路)
15 弁装置(冷却能力可変手段)
16 排ガス温度センサ(温度検出手段、排ガス温度検出手段)
18 ウォーターポンプ(冷媒供給手段)
22 弁装置(冷却能力可変手段)
1 Exhaust gas purification device 2 Exhaust pipe 3 Addition valve 4 Tank (supply source)
5 Supply pump (refrigerant supply means)
6 ECU (control means)
10 Channel (reducing agent flow path)
11 Channel (reducing agent flow path)
12 Channel (Injection channel)
15 Valve device (cooling capacity variable means)
16 Exhaust gas temperature sensor (temperature detection means, exhaust gas temperature detection means)
18 Water pump (refrigerant supply means)
22 Valve device (cooling capacity variable means)

Claims (5)

エンジンの排ガスが通る排気管に装着され、所定の供給源に貯留された還元剤を前記排気管の内部に噴射するとともに冷媒により冷却される添加弁と、
前記冷媒を前記添加弁の方に供給する冷媒供給手段と、
前記添加弁への前記冷媒の供給量を可変する冷却能力可変手段と、
前記添加弁の温度を検出する温度検出手段と、
前記温度検出手段から得られる検出値に応じて前記冷却能力可変手段を制御する制御手段とを備える排ガス浄化装置。
An addition valve that is attached to an exhaust pipe through which exhaust gas from the engine passes and injects a reducing agent stored in a predetermined supply source into the exhaust pipe and is cooled by a refrigerant;
Refrigerant supply means for supplying the refrigerant to the addition valve;
Cooling capacity varying means for varying the amount of the refrigerant supplied to the addition valve;
Temperature detecting means for detecting the temperature of the addition valve;
An exhaust gas purification apparatus comprising control means for controlling the cooling capacity variable means in accordance with a detection value obtained from the temperature detection means.
請求項1に記載の排ガス浄化装置において、
前記冷媒は還元剤であり、
前記冷媒供給手段は、前記供給源から還元剤を吸引して前記添加弁の方に圧送する供給ポンプであり、
前記供給ポンプにより圧送された還元剤を前記冷媒として前記添加弁の方に導くとともに、前記添加弁を冷却した還元剤を前記供給源に戻すように設けられる還元剤流通路を備え、
前記冷却能力可変手段は、前記還元剤流通路のいずれかの位置に配されて前記還元剤流通路における還元剤の流量を可変する弁装置であることを特徴とする排ガス浄化装置。
The exhaust gas purification apparatus according to claim 1,
The refrigerant is a reducing agent;
The refrigerant supply means is a supply pump that sucks a reducing agent from the supply source and pumps the reducing agent toward the addition valve,
A reducing agent flow path provided to return the reducing agent pumped by the supply pump as the refrigerant toward the addition valve and to return the reducing agent that has cooled the addition valve to the supply source;
The exhaust gas purifying apparatus according to claim 1, wherein the cooling capacity variable means is a valve device that is disposed at any position of the reducing agent flow passage and varies a flow rate of the reducing agent in the reducing agent flow passage.
請求項2に記載の排ガス浄化装置において、
前記還元剤流通路から分岐し、前記排気管の内部に噴射される還元剤が流れる噴射用流路を備えることを特徴とする排ガス浄化装置。
The exhaust gas purification apparatus according to claim 2,
An exhaust gas purification apparatus comprising an injection flow path that branches from the reducing agent flow passage and into which the reducing agent injected into the exhaust pipe flows.
請求項1ないし請求項3の内のいずれか1つに記載の排ガス浄化装置において、
前記温度検出手段は、前記排気管を通る排ガスの温度を検出する排ガス温度検出手段であることを特徴とする排ガス浄化装置。
In the exhaust gas purification apparatus according to any one of claims 1 to 3,
The exhaust gas purification apparatus according to claim 1, wherein the temperature detection means is exhaust gas temperature detection means for detecting a temperature of exhaust gas passing through the exhaust pipe.
請求項1に記載の排ガス浄化装置において、
前記冷媒は前記エンジンの冷却水であり、
前記冷媒供給手段は、前記エンジンの方に冷却水を吐出するウォーターポンプであり、
前記冷却能力可変手段は、前記ウォーターポンプから前記添加弁に向かう冷却水の流量を可変する弁装置であることを特徴とする排ガス浄化装置。
The exhaust gas purification apparatus according to claim 1,
The refrigerant is cooling water for the engine;
The refrigerant supply means is a water pump that discharges cooling water toward the engine,
The exhaust gas purifying apparatus, wherein the cooling capacity varying means is a valve device that varies the flow rate of cooling water from the water pump toward the addition valve.
JP2007104102A 2007-04-11 2007-04-11 Exhaust gas purification device Expired - Fee Related JP4628392B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007104102A JP4628392B2 (en) 2007-04-11 2007-04-11 Exhaust gas purification device
DE102008001090A DE102008001090A1 (en) 2007-04-11 2008-04-09 An exhaust gas purifier capable of appropriately cooling a reducing agent injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104102A JP4628392B2 (en) 2007-04-11 2007-04-11 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2008261275A true JP2008261275A (en) 2008-10-30
JP4628392B2 JP4628392B2 (en) 2011-02-09

Family

ID=39829552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104102A Expired - Fee Related JP4628392B2 (en) 2007-04-11 2007-04-11 Exhaust gas purification device

Country Status (2)

Country Link
JP (1) JP4628392B2 (en)
DE (1) DE102008001090A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947567A (en) * 2010-06-21 2013-02-27 斯堪尼亚商用车有限公司 Method and device pertaining to limiting the temperature of a dosing unit in a SCR system
JP2016061274A (en) * 2014-09-22 2016-04-25 株式会社クボタ Engine exhaust purification device
KR20170113235A (en) * 2016-03-29 2017-10-12 로베르트 보쉬 게엠베하 Method for operating of a dosing system for solution of reducing agent of a scr catalytic converter in the exhaust gas system of an internal combustion engine
AU2022200864B2 (en) * 2021-02-19 2023-12-21 Kabushiki Kaisha Toyota Jidoshokki Cooling system and method for controlling cooling system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034709A1 (en) * 2010-08-18 2012-02-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Dosing unit for a reducing agent
US9222388B2 (en) 2013-02-28 2015-12-29 Tenneco Automotive Operating Company Inc. Urea common rail
DE102013008693B4 (en) * 2013-05-22 2016-11-10 Audi Ag Method for operating an exhaust system and corresponding exhaust system
DE102014112207A1 (en) 2014-08-26 2016-03-03 Epcos Ag Process for the production of ceramic multilayer components and ceramic multilayer component
DE102016216041A1 (en) * 2016-08-25 2018-03-01 Robert Bosch Gmbh Method and control device for heating a device driven by a brushless DC motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090259A (en) * 2004-09-27 2006-04-06 Toyota Motor Corp Exhaust emission control system of diesel engine
JP2006194117A (en) * 2005-01-12 2006-07-27 Toyota Motor Corp Fuel injection valve of internal combustion engine
JP2008169711A (en) * 2007-01-09 2008-07-24 Denso Corp Reducer supply device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19806265C5 (en) 1998-02-16 2004-07-22 Siemens Ag dosing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090259A (en) * 2004-09-27 2006-04-06 Toyota Motor Corp Exhaust emission control system of diesel engine
JP2006194117A (en) * 2005-01-12 2006-07-27 Toyota Motor Corp Fuel injection valve of internal combustion engine
JP2008169711A (en) * 2007-01-09 2008-07-24 Denso Corp Reducer supply device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947567A (en) * 2010-06-21 2013-02-27 斯堪尼亚商用车有限公司 Method and device pertaining to limiting the temperature of a dosing unit in a SCR system
JP2013533421A (en) * 2010-06-21 2013-08-22 スカニア シーブイ アクチボラグ Method and apparatus related to temperature limitation of dosing unit in SCR system
JP2016061274A (en) * 2014-09-22 2016-04-25 株式会社クボタ Engine exhaust purification device
KR20170113235A (en) * 2016-03-29 2017-10-12 로베르트 보쉬 게엠베하 Method for operating of a dosing system for solution of reducing agent of a scr catalytic converter in the exhaust gas system of an internal combustion engine
KR102309474B1 (en) * 2016-03-29 2021-10-07 로베르트 보쉬 게엠베하 Method for operating of a dosing system for solution of reducing agent of a scr catalytic converter in the exhaust gas system of an internal combustion engine
AU2022200864B2 (en) * 2021-02-19 2023-12-21 Kabushiki Kaisha Toyota Jidoshokki Cooling system and method for controlling cooling system

Also Published As

Publication number Publication date
JP4628392B2 (en) 2011-02-09
DE102008001090A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4628392B2 (en) Exhaust gas purification device
JP4706660B2 (en) Reducing agent supply device
JP2008169711A (en) Reducer supply device
EP1669567A1 (en) Exhaust gas purification device of engine
JP2009168013A (en) Heating system for chemical used in exhaust purification system
WO2005028827A1 (en) Exhaust gas clarification apparatus for engine
JP4867675B2 (en) Reducing agent supply device
JP2006125331A (en) Exhaust emission control device
JP2010138883A (en) Control device for exhaust emission control system
JP2011080397A (en) Exhaust emission control device for internal combustion engine
JP5979770B2 (en) Control device and control method for reducing agent supply device
JP4137831B2 (en) Engine exhaust purification system
JP2009228616A (en) Reducer feeding device and cooling water circulation control device
JP2017115887A (en) Dosing module
JP2008255910A (en) Reducer adding valve
JP2006144631A (en) Exhaust emission control device
JP2009257234A (en) Exhaust emission control system of internal combustion engine
JP2005090431A (en) Engine emission control device
JP2009127473A (en) Exhaust emission control device
JP2008180110A (en) Exhaust emission control device
JP4312807B2 (en) Exhaust purification device
JP2010163985A (en) Exhaust emission control device for internal combustion engine
WO2015001858A1 (en) Reducing agent supply device and method of controlling same
JP2012127308A (en) Reducing agent supply device, and exhaust emission control device for internal combustion engine
JP2009228433A (en) Urea water supplying device and exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4628392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees