Nothing Special   »   [go: up one dir, main page]

JP2008249361A - Surface plasmon sensor and immunological measuring method - Google Patents

Surface plasmon sensor and immunological measuring method Download PDF

Info

Publication number
JP2008249361A
JP2008249361A JP2007087840A JP2007087840A JP2008249361A JP 2008249361 A JP2008249361 A JP 2008249361A JP 2007087840 A JP2007087840 A JP 2007087840A JP 2007087840 A JP2007087840 A JP 2007087840A JP 2008249361 A JP2008249361 A JP 2008249361A
Authority
JP
Japan
Prior art keywords
surface plasmon
sensor
fluorescence
metal film
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007087840A
Other languages
Japanese (ja)
Inventor
Tadahiro Matsuno
忠宏 松野
Toshihiro Mori
寿弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007087840A priority Critical patent/JP2008249361A/en
Publication of JP2008249361A publication Critical patent/JP2008249361A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect fluorescence of such a measuring material as antibody at extremely high sensitivity without immobilizing it on a sensor. <P>SOLUTION: This sensor comprises: a metal film formed on one surface of a light guide; a non-flexible film formed on the metal film; a light source generating light beam; an optical system passing the light beam through a prism to make it incident into the interface between the light guide and the metal film at an incident angle to generate surface plasmon; and a detecting means detecting fluorescence generated with being excited by an evanescent wave which is reinforced with the surface plasmon. A unit capable of attracting magnetic material on the opposite prism face with respect to the non-flexible film is arranged. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、表面プラズモンの発生を利用して試料中の物質を分析する表面プラズモンセンサーおよび免疫学的測定方法に関するものである。
The present invention relates to a surface plasmon sensor and an immunological measurement method for analyzing a substance in a sample using generation of surface plasmons.

バイオ測定等において、高感度かつ簡易な測定法として蛍光法が広く用いられている。この蛍光法は、特定波長の光により励起されて蛍光を発する検出対象物質を含むと考えられる試料に上記特定波長の励起光を照射し、そのときの蛍光を検出することによって検出対象物質の存在を確認する方法である。検出対象物質が蛍光体でない場合には、蛍光体で標識されて検出対象物質と特異的に結合する物質を試料に接触させ、その後上記と同様にして蛍光を検出することにより、この結合すなわち検出対象物質の存在を確認することも広く行われている。   In biomeasurement and the like, the fluorescence method is widely used as a highly sensitive and simple measurement method. This fluorescence method irradiates a sample that is considered to contain a detection target substance that emits fluorescence when excited by light of a specific wavelength, and detects the presence of the detection target substance by detecting the fluorescence at that time. It is a method to confirm. When the detection target substance is not a fluorescent substance, this binding, that is, detection is performed by contacting the sample with a substance that is labeled with the fluorescent substance and specifically binds to the detection target substance, and then detecting fluorescence in the same manner as described above. The existence of the target substance is also widely confirmed.

図2は、上記の標識された物質を用いる蛍光法を実施するセンサーの一例を概略表示するものである。この蛍光センサーは一例として試料1に含まれる測定対象物質2を検出するためのものであり、基板3には測定対象物質2と特異的に結合する抗体4が塗布されている。そしてこの基板3上に設けられた試料保持部5の中において試料1が流され、次いで同様に蛍光体10で標識された測定対象物質2と特異的に結合する抗体6が流される。その後、基板3の表面部分に向けて光源7から励起光8が照射され、光検出器9により蛍光検出がなされる。このとき、光検出器9によって所定の蛍光が検出されれば、上記6と測定対象物質2との結合、すなわち試料1中における測定対象物質2の存在を確認できることになる。   FIG. 2 schematically shows an example of a sensor that performs the fluorescence method using the labeled substance. As an example, this fluorescent sensor is for detecting the measurement target substance 2 contained in the sample 1, and an antibody 4 that specifically binds to the measurement target substance 2 is applied to the substrate 3. Then, the sample 1 is flowed in the sample holder 5 provided on the substrate 3, and then the antibody 6 that specifically binds to the measurement target substance 2 labeled with the phosphor 10 is flowed. Thereafter, excitation light 8 is emitted from the light source 7 toward the surface portion of the substrate 3, and fluorescence is detected by the photodetector 9. At this time, if a predetermined fluorescence is detected by the photodetector 9, it is possible to confirm the binding between the above 6 and the measurement target substance 2, that is, the presence of the measurement target substance 2 in the sample 1.

なお以上の例では、蛍光検出によって実際に存在が確認されるのは蛍光体10で標識された抗原2と特異的に結合する抗体6であるが、この抗体6は抗原2と結合しなければ流されてしまって基板3上に存在し得ないものであるから、この抗体6の存在を確認することにより、間接的に検出対象物質2の存在が確認されることとなる。   In the above example, the antibody 6 that specifically binds to the antigen 2 labeled with the phosphor 10 is actually confirmed by fluorescence detection, but this antibody 6 must bind to the antigen 2. Since it has flowed away and cannot exist on the substrate 3, the presence of the detection target substance 2 is indirectly confirmed by confirming the presence of the antibody 6.

しかしながら、図2に示したような従来の蛍光センサーでは、基板と試料との界面における励起光の反射光/散乱光や、検出対象物質以外の不純物/浮遊物M等による散乱光がノイズとなるため、せっかく光検出器を高性能化しても蛍光検出におけるS/Nは向上しないのが実情であった。   However, in the conventional fluorescent sensor as shown in FIG. 2, reflected light / scattered light of excitation light at the interface between the substrate and the sample, or scattered light due to impurities other than the detection target substance / floating matter M or the like becomes noise. Therefore, the actual situation is that the S / N in fluorescence detection is not improved even if the performance of the photodetector is improved.

これに対する解決法として、例えば非特許文献1に示されるようなエバネッセント蛍光法、つまりエバネッセント波を用いる蛍光法が提案されている。この蛍光法を実施する蛍光センサーの一例を図3に概略的に示す。なおこの図3において、図2中の構成要素と同等の構成要素には同番号を付し、それらについての説明は特に必要のない限り省略する(以下、同様)。   As a solution to this, for example, an evanescent fluorescence method as shown in Non-Patent Document 1, that is, a fluorescence method using an evanescent wave has been proposed. An example of a fluorescence sensor that implements this fluorescence method is schematically shown in FIG. In FIG. 3, the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted unless necessary (the same applies hereinafter).

この蛍光センサーにおいては、前述の基板3に代わるものとしてプリズム(誘電体ブロック)13が用いられ、そして光源7からの励起光8は、このプリズム13と試料1との界面で全反射する条件で、プリズム13を通して照射される。この構成においては、励起光8が上記界面で全反射するとき該界面近傍に染み出すエバネッセント波11により測定対象物質2と特異的に結合する抗体6に標識された蛍光体10が励起される。そして蛍光検出は、試料1に対してプリズム13と反対側(図中では上方)に配された光検出器9によってなされる。   In this fluorescent sensor, a prism (dielectric block) 13 is used as an alternative to the substrate 3 described above, and the excitation light 8 from the light source 7 is totally reflected at the interface between the prism 13 and the sample 1. Irradiated through the prism 13. In this configuration, when the excitation light 8 is totally reflected at the interface, the phosphor 10 labeled with the antibody 6 that specifically binds to the measurement target substance 2 is excited by the evanescent wave 11 that leaks out in the vicinity of the interface. Fluorescence detection is performed by a photodetector 9 arranged on the opposite side of the sample 1 from the prism 13 (upward in the drawing).

この蛍光センサーにおいては、基板としてプリズムを用いた場合、励起光8は図中の下方に全反射するので、上方からの蛍光検出において、励起光が蛍光検出信号に対するバック・グラウンドとなってしまうことがない。さらに、エバネッセント波11は上記界面から数百nmの領域にしか到達しないので、試料中の不純物/浮遊物Mからの散乱を殆ど無くすことができる。そのため、このエバネッセント蛍光法は、従来の蛍光法と比べて(光)ノイズを大幅に低減でき、検出対象物質を1分子単位で蛍光測定できる方法として注目されている。   In this fluorescence sensor, when a prism is used as the substrate, the excitation light 8 is totally reflected downward in the figure, so that the excitation light becomes a background for the fluorescence detection signal in fluorescence detection from above. There is no. Further, since the evanescent wave 11 reaches only a region of several hundred nm from the interface, scattering from the impurities / floating matter M in the sample can be almost eliminated. Therefore, this evanescent fluorescence method is attracting attention as a method that can significantly reduce (light) noise as compared with the conventional fluorescence method and can measure the fluorescence of the detection target substance in units of one molecule.

また、上記のエバネッセント波を用いる蛍光法において特許文献2では、プリズムの代わりに光を透過させる基板として光導波路を用いている。この場合、励起光成分は光導波路を全反射しながら進行するので、上方および/又は下方からの蛍光検出において励起光成分が蛍光検出信号に対するバック・グラウンドとなってしまうことがない。   In addition, in the fluorescence method using the above evanescent wave, in Patent Document 2, an optical waveguide is used as a substrate that transmits light instead of a prism. In this case, since the excitation light component travels while totally reflecting the optical waveguide, the excitation light component does not become a background for the fluorescence detection signal in fluorescence detection from above and / or below.

また、さらに高感度で蛍光測定できるセンサーとして、図4に示すような表面プラズモン増強蛍光センサーも知られている。この表面プラズモン増強蛍光センサーは、例えば特許文献1に記載があるもので、図3の蛍光センサーと比べると基本的に、プリズム13の上に金属膜20が形成されている点が異なる。すなわち、このような金属膜20が形成されていることにより、励起光8が照射されたときこの金属膜20中に表面プラズモンが生じ、その電場増幅作用によって蛍光が増幅されるようになる。あるシミュレーションによると、その場合の蛍光強度は1000倍程度まで増幅されることも判っている。   A surface plasmon enhanced fluorescence sensor as shown in FIG. 4 is also known as a sensor capable of measuring fluorescence with higher sensitivity. This surface plasmon enhanced fluorescence sensor is described in, for example, Patent Document 1, and differs from the fluorescence sensor of FIG. 3 in that a metal film 20 is basically formed on the prism 13. That is, by forming such a metal film 20, surface plasmons are generated in the metal film 20 when the excitation light 8 is irradiated, and fluorescence is amplified by the electric field amplification action. According to a simulation, it has been found that the fluorescence intensity in that case is amplified to about 1000 times.

しかし、上述のような表面プラズモン増強蛍光センサーにおいては、非特許文献2に示されているように、試料中の蛍光体と金属膜とが接近し過ぎていると、蛍光体内で励起されたエネルギーが蛍光を発生させる前に金属膜へ遷移してしまい、蛍光が生じないという現象(いわゆる金属消光)が起こり得る。   However, in the surface plasmon enhanced fluorescence sensor as described above, as shown in Non-Patent Document 2, if the phosphor in the sample and the metal film are too close, the energy excited in the phosphor Transition to the metal film before generating fluorescence, and a phenomenon that fluorescence does not occur (so-called metal quenching) may occur.

この金属消光に対処するために非特許文献2には、金属膜の上にSAM(自己組織化膜)を形成し、それにより試料中の蛍光体と金属膜とをこのSAMの厚さ以上離間させることが提案されている。なお図4でも、このSAMに番号21を付けて示してある。また非特許文献3では、この金属消光に関連して、表面プラズモンにより増強された蛍光強度の、金属膜からの距離に対する依存性が検討されている。   In order to cope with this metal quenching, Non-Patent Document 2 forms a SAM (self-assembled film) on the metal film, thereby separating the phosphor and the metal film in the sample by more than the thickness of the SAM. It has been proposed to let In FIG. 4 also, this SAM is indicated by number 21. Further, in Non-Patent Document 3, in relation to the metal quenching, the dependence of the fluorescence intensity enhanced by the surface plasmon on the distance from the metal film is examined.

ところで、これまで述べてきた測定方法では、いずれの場合においても、測定対象物質を特異的に認識する物質をセンサー基板表面に固定化する必要がある。測定対象物質を特異的に認識する物質を利用した測定方法の例としては、抗体を用いた免疫学的測定方法が知られている。例えば免疫学的測定方法を、表面プラズモンセンサーを用いて行う場合、抗体をセンサー表面にあらかじめ固定化しておく必要が有る。抗体を固定化する方法としては、非特許文献4に記載されている物理吸着による固定化方法ならびに共有結合を形成させることによる固定化方法などが用いられる。   By the way, in the measurement methods described so far, in any case, it is necessary to immobilize a substance that specifically recognizes the measurement target substance on the surface of the sensor substrate. As an example of a measurement method using a substance that specifically recognizes a measurement target substance, an immunological measurement method using an antibody is known. For example, when the immunological measurement method is performed using a surface plasmon sensor, it is necessary to immobilize the antibody on the sensor surface in advance. As a method for immobilizing an antibody, an immobilization method by physical adsorption described in Non-Patent Document 4, an immobilization method by forming a covalent bond, and the like are used.

一般に、抗体などの測定対象物質を特異的に認識する物質を固定化した場合、固相−液相での反応形式となるため、反応効率が著しく低下してしまうことや、結合定数が低下してしまうことが知られている。このことから、検出感度の低下や、反応時間が長時間必要であるなどの問題がある。さらに、異なる測定対象物質に対しては、それぞれに特異的な抗体を固定化する必要があり、センサーの汎用性の向上を妨げる要因でもある。
特許第3562912号公報 特許第3321469号公報 「バイオイメージングでここまで理解る」p.104-113 楠見明弘他著 羊土社 W.Knoll他、Analytical Chemistry(Anal.Chem.)75(2003) p.2610 W.Knoll他、Colloids and Surfaces. A.(Colloids Surf. A), 171(2000) p.115 「Immunoassay」p.129-163 J. P. Gosling他著 Oxford University Press
In general, when a substance that specifically recognizes a substance to be measured, such as an antibody, is immobilized, it becomes a solid phase-liquid phase reaction format, so that the reaction efficiency is remarkably lowered or the binding constant is lowered. It is known that For this reason, there are problems such as a decrease in detection sensitivity and a long reaction time. Furthermore, it is necessary to immobilize specific antibodies for different substances to be measured, which is a factor that hinders the improvement of the versatility of the sensor.
Japanese Patent No. 3562912 Japanese Patent No. 3321469 “Understanding this with bioimaging” p.104-113 Akihiro Shiomi et al. Yodosha W. Knoll et al., Analytical Chemistry (Anal. Chem.) 75 (2003) p.2610 W. Knoll et al., Colloids and Surfaces. A. (Colloids Surf. A), 171 (2000) p.115 "Immunoassay" p.129-163 JP Gosling et al. Oxford University Press

抗体を代表とする測定対象物質を特異的に認識する物質を固定化した場合、固相−液相での反応による反応効率の著しい低下や、結合定数の低下が懸念される。このことから、検出感度の低下や、反応時間が長時間必要であるなどの問題がある。さらに、異なる測定対象物質に対しては、それぞれに特異的な抗体を固定化する必要があり、センサーの汎用性の向上を妨げる要因でもある。   When a substance that specifically recognizes a substance to be measured such as an antibody is immobilized, there is a concern that the reaction efficiency may be significantly lowered or the binding constant may be lowered due to a solid-liquid phase reaction. For this reason, there are problems such as a decrease in detection sensitivity and a long reaction time. Furthermore, it is necessary to immobilize specific antibodies for different substances to be measured, which is a factor that hinders the improvement of the versatility of the sensor.

本発明は上記の事情に鑑みてなされたものであり、抗体などの測定対象物質を特異的に認識する物質をセンサーに固定化することなく、極めて高い感度で検出することができる表面プラズモンセンサーを提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and a surface plasmon sensor that can be detected with extremely high sensitivity without immobilizing a substance that specifically recognizes a measurement target substance such as an antibody on the sensor. It is intended to provide.

本発明の表面プラズモンセンサーは、光導波路と、該光導波路の一表面に形成された金属膜と、金属膜の上に形成された膜厚が10〜100nmの範囲にある不撓性膜と、光ビームを発生させる光源と、前記光ビームをプリズムに通し、該プリズムと金属膜との界面に対して表面プラズモンを発生させる入射角で入射させる光学系と、該表面プラズモンによって増強されたエバネッセント波によって励起されたことによって発生する蛍光を検出する蛍光検出手段とを備えてなる表面プラズモンセンサーにおいて、不撓性膜に対して反対の光導波路面に磁性物質を誘引することが可能なユニットを有することを特徴としている。   The surface plasmon sensor of the present invention includes an optical waveguide, a metal film formed on one surface of the optical waveguide, an inflexible film having a thickness of 10 to 100 nm formed on the metal film, A light source that generates a beam; an optical system that causes the light beam to pass through a prism and is incident at an incident angle that generates a surface plasmon to an interface between the prism and the metal film; and an evanescent wave that is enhanced by the surface plasmon A surface plasmon sensor comprising fluorescence detecting means for detecting fluorescence generated by being excited, and having a unit capable of attracting a magnetic substance to an optical waveguide surface opposite to an inflexible film. It is a feature.

ここで、上記の「不撓性」とは、表面プラズモンで増強された蛍光検出を普通に行っているうちに膜厚が変わってしまうほどに変形することが無い程度の剛性を備えていることを意味する。前記不撓性膜の膜厚は、10〜100nmの範囲であることが好ましい。また、前記不撓性膜としては、ポリマーからなるものが好適に用いられる。   Here, the above-mentioned “inflexibility” means that it has such a rigidity that it does not deform so as to change the film thickness while performing fluorescence detection enhanced by surface plasmon. means. The film thickness of the inflexible film is preferably in the range of 10 to 100 nm. As the inflexible film, a polymer film is preferably used.

本発明による表面プラズモンセンサーは、励起光を透過させる材料からなる光導波路の表面に形成された金属膜で試料を保持し、金属膜表面に不撓性膜を形成し、前記光導波路から励起光を入射させて、前記試料中に含まれる物質を、表面プラズモンによって増強された金属膜表面に染み出すエバネッセント波によって励起し、この励起により物質が発した蛍光を検出する表面プラズモン蛍光法において、該不撓性膜に対して反対のプリズム面に磁性物質を誘引することが可能なユニットを設置することによって、磁性物質および前記表面プラズモンセンサーで検出可能な蛍光物質で標識した測定対象物質を、予め測定対象物質を特異的に認識する物質を固定化することなくセンサー表面に集めることができる。   The surface plasmon sensor according to the present invention holds a sample with a metal film formed on the surface of an optical waveguide made of a material that transmits excitation light, forms an inflexible film on the surface of the metal film, and transmits excitation light from the optical waveguide. In the surface plasmon fluorescence method, the material contained in the sample is excited by an evanescent wave that exudes to the surface of the metal film enhanced by the surface plasmon, and the fluorescence emitted by the material is detected by this excitation. By installing a unit capable of attracting a magnetic substance on the opposite prism surface with respect to the conductive film, the measurement target substance labeled with the magnetic substance and the fluorescent substance detectable by the surface plasmon sensor is measured in advance. Substances that specifically recognize substances can be collected on the sensor surface without immobilization.

これにより、試料液の金属膜に接する部分では、磁性物質および該表面プラズモンセンサーで検出可能な蛍光物質で標識された測定対象物質又はその複合体の濃度が高くなるので、蛍光強度が短時間で大きく変化し、そこで、測定対象物質を短時間で高感度に分析可能となる。特に抗原−抗体反応を利用して試料中の物質を検出する場合、抗体(または抗原)をセンサー上に固定化する必要が無いため、反応効率が向上し、極めて高い感度で検出することが可能となるとともに、反応時間の短縮が可能となる。また、抗体(または抗原)を予め固定化する必要が無いため、センサーの汎用性も向上する。   As a result, the concentration of the measurement target substance labeled with the magnetic substance and the fluorescent substance that can be detected by the surface plasmon sensor or the complex thereof is increased in the portion of the sample solution that is in contact with the metal film. It changes greatly, and it becomes possible to analyze the measurement target substance with high sensitivity in a short time. In particular, when detecting substances in a sample using the antigen-antibody reaction, it is not necessary to immobilize the antibody (or antigen) on the sensor, improving the reaction efficiency and enabling detection with extremely high sensitivity. And the reaction time can be shortened. Further, since it is not necessary to immobilize the antibody (or antigen) in advance, the versatility of the sensor is improved.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の表面プラズモンセンサーは、所定波長の励起光を透過させる材料から形成された光導波路と、この光導波路の一表面に形成された金属膜と、金属膜の上に形成された膜厚が10〜100nmの範囲にある不撓性膜と、光ビームを発生させる光源と、前記光ビームを光導波路に通し、該光導波路と金属膜との界面に対して表面プラズモンを発生させる入射角で入射させる光学系と、該表面プラズモンによって増強されたエバネッセント波によって励起されたことによって発生する蛍光を検出する蛍光検出手段とを備えてなる表面プラズモンセンサーにおいて、不撓性膜に対して反対の誘電体ブロック面に磁性物質を誘引することが可能なユニットを有することを特徴としている。     The surface plasmon sensor of the present invention has an optical waveguide formed from a material that transmits excitation light of a predetermined wavelength, a metal film formed on one surface of the optical waveguide, and a film thickness formed on the metal film. An inflexible film in the range of 10 to 100 nm, a light source that generates a light beam, and the light beam is passed through an optical waveguide and incident at an incident angle that generates a surface plasmon with respect to the interface between the optical waveguide and the metal film. A surface plasmon sensor comprising: an optical system for detecting light; and fluorescence detection means for detecting fluorescence generated by excitation by an evanescent wave enhanced by the surface plasmon. It is characterized by having a unit capable of attracting a magnetic substance on the surface.

図1は、本発明の表面プラズモン蛍光検出方法の実施に利用される表面プラズモンセンサー(以下、単にセンサーという)を示す概略側面図である。図示の通りこのセンサーは、励起光8を発する半導体レーザ等の光源7と、上記励起光8を透過させる材料からなり、この励起光8が一端面から入射する位置に配された光導波路12と、この光導波路12の一表面12aに形成された例えば金、銀等からなる金属膜20と、この金属膜20の上に形成されたポリマーからなる不撓性膜31と、光導波路12の一表面12bに設置された磁石41と、光導波路12と反対側から不撓性膜31に液体状試料1が接するように該試料1を保持する試料保持部5と、この試料保持部5の上方に配された光検出器(蛍光検出手段)9とを備えてなるものである。   FIG. 1 is a schematic side view showing a surface plasmon sensor (hereinafter simply referred to as a sensor) used for carrying out the surface plasmon fluorescence detection method of the present invention. As shown in the figure, this sensor includes a light source 7 such as a semiconductor laser that emits excitation light 8 and an optical waveguide 12 that is made of a material that transmits the excitation light 8 and that is disposed at a position where the excitation light 8 enters from one end face. The metal film 20 made of, for example, gold or silver formed on the one surface 12a of the optical waveguide 12, the inflexible film 31 made of a polymer formed on the metal film 20, and the one surface of the optical waveguide 12. A magnet 41 installed in 12 b, a sample holder 5 that holds the liquid sample 1 so that the inflexible film 31 contacts the inflexible film 31 from the side opposite to the optical waveguide 12, and a sample holder 5 disposed above the sample holder 5. The optical detector (fluorescence detection means) 9 is provided.

なお図1では、光源7が、励起光8を、光導波路12と金属膜20との界面に向けて、全反射条件を満たすように光導波路12を通して入射させるように配置されている。つまりこの光源7自体が、光導波路12に対して励起光8を上述のように入射させる入射光学系を構成している。しかしこのような構成に限らず、励起光8を上述のように入射させるレンズやミラーなどからなる入射光学系を、光源7とは別途設けるようにしても何ら支障はない。   In FIG. 1, the light source 7 is arranged so that the excitation light 8 is incident through the optical waveguide 12 so as to satisfy the total reflection condition toward the interface between the optical waveguide 12 and the metal film 20. That is, the light source 7 itself constitutes an incident optical system that makes the excitation light 8 incident on the optical waveguide 12 as described above. However, the present invention is not limited to this configuration, and there is no problem even if an incident optical system including a lens, a mirror, or the like that makes the excitation light 8 incident as described above is provided separately from the light source 7.

磁石41としては、アルニコ磁石、フェライト磁石、MK鋼、KS鋼、サマリウムコバルト磁石、ネオジム磁石などの永久磁石のほか、電磁石を用いることも可能である。   As the magnet 41, in addition to permanent magnets such as alnico magnets, ferrite magnets, MK steel, KS steel, samarium cobalt magnets and neodymium magnets, electromagnets can also be used.

なお、金属の近傍に存在する蛍光体分子は、金属へのエネルギー移動により消光を起こす。エネルギー移動の程度は、金属が半無限の厚さを持つ平面なら距離の3乗に反比例して、金属が無限に薄い平板なら距離の4乗に反比例して、また、金属が微粒子なら距離の6乗に反比例して小さくなる。そして前述した非特許文献3にも述べられているように、金属膜の場合は、金属と蛍光分子との間の距離は少なくとも 数nm以上、より好ましくは10nm以上確保しておくことが望ましい。従って不撓性膜31の膜厚の下限値は10nmとすることが好ましい。   Note that phosphor molecules existing in the vicinity of the metal are quenched by energy transfer to the metal. The degree of energy transfer is inversely proportional to the third power of the distance if the metal has a semi-infinite thickness, inversely proportional to the fourth power of the distance if the metal is infinitely thin, and It becomes smaller in inverse proportion to the sixth power. As described in Non-Patent Document 3 described above, in the case of a metal film, it is desirable to secure a distance between the metal and the fluorescent molecule of at least several nm or more, more preferably 10 nm or more. Therefore, the lower limit of the film thickness of the inflexible film 31 is preferably 10 nm.

一方、蛍光体分子は、表面プラズモンによって増強された、金属膜表面に染み出したエバネッセント波によって励起される。エバネッセント波の到達範囲(金属膜表面からの距離)は高々波長程度であり、その電界強度は金属膜表面からの距離に応じて指数関数的に急激に減衰することが知られている。実際、波長808nmの近赤外光では、エバネッセント波の染み出しが生じているのは、波長(808nm)程度であり、100nmを超えるとその電界強度が急激に減衰する。蛍光体分子を励起する電界強度は大きいほど望ましいので、効果的な励起を行なうためには、金属膜表面と蛍光体分子との距離を100nmより小さくすることが望ましい。従って、不撓性膜31の膜厚の上限値は100nmとすることが好ましい。   On the other hand, the phosphor molecules are excited by evanescent waves that have been enhanced by surface plasmons and ooze out on the surface of the metal film. It is known that the reach of the evanescent wave (distance from the surface of the metal film) is at most about a wavelength, and the electric field strength attenuates exponentially and exponentially according to the distance from the surface of the metal film. Actually, in the near-infrared light having a wavelength of 808 nm, the evanescent wave oozes out at about the wavelength (808 nm), and the electric field strength rapidly attenuates when the wavelength exceeds 100 nm. Since it is desirable that the electric field intensity for exciting the phosphor molecules is larger, it is desirable to make the distance between the metal film surface and the phosphor molecules smaller than 100 nm for effective excitation. Accordingly, the upper limit value of the film thickness of the inflexible film 31 is preferably 100 nm.

以下、上記構成の表面プラズモンセンサーによる試料分析について説明する。分析対象物質2を含む試料液1、分析対象物質2を特異的に認識する物質4および上記センサーで検出可能な蛍光体10で標識された分析対象物質2を特異的に認識する物質6は、は、上記不撓性膜に接触する状態で試料保持部5に配置される。ここで、分析対象物質2を特異的に認識する物質4は磁性体51で標識されており、磁気的相互作用によって分析対象物質2および分析対象物質2を特異的に認識する物質4および6の複合体がセンサー表面に濃縮される。   Hereinafter, sample analysis by the surface plasmon sensor having the above-described configuration will be described. The sample liquid 1 containing the analysis target substance 2, the substance 4 that specifically recognizes the analysis target substance 2, and the substance 6 that specifically recognizes the analysis target substance 2 labeled with the phosphor 10 that can be detected by the sensor, Are arranged in the sample holder 5 in contact with the inflexible film. Here, the substance 4 that specifically recognizes the analysis target substance 2 is labeled with a magnetic body 51, and the analysis target substance 2 and the substances 4 and 6 that specifically recognize the analysis target substance 2 by magnetic interaction are included. The complex is concentrated on the sensor surface.

試料分析に際しては、シリンドリカルレンズ15の作用で上述のように集束する光ビーム8が金属膜20に向けて照射される。蛍光体10は、表面プラズモンによって増強された、金属膜表面に染み出したエバネッセント波によって励起され蛍光を発する。この蛍光強度に基づいて試料液1中の物質2を定量分析することができる。   In the sample analysis, the light beam 8 focused as described above by the action of the cylindrical lens 15 is irradiated toward the metal film 20. The phosphor 10 emits fluorescence when excited by an evanescent wave that has been enhanced by surface plasmons and oozes out on the surface of the metal film. Based on this fluorescence intensity, the substance 2 in the sample liquid 1 can be quantitatively analyzed.

また、上述のように分析対象物質2を特異的に認識する物質4は磁性体51で標識されているが、ここで用いられる磁性体としては磁性微粒子が挙げられるが、その粒径は、上述したようなエバネッセント波の到達範囲から1nmから100nmとすることが好ましい。   In addition, as described above, the substance 4 that specifically recognizes the analyte 2 is labeled with the magnetic substance 51, and examples of the magnetic substance used here include magnetic fine particles. From the reach of such an evanescent wave, it is preferably 1 nm to 100 nm.

分析対象物質2を特異的に認識する物質4としては、例えば分析対象物質2が1本鎖核酸の場合、該1本鎖核酸と相補的に結合する1本鎖核酸が、分析対象物質2がタンパク質等の場合、該分析対象物質2に対する抗体が挙げられる。   As the substance 4 that specifically recognizes the analyte 2, for example, when the analyte 2 is a single-stranded nucleic acid, the single-stranded nucleic acid that complementarily binds to the single-stranded nucleic acid is the analyte 2 In the case of protein or the like, an antibody against the analyte 2 is mentioned.

上述のように、分析対象物質2を特異的に認識する物質4は磁性体51で標識されており、センサーに固定されていないため、測定対象物質との反応は液相で進行する。また、磁気的相互作用によって、試料液1の金属膜20に接する部分では分析対象物質2の濃度が高くなることから、該分析対象物質2を短時間内で高感度に分析可能となる。   As described above, since the substance 4 that specifically recognizes the substance 2 to be analyzed is labeled with the magnetic substance 51 and is not fixed to the sensor, the reaction with the substance to be measured proceeds in the liquid phase. In addition, due to magnetic interaction, the concentration of the analyte 2 is high in the portion of the sample liquid 1 that is in contact with the metal film 20, so that the analyte 2 can be analyzed with high sensitivity within a short time.

以下、本発明の実施例および比較例を説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention and comparative examples will be described below, but the present invention is not limited to these examples.

(実施例1)<ビオチン化抗体の調製>
抗CRP抗体(Fitzgerald社クローンNo.M701289)のビオチン化は、市販のキット(Biotin Labeling kit−SH,同仁化学研究所社製)を用いて行った。
(Example 1) <Preparation of biotinylated antibody>
Biotinylation of the anti-CRP antibody (Fitzgerald clone No. M701289) was performed using a commercially available kit (Biotin Labeling kit-SH, manufactured by Dojindo Laboratories).

(実施例2)<磁気ビーズ標識抗体の調製>
ストレプトアビジンでコートされた磁気ビーズ(Ademtech SA社,粒径0.2μm)および先に調製したビオチン化抗CRP 抗体を、結合バッファー(Tris−Clを5mM,EDTAを0.1mM,NaClを0.5mM含有)中で2時間時反応させることにより、磁気ビーズ標識抗CRP抗体を調製した。磁石による回収および洗浄を繰り返し、未結合の抗体を除去した後、非特異吸着防止のためBSAを用いてブロッキングを行った。
(Example 2) <Preparation of magnetic bead-labeled antibody>
Magnetic beads coated with streptavidin (Ademtech SA, particle size 0.2 μm) and the previously prepared biotinylated anti-CRP antibody were added to a binding buffer (Tris-Cl 5 mM, EDTA 0.1 mM, NaCl 0.1%). The magnetic bead-labeled anti-CRP antibody was prepared by reacting for 2 hours in 5 mM). Recovery and washing with a magnet were repeated to remove unbound antibody, and then blocking was performed using BSA to prevent non-specific adsorption.

(実施例3)<蛍光標識抗体の調製>
最終濃度が0.6 mg/mL IRDye800CW-NHS (LI-COR社)および0.5 mg/mL抗CRP抗体(Fitzgerald, #701289 )となるように炭酸バッファ(pH9.2)に溶解させ、室温で30分間反応させた。次に、PBS(pH7.4)で平衡化した脱塩カラム(PIERCE社)に反応液を移し、PBS(pH7.4)で未反応の IRDye800CW-NHSを除去することで、IRDye800CW標識抗CRP抗体を得た。
分光光度計(Ultraspec, GE Healthcare)を用いて280 nmおよび780 nmの吸光度を測定し、抗体1分子に対する蛍光色素の標識率(D/P比)を2.4と決定した。
(Example 3) <Preparation of fluorescently labeled antibody>
Dissolve in carbonate buffer (pH 9.2) to a final concentration of 0.6 mg / mL IRDye800CW-NHS (LI-COR) and 0.5 mg / mL anti-CRP antibody (Fitzgerald, # 701289) and react at room temperature for 30 minutes I let you. Next, the reaction solution is transferred to a desalting column (PIERCE) equilibrated with PBS (pH7.4), and unreacted IRDye800CW-NHS is removed with PBS (pH7.4), so that IRDye800CW labeled anti-CRP antibody Got.
Absorbance at 280 nm and 780 nm was measured using a spectrophotometer (Ultraspec, GE Healthcare), and the labeling ratio (D / P ratio) of the fluorescent dye per antibody molecule was determined to be 2.4.

(実施例4)<センサー>
ゼオネクス製の基板(光導波路。屈折率 1.50)の表面に金膜50nmをスパッタにて形成した。さらに、金膜上にポリスチレン系のポリマー膜(屈折率 1.59)20nmをスピンコートにて形成した。センサーのポリマー膜が上部となるように、センサースティックのポリマー膜上部にウェル状の反応容器(φ5mm×11mm(H))を設置し、反応に用いた。
(Example 4) <Sensor>
A gold film of 50 nm was formed on the surface of a substrate made of ZEONEX (optical waveguide, refractive index 1.50) by sputtering. Further, a 20 nm of polystyrene-based polymer film (refractive index 1.59) was formed on the gold film by spin coating. A well-like reaction vessel (φ5 mm × 11 mm (H)) was placed on the polymer film of the sensor stick so that the sensor polymer film would be on top, and used for the reaction.

(実施例5)<CRPの検出>
(実施例4)で作製したセンサー上の反応ウェルに、タンパク量として0.1μg/mL (1nM)の磁気ビーズ標識抗体溶液50μL、0.5μg/mL(1nM)の蛍光色素標識抗体溶液50μLおよび表1に記載の濃度のCRPを含む試料50μLを加え、室温で15分間インキュベートし、抗原―抗体複合体を形成させた。センサースティック下部から磁石を接触させ、反応溶液中に含まれる抗原―抗体複合体をセンサー表面に集めた。これに光導波路に通し、該光導波路と金属膜との界面に対して表面プラズモンを発生させる入射角で励起光を入射することで発生した蛍光を、富士フイルム社製LAS-1000を用いて測定した。結果を表1に示した。
(Example 5) <Detection of CRP>
In the reaction well on the sensor prepared in Example 4, 50 μL of 0.1 μg / mL (1 nM) magnetic bead-labeled antibody solution, 50 μL of 0.5 μg / mL (1 nM) fluorescent dye-labeled antibody solution and 50 μL of a sample containing CRP at the concentration shown in Table 1 was added and incubated at room temperature for 15 minutes to form an antigen-antibody complex. A magnet was contacted from the bottom of the sensor stick, and the antigen-antibody complex contained in the reaction solution was collected on the sensor surface. Fluorescence generated when excitation light is incident at an incident angle that generates surface plasmons with respect to the interface between the optical waveguide and the metal film is measured using an LAS-1000 manufactured by Fujifilm. did. The results are shown in Table 1.

(比較例1)
(実施例4)で作製したセンサー上の反応ウェルに、10 μg/mL (1nM)の抗CRP抗体(Fitzgerald社クローンNo.M701289)50μLを添加し、室温で2時間インキュベートした。抗体溶液を除去し、0.05%Tween−20を含むPBS溶液で洗浄し、1%BSAを含むPBSでブロッキングを行うことによって、抗CRP抗体が固相化されたセンサースティックを作成した。
(Comparative Example 1)
50 μL of 10 μg / mL (1 nM) anti-CRP antibody (Fitzgerald clone No. M701289) was added to the reaction well on the sensor prepared in (Example 4), and incubated at room temperature for 2 hours. The antibody solution was removed, washed with a PBS solution containing 0.05% Tween-20, and blocked with PBS containing 1% BSA to prepare a sensor stick on which an anti-CRP antibody was immobilized.

(比較例2)
(比較例1)で作製したセンサースティック上の反応ウェルに、0.5μg/mL(1nM)の蛍光色素標識抗体溶液50μLおよび表1に記載の濃度のCRPを含む試料50μLを加え、室温で15分間インキュベートした。これにプリズムに通し、該プリズムと金属膜との界面に対して表面プラズモンを発生させる入射角で励起光を入射し、発生した蛍光を、富士フイルム社製LAS-1000を用いて測定した。結果を表1に示した。
(Comparative Example 2)
To the reaction well on the sensor stick prepared in (Comparative Example 1), 50 μL of a 0.5 μg / mL (1 nM) fluorescent dye-labeled antibody solution and 50 μL of a sample containing CRP at the concentrations shown in Table 1 were added. Incubated for minutes. This was passed through a prism, and excitation light was incident on the interface between the prism and the metal film at an incident angle that generates surface plasmons, and the generated fluorescence was measured using LAS-1000 manufactured by Fujifilm. The results are shown in Table 1.

表1に示すように本発明によれば、抗原抗体反応を液層で行えるため、固相での反応と比較して反応効率が向上する。これにより測定感度の向上が可能となるとともに、反応時間の短縮が可能となる。また、抗体を予め固定化する必要が無いため、汎用性の向上が可能となる。

Figure 2008249361
As shown in Table 1, according to the present invention, since the antigen-antibody reaction can be performed in a liquid layer, the reaction efficiency is improved as compared with the reaction in a solid phase. As a result, the measurement sensitivity can be improved and the reaction time can be shortened. Further, since it is not necessary to immobilize the antibody in advance, versatility can be improved.
Figure 2008249361

本発明の蛍光検出方法を実施可能な表面プラズモンセンサーを示す概略側面図The schematic side view which shows the surface plasmon sensor which can implement the fluorescence detection method of this invention 従来の蛍光センサーの一例を示す概略側面図Schematic side view showing an example of a conventional fluorescent sensor 従来の蛍光センサーの別の例を示す概略側面図Schematic side view showing another example of a conventional fluorescent sensor 従来の蛍光センサーのさらに別の例を示す概略側面図Schematic side view showing still another example of a conventional fluorescent sensor

符号の説明Explanation of symbols

1 試料
2 抗原
4 分析対象物質を特異的に認識する第一の物質
5 試料保持部
6 分析対象物質を特異的に認識する第二の物質
7 光源
8 光ビーム
9 光検出器
10 蛍光体
12 光導波路
13 プリズム
20 金属膜
31 不撓性膜
41 磁石
51 磁性体
DESCRIPTION OF SYMBOLS 1 Sample 2 Antigen 4 The 1st substance which recognizes specifically a to-be-analyzed substance 5 The sample holding part 6 The 2nd substance to specifically recognize an to-be-analyzed substance 7 Light source 8 Light beam 9 Photodetector 10 Phosphor 12 Light Waveguide 13 Prism 20 Metal film 31 Inflexible film 41 Magnet 51 Magnetic body

Claims (6)

光導波路と、該光導波路に形成された金属膜と、金属膜の上に形成された不撓性膜と、光ビームを発生させる光源と、前記光ビームを光導波路に通し、該光導波路と金属膜との界面に対して表面プラズモンを発生させる入射角で入射させる光学系と、該表面プラズモンによって増強されたエバネッセント波によって励起されたことによって発生する蛍光を検出する蛍光検出手段とを備えてなる表面プラズモンセンサーにおいて、不撓性膜に対して反対の光導波路面に磁性物質を誘引することが可能なユニットを有することを特徴とする表面プラズモンセンサー。   An optical waveguide; a metal film formed on the optical waveguide; an inflexible film formed on the metal film; a light source that generates a light beam; and passing the light beam through the optical waveguide. An optical system that makes incident light at an incident angle that generates surface plasmon to the interface with the film, and fluorescence detection means that detects fluorescence generated by excitation by an evanescent wave enhanced by the surface plasmon. A surface plasmon sensor comprising a unit capable of attracting a magnetic substance to an optical waveguide surface opposite to an inflexible film. 該不撓性膜の膜厚が10〜100nmの範囲にあることを特徴とする請求項2に記載の表面プラズモン蛍光センサー。   The surface plasmon fluorescence sensor according to claim 2, wherein the inflexible film has a thickness in a range of 10 to 100 nm. 検体を含む試料と、磁気粒子で標識された測定対象物質(A)を特異的に認識する第一の蛋白質(X)および上記表面プラズモンセンサーで検出可能な蛍光色素により修飾された測定対象物質を認識する第二の蛋白質(Y)を同時にまたは段階的に作用させX、AおよびYの複合体を形成させる工程、および前記工程において生じたX、AおよびY複合体を磁力によってセンサー表面に集める工程を含み、該X、AおよびY複合体を請求項1に記載の表面プラズモンセンサーにおいて測定することを特徴とする分析方法。 A sample containing a specimen, a first protein (X) that specifically recognizes a measurement target substance (A) labeled with magnetic particles, and a measurement target substance modified with a fluorescent dye that can be detected by the surface plasmon sensor A process of forming a complex of X, A, and Y by simultaneously or stepwise acting a second protein (Y) to be recognized, and collecting the X, A, and Y complex generated in the above process on the sensor surface by magnetic force A method comprising the steps of: measuring the X, A and Y complex using the surface plasmon sensor according to claim 1. 磁気粒子の粒径が10〜100nmの範囲にあることを特徴とする請求項2に記載の分析方法。 3. The analysis method according to claim 2, wherein the particle size of the magnetic particles is in the range of 10 to 100 nm. 分析対象物を特異的に認識する蛋白質が抗体であることを特徴とする請求項2-3に記載の測定方法。 4. The measurement method according to claim 2-3, wherein the protein that specifically recognizes the analyte is an antibody. 分析対象物を特異的に認識する第一の蛋白質および第二の蛋白質の両方または一方がモノクローナル抗体であることを特徴とする請求項2〜請求項4に記載の測定方法。 5. The measuring method according to claim 2, wherein both or one of the first protein and the second protein that specifically recognizes the analyte is a monoclonal antibody.
JP2007087840A 2007-03-29 2007-03-29 Surface plasmon sensor and immunological measuring method Abandoned JP2008249361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087840A JP2008249361A (en) 2007-03-29 2007-03-29 Surface plasmon sensor and immunological measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087840A JP2008249361A (en) 2007-03-29 2007-03-29 Surface plasmon sensor and immunological measuring method

Publications (1)

Publication Number Publication Date
JP2008249361A true JP2008249361A (en) 2008-10-16

Family

ID=39974509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087840A Abandoned JP2008249361A (en) 2007-03-29 2007-03-29 Surface plasmon sensor and immunological measuring method

Country Status (1)

Country Link
JP (1) JP2008249361A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087088A1 (en) * 2009-01-30 2010-08-05 独立行政法人産業技術総合研究所 Sample detection sensor and sample detection method
JP2010210451A (en) * 2009-03-11 2010-09-24 Fujifilm Corp Total reflection illumination type sensor chip, manufacturing method of same, and sensing method using same
JP2011033454A (en) * 2009-07-31 2011-02-17 Fujifilm Corp Detection method, and dielectric particles containing magnetic material used for detection method
EP2309268A1 (en) 2009-09-11 2011-04-13 Fujifilm Corporation Method for immunoassay using latex particles
JP2011184372A (en) * 2010-03-09 2011-09-22 Fujifilm Corp ANTIBODY AGAINST CANINE TSH alpha-CHAIN PEPTIDE
EP2562185A1 (en) 2011-08-24 2013-02-27 Fujifilm Corporation Antibody against human TSH and canine TSH
EP2573570A1 (en) 2011-09-26 2013-03-27 Fujifilm Corporation Cortisol immunoassay using fluorescent particles
EP2573561A1 (en) 2011-09-26 2013-03-27 Fujifilm Corporation Thyroxine immunoassay using fluorescent particles
EP2574927A1 (en) 2011-09-28 2013-04-03 Fujifilm Corporation Method for measuring substance to be measured using fluorescent particles, test subsance measurement chip, and test subsance measurement kit
JP2013061298A (en) * 2011-09-14 2013-04-04 Toshiba Corp Optical waveguide type measuring system, measuring method and optical waveguide type sensor chip
EP2784507A1 (en) 2013-03-29 2014-10-01 FUJIFILM Corporation Test substance assay method, test substance assay kit, and test substance assay reagent
EP2995952A1 (en) 2014-09-09 2016-03-16 Fujifilm Corporation Reagent kit, measurement kit, and method of measuring test substance
JPWO2015178099A1 (en) * 2014-05-23 2017-04-20 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus
WO2017150517A1 (en) 2016-02-29 2017-09-08 富士フイルム株式会社 Kit for determining quantity of substance to be assayed in biological sample
WO2017150518A1 (en) 2016-02-29 2017-09-08 富士フイルム株式会社 Kit for determining quantity of bile acid in biological sample and method for determining quantity of bile acid in biological sample
WO2018181798A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit, method and reagent for measuring measurement target substance
WO2018181800A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit and method for measuring measurement target substance in biological sample
WO2018181797A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit and method for measuring measurement target substance in biological sample
WO2018181795A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit and method for measuring measurement target substance in biological sample
WO2018181796A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit and method for measuring measurement target substance in biological sample
WO2018181799A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit, method and reagent for measuring measurement target substance
EP3531132A1 (en) 2018-02-22 2019-08-28 Fujifilm Corporation Kit for measuring substance to be measured, fluorescent labeling agent, and fluorescently labeled antibody
WO2019163929A1 (en) 2018-02-22 2019-08-29 富士フイルム株式会社 Progesterone measurement kit, progesterone measurement method, and progesterone measurement reagent
WO2019177158A1 (en) 2018-03-16 2019-09-19 富士フイルム株式会社 Reagent kit, measurement kit, and measurement method
WO2019177157A1 (en) 2018-03-16 2019-09-19 富士フイルム株式会社 Reagent kit, measurement kit, and measurement method
WO2020027097A1 (en) 2018-07-31 2020-02-06 富士フイルム株式会社 Solid phase carrier and kit
WO2020158836A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Reagent kit, measurement kit and measurement method
WO2020158835A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Reagent kit, measurement kit, and measurement method
WO2020162474A1 (en) 2019-02-06 2020-08-13 富士フイルム株式会社 Kit for measuring analyte and method for measuring analyte
EP3594663A4 (en) * 2017-04-14 2020-12-30 National Institute of Advanced Industrial Science and Technology Desired-substance detection chip, desired-substance detection device, and desired-substance detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061211A (en) * 2002-07-26 2004-02-26 Shimadzu Corp Method and device for detecting fluorescence
JP2005077338A (en) * 2003-09-02 2005-03-24 Sysmex Corp Optical quantitative method and optical quantitative device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061211A (en) * 2002-07-26 2004-02-26 Shimadzu Corp Method and device for detecting fluorescence
JP2005077338A (en) * 2003-09-02 2005-03-24 Sysmex Corp Optical quantitative method and optical quantitative device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182900B2 (en) * 2009-01-30 2013-04-17 独立行政法人産業技術総合研究所 Sample detection sensor and sample detection method
WO2010087088A1 (en) * 2009-01-30 2010-08-05 独立行政法人産業技術総合研究所 Sample detection sensor and sample detection method
JP2010210451A (en) * 2009-03-11 2010-09-24 Fujifilm Corp Total reflection illumination type sensor chip, manufacturing method of same, and sensing method using same
JP2011033454A (en) * 2009-07-31 2011-02-17 Fujifilm Corp Detection method, and dielectric particles containing magnetic material used for detection method
CN101988922A (en) * 2009-07-31 2011-03-23 富士胶片株式会社 Detecting method and dielectric particle containing magnetic material employed in the detecting method
US8456158B2 (en) 2009-07-31 2013-06-04 Fujifilm Corporation Detecting method and dielectric particles containing magnetic material employed in the detecting method
EP2309268A1 (en) 2009-09-11 2011-04-13 Fujifilm Corporation Method for immunoassay using latex particles
JP2011184372A (en) * 2010-03-09 2011-09-22 Fujifilm Corp ANTIBODY AGAINST CANINE TSH alpha-CHAIN PEPTIDE
EP2562185A1 (en) 2011-08-24 2013-02-27 Fujifilm Corporation Antibody against human TSH and canine TSH
US9296814B2 (en) 2011-08-24 2016-03-29 Fujifilm Corporation Antibody against human TSH and canine TSH
JP2013061298A (en) * 2011-09-14 2013-04-04 Toshiba Corp Optical waveguide type measuring system, measuring method and optical waveguide type sensor chip
EP2573570A1 (en) 2011-09-26 2013-03-27 Fujifilm Corporation Cortisol immunoassay using fluorescent particles
EP2573561A1 (en) 2011-09-26 2013-03-27 Fujifilm Corporation Thyroxine immunoassay using fluorescent particles
US8912010B2 (en) 2011-09-26 2014-12-16 Fujifilm Corporation Thyroxine immunoassay using fluorescent particles
EP2574927A1 (en) 2011-09-28 2013-04-03 Fujifilm Corporation Method for measuring substance to be measured using fluorescent particles, test subsance measurement chip, and test subsance measurement kit
EP2784507A1 (en) 2013-03-29 2014-10-01 FUJIFILM Corporation Test substance assay method, test substance assay kit, and test substance assay reagent
JPWO2015178099A1 (en) * 2014-05-23 2017-04-20 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus
EP2995952A1 (en) 2014-09-09 2016-03-16 Fujifilm Corporation Reagent kit, measurement kit, and method of measuring test substance
WO2017150517A1 (en) 2016-02-29 2017-09-08 富士フイルム株式会社 Kit for determining quantity of substance to be assayed in biological sample
WO2017150518A1 (en) 2016-02-29 2017-09-08 富士フイルム株式会社 Kit for determining quantity of bile acid in biological sample and method for determining quantity of bile acid in biological sample
WO2018181798A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit, method and reagent for measuring measurement target substance
WO2018181800A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit and method for measuring measurement target substance in biological sample
WO2018181797A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit and method for measuring measurement target substance in biological sample
WO2018181795A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit and method for measuring measurement target substance in biological sample
WO2018181796A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit and method for measuring measurement target substance in biological sample
WO2018181799A1 (en) 2017-03-30 2018-10-04 富士フイルム株式会社 Kit, method and reagent for measuring measurement target substance
US11821896B2 (en) 2017-03-30 2023-11-21 Fujifilm Corporation Kit and method for measuring measurement target substance in biological sample
US11733244B2 (en) 2017-03-30 2023-08-22 Fujifilm Corporation Kit, method, and reagent for measuring measurement target substance
US11674954B2 (en) 2017-03-30 2023-06-13 Fujifilm Corporation Kit and method for measuring measurement target substance in biological sample
EP3594663A4 (en) * 2017-04-14 2020-12-30 National Institute of Advanced Industrial Science and Technology Desired-substance detection chip, desired-substance detection device, and desired-substance detection method
US11112359B2 (en) 2017-04-14 2021-09-07 National Institute Of Advanced Industrial Science And Technology Target substance detection chip, target substance detection device, and target substance detection method
WO2019163929A1 (en) 2018-02-22 2019-08-29 富士フイルム株式会社 Progesterone measurement kit, progesterone measurement method, and progesterone measurement reagent
EP3531132A1 (en) 2018-02-22 2019-08-28 Fujifilm Corporation Kit for measuring substance to be measured, fluorescent labeling agent, and fluorescently labeled antibody
WO2019177157A1 (en) 2018-03-16 2019-09-19 富士フイルム株式会社 Reagent kit, measurement kit, and measurement method
WO2019177158A1 (en) 2018-03-16 2019-09-19 富士フイルム株式会社 Reagent kit, measurement kit, and measurement method
WO2020027097A1 (en) 2018-07-31 2020-02-06 富士フイルム株式会社 Solid phase carrier and kit
WO2020158836A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Reagent kit, measurement kit and measurement method
WO2020158835A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Reagent kit, measurement kit, and measurement method
WO2020162474A1 (en) 2019-02-06 2020-08-13 富士フイルム株式会社 Kit for measuring analyte and method for measuring analyte

Similar Documents

Publication Publication Date Title
JP2008249361A (en) Surface plasmon sensor and immunological measuring method
US8456158B2 (en) Detecting method and dielectric particles containing magnetic material employed in the detecting method
EP3394596B1 (en) Optical detection of particles in a fluid
JP2008102117A (en) Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
KR20140043806A (en) Spr sensor device with nanostructure
US20190025210A1 (en) Optical detection of a substance in fluid
JP4885019B2 (en) Surface plasmon enhanced fluorescence sensor
JP5428322B2 (en) Assay method using plasmon excitation sensor
Minopoli et al. Randomly positioned gold nanoparticles as fluorescence enhancers in apta-immunosensor for malaria test
CN112074740A (en) Imaging assay
Chen et al. Near-infrared surface plasmon resonance sensor with a graphene-gold surface architecture for ultra-sensitive biodetection
KR20160040478A (en) Surface plasmon resonance sensor system capable of real-time monitoring of the sample and analysis method using the same
JP5516198B2 (en) Plasmon excitation sensor chip, plasmon excitation sensor using the same, and analyte detection method
JP2009536333A (en) Chemical detector
JP2008203172A (en) Surface plasmon enhanced fluorescence detection method
WO2011074373A1 (en) Surface plasmon enhanced fluorescence measurement device and chip structure
JP6495440B2 (en) SPFS biosensor based on structural change of nucleic acid ligand
JP2008249360A (en) Surface plasmon sensor
JP2010091527A (en) Assay method using surface plasmon
JP2006329631A (en) Detector of intermolecular interaction and molecule recovery device using it
Park et al. A single-step, digital immunoassay based on serial imaging and image processing
JP2020193868A (en) Detection method and detection device
Chan et al. SPR prism sensor using laser line generator
Sun Label-free sensing on microarrays
JP2013181889A (en) Immunoassay of ck-mb (creatine kinase isozyme mb) using spfs (surface plasmon excitation enhanced fluorescence spectrometry)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20111221