Nothing Special   »   [go: up one dir, main page]

JP2008133341A - Black polyester resin composition for laser welding and molded product using the same - Google Patents

Black polyester resin composition for laser welding and molded product using the same Download PDF

Info

Publication number
JP2008133341A
JP2008133341A JP2006319606A JP2006319606A JP2008133341A JP 2008133341 A JP2008133341 A JP 2008133341A JP 2006319606 A JP2006319606 A JP 2006319606A JP 2006319606 A JP2006319606 A JP 2006319606A JP 2008133341 A JP2008133341 A JP 2008133341A
Authority
JP
Japan
Prior art keywords
resin composition
polyester resin
laser
black
laser welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006319606A
Other languages
Japanese (ja)
Inventor
Motonori Ueda
基範 上田
Hiroshi Nakano
博 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2006319606A priority Critical patent/JP2008133341A/en
Publication of JP2008133341A publication Critical patent/JP2008133341A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7332General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73361General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being opaque to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1619Mid infrared radiation [MIR], e.g. by CO or CO2 lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester resin composition having excellent laser welding characteristics and to provide a molded product firmly bonded by laser welding. <P>SOLUTION: The black polyester resin composition for laser welding is obtained by compounding 100 pts.wt. of (a) a polyester resin with 0-100 pts.wt. of (b) a reinforcing filler and 0.01-1 pt.wt. of (c) a colorant. Furthermore, the (c) colorant is a combination of two or more kinds of colorants containing a phthalocyanine-based pigment. The light transmittance at 960 nm wavelength of the molded product composed of the resin composition and having 1.5 mm thickness is ≥15%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、黒色のレーザー溶着用ポリエステル樹脂組成物に関する。特に、他の樹脂部材とレーザー溶着により強固に接着可能である、黒色のレーザー溶着用ポリエステル樹脂組成物に関する。   The present invention relates to a black laser-welded polyester resin composition. In particular, the present invention relates to a black laser-welded polyester resin composition that can be firmly bonded to other resin members by laser welding.

ポリブチレンテレフタレート樹脂やポリエチレンテレフタレート樹脂に代表される熱可塑性ポリエステル樹脂は、加工が容易であり、さらに、機械的物性、電気特性、耐熱性その他の物理的・化学的特性に優れている。このため、車両部品、電気・電子機器部品その他の精密機器部品等に幅広く使用されている。特に、ポリブチレンテレフタレート樹脂は結晶化速度が速いため射出成形用に好適に用いられる。近年、その多様な用途の中には、車両用電装部品(コントロールユニットなど)、各種センサー部品、コネクター部品等のように、電気回路部分を密封する製品にも展開が進んできた。
ここで、このような密封のための工法としては、接着剤、超音波溶着、熱板溶着、レーザー溶着などが行われてきた。しかしながら、接着剤による工法は、硬化するまでの時間的ロスに加え、周囲の汚染などの環境負荷の問題がある。また、超音波溶着、熱板溶着などは、振動や熱による製品へのダメージや、摩耗粉やバリの発生により後処理が必要になるなどの問題が指摘されている。一方、レーザーによる溶着は、非接触で摩耗粉やバリの発生が無く、製品へのダメージも少ない。
Thermoplastic polyester resins typified by polybutylene terephthalate resins and polyethylene terephthalate resins are easy to process and are excellent in mechanical properties, electrical properties, heat resistance, and other physical and chemical properties. For this reason, it is widely used for vehicle parts, electrical / electronic equipment parts and other precision equipment parts. In particular, polybutylene terephthalate resin is suitably used for injection molding because of its high crystallization rate. In recent years, among the various uses, development has progressed to products that seal electric circuit parts such as vehicle electrical parts (control units, etc.), various sensor parts, connector parts, and the like.
Here, as a construction method for such sealing, an adhesive, ultrasonic welding, hot plate welding, laser welding, and the like have been performed. However, the method using an adhesive has a problem of environmental load such as contamination of the surroundings in addition to time loss until curing. In addition, ultrasonic welding, hot plate welding, and the like have been pointed out as problems such as damage to products due to vibration and heat, and post-treatment required due to generation of wear powder and burrs. On the other hand, laser welding is non-contact, does not generate wear powder or burrs, and has little damage to the product.

ここで、車両用電装部品、センサー部品、コネクター部品など電気回路を密封する製品は、黒色に着色される場合が多い。しかしながら、カーボンブラックや酸化鉄系顔料に代表される黒系の着色剤を配合した樹脂組成物は、レーザー光の透過性が非常に低く、レーザー出力を上げると、レーザー入射側表面での溶融、発煙、接合界面での異常発熱による気泡などの不具合が発生したり、さらに、樹脂の劣化物などによる異物やヘイズによって透過率が低下する場合もある。そのため、黒系着色剤を配合した樹脂組成物は、レーザー透過側部材には使用できないという問題点があった。   Here, products that seal electrical circuits such as vehicle electrical components, sensor components, connector components, etc. are often colored black. However, the resin composition containing a black colorant typified by carbon black or iron oxide pigment has a very low laser light transmission, and when the laser output is increased, melting on the laser incident side surface, In some cases, defects such as smoke generation and bubbles due to abnormal heat generation at the bonding interface may occur, and the transmittance may decrease due to foreign matter or haze caused by a deteriorated resin. Therefore, there is a problem that the resin composition containing the black colorant cannot be used for the laser transmission side member.

これらの問題を解決するため、黄色顔料とバイオレット顔料の2種の顔料を樹脂に配合した、レーザー光に半透明な黒色のポリエステル樹脂組成物(特許文献1)やアントラキノン染料やモノアゾ錯体染料を含有してなるレーザー光透過性着色熱可塑性樹脂組成物(特許文献2)が開示されている。しかし、これらに開示された樹脂組成物は、耐紫外線老化性、耐熱性が十分ではなく、使用する環境にも制約があった。
また、特許文献3には、少なくとも2種の着色剤を使用したレーザー透過溶接が可能な熱可塑性樹脂組成物が記載されているが、フタロシアニン系顔料を用いた例の記載も、ポリエステル樹脂を用いた例の記載もなく、耐紫外線老化性に関する記載もない。
さらにまた、特許文献4には、近赤外線レーザー吸収のための化合物としてフタロシアニン系顔料を用いることが記載されているが、透過側、すなわち、レーザーを照射する側の樹脂組成物にフタロシアニン系顔料を添加することについては、何ら記載も示唆もない。
In order to solve these problems, it contains a black polyester resin composition (Patent Document 1) translucent to laser light in which two types of pigments, a yellow pigment and a violet pigment, are blended in a resin, an anthraquinone dye, and a monoazo complex dye A laser light transmitting colored thermoplastic resin composition (Patent Document 2) is disclosed. However, the resin compositions disclosed therein are not sufficient in ultraviolet aging resistance and heat resistance, and there are restrictions on the environment in which they are used.
Further, Patent Document 3 describes a thermoplastic resin composition capable of laser transmission welding using at least two kinds of colorants, but the description using an example using a phthalocyanine pigment also uses a polyester resin. There is no description of the examples, and there is no description of UV aging resistance.
Furthermore, Patent Document 4 describes using a phthalocyanine pigment as a compound for absorbing near-infrared laser. However, a phthalocyanine pigment is added to the resin composition on the transmission side, that is, the laser irradiation side. There is no description or suggestion about the addition.

特許第3737926号公報Japanese Patent No. 3737926 特表2004−517995号公報Special table 2004-517995 gazette 特表2003−517075号公報Special table 2003-517075 gazette 特開2003−183524号公報JP 2003-183524 A

本発明は、上記実情に鑑みなされたものであり、その目的は、レーザー溶着特性に優れた黒色のレーザー溶着用ポリエステル樹脂組成物(以下、「本発明のポリエステル樹脂組成物」ということがある)、および、本発明のポリエステル樹脂組成物を用いた成形品および該成形品の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and the purpose thereof is a black laser-welded polyester resin composition excellent in laser welding characteristics (hereinafter sometimes referred to as “polyester resin composition of the present invention”). Another object of the present invention is to provide a molded article using the polyester resin composition of the present invention and a method for producing the molded article.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、フタロシアニン系顔料を含む2種類以上の着色剤を組み合わせて使用して黒色の色相を発現させることにより、溶着特性に優れた黒色のレーザー溶着用ポリエステル樹脂組成物が得られることを見出した。
さらに、該黒色のレーザー溶着用ポリエステル樹脂組成物は、耐紫外線老化性が良好であることを見出し、本発明の完成に至った。
As a result of intensive research to solve the above problems, the present inventors have excellent welding characteristics by developing a black hue using a combination of two or more colorants including a phthalocyanine pigment. It was found that a black polyester resin composition for laser welding was obtained.
Further, the black laser-welded polyester resin composition was found to have good UV aging resistance, and the present invention was completed.

本発明は、上記の知見に基づき完成されたものであり、要旨は以下の通りである。
(1)(a)ポリエステル樹脂100重量部に対し、(b)強化充填材0〜100重量部、(c)着色剤0.01〜1重量部配合してなるポリエステル樹脂組成物であって、前記(c)着色剤がフタロシアニン系顔料を含む2種類以上の着色剤の組合せであり、さらに、該樹脂組成物からなる厚み1.5mmの成形品の、波長960nmにおける光線透過率が15%以上である、黒色のレーザー溶着用ポリエステル樹脂組成物。
(2)(a)ポリエステル樹脂がポリブチレンテレフタレートである、(1)に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。
(3)(b)強化充填材がガラス繊維である、(1)または(2)に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。
(4)前記フタロシアニン系顔料が青色の着色剤である、(1)〜(3)のいずれか1項に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。
(5)フタロシアニン系顔料以外の(c)着色剤として、茶色の着色剤を含む、(1)〜(4)のいずれか1項に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。
(6)前記茶色の着色剤がメチン系染料である(5)に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。
(7)レーザー透過側の部材に用いられる、(1)〜(6)のいずれか1項に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。
(8)(1)〜(7)のいずれか1項に記載の黒色のレーザー溶着用ポリエステル樹脂組成物(A)からなる部材とレーザー吸収性を有する樹脂組成物(B)からなる部材を、前記樹脂組成物(A)からなる部材側からレーザー光を照射して溶着させてなる成形品。
(9)(1)〜(7)のいずれか1項に記載の黒色のレーザー溶着用ポリエステル樹脂組成物(A)からなる部材とレーザー吸収性を有する樹脂組成物(B)からなる部材を、前記樹脂組成物(A)からなる部材側からレーザー光を照射して溶着させる工程を含む成形品の製造方法。
The present invention has been completed based on the above findings, and the gist is as follows.
(1) A polyester resin composition comprising (b) 0 to 100 parts by weight of a reinforcing filler and (c) 0.01 to 1 part by weight of a colorant, with respect to 100 parts by weight of the (a) polyester resin, The (c) colorant is a combination of two or more colorants containing a phthalocyanine pigment, and the light transmittance at a wavelength of 960 nm of a molded product having a thickness of 1.5 mm made of the resin composition is 15% or more. A polyester resin composition for black laser welding.
(2) (a) The polyester resin composition for black laser welding according to (1), wherein the polyester resin is polybutylene terephthalate.
(3) The black laser welding polyester resin composition according to (1) or (2), wherein the reinforcing filler (b) is a glass fiber.
(4) The black laser welding polyester resin composition according to any one of (1) to (3), wherein the phthalocyanine pigment is a blue colorant.
(5) The black laser welding polyester resin composition according to any one of (1) to (4), which contains a brown colorant as a colorant other than the phthalocyanine pigment (c).
(6) The black laser welding polyester resin composition according to (5), wherein the brown colorant is a methine dye.
(7) The black laser welding polyester resin composition according to any one of (1) to (6), which is used for a member on a laser transmission side.
(8) A member made of the black laser welding polyester resin composition (A) according to any one of (1) to (7) and a member made of the resin composition (B) having laser absorptivity, A molded article obtained by welding by irradiating a laser beam from the member side made of the resin composition (A).
(9) A member made of the black laser-welding polyester resin composition (A) according to any one of (1) to (7) and a member made of the resin composition (B) having laser absorption, The manufacturing method of the molded article including the process of irradiating and welding a laser beam from the member side which consists of the said resin composition (A).

本発明により、レーザー溶着特性に優れた黒色のポリエステル樹脂組成物が得られた。また、本発明の黒色のレーザー溶着用樹脂組成物を用いることにより、部材同士がより強固に接着した成形品を得ることが可能になった。   According to the present invention, a black polyester resin composition excellent in laser welding characteristics was obtained. In addition, by using the black laser welding resin composition of the present invention, it is possible to obtain a molded product in which members are more firmly bonded to each other.

以下において、本発明の内容について詳細に説明する。尚、本願明細書において「〜」とは、その前後に記載される数値を下限値および上限値として含む意味で使用される。
本発明における「黒色」の樹脂組成物とは、ポリブチレンテレフタレート樹脂100重量部に対し、カーボンブラックを0.6重量部配合してなる樹脂組成物を成形して得られる、厚み2mmの成形品のL***表色系による色相を基準としたときの色相の差(色差:ΔE)が10以下であることをいい、好ましくは5以下であることをいう。
Hereinafter, the contents of the present invention will be described in detail. In the specification of the present application, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
The “black” resin composition in the present invention is a molded product having a thickness of 2 mm obtained by molding a resin composition comprising 0.6 parts by weight of carbon black with respect to 100 parts by weight of polybutylene terephthalate resin. This means that the hue difference (color difference: ΔE) based on the hue of the L * a * b * color system is 10 or less, preferably 5 or less.

<(a)ポリエステル樹脂>
本発明で採用する(a)ポリエステル樹脂としては、公知のポリエステル樹脂を広く用いることができる。(a)ポリエステル樹脂は、1種のみでも、2種以上を併用してもよい。(a)ポリエステル樹脂として、好ましくは、ジカルボン酸またはその誘導体と、ジオールとからなるポリエステル樹脂である。
ジカルボン酸またはその誘導体としては、芳香族ジカルボン酸、脂環式ジカルボン酸、および、脂肪族ジカルボン酸、ならびに、これらの低級アルキルまたはグリコールのエステルが好ましく、芳香族ジカルボン酸またはこの低級アルキル(例えば、炭素原子数1〜4)あるいはグリコールのエステルがより好ましく、テレフタル酸またはこの低級アルキルエステルがさらに好ましい。
芳香族ジカルボン酸としては、テレフタル酸、フタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ベンゾフェノンジカルボン酸、4,4’−ジフェノキシエタンジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸および2,6−ナフタレンジカルボン酸が好ましい例として挙げられる。
脂環式ジカルボン酸としては、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸および1,4−シクロヘキサンジカルボン酸が好ましい例として挙げられる。
脂肪族ジカルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸およびセバシン酸等が好ましい例として挙げられる。
これらのジカルボン酸またはその誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。
<(A) Polyester resin>
As the (a) polyester resin employed in the present invention, known polyester resins can be widely used. (A) The polyester resin may be used alone or in combination of two or more. (A) The polyester resin is preferably a polyester resin comprising dicarboxylic acid or a derivative thereof and a diol.
As the dicarboxylic acid or derivative thereof, aromatic dicarboxylic acid, alicyclic dicarboxylic acid, and aliphatic dicarboxylic acid, and esters of these lower alkyls or glycols are preferred, and aromatic dicarboxylic acids or their lower alkyls (for example, C1-4) or an ester of glycol is more preferable, and terephthalic acid or a lower alkyl ester thereof is more preferable.
Aromatic dicarboxylic acids include terephthalic acid, phthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′-benzophenone dicarboxylic acid, 4,4′-diphenoxy. Preferred examples include ethanedicarboxylic acid, 4,4′-diphenylsulfonedicarboxylic acid and 2,6-naphthalenedicarboxylic acid.
Preferred examples of the alicyclic dicarboxylic acid include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid.
Preferred examples of the aliphatic dicarboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
These dicarboxylic acids or derivatives thereof may be used alone or in combination of two or more.

ジオールとしては、脂肪族ジオール、脂環式ジオールおよび芳香族ジオールが好ましい。
脂肪族ジオールとしては、好ましくは、炭素数2〜20の脂肪族ジオールであり、エチレングリコール、1,4−ブタンジオール、ジエチレングリコール、ポリエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ポリプロピレングリコール、ポリテトラメチレングリコール、ジブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオールおよび1,8−オクタンジオールを好ましい例として挙げることができる。
脂環式ジオールとしては、好ましくは、炭素数2〜20の脂環式ジオールであり、1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,1−シクロヘキサンジメチロールおよび1,4−シクロヘキサンジメチロールを好ましい例として挙げることができる。
芳香族ジオールとしては、好ましくは、炭素数6〜14の芳香族ジオールであり、キシリレングリコール、4,4’−ジヒドロキシビフェニル、2,2−ビス(4−ヒドロキシフェニル)プロパンおよびビス(4−ヒドロキシフェニル)スルホンを好ましい例として挙げることができる。
これらのジオールは、1種のみを用いてもよいし、2種以上を併用してもよい。
As the diol, an aliphatic diol, an alicyclic diol, and an aromatic diol are preferable.
The aliphatic diol is preferably an aliphatic diol having 2 to 20 carbon atoms, such as ethylene glycol, 1,4-butanediol, diethylene glycol, polyethylene glycol, 1,2-propanediol, 1,3-propanediol, Preferable examples include polypropylene glycol, polytetramethylene glycol, dibutylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol and 1,8-octanediol.
The alicyclic diol is preferably an alicyclic diol having 2 to 20 carbon atoms, such as 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,1-cyclohexanedimethylol and 1,4-cyclohexane. A preferred example is dimethylol.
The aromatic diol is preferably an aromatic diol having 6 to 14 carbon atoms, such as xylylene glycol, 4,4′-dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane and bis (4- Hydroxyphenyl) sulfone can be mentioned as a preferred example.
These diols may be used alone or in combination of two or more.

本発明の(a)ポリエステル樹脂は、ヒドロキシカルボン酸、単官能成分、および/または三官能以上の多官能成分を有していてもよい。
ヒドロキシカルボン酸としては、乳酸、グリコール酸、m−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフタレンカルボン酸およびp−β−ヒドロキシエトキシ安息香酸が好ましい例として挙げられる。
単官能成分としては、アルコキシカルボン酸、ステアリルアルコール、ベンジルアルコール、ステアリン酸、安息香酸、tert−ブチル安息香酸およびベンゾイル安息香酸が好ましい例として挙げられる。
三官能以上の多官能成分としては、トリカルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、没食子酸、トリメチロールエタン、トリメチロールプロパン、グリセロールおよびペンタエリスリトールが好ましい例として挙げられる。
The (a) polyester resin of the present invention may have a hydroxycarboxylic acid, a monofunctional component, and / or a trifunctional or higher polyfunctional component.
Preferable examples of the hydroxycarboxylic acid include lactic acid, glycolic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, 6-hydroxy-2-naphthalenecarboxylic acid and p-β-hydroxyethoxybenzoic acid.
Preferred monofunctional components include alkoxycarboxylic acid, stearyl alcohol, benzyl alcohol, stearic acid, benzoic acid, tert-butylbenzoic acid and benzoylbenzoic acid.
Preferred examples of the trifunctional or higher functional component include tricarballylic acid, trimellitic acid, trimesic acid, pyromellitic acid, gallic acid, trimethylolethane, trimethylolpropane, glycerol, and pentaerythritol.

(a)ポリエステル樹脂は、ポリブチレンテレフタレート樹脂(PBT樹脂)がより好ましく、テレフタル酸を唯一のジカルボン酸単位とし、1,4−ブタンジオールを唯一のジオール単位とするポリブチレンテレフタレート単独重合体がさらに好ましい。本発明でいうPBT樹脂とは、テレフタル酸が全ジカルボン酸成分の50モル%以上を占め、1,4−ブタンジオールが全ジオールの50モル%以上を占めることをいう。PBT樹脂は、さらに、ジカルボン酸単位中のテレフタル酸の割合が70モル%以上のものが好ましく、90モル%以上のものがより好ましい。また、ジオール単位中の1,4−ブタンジオールの割合は、70モル%以上が好ましく、90モル%以上がより好ましい。このようなPBT樹脂を用いることにより、機械的性質および耐熱性がより向上する傾向にあり好ましい。   (A) The polyester resin is more preferably a polybutylene terephthalate resin (PBT resin), a polybutylene terephthalate homopolymer having terephthalic acid as the only dicarboxylic acid unit and 1,4-butanediol as the only diol unit. preferable. The PBT resin referred to in the present invention means that terephthalic acid accounts for 50 mol% or more of all dicarboxylic acid components, and 1,4-butanediol accounts for 50 mol% or more of all diols. The PBT resin further preferably has a terephthalic acid ratio in the dicarboxylic acid unit of 70 mol% or more, more preferably 90 mol% or more. Moreover, 70 mol% or more is preferable and the ratio of 1, 4- butanediol in a diol unit has more preferable 90 mol% or more. Use of such a PBT resin is preferred because mechanical properties and heat resistance tend to be further improved.

本発明におけるPBT樹脂の固有粘度は、テトラクロロエタンとフェノールが1:1(重量比)の混合溶媒中、30℃の測定で0.5〜3.0dl/gが好ましく、0.5〜1.5dl/gがより好ましく、0.6〜1.3dl/gであることがさらに好ましい。固有粘度を0.5dl/g以上とすることにより、機械的性質を優れたものとすることができ、3.0dl/g以下とすることにより、流動性を良好に保ち成形加工がより容易になる。さらに、2種以上の固有粘度の異なるPBT樹脂を併用し上記範囲内の固有粘度としてもよい。   The intrinsic viscosity of the PBT resin in the present invention is preferably 0.5 to 3.0 dl / g as measured at 30 ° C. in a mixed solvent of tetrachloroethane and phenol of 1: 1 (weight ratio). 5 dl / g is more preferable, and 0.6 to 1.3 dl / g is still more preferable. By setting the intrinsic viscosity to 0.5 dl / g or more, the mechanical properties can be improved, and by setting the intrinsic viscosity to 3.0 dl / g or less, the fluidity is kept good and the molding process is easier. Become. Furthermore, it is good also as an intrinsic viscosity within the said range by using together 2 or more types of PBT resin from which intrinsic viscosity differs.

(a)ポリエステル樹脂を製造する場合、公知の方法を広く採用できる。例えば、テレフタル酸成分と1,4−ブタンジオール成分とからなるPBT樹脂の場合、直接重合法およびエステル交換法のいずれの方法も採用できる。直接重合法は、例えば、テレフタル酸と1,4−ブタンジオールを直接エステル化反応させる方法であり、初期のエステル化反応で水が生成する。エステル交換法は、例えば、テレフタル酸ジメチルを主原料として使用する方法であり、初期のエステル交換反応でアルコールが生成する。直接エステル化反応は原料コスト面から好ましい。
また、ポリエステル樹脂は、原料供給またはポリマーの払い出し形態について、回分法および連続法のいずれの方法で製造してもよい。さらに、初期のエステル化反応またはエステル交換反応を連続操作で行って、それに続く重縮合を回分操作で行ったり、逆に、初期のエステル化反応またはエステル交換反応を回分操作で行って、それに続く重縮合を連続操作で行う方法もある。
(A) When manufacturing a polyester resin, a well-known method is employable widely. For example, in the case of a PBT resin composed of a terephthalic acid component and a 1,4-butanediol component, either a direct polymerization method or a transesterification method can be employed. The direct polymerization method is, for example, a method in which terephthalic acid and 1,4-butanediol are directly esterified, and water is generated in the initial esterification reaction. The transesterification method is a method using, for example, dimethyl terephthalate as a main raw material, and alcohol is generated by an initial transesterification reaction. The direct esterification reaction is preferable from the viewpoint of raw material costs.
Further, the polyester resin may be produced by any one of a batch method and a continuous method with respect to a raw material supply or a polymer discharge form. Further, the initial esterification reaction or transesterification reaction is performed in a continuous operation, and the subsequent polycondensation is performed in a batch operation, or conversely, the initial esterification reaction or transesterification reaction is performed in a batch operation, followed by There is also a method of performing polycondensation in a continuous operation.

<(b)強化充填材>
本発明で用いる(b)強化充填材は、特に定めるものではなく、繊維状、板状、粒状物およびこれらの混合物を広く採用できる。
繊維状物としては、例えば、ガラス繊維、カーボン繊維、シリカアルミナ繊維、ジルコニア繊維、ホウ素繊維、窒化ホウ素繊維、窒化ケイ素チタン酸カリウム繊維、金属繊維などの無機繊維、芳香族ポリアミド繊維、フッ素樹脂繊維などの有機繊維が挙げられる。
板状物としては、例えば、ガラスフレーク、雲母、金属箔が挙げられる。
粒状物としては、例えば、セラミックビーズ、ワラストナイト、タルク、クレー、マイカ、ゼオライト、カオリン、チタン酸カリウム、硫酸バリウム、酸化チタン、酸化ケイ素、酸化アルミニウム、水酸化マグネシウムが挙げられる。
本発明においては、上記(b)強化充填材の中でも、繊維状のものが好ましく用いられる。
<(B) Reinforcing filler>
The reinforcing filler (b) used in the present invention is not particularly defined, and a wide range of fiber shapes, plate shapes, granular materials, and mixtures thereof can be adopted.
Examples of fibrous materials include glass fibers, carbon fibers, silica alumina fibers, zirconia fibers, boron fibers, boron nitride fibers, silicon nitride potassium titanate fibers, metal fibers and other inorganic fibers, aromatic polyamide fibers, and fluororesin fibers. Organic fibers such as
Examples of the plate-like material include glass flakes, mica, and metal foil.
Examples of the particulate material include ceramic beads, wollastonite, talc, clay, mica, zeolite, kaolin, potassium titanate, barium sulfate, titanium oxide, silicon oxide, aluminum oxide, and magnesium hydroxide.
In the present invention, among the reinforcing fillers (b), a fibrous material is preferably used.

(b)強化充填材の形状が繊維状である場合、その平均繊維径は、特に制限されないが、1〜100μmが好ましく、2〜50μmがより好ましく、3〜30μmが特に好ましく、5〜20μmが最も好ましい。このような繊維径のものを採用することにより、機械的性質をより優れたものとすることができる。また、平均繊維長は、特に制限されないが、0.1〜20mmが好ましく、1〜10mmがより好ましい。平均繊維長を0.1mm以上とすることにより、繊維状充填材による補強効果がより効果的に発現され、平均繊維長を20mm以下とすることにより、(a)ポリエステル樹脂との溶融混練や強化ポリエステル樹脂組成物の成形がより容易になる。   (B) When the shape of the reinforcing filler is fibrous, the average fiber diameter is not particularly limited, but is preferably 1 to 100 μm, more preferably 2 to 50 μm, particularly preferably 3 to 30 μm, and 5 to 20 μm. Most preferred. By adopting such a fiber diameter, the mechanical properties can be further improved. Moreover, especially average fiber length is although it does not restrict | limit, 0.1-20 mm is preferable and 1-10 mm is more preferable. By making the average fiber length 0.1 mm or more, the reinforcing effect by the fibrous filler is more effectively expressed, and by making the average fiber length 20 mm or less, (a) melt kneading or strengthening with a polyester resin Molding of the polyester resin composition becomes easier.

本発明で用いる(b)強化充填材は、ポリエステル樹脂と強化充填材の親和性を増し界面密着性を向上させ、界面における空隙形成による不透明化要因を排除、低減するために表面処理されているものが好ましく、シランカップリング剤およびエポキシ樹脂で表面処理されているものがさらに好ましい。
シランカップリング剤としては、アミノシラン系、エポキシシラン系、アリルシラン系、ビニルシラン系等が挙げられる。これらの中では、アミノシラン系が好ましい。アミノ系シランカップリング剤としては、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシランおよびγ−(2−アミノエチル)アミノプロピルトリメトキシシランが好ましい例として挙げられる。表面処理剤中のシランカップリング剤の含有量は、0.1〜8重量%が好ましく、0.5〜5重量%がより好ましい。
エポキシ樹脂としては、フェノールノボラック型のエポキシ樹脂およびクレゾールノボラック型のエポキシ樹脂等の多官能エポキシ樹脂が好ましい。表面処理剤中のエポキシ樹脂の含有量は1〜20重量%が好ましく、2〜10重量%がより好ましい。
(b)強化充填材に用いられる表面処理剤に含有される成分としては、アミノ系シランカップリング剤と、ノボラック型エポキシ樹脂の組み合わせが特に好ましい。表面処理剤をこのような構成とすることにより、アミノ系シランカップリング剤の無機官能基は(b)強化充填材表面と、アミノシランの有機官能基はエポキシ樹脂のグリシジル基と、エポキシ樹脂のグリシジル基は(a)ポリエステル樹脂と、それぞれ反応性に富み、結果として、(b)強化充填材とエポキシ樹脂との界面密着力が向上する。そのため、本発明のポリエステル樹脂組成物の機械的性質および耐加水分解性が向上し、さらには、界面での空隙形成による不透明化が低減するため、透過率も向上する。
The reinforcing filler (b) used in the present invention is surface-treated in order to increase the affinity between the polyester resin and the reinforcing filler, improve the interfacial adhesion, and eliminate or reduce the opacity factor due to void formation at the interface. Those having been surface-treated with a silane coupling agent and an epoxy resin are more preferable.
Examples of the silane coupling agent include amino silane, epoxy silane, allyl silane, and vinyl silane. Of these, aminosilanes are preferred. Preferred examples of the amino silane coupling agent include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, and γ- (2-aminoethyl) aminopropyltrimethoxysilane. The content of the silane coupling agent in the surface treatment agent is preferably 0.1 to 8% by weight, and more preferably 0.5 to 5% by weight.
The epoxy resin is preferably a polyfunctional epoxy resin such as a phenol novolac type epoxy resin and a cresol novolac type epoxy resin. The content of the epoxy resin in the surface treatment agent is preferably 1 to 20% by weight, and more preferably 2 to 10% by weight.
(B) As a component contained in the surface treating agent used for the reinforcing filler, a combination of an amino-based silane coupling agent and a novolac type epoxy resin is particularly preferable. By making the surface treating agent such a structure, the inorganic functional group of the amino silane coupling agent is (b) the reinforcing filler surface, the organic functional group of aminosilane is the glycidyl group of the epoxy resin, and the glycidyl of the epoxy resin. The group is highly reactive with (a) the polyester resin, and as a result, (b) the interfacial adhesion between the reinforcing filler and the epoxy resin is improved. Therefore, the mechanical properties and hydrolysis resistance of the polyester resin composition of the present invention are improved, and further, the opacity due to void formation at the interface is reduced, so that the transmittance is also improved.

(b)強化充填材に用いられる表面処理剤には、本発明の趣旨を逸脱しない範囲内で、その他の成分、例えば、ウレタン樹脂、アクリル樹脂、帯電防止剤、潤滑剤および撥水剤などを含めることができる。
表面処理剤での処理方法としては、例えば、特開2001−172055号公報、特開昭53−106749号公報等に記載の方法のように、表面処理剤により予め表面処理しておくこともできるし、本発明のポリエステル樹脂組成物調製の際に、未処理の(b)強化充填材とは別に表面処理剤を添加して表面処理することもできる。
(b)強化充填材に対する表面処理剤の付着量は、0.01〜5重量%が好ましく、0.05〜2重量%がさらに好ましい。0.01重量%以上とすることにより、機械的強度がより効果的に改善される傾向にあり、5重量%以下とすることにより、必要十分な効果が得られ、経済的である。
(B) The surface treatment agent used for the reinforcing filler contains other components such as a urethane resin, an acrylic resin, an antistatic agent, a lubricant, and a water repellent within the scope of the present invention. Can be included.
As a treatment method with a surface treatment agent, for example, a surface treatment with a surface treatment agent can be performed in advance as described in JP-A Nos. 2001-172055 and 53-106749. In addition, when preparing the polyester resin composition of the present invention, a surface treatment agent can be added to the surface treatment separately from the untreated (b) reinforcing filler.
(B) The adhesion amount of the surface treatment agent to the reinforcing filler is preferably 0.01 to 5% by weight, and more preferably 0.05 to 2% by weight. By making it 0.01% by weight or more, the mechanical strength tends to be improved more effectively, and by making it 5% by weight or less, a necessary and sufficient effect can be obtained and it is economical.

本発明における(b)強化充填材の材質としてはガラスが好ましい。具体的には、ガラス繊維、ガラスフレーク、ガラスビーズ、ガラス粉末である。なかでも、屈折率1.560〜1.600であるガラスを用いることが好ましい。該ガラスは、通常、ポリエステル樹脂に使用されるEガラス(屈折率1.550)を構成する組成成分からB23およびF2成分を除き、MgO、TiO2、ZnO等の成分の割合を増加したもので、該ガラスを採用することにより、本発明のポリエステル樹脂組成物のレーザー透過性を向上させることが可能となる。
また、本発明で採用するガラスは、機械的強度、剛性付与の観点からガラス繊維が好ましく、長繊維タイプ(ロービング)のものや短繊維タイプ(チョップドストランド)のものがより好ましく用いられる。
As the material of the reinforcing filler (b) in the present invention, glass is preferable. Specifically, they are glass fiber, glass flakes, glass beads, and glass powder. Among them, it is preferable to use glass having a refractive index of 1.560 to 1.600. The glass is usually composed of components constituting the E glass (refractive index of 1.550) used for the polyester resin, except for B 2 O 3 and F 2 components, and the ratio of components such as MgO, TiO 2 , ZnO, etc. By adopting the glass, it is possible to improve the laser transmittance of the polyester resin composition of the present invention.
The glass employed in the present invention is preferably a glass fiber from the viewpoint of mechanical strength and rigidity, and a long fiber type (roving) type or a short fiber type (chopped strand) type is more preferably used.

上記(b)強化充填材の配合量は、(a)ポリエステル樹脂100重量部に対し0〜100重量部であり、好ましくは5〜70重量部である。   The blending amount of the (b) reinforcing filler is 0 to 100 parts by weight, preferably 5 to 70 parts by weight, based on 100 parts by weight of the (a) polyester resin.

<(c)着色剤>
本発明のポリエステル樹脂組成物では、(c)着色剤として、フタロシアニン系顔料を含む2種類以上の着色剤の組み合わせを用いる。着色剤の組み合わせとして、好ましくは、フタロシアニン系顔料と茶色の着色剤を含む組み合わせである。
<(C) Colorant>
In the polyester resin composition of the present invention, (c) a combination of two or more colorants including a phthalocyanine pigment is used as the colorant. The combination of colorants is preferably a combination containing a phthalocyanine pigment and a brown colorant.

フタロシアニン系顔料は、フタロシアニン構造を有するものを広く採用でき、一般には骨格の中心に金属を導入した金属フタロシアニンが採用される。フタロシアニン構造については、例えば、株式会社シーエムシー発行の書籍「最新顔料応用技術」(1988年3月25日 第2刷)第2章に詳細な記述がある。該書籍から一部抜粋すると、フタロシアニン構造は、テトラアザポルフィリンの類似構造で4個のイソインドールをもつ巨大な環状化合物である。具体的には、Color Index(C.I.)Pigment Blue 15:1、C.I.Pigment Blue 15:3、C.I.Pigment Blue 16、C.I.Pigment Green 7等が好ましい例として挙げられる。さらに好ましいのは、色相が青色の着色剤(Color Indexによる分類で Blueで表されるもの)であり、中でも耐熱性、耐紫外線老化性および、高温高湿下での耐ブリード性が良好であるC.I.Pigment Blue 15:1、C.I.Pigment Blue 15:3が特に好ましい。  As the phthalocyanine-based pigment, those having a phthalocyanine structure can be widely used. Generally, metal phthalocyanine in which a metal is introduced into the center of the skeleton is used. The phthalocyanine structure is described in detail in Chapter 2 of the book “Latest Pigment Applied Technology” (March 25, 1988, second edition) published by CMC Co., Ltd., for example. Excerpted from the book, the phthalocyanine structure is a huge cyclic compound having four isoindoles with a similar structure to tetraazaporphyrin. Specific examples include Color Index (C.I.) Pigment Blue 15: 1, C.I. Pigment Blue 15: 3, C.I. Pigment Blue 16, C.I. Pigment Green 7, and the like. Further preferred are colorants having a blue hue (indicated by Blue in the Color Index classification), among which heat resistance, UV aging resistance and bleed resistance under high temperature and high humidity are good. CIPigment Blue 15: 1 and CIPigment Blue 15: 3 are particularly preferred.

茶色の着色剤とは、Color Indexによる分類でBrownで表されるものをいう。本発明のポリエステル樹脂組成物に含める茶色の着色剤としては、メチン系染料(C.I.Solvent Brown 53)、アゾ系顔料(C.I.Pigment Brown 23)、ベンズイミダゾロン系顔料(C.I.Pigment Brown 25)、無機顔料(C.I.Pigment Brown 6、C.I.Pigment Brown 24)が好ましい例として挙げられる。  The brown colorant is a color index classified by Brown. Examples of the brown colorant included in the polyester resin composition of the present invention include methine dyes (CISolvent Brown 53), azo pigments (CIPigment Brown 23), benzimidazolone pigments (CIPigment Brown 25), and inorganic pigments. (CIPigment Brown 6, CIPigment Brown 24) is a preferred example.

本発明では、茶色の着色剤のうち、メチン系染料が好ましい。メチン系染料は(a)ポリエステル樹脂との親和性に優れ、耐熱性も高いため、レーザー溶着部位の退色や熱劣化が少なく、成形品の溶着性、耐紫外線老化性をさらに高めることが可能である。
メチン系染料の種類は、特に定めるものではなく、メチン基(−CH=)を1つ以上有する染料であり、例えば、メチン染料、ポリメチン染料、アゾメチン染料、シアニン染料などが挙げられる。このメチン系染料の中でも、耐熱性が良好で、昇華性も少ないものが好ましく、特に好ましいのは、FDA登録品でもある、C.I.Solvent Brown 53である。
In the present invention, a methine dye is preferable among the brown colorants. Methine dyes (a) have excellent affinity with polyester resin and high heat resistance, so there is little fading and thermal degradation of laser welded parts, and it is possible to further improve the weldability and UV aging resistance of molded products. is there.
The kind of methine dye is not particularly defined, and is a dye having one or more methine groups (—CH═), and examples thereof include methine dyes, polymethine dyes, azomethine dyes, and cyanine dyes. Among these methine dyes, those having good heat resistance and low sublimation are preferable, and CISolvent Brown 53, which is also an FDA registered product, is particularly preferable.

本発明のポリエステル樹脂組成物には、本発明の趣旨を逸脱しない範囲内で、上記着色剤以外の着色剤を含んでいても良い。このような着色剤としては、上述したフタロシアニン系顔料以外の青色の着色剤が好ましい。ここで、青色の着色剤とは、Color Indexによる分類でBlueで表されるものをいう。
上述したフタロシアニン系顔料以外の青色の着色剤としては、アンスラキノン系の染料(C.I.Solvent Blue 87、C.I.Solvent Blue 97)、無機顔料(C.I.Pigment Blue 29)が挙げられる。
The polyester resin composition of the present invention may contain a colorant other than the above colorants within a range not departing from the gist of the present invention. As such a colorant, a blue colorant other than the phthalocyanine pigments described above is preferable. Here, the blue colorant means a material represented by Blue according to the classification by Color Index.
Examples of blue colorants other than the phthalocyanine pigments described above include anthraquinone dyes (CISolvent Blue 87, CISolvent Blue 97) and inorganic pigments (CIPigment Blue 29).

(c)着色剤の配合量は、(a)ポリエステル樹脂100重量部に対して0.01〜1重量部であり、好ましくは0.03〜0.8重量部、さらに好ましくは0.05〜0.5重量部である。(c)着色剤の配合量を0.01重量部以上とすることにより、樹脂組成物に黒色の色相を与え、かつ十分な耐熱性、耐紫外線老化性を付与することができ、配合量を1重量部以下とすることにより、ポリエステル樹脂への分散性を良好とし、成形品表面へのブリードや樹脂組成物の機械的強度の低下を抑制することができ好ましい。   (C) The compounding quantity of a coloring agent is 0.01-1 weight part with respect to 100 weight part of (a) polyester resin, Preferably it is 0.03-0.8 weight part, More preferably, it is 0.05- 0.5 parts by weight. (C) By making the compounding quantity of a coloring agent 0.01 weight part or more, a black hue can be given to a resin composition, and sufficient heat resistance and ultraviolet aging resistance can be provided. When the amount is 1 part by weight or less, the dispersibility in the polyester resin is improved, and the bleeding on the surface of the molded product and the decrease in the mechanical strength of the resin composition are preferably suppressed.

(c)着色剤中のフタロシアニン系顔料の添加量は、ポリエステル樹脂100重量部に対し、0.003〜0.03重量部が好ましく、さらに好ましくは0.005〜0.02重量部である。このような割合で添加することにより、耐候性が良好で、低コストであるという利点がある。
また、茶色の着色剤を用いる場合、その添加量は、ポリエステル樹脂100重量部に対し、0.03〜0.5重量部が好ましく、さらに好ましくは0.05〜0.3重量部である。このような割合で添加することにより、耐候性及び耐ブリード性がより良好となる。
(C) As for the addition amount of the phthalocyanine pigment in a coloring agent, 0.003-0.03 weight part is preferable with respect to 100 weight part of polyester resins, More preferably, it is 0.005-0.02 weight part. By adding in such a ratio, there is an advantage that the weather resistance is good and the cost is low.
Moreover, when using a brown coloring agent, the addition amount is preferably 0.03 to 0.5 parts by weight, and more preferably 0.05 to 0.3 parts by weight with respect to 100 parts by weight of the polyester resin. By adding at such a ratio, the weather resistance and bleed resistance become better.

<その他の添加剤>
本発明のポリエステル樹脂組成物には、本発明の趣旨を逸脱しない範囲内において、他の添加剤を配合してもよい。他の添加剤としては、酸化防止剤、難燃剤、耐熱安定剤、滑剤、離型剤、触媒失活剤、結晶核剤、結晶化促進剤等を挙げることができる。これらの添加剤は、(a)ポリエステル樹脂の重合途中または重合後等に添加することができる。さらに、(a)ポリエステル樹脂に所望の性能を付与するため、紫外線吸収剤、耐候安定剤、帯電防止剤、発泡剤、可塑剤、耐衝撃性改良剤等を配合してもよい。
<Other additives>
You may mix | blend another additive with the polyester resin composition of this invention in the range which does not deviate from the meaning of this invention. Examples of other additives include antioxidants, flame retardants, heat stabilizers, lubricants, mold release agents, catalyst deactivators, crystal nucleating agents, and crystallization accelerators. These additives can be added during or after polymerization of the (a) polyester resin. Further, (a) In order to impart desired performance to the polyester resin, an ultraviolet absorber, a weather resistance stabilizer, an antistatic agent, a foaming agent, a plasticizer, an impact resistance improving agent, and the like may be blended.

酸化防止剤は、本発明のポリエステル樹脂組成物の耐熱老化性をより効果的に改良し、色調、引張強度、伸度などの保持率をより向上させる効果を有する。該酸化防止剤としては、フェノール系酸化防止剤、イオウ系酸化防止剤、およびリン系酸化防止剤より選ばれる1種以上の酸化防止剤を配合することが好ましい。
酸化防止剤の配合量は、合計配合量が(a)ポリエステル樹脂100重量部に対し、好ましくは0.001〜2重量部であり、より好ましくは0.03〜1.5重量部である。
The antioxidant has the effect of improving the heat aging resistance of the polyester resin composition of the present invention more effectively and further improving the retention such as color tone, tensile strength and elongation. As this antioxidant, it is preferable to mix | blend 1 or more types of antioxidant chosen from a phenolic antioxidant, sulfur type antioxidant, and phosphorus antioxidant.
The blending amount of the antioxidant is preferably 0.001 to 2 parts by weight, and more preferably 0.03 to 1.5 parts by weight with respect to 100 parts by weight of the polyester resin (a).

フェノール系酸化防止剤とは、フェノール性ヒドロキシル基を有する酸化防止剤をいい、なかでも、ヒンダードフェノール系酸化防止剤が好ましく用いられる。ヒンダードフェノール系酸化防止剤とは、フェノール性ヒドロキシル基が結合した芳香環の炭素原子に隣接する1個または2個の炭素原子が、炭素原子数4以上の置換基により置換されている酸化防止剤をいう。炭素原子数4以上の置換基は、芳香環の炭素原子と炭素−炭素結合により結合していてもよく、炭素以外の原子を介して結合していてもよい。   The phenolic antioxidant means an antioxidant having a phenolic hydroxyl group, and among them, a hindered phenolic antioxidant is preferably used. A hindered phenolic antioxidant is an antioxidant in which one or two carbon atoms adjacent to a carbon atom of an aromatic ring to which a phenolic hydroxyl group is bonded are substituted by a substituent having 4 or more carbon atoms. An agent. The substituent having 4 or more carbon atoms may be bonded to a carbon atom of the aromatic ring by a carbon-carbon bond, or may be bonded via an atom other than carbon.

フェノール系酸化防止剤としては、p−シクロヘキシルフェノール、3−tert−ブチル−4−メトキシフェノール、4,4’−イソプロピリデンジフェノール、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン等の非ヒンダードフェノール系酸化防止剤、2−tert−ブチル−4−メトキシフェノール、2,6−ジ−tert−ブチル−p−クレゾール、2,4,6−トリ−tert−ブチルフェノール、4−ヒドロキシメチル−2,6−ジ−tert−ブチルフェノール、スチレン化フェノール、2,5−ジ−tert−ブチルハイドロキノン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(6−tert−ブチル−4−エチルフェノール)、2,2’−メチレンビス[4−メチル−6−(1,3,5−トリメチルヘキシル)フェノール]、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、2,6−ビス(2−ヒドロキシ−3−tert−ブチル−5−メチルベンジル)−4−メチルフェノール、1,1,3−トリス[2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル]ブタン、1,3,5−トリメチル−2,4,6−トリス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジル]ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、トリス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、4,4’−チオビス(2−メチル−6−tert−ブチルフェノール)、チオビス(β−ナフトール)等のヒンダードフェノール系酸化防止剤などが挙げられる。
特に、ヒンダードフェノール系酸化防止剤は、それ自体安定ラジカルとなり易いためにラジカルトラップ剤として好適に使用することができる。ヒンダードフェノール系酸化防止剤の分子量は、通常200以上、好ましくは500以上であり、その上限は通常3000である。
Non-hinders such as p-cyclohexylphenol, 3-tert-butyl-4-methoxyphenol, 4,4′-isopropylidenediphenol, 1,1-bis (4-hydroxyphenyl) cyclohexane as phenolic antioxidants Dophenol antioxidant, 2-tert-butyl-4-methoxyphenol, 2,6-di-tert-butyl-p-cresol, 2,4,6-tri-tert-butylphenol, 4-hydroxymethyl-2 , 6-di-tert-butylphenol, styrenated phenol, 2,5-di-tert-butylhydroquinone, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, triethylene glycol bis [3- (3-tert-butyl-5-methyl-4- Hydroxyphenyl) propionate], 1,6-hexanediol bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol tetrakis [3- (3,5-di-tert- Butyl-4-hydroxyphenyl) propionate], 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (6-tert-butyl-4-ethylphenol), 2,2 '-Methylenebis [4-methyl-6- (1,3,5-trimethylhexyl) phenol], 4,4'-methylenebis (2,6-di-tert-butylphenol), 4,4'-butylidenebis (3- Methyl-6-tert-butylphenol), 2,6-bis (2-hydroxy-3-tert-butyl) 5-methylbenzyl) -4-methylphenol, 1,1,3-tris [2-methyl-4-hydroxy-5-tert-butylphenyl] butane, 1,3,5-trimethyl-2,4,6- Tris [3,5-di-tert-butyl-4-hydroxybenzyl] benzene, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, tris [3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionyloxyethyl] isocyanurate, 4,4'-thiobis (3-methyl-6-tert-butylphenol), 2,2'-thiobis (4-methyl-6-tert-butylphenol) ), 4,4′-thiobis (2-methyl-6-tert-butylphenol), thiobis (β-naphthol), etc. Such as Nord-based antioxidants.
In particular, hindered phenol-based antioxidants can be suitably used as radical trapping agents because they tend to be stable radicals themselves. The molecular weight of the hindered phenol antioxidant is usually 200 or more, preferably 500 or more, and the upper limit is usually 3000.

本発明におけるイオウ系酸化防止剤とは、イオウ原子を有する酸化防止剤をいい、例えば、ジドデシルチオジプロピオネート、ジテトラデシルチオジプロピオネート、ジオクタデシルチオジプロピオネート、ペンタエリスリトールテトラキス(3−ドデシルチオプロピオネート)、チオビス(N−フェニル−β−ナフチルアミン)、2−メルカプトベンゾチアゾール、2−メルカプトベンゾイミダゾール、テトラメチルチウラムモノサルファイド、テトラメチルチウラムジサルファイド、ニッケルジブチルジチオカルバメート、ニッケルイソプロピルキサンテート、トリラウリルトリチオホスファイト等が挙げられる。特に、チオエーテル構造を有するチオエーテル系酸化防止剤は、酸化された物質から酸素を受け取って還元するため、好適に使用することができる。
イオウ系酸化防止剤の分子量は、通常200以上、好ましくは500以上であり、その上限は通常3000である。
The sulfur-based antioxidant in the present invention refers to an antioxidant having a sulfur atom. For example, didodecylthiodipropionate, ditetradecylthiodipropionate, dioctadecylthiodipropionate, pentaerythritol tetrakis (3 -Dodecylthiopropionate), thiobis (N-phenyl-β-naphthylamine), 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, tetramethylthiuram monosulfide, tetramethylthiuram disulfide, nickel dibutyldithiocarbamate, nickel isopropyl Examples include xanthate and trilauryl trithiophosphite. In particular, a thioether-based antioxidant having a thioether structure can be suitably used because it receives oxygen from an oxidized substance and reduces it.
The molecular weight of the sulfur-based antioxidant is usually 200 or more, preferably 500 or more, and the upper limit is usually 3000.

本発明におけるリン系酸化防止剤とは、リン原子を有する酸化防止剤をいい、P(OR)3構造を有する酸化防止剤であることが好ましい。ここで、Rは、アルキル基、アルキレン基、アリール基、アリーレン基などであり、3個のRは同一でも異なっていてもよく、任意の2個のRが互いに結合して環構造を形成していてもよい。
リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルデシルホスファイト、フェニルジイソデシルホスファイト、トリ(ノニルフェニル)ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。
The phosphorus-based antioxidant in the present invention refers to an antioxidant having a phosphorus atom, and is preferably an antioxidant having a P (OR) 3 structure. Here, R is an alkyl group, an alkylene group, an aryl group, an arylene group, etc., and three Rs may be the same or different, and any two Rs are bonded to each other to form a ring structure. It may be.
Examples of phosphorus antioxidants include triphenyl phosphite, diphenyl decyl phosphite, phenyl diisodecyl phosphite, tri (nonylphenyl) phosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphos. Phyto, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite and the like can be mentioned.

本発明のPBT樹脂組成物において、フェノール系酸化防止剤、イオウ系酸化防止剤およびリン系酸化防止剤の配合量は、(a)ポリエステル樹脂100重量部に対し、好ましくは0.001〜1.5重量部であり、より好ましくは0.03〜1重量部である。酸化防止剤の配合量を0.001重量部以上とすることにより、酸化防止効果がより良好に発揮され、酸化防止剤の配合量を1.5重量部以下とすることにより、酸化熱安定性が悪化するのをより抑止するとともに、溶融混練時の樹脂の分解をより起こりにくくすることが可能になる。   In the PBT resin composition of the present invention, the blending amount of the phenol-based antioxidant, the sulfur-based antioxidant and the phosphorus-based antioxidant is preferably 0.001 to 1. with respect to 100 parts by weight of the (a) polyester resin. 5 parts by weight, more preferably 0.03 to 1 part by weight. By making the blending amount of the antioxidant 0.001 part by weight or more, the antioxidant effect is better exhibited, and by making the blending amount of the antioxidant 1.5 parts by weight or less, oxidation heat stability It is possible to further suppress the deterioration of the resin and to make it more difficult for the resin to decompose during melt-kneading.

難燃剤としては、特に制限されず、例えば、有機ハロゲン化合物、アンチモン化合物、リン化合物、その他の有機難燃剤、無機難燃剤などが挙げられる。有機ハロゲン化合物としては、例えば、臭素化ポリカーボネート、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化ポリフェニレンエーテル樹脂、臭素化ポリスチレン樹脂、臭素化ビスフェノールA、ペンタブロモベンジルポリアクリレートが挙げられる。アンチモン化合物としては、例えば、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウムが挙げられる。リン化合物としては、例えば、リン酸エステル、ポリリン酸、ポリリン酸アンモニウム、赤リン等が挙げられる。その他の有機難燃剤としては、例えば、メラミン、シアヌール酸などの窒素化合物が挙げられる。その他の無機難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ケイ素化合物、ホウ素化合物が挙げられる。
これらの難燃剤の配合量は、(a)ポリエステル樹脂100重量部に対し、好ましくは0.1〜50重量部である。難燃剤の配合量を0.1重量部以上とすることにより、難燃性をより効果的に発現することができ、50重量部以下にすることにより、物性、特に機械的強度をより高く保つことができる。
The flame retardant is not particularly limited, and examples thereof include organic halogen compounds, antimony compounds, phosphorus compounds, other organic flame retardants, and inorganic flame retardants. Examples of the organic halogen compound include brominated polycarbonate, brominated epoxy resin, brominated phenoxy resin, brominated polyphenylene ether resin, brominated polystyrene resin, brominated bisphenol A, and pentabromobenzyl polyacrylate. Examples of the antimony compound include antimony trioxide, antimony pentoxide, and sodium antimonate. As a phosphorus compound, phosphate ester, polyphosphoric acid, ammonium polyphosphate, red phosphorus etc. are mentioned, for example. Examples of other organic flame retardants include nitrogen compounds such as melamine and cyanuric acid. Examples of other inorganic flame retardants include aluminum hydroxide, magnesium hydroxide, silicon compound, and boron compound.
The blending amount of these flame retardants is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the (a) polyester resin. By setting the blending amount of the flame retardant to 0.1 parts by weight or more, flame retardancy can be expressed more effectively, and by setting it to 50 parts by weight or less, physical properties, particularly mechanical strength, are kept higher. be able to.

本発明のポリエステル樹脂組成物には、本発明の効果を損なわない範囲で、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリメタクリル酸エステル樹脂、アクリロニトリル/ブタジエン/スチレン樹脂(ABS樹脂)、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエチレンテレフタレート樹脂、液晶ポリエステル樹脂、ポリアセタール樹脂、ポリフェニレンオキサイド樹脂等の熱可塑性樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、などの熱硬化性樹脂を配合することができる。これらの熱可塑性樹脂および熱硬化性樹脂は、2種以上を組み合わせて使用することもできる。
これらの樹脂の配合量は、(a)ポリエステル樹脂中の50重量%以下であることが好ましく、45重量%以下であることがさらに好ましい。
In the polyester resin composition of the present invention, polyethylene resin, polypropylene resin, polystyrene resin, polyacrylonitrile resin, polymethacrylic ester resin, acrylonitrile / butadiene / styrene resin (ABS resin), as long as the effects of the present invention are not impaired. Contains thermoplastic resins such as polycarbonate resin, polyamide resin, polyphenylene sulfide resin, polyethylene terephthalate resin, liquid crystal polyester resin, polyacetal resin, polyphenylene oxide resin, and thermosetting resins such as epoxy resin, phenol resin, melamine resin, and silicone resin. can do. These thermoplastic resins and thermosetting resins can also be used in combination of two or more.
The blending amount of these resins is preferably 50% by weight or less, more preferably 45% by weight or less in the (a) polyester resin.

本発明のポリエステル樹脂組成物の製造方法は、特に制限されないが、ベント口から脱揮できる設備を有する1軸または2軸の押出機を混練機として使用する方法が好ましい。上記(a)〜(c)の各成分および他の添加剤は、混練機に一括して供給してもよいし、(a)の樹脂成分に他の配合成分を順次供給してもよい。また、各成分から選ばれた2種以上の成分を予め混合、混練しておいてもよい。例えば、(a)ポリエステル樹脂の一部に所定の配合比率より多い(c)着色剤を練り込んだマスターペレットを予め調整し、これを残りの配合成分と溶融混合押出して所定の配合比率とすることによっても、本発明における樹脂組成物を得ることができる。   Although the manufacturing method in particular of the polyester resin composition of this invention is not restrict | limited, The method of using the uniaxial or biaxial extruder which has the equipment which can be devolatilized from a vent port as a kneading machine is preferable. The components (a) to (c) and other additives may be supplied all at once to the kneader, or other compounding components may be sequentially supplied to the resin component (a). Moreover, you may mix and knead | mix beforehand 2 or more types of components chosen from each component. For example, (a) a master pellet prepared by kneading a colorant more than a predetermined blending ratio in a part of a polyester resin is prepared in advance, and this is melt-mixed and extruded with the remaining blending components to obtain a predetermined blending ratio. By this, the resin composition in the present invention can be obtained.

本発明のポリエステル樹脂組成物を用いた成形品の製造方法は、特に制限されず、熱可塑性樹脂について一般に使用されている成形法、すなわち、射出成形、中空成形、押し出し成形、プレス成形などの成形法を適用することができる。この場合、特に好ましい成形方法は、流動性の良さから、射出成形である。射出成形に当たっては、樹脂温度を240〜280℃にコントロールするのが好ましい。   The method for producing a molded article using the polyester resin composition of the present invention is not particularly limited, and molding methods generally used for thermoplastic resins, that is, molding such as injection molding, hollow molding, extrusion molding, and press molding. The law can be applied. In this case, a particularly preferable molding method is injection molding because of good fluidity. In the injection molding, the resin temperature is preferably controlled to 240 to 280 ° C.

本発明のポリエステル樹脂組成物は、黒色のレーザー溶着性ポリエステル樹脂材料として用いることができる。特に、本発明のポリエステル樹脂組成物を用いることにより、少なくとも一方にこの樹脂組成物を用いた部材同士を強固に接着させることができ、2以上の樹脂部材を有する成形品を製造するのに好ましく用いることができる。
部材の形状は特に制限されないが、部材同士をレーザー溶着により接合して用いるため、通常、少なくとも面接触箇所(平面、曲面)を有する形状である。
レーザー溶着では、レーザー透過性のある部材を透過したレーザー光が、レーザー吸収性のある部材に吸収されて、溶融し、両部材が溶着される。本発明のポリエステル樹脂組成物は、着色しているにも関わらずレーザー光に対する透過性が高いので、レーザー光が透過する部材として好ましく用いることができる。ここで、該レーザーが透過する部材の厚み(レーザー光が透過する方向の厚み)は、用途、組成物の組成その他を勘案して、適宜定めることができるが、例えば5mm以下であり、好ましくは4mm以下である。
The polyester resin composition of the present invention can be used as a black laser-weldable polyester resin material. In particular, by using the polyester resin composition of the present invention, at least one of the members using the resin composition can be firmly bonded to each other, which is preferable for producing a molded product having two or more resin members. Can be used.
The shape of the member is not particularly limited, but is usually a shape having at least a surface contact portion (a flat surface or a curved surface) because the members are joined and used by laser welding.
In laser welding, laser light that has passed through a laser-transmitting member is absorbed by the laser-absorbing member, melted, and both members are welded. Since the polyester resin composition of the present invention has high transparency to laser light despite being colored, it can be preferably used as a member that transmits laser light. Here, the thickness of the member through which the laser is transmitted (thickness in the direction through which the laser beam is transmitted) can be appropriately determined in consideration of the use, the composition of the composition, and the like, and is, for example, 5 mm or less, preferably 4 mm or less.

本発明のレーザー溶着に用いるレーザー光源としては、例えば、Arレーザー(510nm)、He−Neレーザー(630nm)、CO2レーザー(10600nm)などの気体レーザー、色素レーザー(400〜700nm)などの液体レーザー、YAGレーザー(1064nm)などの固体レーザーや、半導体レーザー(655〜980nm)等が利用できる。ビーム品質、コストの点で、半導体レーザーが好ましく用いられる。また、溶着相手材の種類によって、適宜レーザー種を選択することもできる。 As a laser light source used for laser welding of the present invention, for example, a gas laser such as an Ar laser (510 nm), a He—Ne laser (630 nm), a CO 2 laser (10600 nm), or a liquid laser such as a dye laser (400 to 700 nm). Solid-state lasers such as YAG laser (1064 nm), semiconductor lasers (655 to 980 nm), and the like can be used. A semiconductor laser is preferably used in terms of beam quality and cost. Further, the laser type can be appropriately selected depending on the type of the welding partner material.

より具体的には、例えば、本発明のポリエステル樹脂組成物(A)からなる部材とレーザー吸収性を有する樹脂組成物(B)からなる部材を溶着する場合、まず、両者の溶着する箇所同士を相互に接触させる。この時、両者の溶着箇所は面接触が望ましく、平面同士、曲面同士、または平面と曲面の組み合わせであってもよい。次いで、本発明のポリエステル樹脂組成物(A)からなる部材側からレーザー光を照射(好ましくは接着面に垂直に照射)する。この時、必要によりレンズ系を利用して両者の界面にレーザー光を集光させてもよい。その集光ビームは本発明のポリエステル樹脂組成物(A)からなる部材中を透過し、樹脂組成物(B)からなる部材の表面近傍で吸収されて発熱し溶融する。次にその熱は熱伝導によって本発明のポリエステル樹脂組成物(A)からなる部材側にも伝わって溶融し、両者の界面に溶融プールを形成し、冷却後、両者が接合する。
このようにして部材同士を溶着された成形品は、高い接合強度を有する。尚、本発明における成形品とは、少なくとも2以上の部材を溶着されたものをいい、完成品や部品の他、これらの一部分を成す部材も含む趣旨である。
More specifically, for example, when welding a member made of the polyester resin composition (A) of the present invention and a member made of a resin composition (B) having laser absorption, first, the locations where the two are to be welded together Contact each other. At this time, surface contact is desirable between the welded portions of the two, and may be flat surfaces, curved surfaces, or a combination of flat and curved surfaces. Next, laser light is irradiated from the member side made of the polyester resin composition (A) of the present invention (preferably irradiated perpendicularly to the adhesive surface). At this time, the laser beam may be condensed at the interface between the two using a lens system if necessary. The condensed beam passes through the member made of the polyester resin composition (A) of the present invention, is absorbed near the surface of the member made of the resin composition (B), generates heat, and melts. Next, the heat is transferred to the member made of the polyester resin composition (A) of the present invention by heat conduction and melted to form a molten pool at the interface between the two, and after cooling, both are joined.
The molded product in which the members are welded in this way has high bonding strength. The molded product in the present invention refers to a product in which at least two or more members are welded, and includes a finished product and a part as well as a member constituting a part thereof.

尚、樹脂組成物(B)からなる部材は、少なくとも樹脂を含み、且つ、本発明のポリエステル樹脂組成物(A)からなる部材と溶着可能なものであれば特に制限されない。樹脂組成物(B)に含まれる樹脂は、熱可塑性樹脂であることが好ましく、例えば、オレフィン系樹脂、ビニル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂などが挙げられ、相溶性が良好な点から、特にポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート樹脂が好ましく用いられる。また、樹脂組成物(B)は1種または2種以上の樹脂から構成されていてもよい。さらにまた、本発明のポリエステル樹脂組成物(A)であってもよい。
また、樹脂組成物(B)に含まれる樹脂は、照射するレーザー光波長の範囲内に吸収波長を持つものも好ましい。さらに、樹脂組成物(B)に、光吸収剤、例えば着色顔料等を添加含有させることにより、その吸収特性を発現させてもよい。前記着色顔料としては、例えば、無機顔料(カーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックなど)などの黒色顔料、酸化鉄赤などの赤色顔料、モリブデートオレンジなどの橙色顔料、酸化チタンなどの白色顔料、有機顔料(黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料など)などが挙げられる。なかでも、無機顔料は一般に隠ぺい力が強く、レーザー吸収側の樹脂組成物(B)により好ましく用いることができる。これらの光吸収剤は単独でも2種以上組み合わせて使用してもよい。
光吸収剤の配合量は、樹脂成分100重量部に対し0.01〜1重量部であることが好ましい。
The member made of the resin composition (B) is not particularly limited as long as it contains at least a resin and can be welded to the member made of the polyester resin composition (A) of the present invention. The resin contained in the resin composition (B) is preferably a thermoplastic resin. For example, an olefin resin, a vinyl resin, a styrene resin, an acrylic resin, a polyester resin, a polyamide resin, or a polycarbonate resin. Polyacetal resins and the like are mentioned, and polyester resins, polyamide resins, and polycarbonate resins are particularly preferably used from the viewpoint of good compatibility. Moreover, the resin composition (B) may be comprised from 1 type, or 2 or more types of resin. Furthermore, the polyester resin composition (A) of the present invention may be used.
In addition, the resin contained in the resin composition (B) preferably has an absorption wavelength within the range of the wavelength of the laser beam to be irradiated. Furthermore, you may express the absorption characteristic by making a resin composition (B) contain and add a light absorber, for example, a color pigment. Examples of the color pigment include inorganic pigments (black pigments such as carbon black (for example, acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black), red pigments such as iron oxide red, molyb Examples include orange pigments such as date orange, white pigments such as titanium oxide, and organic pigments (yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.) Among them, inorganic pigments generally have strong hiding power, The resin composition (B) on the laser absorption side can be preferably used, and these light absorbers may be used alone or in combination of two or more.
It is preferable that the compounding quantity of a light absorber is 0.01-1 weight part with respect to 100 weight part of resin components.

本発明で得られた一体成形品は、高い溶着強度と耐紫外線老化性を有し、レーザー光照射による樹脂の損傷も少ないため、種々の用途、例えば、各種保存容器、電気・電子機器部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、車両機構部品などに適用できる。特に、食品用容器、薬品用容器、油脂製品容器、車両用電装部品(各種コントロールユニット、イグニッションコイル部品など)、モーター部品、各種センサー部品、コネクター部品、スイッチ部品、リレー部品、コイル部品、トランス部品、ランプ部品などに好適に用いることができる。   The integrally molded product obtained in the present invention has high welding strength and ultraviolet aging resistance, and less damage to the resin due to laser light irradiation, so it can be used in various applications such as various storage containers, electrical / electronic equipment parts, It can be applied to office automate (OA) equipment parts, home appliance parts, machine mechanism parts, vehicle mechanism parts, and the like. In particular, food containers, chemical containers, oil and fat product containers, vehicle electrical parts (various control units, ignition coil parts, etc.), motor parts, various sensor parts, connector parts, switch parts, relay parts, coil parts, transformer parts It can be suitably used for lamp parts and the like.

以下、実施例により本発明をさらに詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example at all unless the summary is exceeded.

[各種測定方法]
(1)光線透過率
射出成形機(住友重機械(株)製:型式SE−50D)を使用し、シリンダー温度250℃、金型温度80℃で成形した、表1の実施例1〜3および比較例1〜5に示した組成の樹脂組成物それぞれからなる13mm×128mm、厚さ1.5mmtおよび2mmtの平板を作製した。これらの平板について、それぞれ、可視・紫外分光光度計(島津製作所製:UV−3100PC)で光線透過率を測定した。光線透過率は、近赤外領域960nmの透過光強度と入射光強度の比を、それぞれ百分率で表した。
[Various measurement methods]
(1) Light transmittance Examples 1 to 3 in Table 1 molded using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd .: model SE-50D) at a cylinder temperature of 250 ° C. and a mold temperature of 80 ° C. Flat plates having a size of 13 mm × 128 mm, a thickness of 1.5 mmt and a thickness of 2 mmt made of the resin compositions having the compositions shown in Comparative Examples 1 to 5 were prepared. The light transmittance of each of these flat plates was measured with a visible / ultraviolet spectrophotometer (manufactured by Shimadzu Corporation: UV-3100PC). For the light transmittance, the ratio of the transmitted light intensity and the incident light intensity in the near-infrared region 960 nm was expressed as a percentage.

(2)レーザー溶着強度試験
図1に示すように試験片を重ね合わせ、レーザー照射を行った。図1中、(a)は試験片を側面から見た図を、(b)は試験片を上方から見た図をそれぞれ示している。また、図1中、1は上記(1)で作製した試験片を、2は接合する相手材である樹脂組成物(B)からなる試験片(上記(1)と同様に作製したもの)を、3はレーザー照射箇所を、それぞれ示している。
(2) Laser welding strength test The test pieces were overlapped as shown in FIG. In FIG. 1, (a) shows a view of the test piece from the side, and (b) shows a view of the test piece from above. Further, in FIG. 1, 1 is a test piece prepared in the above (1), 2 is a test piece made of a resin composition (B) which is a mating material to be joined (made in the same manner as in the above (1)). Reference numerals 3 indicate laser irradiation locations.

光線透過率測定で使用した試験片1(13mm×128mm、厚み2mmtの平板)をレーザー透過側、樹脂組成物(B)からなる試験片2をレーザー吸収側として重ね合わせ、透過側からレーザーを照射した。レーザー溶着装置は、一括照射タイプの日本エマソン社製 IRAM−300、レーザー光波長は960nm、溶着スポットは3mm×6mm、圧力は4.8MPaでレーザーを照射した。レーザー照射時間は、試験片1が強化充填材を含まない場合は、13sec、強化充填材を含む場合は、17secとした。
レーザー溶着強度測定は、引張試験機(インストロン社製5544型)を使用し、引張速度は5mm/secで評価した。引張強度は、溶着部の引張せん断破壊強度で示した。
The test piece 1 (13 mm × 128 mm, flat plate of 2 mm thickness) used in the light transmittance measurement is overlapped with the laser transmission side and the test piece 2 made of the resin composition (B) is overlapped with the laser absorption side, and the laser is irradiated from the transmission side. did. The laser welding apparatus was a batch irradiation type IRAM-300 manufactured by Nippon Emerson Co., Ltd., the laser light wavelength was 960 nm, the welding spot was 3 mm × 6 mm, and the pressure was 4.8 MPa. The laser irradiation time was set to 13 sec when the test piece 1 did not contain the reinforcing filler, and 17 sec when the test piece 1 contained the reinforcing filler.
The laser welding strength was measured using a tensile tester (type 5544 manufactured by Instron) and the tensile speed was evaluated at 5 mm / sec. The tensile strength is indicated by the tensile shear fracture strength of the welded portion.

(3)引張強度試験
射出成形機(住友重機械(株)製:型式SG−75MIII)を使用し、シリンダー温度250℃、金型温度80℃にて、表1の実施例1〜3及び比較例1〜5に示した組成の樹脂組成物それぞれからなるISO試験片を作製した。該ISO試験片について、ISO527に準拠し引張強度の測定を行った。
(3) Tensile strength test Examples 1 to 3 in Table 1 and comparison using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd .: Model SG-75MIII) at a cylinder temperature of 250 ° C and a mold temperature of 80 ° C. ISO test pieces made of the resin compositions having the compositions shown in Examples 1 to 5 were prepared. The tensile strength of the ISO test piece was measured according to ISO 527.

(4)黒色度
(a1)ポリブチレンテレフタレート樹脂100重量部に対し、(c6)カーボンブラック0.6重量部を配合し、後述する実施例1と同様の製法で樹脂組成物を作製し、上記(1)光線透過率測定用平板と同様の方法で13mm×128mm、厚み2mmtの平板を作製した。得られた平板の色相をL***表色系で評価し、これを黒色の基準とした。
上記光線透過率測定用厚み2mmtの平板の色相を測定し、黒色基準との色相の差(色差:ΔE)を評価した。ΔEが小さい方が黒色度が良好と判断した。
測定は、分光測色計(コニカミノルタ社製:CM−3600d)を使用し、ΔEは以下の式で求めた。
ΔE=((ΔL*2+(Δa*2+(Δb*21/2
(4) Blackness (a1) With respect to 100 parts by weight of the polybutylene terephthalate resin, (c6) 0.6 parts by weight of carbon black is blended, and a resin composition is prepared by the same manufacturing method as in Example 1 described later. (1) A flat plate having a size of 13 mm × 128 mm and a thickness of 2 mmt was prepared in the same manner as the flat plate for measuring light transmittance. The hue of the obtained flat plate was evaluated by the L * a * b * color system, and this was used as a black standard.
The hue of the flat plate having a thickness of 2 mmt for measuring light transmittance was measured, and the difference in hue from the black reference (color difference: ΔE) was evaluated. The smaller the ΔE, the better the blackness.
For the measurement, a spectrocolorimeter (manufactured by Konica Minolta: CM-3600d) was used, and ΔE was determined by the following equation.
ΔE = ((ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ) 1/2

(5)耐紫外線加速試験(耐紫外線老化性)
上記ISO試験片を、社団法人 日本電線工業会発行の「技術資料 第130号 照明器具用電線・ケーブルの紫外線劣化促進試験」に記載の試験法に準拠して、120℃の雰囲気下で、JIS C7604に規定するH400(400W水銀灯)照射を500時間実施した後、ISO527に準拠し引張強度の測定を行った。また、次式に従い、引張強度保持率を求めた。
引張強度保持率(%)=(処理後の引張強度/処理前の引張強度)×100
また、退色度は、分光測色計(コニカミノルタ社製:CM−3600d)を使用し、試験前と試験後の色差(ΔE)で評価した。ΔEは、黒色度と同様、以下の式で求めた。
ΔE=((ΔL*2+(Δa*2+(Δb*21/2
(5) UV resistance acceleration test (UV aging resistance)
In accordance with the test method described in “Technical Data No. 130, UV Degradation Acceleration Test of Lighting Equipment Wires / Cables” issued by the Japan Electrical Wire Manufacturers Association, the above ISO test piece was subjected to JIS under an atmosphere of 120 ° C. After carrying out H400 (400 W mercury lamp) irradiation specified in C7604 for 500 hours, the tensile strength was measured according to ISO527. Moreover, the tensile strength retention was calculated | required according to following Formula.
Tensile strength retention (%) = (Tensile strength after treatment / Tensile strength before treatment) × 100
Further, the fading degree was evaluated by using a spectrocolorimeter (manufactured by Konica Minolta: CM-3600d) and the color difference (ΔE) before and after the test. ΔE was determined by the following equation, as with the blackness.
ΔE = ((ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ) 1/2

[樹脂組成物の原材料]
(a)ポリエステル樹脂
(a1)ポリブチレンテレフタレート樹脂:三菱エンジニアリングプラスチックス(株)製、「商品名:ノバデュラン(登録商標)5008」、固有粘度[η]=0.85dl/g
(a2)ポリブチレンテレフタレート樹脂:三菱エンジニアリングプラスチックス(株)製、「商品名:ノバデュラン(登録商標)5020」、固有粘度[η]=1.20dl/g
[Raw material of resin composition]
(A) Polyester resin (a1) Polybutylene terephthalate resin: manufactured by Mitsubishi Engineering Plastics Co., Ltd., “trade name: NOVADURAN (registered trademark) 5008”, intrinsic viscosity [η] = 0.85 dl / g
(A2) Polybutylene terephthalate resin: “Mitsubishi Engineering Plastics”, “trade name: Nova Duran (registered trademark) 5020”, intrinsic viscosity [η] = 1.20 dl / g

(b)強化充填材
ガラス繊維:表面処理剤で処理されてなるチョップドストランド、オーエンスコーニング社製、「商品名:183H−13P」、平均繊維径13μm、平均繊維長3mm
(B) Reinforced filler glass fiber: chopped strand treated with a surface treatment agent, manufactured by Owens Corning, “trade name: 183H-13P”, average fiber diameter 13 μm, average fiber length 3 mm

(c)着色剤
(c1)フタロシアニン顔料:C.I.Pigment Blue 15:3、大日本インキ化学工業(株)製、「商品名:FASTOGEN BLUE GB−7HS」
(c2)メチン系染料:C.I.Solvent Brown 53、クラリアント社製、「商品名:Polysynthren Brown R」
(c3)メチン系染料:C.I.Solvent Violet 49、クラリアント社製、「商品名:Polysynthren Violet G」
(c4)アンスラキノン系とペリレン系の混合染料:有本化学工業社製、「商品名:DA−412」
(c5)アンスラキノン系染料:C.I.Solvent Blue 97、ランクセス社製、「商品名:Macrolex−BLUE−2R」
(c6)カーボンブラック:三菱化学(株)製、「商品名:MA600B」
(C) Colorant (c1) Phthalocyanine pigment: C.I. I. Pigment Blue 15: 3, manufactured by Dainippon Ink & Chemicals, Inc., “Product Name: FASTOGEN BLUE GB-7HS”
(C2) Methine dye: C.I. I. Solvent Brown 53, manufactured by Clariant, "Product name: Polysynthren Brown R"
(C3) Methine dye: C.I. I. Solvent Violet 49, manufactured by Clariant, "Product name: Polysynthren Violet G"
(C4) Anthraquinone-based and perylene-based mixed dyes: “Arimoto Chemical Industry Co., Ltd.,“ trade name: DA-412 ”
(C5) Anthraquinone dyes: C.I. I. Solvent Blue 97, manufactured by LANXESS, "Product name: Macrolex-BLUE-2R"
(C6) Carbon black: “Product name: MA600B” manufactured by Mitsubishi Chemical Corporation

酸化防止剤:ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、チバ・スペシャルティ・ケミカルズ社製「商品名:Irganox1010」 Antioxidant: Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], “trade name: Irganox 1010” manufactured by Ciba Specialty Chemicals

[樹脂組成物(B)]
比較例5の樹脂組成物に、(c6)カーボンブラックを(a1)ポリブチレンテレフタレート樹脂100重量部に対し0.6重量部配合したものを用いた。
[Resin composition (B)]
The resin composition of Comparative Example 5 was blended with 0.6 part by weight of (c6) carbon black with respect to 100 parts by weight of (a1) polybutylene terephthalate resin.

[実施例1〜3、比較例1〜5]
(a)ポリブチレンテレフタレート樹脂と、(c)着色剤、および酸化防止剤を表1に示した比率となるよう配合しタンブラーで20分混合した。シリンダー温度を250℃に設定した2軸押出機(日本製鋼所社製:TEX30C、バレル9ブロック構成)を用い、得られた原料混合物をホッパーへ供給し溶融混練した。(b)ガラス繊維を配合する場合は、ホッパーから数えて5番目のブロックからサイドフィード方式で供給し溶融混練した。得られた樹脂組成物を用い、上述した評価を行った。評価結果を表1に示した。
[Examples 1 to 3, Comparative Examples 1 to 5]
(A) A polybutylene terephthalate resin, (c) a colorant, and an antioxidant were blended in the ratios shown in Table 1 and mixed for 20 minutes with a tumbler. The obtained raw material mixture was supplied to a hopper and melt-kneaded using a twin-screw extruder (manufactured by Nippon Steel Works: TEX30C, barrel 9 block configuration) with a cylinder temperature set to 250 ° C. (B) When glass fiber was blended, it was supplied from the fifth block counted from the hopper by the side feed method and melt-kneaded. The evaluation mentioned above was performed using the obtained resin composition. The evaluation results are shown in Table 1.

Figure 2008133341
Figure 2008133341

表1に示したように、着色剤として(c1)フタロシアニン顔料を含む2種類以上の着色剤を添加することにより、紫外線による樹脂劣化が少なく、レーザー透過性およびレーザー溶着性に優れた、バランスのとれた黒色のポリエステル樹脂組成物が得られることが明らかとなった。すなわち、本発明のポリエステル樹脂組成物を使用することにより、他の部材と容易に強固なレーザー溶着が可能である。   As shown in Table 1, by adding two or more colorants containing (c1) phthalocyanine pigment as a colorant, there is little resin deterioration due to ultraviolet rays, and excellent balance of laser transmission and laser weldability. It was revealed that a black polyester resin composition can be obtained. That is, by using the polyester resin composition of the present invention, strong laser welding with other members can be easily performed.

本発明のポリエステル樹脂組成物は、レーザー透過性、耐紫外線老化性等のレーザー溶着特性に優れているため、特に、車両用電装部品、センサー部品、コネクター部品など電気回路を密封する製品などに好適に用いることが可能である。
また、本発明のポリエステル樹脂組成物を用いることにより、部材同士がより強固に接着した成形品を提供することが可能になる。このような成形品は工業的に広く利用され、その利用価値は極めて高いものである。
The polyester resin composition of the present invention is excellent in laser welding characteristics such as laser transparency and ultraviolet aging resistance, and is particularly suitable for products for sealing electrical circuits such as vehicle electrical parts, sensor parts, connector parts, etc. Can be used.
Moreover, by using the polyester resin composition of the present invention, it becomes possible to provide a molded product in which members are more firmly bonded. Such molded products are widely used industrially, and their utility value is extremely high.

図1は、本発明の実施例におけるレーザー溶着強度試験方法を示す概略図である。FIG. 1 is a schematic view showing a laser welding strength test method in an example of the present invention.

符号の説明Explanation of symbols

1 試験片1
2 試験片2
3 レーザー照射箇所
1 Test piece 1
2 Test piece 2
3 Laser irradiation points

Claims (9)

(a)ポリエステル樹脂100重量部に対し、(b)強化充填材0〜100重量部、(c)着色剤0.01〜1重量部配合してなるポリエステル樹脂組成物であって、前記(c)着色剤がフタロシアニン系顔料を含む2種類以上の着色剤の組合せであり、さらに、該樹脂組成物からなる厚み1.5mmの成形品の、波長960nmにおける光線透過率が15%以上である、黒色のレーザー溶着用ポリエステル樹脂組成物。 (A) A polyester resin composition obtained by blending 0 to 100 parts by weight of a reinforcing filler and (c) 0.01 to 1 part by weight of a colorant with respect to 100 parts by weight of a polyester resin, ) The colorant is a combination of two or more colorants containing a phthalocyanine pigment, and the light transmittance at a wavelength of 960 nm of a molded product having a thickness of 1.5 mm made of the resin composition is 15% or more. Black laser welding polyester resin composition. (a)ポリエステル樹脂がポリブチレンテレフタレートである、請求項1に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。 (A) The polyester resin composition for black laser welding according to claim 1, wherein the polyester resin is polybutylene terephthalate. (b)強化充填材がガラス繊維である、請求項1または2に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。 (B) The black laser welding polyester resin composition according to claim 1 or 2, wherein the reinforcing filler is glass fiber. 前記フタロシアニン系顔料が青色の着色剤である、請求項1〜3のいずれか1項に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。 The polyester resin composition for black laser welding according to any one of claims 1 to 3, wherein the phthalocyanine pigment is a blue colorant. フタロシアニン系顔料以外の(c)着色剤として、茶色の着色剤を含む、請求項1〜4のいずれか1項に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。 The black laser welding polyester resin composition according to any one of claims 1 to 4, comprising a brown colorant as a colorant other than the phthalocyanine pigment (c). 前記茶色の着色剤がメチン系染料である請求項5に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。 The black laser welding polyester resin composition according to claim 5, wherein the brown colorant is a methine dye. レーザー透過側の部材に用いられる、請求項1〜6のいずれか1項に記載の黒色のレーザー溶着用ポリエステル樹脂組成物。 The polyester resin composition for black laser welding according to any one of claims 1 to 6, which is used for a member on a laser transmission side. 請求項1〜7のいずれか1項に記載の黒色のレーザー溶着用ポリエステル樹脂組成物(A)からなる部材とレーザー吸収性を有する樹脂組成物(B)からなる部材を、前記樹脂組成物(A)からなる部材側からレーザー光を照射して溶着させてなる成形品。 A member made of the black laser-welding polyester resin composition (A) according to any one of claims 1 to 7 and a member made of a resin composition (B) having laser absorbability are used as the resin composition ( A molded article formed by irradiating and welding a laser beam from the member side consisting of A). 請求項1〜7のいずれか1項に記載の黒色のレーザー溶着用ポリエステル樹脂組成物(A)からなる部材とレーザー吸収性を有する樹脂組成物(B)からなる部材を、前記樹脂組成物(A)からなる部材側からレーザー光を照射して溶着させる工程を含む成形品の製造方法。 A member made of the black laser-welding polyester resin composition (A) according to any one of claims 1 to 7 and a member made of a resin composition (B) having laser absorbability are used as the resin composition ( The manufacturing method of the molded article including the process of irradiating and welding a laser beam from the member side which consists of A).
JP2006319606A 2006-11-28 2006-11-28 Black polyester resin composition for laser welding and molded product using the same Pending JP2008133341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319606A JP2008133341A (en) 2006-11-28 2006-11-28 Black polyester resin composition for laser welding and molded product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319606A JP2008133341A (en) 2006-11-28 2006-11-28 Black polyester resin composition for laser welding and molded product using the same

Publications (1)

Publication Number Publication Date
JP2008133341A true JP2008133341A (en) 2008-06-12

Family

ID=39558404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319606A Pending JP2008133341A (en) 2006-11-28 2006-11-28 Black polyester resin composition for laser welding and molded product using the same

Country Status (1)

Country Link
JP (1) JP2008133341A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152909A1 (en) * 2007-06-13 2008-12-18 Wintech Polymer Ltd. Laser-transmitting resin molded article, and composite molded article comprising the same
JP2010090234A (en) * 2008-10-07 2010-04-22 Denso Corp Laser light transmissive resin member and resin molded product made thereof
JP2016155939A (en) * 2015-02-25 2016-09-01 三菱エンジニアリングプラスチックス株式会社 Resin composition for laser welding and welding body thereof
JP2017008149A (en) * 2015-06-18 2017-01-12 東洋紡株式会社 Polyester resin composition for automobile lamp member
JP2017149863A (en) * 2016-02-25 2017-08-31 三菱エンジニアリングプラスチックス株式会社 Resin composition for laser welding and welded body thereof
CN109725491A (en) * 2017-10-30 2019-05-07 阪田油墨股份有限公司 Black coloring compositions and black colorant anti-corrosion agent composition comprising it
US10836113B2 (en) 2015-01-22 2020-11-17 Mitsubishi Engineering-Plastics Corporation Laser welding member, and molded article
CN117343438A (en) * 2023-12-04 2024-01-05 上海聚威新材料股份有限公司 High-temperature-resistant laser-welded glass fiber reinforced PP composite material and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152909A1 (en) * 2007-06-13 2008-12-18 Wintech Polymer Ltd. Laser-transmitting resin molded article, and composite molded article comprising the same
JP5254971B2 (en) * 2007-06-13 2013-08-07 ウィンテックポリマー株式会社 Laser transmissive resin molded product and composite molded product thereof
JP2010090234A (en) * 2008-10-07 2010-04-22 Denso Corp Laser light transmissive resin member and resin molded product made thereof
JP4725813B2 (en) * 2008-10-07 2011-07-13 株式会社デンソー Plastic molded product
US10836113B2 (en) 2015-01-22 2020-11-17 Mitsubishi Engineering-Plastics Corporation Laser welding member, and molded article
JP2016155939A (en) * 2015-02-25 2016-09-01 三菱エンジニアリングプラスチックス株式会社 Resin composition for laser welding and welding body thereof
JP2017008149A (en) * 2015-06-18 2017-01-12 東洋紡株式会社 Polyester resin composition for automobile lamp member
JP2017149863A (en) * 2016-02-25 2017-08-31 三菱エンジニアリングプラスチックス株式会社 Resin composition for laser welding and welded body thereof
CN109725491A (en) * 2017-10-30 2019-05-07 阪田油墨股份有限公司 Black coloring compositions and black colorant anti-corrosion agent composition comprising it
CN109725491B (en) * 2017-10-30 2023-09-12 阪田油墨股份有限公司 Black-colored composition and black-colored resist composition comprising same
CN117343438A (en) * 2023-12-04 2024-01-05 上海聚威新材料股份有限公司 High-temperature-resistant laser-welded glass fiber reinforced PP composite material and preparation method thereof
CN117343438B (en) * 2023-12-04 2024-02-06 上海聚威新材料股份有限公司 High-temperature-resistant laser-welded glass fiber reinforced PP composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2007169358A (en) Polyester resin composition for laser welding and molded article using the same
JP6183822B1 (en) Laser welding resin composition and welded body thereof
EP3421540B1 (en) Resin composition for laser welding and welded body thereof
JP2007186584A (en) Polyester resin composition for laser welding and molded article produced by using the same
JP5884102B2 (en) Laser welding resin composition and welded body thereof
JP2008133341A (en) Black polyester resin composition for laser welding and molded product using the same
JP7041423B2 (en) Laser welding resin composition and its welded material
JP5034773B2 (en) Manufacturing method of composite molded article including process of welding using laser beam and composite molded article
WO2021225154A1 (en) Resin composition, molded product, kit, vehicle on-board camera component, vehicle on-board camera module, and molded product manufacturing method
JP6646795B1 (en) Resin composition, kit, method for producing resin composition, method for producing molded article, and molded article
JP2009040808A (en) Thermoplastic resin composition for laser welding, molded article and method for producing molded article
JP7054105B2 (en) Laser welding resin composition and its welded material
JP2009019134A (en) Polyester resin composition for laser welding and molded product using the same
JP2008308526A (en) Polyamide resin composition for laser welding, molded article and manufacturing method of molded article
JP2016155939A (en) Resin composition for laser welding and welding body thereof
WO2020235472A1 (en) Thermoplastic resin composition for millimeter-wave radar members, molded article, and resin composition production method
WO2020022208A1 (en) Polybutylene terephthalate resin composition
JP6511262B2 (en) Resin-metal composite and method for producing the same
JP2013053316A (en) Thermoplastic resin composition for laser welding, molding, method of manufacturing molding
JP2008222831A (en) Black polyester resin composition for laser welding, and molded article obtained using the same
JP2007246716A (en) Polyester resin composition for laser beam welding and molded article using the same
WO2021225153A1 (en) Galvano-type laser welding resin composition, molded article, galvano-type laser welding kit, onboard camera component, onboard camera module, uv ray exposure body, and method for manufacturing molded article
JP6567866B2 (en) Laser welding resin composition and welded body thereof
JP2008189764A (en) Black polyester resin composition for laser welding and molded material by using the same
JP6894093B2 (en) Laser welding resin composition and its welded material