Nothing Special   »   [go: up one dir, main page]

JP2008122640A - Microscope objective lens - Google Patents

Microscope objective lens Download PDF

Info

Publication number
JP2008122640A
JP2008122640A JP2006306223A JP2006306223A JP2008122640A JP 2008122640 A JP2008122640 A JP 2008122640A JP 2006306223 A JP2006306223 A JP 2006306223A JP 2006306223 A JP2006306223 A JP 2006306223A JP 2008122640 A JP2008122640 A JP 2008122640A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
glass material
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006306223A
Other languages
Japanese (ja)
Inventor
Miwako Mandai
三環子 万袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006306223A priority Critical patent/JP2008122640A/en
Publication of JP2008122640A publication Critical patent/JP2008122640A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microscope objective lens which has a numerical aperture of the extent of 0.65 and has a color aberration corrected in a wide wavelength region ranging from ultraviolet to near-infrared (405 nm to 1,064 nm). <P>SOLUTION: The microscope objective lens is composed of a positive first lens group G1, a positive second lens group G2 and a negative third lens group G3 in the order from the object side, wherein an achromatic lens, in which a positive lens and a negative lens are joined, is disposed on each of G1 to G3 at least by one, a diffraction optical face is formed on at least one face of an optical element constituting G2 and, when a partial dispersion ratio of glass material and absolute value of a difference of the Abbe number of positive lens and negative lens of an achromatic lens of G1 are ΔP1, Δvd1, a partial dispersion ratio of glass material and absolute value of a difference of the Abbe number of positive lens and negative lens of an achromatic lens of G2 are ΔP2, Δvd2, a focal distance of the whole system is f and a focal distance of G1 is f1, the microscope objective lens satisfies the following relations: ΔP1>0.04, ΔP2>0.04, Δvd1>20.0, Δvd2>25.0 and 1.0<f1/f<1.6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、顕微鏡対物レンズに関する。   The present invention relates to a microscope objective lens.

従来、生物用顕微鏡に用いられる対物レンズでは、色収差の補正は可視域のみのものが一般的である。しかしながら、従来の紫外光を用いる蛍光観察に加え、近年、光ピンセットへの応用や、多光子励起等を近赤外で行うため、紫外から近赤外までの色収差が良好に補正された顕微鏡対物レンズに対する市場からの要望が増えてきている。そのため、色収差の補正域が400nm〜1000nmに渡るものも開発されている(例えば、特許文献1参照)   Conventionally, in an objective lens used in a biological microscope, correction of chromatic aberration is generally only in the visible range. However, in addition to the conventional fluorescence observation using ultraviolet light, in recent years, since it is applied to optical tweezers and multiphoton excitation is performed in the near infrared, a microscope objective in which chromatic aberration from ultraviolet to near infrared is well corrected. There is an increasing market demand for lenses. For this reason, a chromatic aberration correction range extending from 400 nm to 1000 nm has been developed (see, for example, Patent Document 1).

特開2006−133248号公報JP 2006-133248 A

しかしながら、色収差の補正域を広くするためには異常分散ガラスを多く必要とするため、非常にコストが高くなってしまうという課題がある。   However, since a large amount of anomalous dispersion glass is required to widen the chromatic aberration correction range, there is a problem that the cost becomes very high.

本発明はこのような課題に鑑みてなされたものであり、倍率40倍程度で、かつ、開口数が0.65程度であり、紫外から近赤外(405nm〜1064nm)に渡る広い波長域で色収差を補正した顕微鏡対物レンズを提供することを目的とする。   The present invention has been made in view of such problems, has a magnification of about 40 times, a numerical aperture of about 0.65, and a wide wavelength range from ultraviolet to near infrared (405 nm to 1064 nm). An object of the present invention is to provide a microscope objective lens in which chromatic aberration is corrected.

前記課題を解決するために、本発明に係る顕微鏡対物レンズは、物体側より順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とから構成される。このとき、第1レンズ群が、正レンズと負レンズとを接合してなる色消しレンズを少なくとも1つ有し、第2レンズ群が、正レンズと負レンズとを接合してなる色消しレンズを少なくとも1つ有し、且つ、この第2レンズ群を構成する光学要素の少なくとも一面に回折光学面が形成され、第3レンズ群が、正レンズと負レンズとを接合してなる色消しレンズを少なくとも1つ含んで構成される。そして、d線に対する屈折率をndとし、波長1064nmの光線に対する屈折率をn1064とし、h線に対する屈折率をnhとして、波長1064nmの光線に対するd線およびh線の部分分散比Pを次式
P = (nd−n1064)/(nh−n1064)
で定義したとき、第1レンズ群に含まれる色消しレンズの正レンズの硝材の部分分散比と負レンズの硝材の部分分散比との差の絶対値ΔP1、および、第2レンズ群に含まれる色消しレンズの正レンズの硝材の部分分散比と負レンズの硝材の部分分散比との差の絶対値ΔP2が、次式
ΔP1 > 0.04, ΔP2 > 0.04 (1)
を満足する。また、第1レンズ群に含まれる前記色消しレンズの正レンズの硝材のアッベ数と負レンズの硝材のアッベ数との差の絶対値Δνd1、および、第2レンズ群に含まれる色消しレンズの正レンズの硝材のアッベ数と負レンズの硝材のアッベ数との差の絶対値Δνd2が、次式
Δνd1 > 20.0, Δνd2 > 20.0 (2)
を満足する。さらに、全系の焦点距離f、および、第1レンズ群の焦点距離f1が、次式
1.0 < f1/f < 1.6 (3)
を満足する。
In order to solve the above problems, a microscope objective lens according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a negative refractive power. And a third lens group. At this time, the first lens group has at least one achromatic lens formed by bonding a positive lens and a negative lens, and the second lens group is formed by bonding a positive lens and a negative lens. An achromatic lens in which a diffractive optical surface is formed on at least one surface of an optical element constituting the second lens group, and the third lens group is formed by joining a positive lens and a negative lens. It is comprised including at least one. Then, the refractive index for the d-line is nd, the refractive index for the light with a wavelength of 1064 nm is n1064, the refractive index for the h-line is nh, and the partial dispersion ratio P of the d-line and h-line with respect to the light with a wavelength of 1064 nm is
P = (nd−n1064) / (nh−n1064)
, The absolute value ΔP1 of the difference between the partial dispersion ratio of the positive lens glass material and the partial dispersion ratio of the negative lens glass material included in the first lens group, and included in the second lens group. The absolute value ΔP2 of the difference between the partial dispersion ratio of the glass material of the positive lens of the achromatic lens and the partial dispersion ratio of the glass material of the negative lens is expressed by the following equation:
ΔP1> 0.04, ΔP2> 0.04 (1)
Satisfied. In addition, the absolute value Δνd1 of the difference between the Abbe number of the positive lens glass material and the negative lens glass material of the achromatic lens included in the first lens group, and the achromatic lens included in the second lens group The absolute value Δνd2 of the difference between the Abbe number of the positive lens glass material and the negative lens glass material is
Δνd1> 20.0, Δνd2> 20.0 (2)
Satisfied. Furthermore, the focal length f of the entire system and the focal length f1 of the first lens group are expressed by the following equations.
1.0 <f1 / f <1.6 (3)
Satisfied.

このような本発明に係る顕微鏡対物レンズにおいて、第3レンズ群に含まれる色消しレンズの正レンズの硝材の部分分散比と負レンズの硝材の部分分散比との差の絶対値ΔP3が、次式
ΔP3 < 0.04 (4)
を満足することが好ましい。
In such a microscope objective lens according to the present invention, the absolute value ΔP3 of the difference between the partial dispersion ratio of the positive lens glass material and the negative lens glass material included in the third lens group is the following. formula
ΔP3 <0.04 (4)
Is preferably satisfied.

また、回折光学面が、異なる樹脂材料から形成された2個の光学部材を接合してその接合面に回折格子が形成された回折光学素子で構成され、第2レンズ群が、光学ガラス、この回折光学素子、光学ガラスの順で接合した回折光学要素を有することが好ましい。   Further, the diffractive optical surface is composed of a diffractive optical element in which two optical members formed of different resin materials are joined and a diffraction grating is formed on the joined surface, and the second lens group is made of optical glass, It is preferable to have a diffractive optical element joined in the order of a diffractive optical element and optical glass.

本発明に係る顕微鏡対物レンズを以上のように構成すると、倍率40倍程度で、開口数0.65程度を有し、紫外から近赤外(405nm〜1064nm)に渡る広い波長域で色収差を良好に補正した顕微鏡対物レンズを、回折光学素子を用いることにより、EDガラスや蛍石等の高価な光学材料を少なくして構成することができ、また、フレアーも少なくすることができる。   When the microscope objective lens according to the present invention is configured as described above, it has a magnification of about 40 times, a numerical aperture of about 0.65, and good chromatic aberration in a wide wavelength range from ultraviolet to near infrared (405 nm to 1064 nm). By using a diffractive optical element, the microscope objective lens corrected to the above can be configured with less expensive optical materials such as ED glass and fluorite, and flare can be reduced.

以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて、本発明に係る顕微鏡対物レンズの構成について説明する。この顕微鏡対物レンズは、物体側(カバープレートC側)より順に、正の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、および、負の屈折力を有する第3レンズ群G3から構成される。このような顕微鏡対物レンズにおいて、第1レンズ群G1は、正レンズと負レンズとを接合してなる色消しレンズ(図1におけるレンズL3,L4)を少なくとも1つ有して構成されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the configuration of the microscope objective lens according to the present invention will be described with reference to FIG. The microscope objective lens includes, in order from the object side (the cover plate C side), a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a first lens group having a negative refractive power. It is composed of three lens groups G3. In such a microscope objective lens, the first lens group G1 includes at least one achromatic lens (lenses L3 and L4 in FIG. 1) formed by cementing a positive lens and a negative lens.

また、第2レンズ群G2は、正レンズと負レンズとを接合してなる色消しレンズ(図1におけるレンズL5,L6)を少なくとも1つ有し、且つ、この第2レンズ群G2を構成する光学要素のいずれかの面に、回折光学面が形成されている。例えば、図1に示す顕微鏡対物レンズにおいては、光学ガラスL7、それぞれ異なる樹脂材料から形成された2個の光学部材L8,L9を接合し、その接合面に回折格子Dが形成された回折光学素子、および、光学ガラスL10をこの順に接合した回折光学要素を含んで構成される。   The second lens group G2 has at least one achromatic lens (lenses L5 and L6 in FIG. 1) formed by cementing a positive lens and a negative lens, and constitutes the second lens group G2. A diffractive optical surface is formed on any surface of the optical element. For example, in the microscope objective lens shown in FIG. 1, a diffractive optical element in which an optical glass L7 and two optical members L8 and L9 formed from different resin materials are bonded and a diffraction grating D is formed on the bonded surface. And a diffractive optical element in which the optical glass L10 is joined in this order.

さらに、第3レンズ群G3は、全体として負の屈折力を有し、正レンズと負レンズとを接合してなる色消しレンズ(図1におけるレンズL11,L12)を少なくとも1つ含んで構成される。   Further, the third lens group G3 has a negative refracting power as a whole, and includes at least one achromatic lens (lenses L11 and L12 in FIG. 1) formed by joining a positive lens and a negative lens. The

回折光学素子(回折光学面)は、負の分散値(アッベ数=−3.453)を有し、分散が大きく、また異常分散性(部分分散比=0.2956)が強いため、強力な色収差補正能力を有している。光学ガラスのアッベ数は通常30〜80程度であるが、回折光学素子のアッベ数は負の値を持っている。換言すると、回折光学素子においては、長い波長の光ほど大きく曲がる。このため、通常の光学ガラスでは達成し得ない良好な色収差補正が可能となる。すなわち、本実施例に係る顕微鏡対物レンズは、EDガラスや蛍石等の高価な光学材料を多く用いず、樹脂により形成された負分散特性を有する回折光学素子を用いて、少ないレンズ枚数で構成するものである。なお、回折光学素子L8,L9を樹脂製とした利点は、通常の光学ガラスよりも簡単にモールドと紫外線硬化により回折格子面が形成できる点にある。   The diffractive optical element (diffractive optical surface) has a negative dispersion value (Abbe number = −3.453), a large dispersion, and a strong anomalous dispersion (partial dispersion ratio = 0.2956). Has chromatic aberration correction capability. The Abbe number of the optical glass is usually about 30 to 80, but the Abbe number of the diffractive optical element has a negative value. In other words, in the diffractive optical element, the longer the wavelength of light, the larger the bending. Therefore, it is possible to correct chromatic aberration that cannot be achieved with ordinary optical glass. That is, the microscope objective lens according to the present embodiment is configured with a small number of lenses by using a diffractive optical element having a negative dispersion characteristic formed of a resin without using many expensive optical materials such as ED glass and fluorite. To do. The advantage that the diffractive optical elements L8 and L9 are made of resin is that a diffraction grating surface can be formed by molding and ultraviolet curing more easily than ordinary optical glass.

それでは、本実施例に係る顕微鏡対物レンズを構成するための条件について、以下に説明する。この顕微鏡対物レンズは、1064nmの光線に対するd線(588nm)およびh線(405nm)の部分分散比をPとしたときに、第1レンズ群G1に含まれる色消しレンズの正レンズ(図1におけるレンズL4)の硝材と負レンズ(図1におけるレンズL3)の硝材との上記部分分散比Pの差の絶対値をΔP1とし、第2レンズ群G2に含まれる色消しレンズの正レンズ(図1におけるレンズL6)の硝材と負レンズ(図1におけるレンズL5)の硝材との上記部分分散比Pの差の絶対値ΔP2としたとき、次の条件式(1)を満足するように構成されている。   The conditions for configuring the microscope objective lens according to the present embodiment will be described below. This microscope objective lens is a positive lens (in FIG. 1) of the achromatic lens included in the first lens group G1, where P is the partial dispersion ratio of d-line (588 nm) and h-line (405 nm) to a 1064 nm ray. The absolute value of the difference in the partial dispersion ratio P between the glass material of the lens L4) and the glass material of the negative lens (lens L3 in FIG. 1) is ΔP1, and the positive lens of the achromatic lens included in the second lens group G2 (FIG. 1). When the absolute value ΔP2 of the difference in the partial dispersion ratio P between the glass material of the lens L6) and the glass material of the negative lens (lens L5 in FIG. 1) is satisfied, the following conditional expression (1) is satisfied. Yes.

ΔP1 > 0.04, ΔP2 > 0.04 (1)               ΔP1> 0.04, ΔP2> 0.04 (1)

なお、1064nmの光線に対するd線およびh線の部分分散比Pは、d線に対する屈折率をndとし、波長1064nmの光線に対する屈折率をn1064とし、h線に対する屈折率をnhとするとき、次式のように定義される。   The partial dispersion ratio P of the d-line and h-line with respect to the 1064 nm ray is expressed as follows when the refractive index for the d-line is nd, the refractive index for the light with a wavelength of 1064 nm is n1064, and the refractive index for the h-line is nh. It is defined as an expression.

P = (nd−n1064)/(nh−n1064)             P = (nd−n1064) / (nh−n1064)

また、この顕微鏡対物レンズは、第1レンズ群G1に含まれる色消しレンズの正レンズの硝材のアッベ数と負レンズの硝材のアッベ数との差の絶対値をΔνd1とし、第2レンズ群G2に含まれる色消しレンズの正レンズの硝材のアッベ数と負レンズの硝材のアッベ数との差の絶対値をΔνd2としたとき、次の条件式(2)を満足するように構成されている。   Further, in this microscope objective lens, the absolute value of the difference between the glass material Abbe number of the positive lens and the glass material of the negative lens included in the first lens group G1 is Δνd1, and the second lens group G2 When the absolute value of the difference between the Abbe number of the positive lens glass material and the negative lens glass material included in the lens is Δνd2, the following conditional expression (2) is satisfied. .

Δνd1 > 20.0, Δνd2 > 20.0 (2)               Δνd1> 20.0, Δνd2> 20.0 (2)

さらに、この顕微鏡対物レンズは、全系の焦点距離をfとし、第1レンズ群G1の焦点距離をf1としたとき、次の条件式(3)を満足するように構成されている。   Furthermore, this microscope objective lens is configured to satisfy the following conditional expression (3), where f is the focal length of the entire system and f1 is the focal length of the first lens group G1.

1.0 < f1/f < 1.6 (3)                   1.0 <f1 / f <1.6 (3)

条件式(1)は、回折光学素子と組み合わせて用いられる色消しレンズの持つ色収差特性を規定するものである。回折光学素子を用いた場合の色消しは、通常のガラスの選択とは異なった選択をする必要がある。特に2次スペクトルを補正する場合、通常は色消しレンズを構成する正レンズと負レンズとの部分分散比の差を0に近い選択とするが、回折光学素子を用いた場合はこれと異なる。すなわち、回折光学素子のアッベ数が通常の光学ガラスとは異なり、回折光学面で発生する色収差が波長に対して線形であるため、これと補償させるために、組み合わせる光学ガラスで発生する色収差を回折光学素子の色収差特性と揃える必要がある。そのため、本実施例に係る顕微鏡対物レンズに用いられる色消しレンズは、条件式(1)を満足する必要がある。この条件式(1)で規定された範囲を外れると、回折光学素子を用いても2次スペクトルが残存してしまう。   Conditional expression (1) defines chromatic aberration characteristics of an achromatic lens used in combination with a diffractive optical element. The achromatism in the case of using a diffractive optical element needs to be selected differently from the normal selection of glass. In particular, when correcting the secondary spectrum, the difference in partial dispersion ratio between the positive lens and the negative lens constituting the achromatic lens is usually selected to be close to 0, but this is different when a diffractive optical element is used. In other words, diffractive optical elements have an Abbe number different from that of ordinary optical glass, and chromatic aberration generated on the diffractive optical surface is linear with respect to the wavelength. It is necessary to align with the chromatic aberration characteristics of the optical element. Therefore, the achromatic lens used for the microscope objective lens according to the present embodiment needs to satisfy the conditional expression (1). If the range defined by the conditional expression (1) is not satisfied, a secondary spectrum remains even if a diffractive optical element is used.

一方、2次スペクトルと同時に、1次の軸上の色収差を補正する必要があるが、回折光学素子(回折格子D)の格子ピッチを製造可能な範囲とするためには、この回折光学素子への色消し負担を軽減する必要がある。そのため、この回折光学素子と組み合わせて用いられる色消しレンズに、1次の色収差補正を主に担わせる必要がある。条件式(2)は、このように、本実施例に係る顕微鏡対物レンズに用いられる色消しレンズに、1次の色収差補正を担わせるための条件であり、この条件式(2)で規定された範囲を外れると、回折光学素子に対する色収差補正の負担が増加し、格子ピッチが細かくなって製造が困難になるとともに、完全な色収差の補正も実現できなくなる。   On the other hand, it is necessary to correct the chromatic aberration on the primary axis simultaneously with the secondary spectrum, but in order to set the grating pitch of the diffractive optical element (diffraction grating D) to a manufacturable range, to this diffractive optical element It is necessary to reduce the burden of achromatism. For this reason, the achromatic lens used in combination with this diffractive optical element must mainly be responsible for primary chromatic aberration correction. Conditional expression (2) is a condition for causing the achromatic lens used in the microscope objective lens according to the present embodiment to perform primary chromatic aberration correction as described above, and is defined by this conditional expression (2). Outside the above range, the burden of chromatic aberration correction on the diffractive optical element increases, the grating pitch becomes fine, making manufacturing difficult, and complete correction of chromatic aberration becomes impossible.

条件式(3)は、球面収差の補正に関わるものである。この条件式(3)の下限を下回ると、球面収差の高次の曲がりが発生し、補正が困難となる。反対に、条件式(3)の上限を上回ると、第2レンズ群G2での球面収差の補正負担が増加し、色収差と同時に球面収差の補正を達成することができなくなる。   Conditional expression (3) relates to correction of spherical aberration. If the lower limit of conditional expression (3) is not reached, higher-order bending of spherical aberration occurs, making correction difficult. On the contrary, if the upper limit of conditional expression (3) is exceeded, the correction burden of spherical aberration in the second lens group G2 increases, and it becomes impossible to achieve correction of spherical aberration simultaneously with chromatic aberration.

また、本実施例に係る顕微鏡対物レンズにおいては、第3レンズ群G3に含まれる色消しレンズの正レンズ(図1におけるレンズL11)の硝材と負レンズ(図1におけるレンズL12)の硝材との上記部分分散比Pの差の絶対値をΔP3としたとき、次に示す条件式(4)を満たすことが好ましい。   In the microscope objective lens according to the present embodiment, the glass material of the positive lens (lens L11 in FIG. 1) and the glass material of the negative lens (lens L12 in FIG. 1) included in the third lens group G3. When the absolute value of the difference in the partial dispersion ratio P is ΔP3, it is preferable that the following conditional expression (4) is satisfied.

ΔP3 < 0.04 (4)                             ΔP3 <0.04 (4)

この条件式(4)は、倍率の色収差の補正に関わるものである。本実施例に係る顕微鏡対物レンズでは、回折光学素子による色消しは、主に軸上の色収差の補正に用いているため、倍率の色収差の補正に寄与させることができない。そのため、第3レンズ群G3の色消しレンズを構成する硝材の選択を、条件式(4)を満たすように選択することにより、倍率の2次スペクトルの補正が達成できる。この条件式(4)で規定された範囲を外れると、倍率の色の2次スペクトルが残存してしまう。   Conditional expression (4) relates to correction of chromatic aberration of magnification. In the microscope objective lens according to the present example, achromaticity by the diffractive optical element is mainly used for correcting axial chromatic aberration, and thus cannot contribute to correcting chromatic aberration of magnification. Therefore, the correction of the secondary spectrum of magnification can be achieved by selecting the glass material constituting the achromatic lens of the third lens group G3 so as to satisfy the conditional expression (4). If the range defined by the conditional expression (4) is not satisfied, a secondary spectrum of the color of magnification will remain.

以下に、本発明に係る顕微鏡対物レンズの2つの実施例を示すが、各実施例において、第2レンズ群G2に形成された回折光学面の位相差は、通常の屈折率と後述する非球面式(5)とを用いて行う超高屈折率法により計算した。超高屈折率法とは、非球面形状と回折光学面の格子ピッチとの間の一定の等価関係を利用するものであり、本実施例においては、回折光学面を超高屈折率法のデータとして、すなわち、後述する非球面式(5)およびその係数より示している。なお、本実施例では収差特性の算出対象として、d線、g線、C線、および、F線を選んでいる。本実施例において用いられたこれらd線、C線、F線、および、g線の波長と、各スペクトル線に対して設定した超高屈折率法の計算に用いられるための屈折率の値を下の表1に示す。   In the following, two examples of the microscope objective lens according to the present invention are shown. In each example, the phase difference of the diffractive optical surface formed in the second lens group G2 is the normal refractive index and an aspheric surface to be described later. It calculated by the ultrahigh refractive index method performed using Formula (5). The ultrahigh refractive index method uses a certain equivalent relationship between the aspherical shape and the grating pitch of the diffractive optical surface. In this embodiment, the diffractive optical surface is represented by data of the ultrahigh refractive index method. That is, it is shown from an aspherical expression (5) described later and its coefficient. In the present embodiment, d-line, g-line, C-line, and F-line are selected as aberration characteristic calculation targets. The wavelength of these d-line, C-line, F-line, and g-line used in this example and the value of the refractive index to be used for the calculation of the ultra-high refractive index method set for each spectral line. Shown in Table 1 below.

(表1)
波長 屈折率(超高屈折率法による)
d線 587.562nm 10001
C線 656.273nm 11170.4255
F線 486.133nm 8274.7311
g線 435.835nm 7418.6853
(Table 1)
Wavelength Refractive index (by ultra-high refractive index method)
d-line 587.562nm 10001
C line 656.273nm 11170.4255
F line 486.133nm 8274.7311
g-line 435.835nm 7418.6853

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(頂点曲率半径)をrとし、円錐係数をκとし、n次の非球面係数をCnとしたとき、以下の数式(5)で表わされる。またこのとき、近軸曲率半径Rは以下の数式(6)で表される。 In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (vertex radius of curvature), κ is the conic coefficient, and C n is the nth-order aspheric coefficient, it is expressed by the following equation (5). At this time, the paraxial radius of curvature R is expressed by the following formula (6).

S(y)=(y2/r)/{1+(1−κ・y2/r21/2
+C2・y2+C4・y4+C6・y6+C8・y8+C10・y10+・・・ (5)
R=1/(1/r+2C2) (6)
S (y) = (y 2 / r) / {1+ (1−κ · y 2 / r 2 ) 1/2 }
+ C 2 · y 2 + C 4 · y 4 + C 6 · y 6 + C 8 · y 8 + C 10 · y 10 + (5)
R = 1 / (1 / r + 2C 2 ) (6)

なお、各実施例において、回折光学面が形成されたレンズ面には、表中の面番号の右側に*印を付しており、非球面式(5)は、この回折光学面の性能の諸元を示している。   In each example, the lens surface on which the diffractive optical surface is formed is marked with an asterisk (*) on the right side of the surface number in the table. The aspherical expression (5) indicates the performance of the diffractive optical surface. The specifications are shown.

また、各実施例における顕微鏡対物レンズは、無限遠補正型のものであり、図2に示す構成であって、表2に示す諸元を有する結像レンズとともに使用される。なお、この表2において、第1欄mは物体側からの各光学面の番号であって、図2に示した面番号1〜6に対応している。また、第2欄rは各光学面の曲率半径、第3欄dは各光学面から次の光学面までの光軸上の距離、第4欄ndはd線に対する屈折率、そして、第5欄νdはd線に対するアッベ数を示している。この諸元表の説明は以降の実施例においても同様である。   Further, the microscope objective lens in each example is of the infinity correction type, has the configuration shown in FIG. 2, and is used together with the imaging lens having the specifications shown in Table 2. In Table 2, the first column m is the number of each optical surface from the object side, and corresponds to the surface numbers 1 to 6 shown in FIG. The second column r is the radius of curvature of each optical surface, the third column d is the distance on the optical axis from each optical surface to the next optical surface, the fourth column nd is the refractive index with respect to the d-line, and the fifth column A column νd indicates the Abbe number with respect to the d line. The description of the specification table is the same in the following embodiments.

(表2)
m r d nd νd
1 75.043 5.1 1.623 57.0
2 -75.043 2 1.750 35.2
3 1600.580 7.5
4 50.256 5.1 1.668 42.0
5 -84.541 1.8 1.613 44.4
6 36.911 5.5
(Table 2)
m r d nd νd
1 75.043 5.1 1.623 57.0
2 -75.043 2 1.750 35.2
3 1600.580 7.5
4 50.256 5.1 1.668 42.0
5 -84.541 1.8 1.613 44.4
6 36.911 5.5

なお、この結像レンズは、物体側から順に、両凸レンズL21と両凹レンズL22とを接合した接合レンズ、および、両凸レンズL23と両凹レンズL24とを接合した接合レンズから構成される。   This imaging lens is composed of, in order from the object side, a cemented lens in which a biconvex lens L21 and a biconcave lens L22 are cemented, and a cemented lens in which a biconvex lens L23 and a biconcave lens L24 are cemented.

(第1実施例)
上述の説明で用いた図1は、本発明に係る顕微鏡対物レンズの第1実施例を示している。この顕微鏡対物レンズは上述した通り、物体側、すなわちカバープレートC側より順に、正の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、および、負の屈折力を有する第3レンズ群G3から構成される。第1レンズ群G1は、物体側に凹面を向けた正メニスカスレンズL1、物体側に凹面を向けた正メニスカスレンズL2、および、両凹レンズL3と両凸レンズL4とを接合した接合レンズ(色消しレンズ)から構成される。また、第2レンズ群G2は、両凹レンズL5と両凸レンズL6とを接合した接合レンズ(色消しレンズ)、および、上述のように、平板状の光学ガラスL7と、それぞれ異なる樹脂材料から形成された2個の平板状の光学部材L8,L9を接合し、その接合面に回折格子Dが形成された回折光学素子と、平板状の光学ガラスL10とをこの順に接合した回折光学要素から構成される。さらに、第3レンズ群G3は、両凸レンズL11と両凹レンズL12とを接合した接合レンズ(色消しレンズ)から構成される。
(First embodiment)
FIG. 1 used in the above description shows a first embodiment of the microscope objective lens according to the present invention. As described above, this microscope objective lens has, in order from the object side, that is, the cover plate C side, a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a negative refractive power. And a third lens group G3. The first lens group G1 includes a positive meniscus lens L1 having a concave surface facing the object side, a positive meniscus lens L2 having a concave surface facing the object side, and a cemented lens (achromatic lens) formed by cementing a biconcave lens L3 and a biconvex lens L4. ). The second lens group G2 is formed of a resin material different from the cemented lens (achromatic lens) obtained by cementing the biconcave lens L5 and the biconvex lens L6 and the flat optical glass L7 as described above. In addition, two flat optical members L8 and L9 are joined, and a diffractive optical element in which a diffraction grating D is formed on the joint surface and a flat optical glass L10 are joined in this order. The Furthermore, the third lens group G3 includes a cemented lens (achromatic lens) in which a biconvex lens L11 and a biconcave lens L12 are cemented.

このように図1に示した第1実施例に係る顕微鏡対物レンズの諸元を表3に示す。この表3において、NAは開口数を示し、βは倍率を示し、d0はカバーガラスCから最初のレンズ(レンズL1)の頂点までの光軸上の距離を示している。また、第1欄mに示す各光学面の番号(右の*は回折光学面として形成されているレンズ面を示す)は、図1に示した面番号1〜19に対応している。また、第2欄rにおいて、回折光学面の場合は、ベースとなる非球面の基準となる球面の曲率半径を示している。また、表には上記条件式(1)〜(4)に対応する値、すなわち、条件対応値も示している。以上の表の説明は他の実施例においても同様である。   Table 3 shows the specifications of the microscope objective lens according to the first example shown in FIG. In Table 3, NA represents the numerical aperture, β represents the magnification, and d0 represents the distance on the optical axis from the cover glass C to the apex of the first lens (lens L1). The numbers of the optical surfaces shown in the first column m (* on the right indicate the lens surfaces formed as diffractive optical surfaces) correspond to the surface numbers 1 to 19 shown in FIG. In the second column r, in the case of a diffractive optical surface, the radius of curvature of the spherical surface serving as a reference for the base aspherical surface is shown. The table also shows values corresponding to the conditional expressions (1) to (4), that is, the condition corresponding values. The description of the above table is the same in other embodiments.

また、以下の全ての諸元において掲載される曲率半径r、面間隔dその他長さの単位は、特記の無い場合、一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることはなく、他の適当な単位を用いることもできる。   In addition, “mm” is generally used as the unit of the radius of curvature r, the surface interval d and other lengths published in all the following specifications unless otherwise specified, but the optical system is proportionally enlarged or reduced. Since the same optical performance can be obtained, the unit is not limited to “mm”, and other appropriate units can be used.

なお、本第1実施例において、カバーガラスCは、厚さ0.17mm、d線に対する屈折率1.522、d線に対するアッベ数58.8の諸元を有する。   In the first embodiment, the cover glass C has a thickness of 0.17 mm, a refractive index of 1.522 for the d-line, and an Abbe number of 58.8 for the d-line.

(表3)
f=5
NA=0.65
β=40
d0=0.74

m r d nd νd
1 -3.709 6.15 1.773 49.6
2 -5.636 0.20
3 -134.630 3.65 1.603 65.4
4 -10.330 0.20
5 -179.716 1.10 1.744 44.8
6 13.120 4.70 1.487 70.4
7 -12.099 0.60
8 -1678.660 1.20 1.757 31.6
9 11.150 3.65 1.603 65.4
10 -25.286 0.20
11 ∞ 1.50 1.517 64.1
12 ∞ 0.20 1.557 50.2
13* ∞ 0 10001.000 -3.5
14 ∞ 0.20 1.528 34.7
15 ∞ 2.50 1.517 64.1
16 ∞ 20.50
17 17.729 3.85 1.755 27.5
18 -10.900 1.55 1.720 34.7
19 10.499

非球面データ
第13面 κ=1 C2=-4.03226×10-84=-2.58495×10-11
6=-1.57650×10-128=-2.20057×10-1410=0.0

条件対応値
(1)ΔP1=0.051 ΔP2=0.056
(2)Δνd1=25.6 Δνd2=33.8
(3)f1/f=1.5
(4)ΔP3=0.023
(Table 3)
f = 5
NA = 0.65
β = 40
d0 = 0.74

m r d nd νd
1 -3.709 6.15 1.773 49.6
2 -5.636 0.20
3 -134.630 3.65 1.603 65.4
4 -10.330 0.20
5 -179.716 1.10 1.744 44.8
6 13.120 4.70 1.487 70.4
7 -12.099 0.60
8 -1678.660 1.20 1.757 31.6
9 11.150 3.65 1.603 65.4
10 -25.286 0.20
11 ∞ 1.50 1.517 64.1
12 ∞ 0.20 1.557 50.2
13 * ∞ 0 10001.000 -3.5
14 ∞ 0.20 1.528 34.7
15 ∞ 2.50 1.517 64.1
16 ∞ 20.50
17 17.729 3.85 1.755 27.5
18 -10.900 1.55 1.720 34.7
19 10.499

Aspherical data 13th surface κ = 1 C 2 = −4.03226 × 10 −8 C 4 = −2.58495 × 10 −11
C 6 = -1.57650 × 10 −12 C 8 = −2.20057 × 10 −14 C 10 = 0.0

Condition corresponding value (1) ΔP1 = 0.051 ΔP2 = 0.056
(2) Δνd1 = 25.6 Δνd2 = 33.8
(3) f1 / f = 1.5
(4) ΔP3 = 0.023

このように、第1実施例では上記条件式(1)〜(4)は全て満たされていることが分かる。図3にこの第1実施例における、d線、g線、C線、F線、h線、および、波長1064nmの光線に対する球面収差、倍率色収差、および、コマ収差の諸収差図を示す。この諸収差図において、dはd線を、gはg線を、CはC線を、FはF線を、hはh線を、#は波長1064nmの光線を示している。なお、球面収差図では最大口径に対する開口数の値を示しており、コマ収差図は、像高Yが12.5mmのとき、8mmのとき、および、0mmのときを示している。以上の収差図の説明は他の実施例においても同様である。この図3に示す各収差図から明らかなように、第1実施例では、諸収差が良好に補正され、優れた結像性能が確保されていることが分かる。   Thus, it can be seen that all the conditional expressions (1) to (4) are satisfied in the first embodiment. FIG. 3 shows various aberration diagrams of spherical aberration, lateral chromatic aberration, and coma aberration for the d-line, g-line, C-line, F-line, h-line, and light beam having a wavelength of 1064 nm in the first embodiment. In these graphs, d represents the d-line, g represents the g-line, C represents the C-line, F represents the F-line, h represents the h-line, and # represents a light beam having a wavelength of 1064 nm. The spherical aberration diagram shows the numerical aperture value with respect to the maximum aperture, and the coma aberration diagram shows the image height Y when it is 12.5 mm, when it is 8 mm, and when it is 0 mm. The explanation of the above aberration diagrams is the same in other examples. As is apparent from the respective aberration diagrams shown in FIG. 3, it can be seen that in the first example, various aberrations are satisfactorily corrected and excellent imaging performance is ensured.

(第2実施例)
次に第2実施例として、図4に示す顕微鏡対物レンズについて説明する。この図4に示す顕微鏡対物レンズも、カバーガラスCより順に、正の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、および、負の屈折力を有する第3レンズ群G3から構成される。第1レンズ群G1は、物体側に凹面を向けた正メニスカスレンズL31、物体側に凸面を向けた負メニスカスレンズL32と両凸レンズL33とを接合した接合レンズ(色消しレンズ)、および、物体側に凸面を向けた負メニスカスレンズL34と両凸レンズL35とを接合した接合レンズ(色消しレンズ)から構成される。また、第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL36と両凸レンズL37とを接合した接合レンズ(色消しレンズ)、および、平板状の光学ガラスL38と、それぞれ異なる樹脂材料から形成された2個の平板状の光学部材L39,L40を接合し、その接合面に回折格子Dが形成された回折光学素子と、平板状の光学ガラスL41とをこの順に接合した回折光学要素から構成される。さらに、第3レンズ群G3は、両凸レンズL42と両凹レンズL43とを接合した接合レンズ(色消しレンズ)から構成される。
(Second embodiment)
Next, a microscope objective lens shown in FIG. 4 will be described as a second embodiment. The microscope objective lens shown in FIG. 4 also has, in order from the cover glass C, a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. A lens group G3 is included. The first lens group G1 includes a positive meniscus lens L31 having a concave surface facing the object side, a cemented lens (achromatic lens) in which a negative meniscus lens L32 having a convex surface facing the object side and a biconvex lens L33, and an object side. It is composed of a cemented lens (achromatic lens) in which a negative meniscus lens L34 having a convex surface facing to the surface and a biconvex lens L35 are cemented. The second lens group G2 is made of a resin material different from a cemented lens (achromatic lens) in which a negative meniscus lens L36 having a convex surface facing the object side and a biconvex lens L37 are cemented, and a flat optical glass L38. A diffractive optical element in which two flat optical members L39 and L40 formed from the above are joined, a diffractive optical element having a diffraction grating D formed on the joint surface thereof, and a flat optical glass L41 are joined in this order. Consists of Further, the third lens group G3 includes a cemented lens (achromatic lens) in which a biconvex lens L42 and a biconcave lens L43 are cemented.

なお、この第2実施例に係る顕微鏡対物レンズの第1レンズ群G1は、2個の色消しレンズ、すなわち、レンズL32とレンズL33とが接合された色消しレンズと、レンズL34とレンズL35とが接合された色消しレンズを有して構成された場合を示している。   The first lens group G1 of the microscope objective lens according to the second example includes two achromatic lenses, that is, an achromatic lens in which a lens L32 and a lens L33 are cemented, a lens L34, and a lens L35. Shows a case where the lens is configured to have a cemented achromatic lens.

この図4に示した第2実施例に係る顕微鏡対物レンズの諸元を表4に示す。なお、表4に示す面番号は図4に示した面番号1〜20と一致している。また、この第2実施例におけるカバーガラスCの諸元は、第1実施例と同じである。   Table 4 shows the specifications of the microscope objective lens according to the second example shown in FIG. In addition, the surface number shown in Table 4 corresponds with the surface numbers 1-20 shown in FIG. The specifications of the cover glass C in the second embodiment are the same as those in the first embodiment.

(表4)
f=5
NA=0.70
β=40
d0=0.65

m r d nd νd
1 -2.871 4.83 1.804 46.6
2 -4.028 0.95
3 4172.412 1.44 1.717 47.9
4 20.128 3.52 1.487 70.4
5 -15.621 0.62
6 69.285 1.29 1.744 44.8
7 15.541 3.41 1.487 70.4
8 -10.264 0.20
9 167.608 0.89 1.795 28.5
10 10.770 3.29 1.603 65.4
11 -42.057 0.16
12 ∞ 1.50 1.517 64.1
13 ∞ 0.20 1.557 50.2
14* ∞ 0.00 10001.000 -3.5
15 ∞ 0.20 1.528 34.7
16 ∞ 1.50 1.517 64.1
17 ∞ 17.97
18 11.270 3.48 1.755 27.5
19 -43.823 2.35 1.720 34.7
20 7.670

非球面データ
第14面 κ=1 C2=-4.46058×10-84=-8.90295×10-11
6=4.86183×10-138=-3.97085×10-1410=0.0

条件対応値
(1)ΔP1=0.046(レンズL32,L33)
ΔP1=0.051(レンズL34,L35)
ΔP2=0.063
(2)Δνd1=22.5(レンズL32,L33)
Δνd1=25.6(レンズL34,L35)
Δνd2=36.9
(3)f1/f=1.4
(4)ΔP3=0.023
(Table 4)
f = 5
NA = 0.70
β = 40
d0 = 0.65

m r d nd νd
1 -2.871 4.83 1.804 46.6
2 -4.028 0.95
3 4172.412 1.44 1.717 47.9
4 20.128 3.52 1.487 70.4
5 -15.621 0.62
6 69.285 1.29 1.744 44.8
7 15.541 3.41 1.487 70.4
8 -10.264 0.20
9 167.608 0.89 1.795 28.5
10 10.770 3.29 1.603 65.4
11 -42.057 0.16
12 ∞ 1.50 1.517 64.1
13 ∞ 0.20 1.557 50.2
14 * ∞ 0.00 10001.000 -3.5
15 ∞ 0.20 1.528 34.7
16 ∞ 1.50 1.517 64.1
17 ∞ 17.97
18 11.270 3.48 1.755 27.5
19 -43.823 2.35 1.720 34.7
20 7.670

Aspheric data 14th surface κ = 1 C 2 = -4.46058 × 10 -8 C 4 = -8.90295 × 10 -11
C 6 = 4.86183 × 10 -13 C 8 = -3.97085 × 10 -14 C 10 = 0.0

Condition corresponding value (1) ΔP1 = 0.046 (lenses L32 and L33)
ΔP1 = 0.051 (Lens L34, L35)
ΔP2 = 0.063
(2) Δνd1 = 22.5 (lenses L32 and L33)
Δνd1 = 25.6 (Lens L34, L35)
Δνd2 = 36.9
(3) f1 / f = 1.4
(4) ΔP3 = 0.023

このように、第2実施例でも上記条件式(1)〜(4)は全て満たされており、また、第1レンズ群G1に含まれる2個の色消しレンズのいずれも条件式(1)、(2)を満たしていることが分かる。図5に、この第2実施例に係る顕微鏡対物レンズの球面収差、倍率色収差、および、コマ収差の諸収差図を示す。この各収差図から明らかなように、この第2実施例でも、収差が良好に補正され、優れた結像性能が確保されていることが分かる。   As described above, in the second embodiment, the conditional expressions (1) to (4) are all satisfied, and any of the two achromatic lenses included in the first lens group G1 is conditional expression (1). It can be seen that (2) is satisfied. FIG. 5 shows various aberration diagrams of spherical aberration, lateral chromatic aberration, and coma aberration of the microscope objective lens according to the second example. As is apparent from the respective aberration diagrams, it is understood that the aberration is corrected well and excellent imaging performance is ensured also in the second embodiment.

本発明の第1実施例に係る顕微鏡対物レンズのレンズ構成図である。It is a lens block diagram of the microscope objective lens which concerns on 1st Example of this invention. 本発明に係る顕微鏡対物レンズとともに使用される結像レンズのレンズ構成を示す図である。It is a figure which shows the lens structure of the imaging lens used with the microscope objective lens which concerns on this invention. 第1実施例に係る顕微鏡対物レンズの諸収差図である。FIG. 6 is a diagram illustrating various aberrations of the microscope objective lens according to the first example. 本発明の第2実施例に係る顕微鏡対物レンズのレンズ構成図である。It is a lens block diagram of the microscope objective lens which concerns on 2nd Example of this invention. 第2実施例に係る顕微鏡対物レンズの諸収差図である。FIG. 6 is various aberration diagrams of the microscope objective lens according to the second example.

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
D 回折格子(回折光学面)
G1 First lens group G2 Second lens group G3 Third lens group D Diffraction grating (diffractive optical surface)

Claims (3)

物体側より順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とからなり、
前記第1レンズ群が、正レンズと負レンズとを接合してなる色消しレンズを少なくとも1つ有し、
前記第2レンズ群が、正レンズと負レンズとを接合してなる色消しレンズを少なくとも1つ有し、且つ、前記第2レンズ群を構成する光学要素の少なくとも一面に回折光学面が形成され、
前記第3レンズ群が、正レンズと負レンズとを接合してなる色消しレンズを少なくとも1つ有して構成され、
d線に対する屈折率をndとし、波長1064nmの光線に対する屈折率をn1064とし、h線に対する屈折率をnhとして、波長1064nmの光線に対するd線およびh線の部分分散比Pを次式
P = (nd−n1064)/(nh−n1064)
で定義したとき、
前記第1レンズ群に含まれる前記色消しレンズの前記正レンズの硝材の部分分散比と前記負レンズの硝材の部分分散比との差の絶対値ΔP1、および、前記第2レンズ群に含まれる前記色消しレンズの前記正レンズの硝材の部分分散比と前記負レンズの硝材の部分分散比との差の絶対値ΔP2が、次式
ΔP1 > 0.04, ΔP2 > 0.04 (1)
を満足し、
前記第1レンズ群に含まれる前記色消しレンズの前記正レンズの硝材のアッベ数と前記負レンズの硝材のアッベ数との差の絶対値Δνd1、および、前記第2レンズ群に含まれる前記色消しレンズの前記正レンズの硝材のアッベ数と前記負レンズの硝材のアッベ数との差の絶対値Δνd2が、次式
Δνd1 > 20.0, Δνd2 > 20.0 (2)
を満足し、
全系の焦点距離f、および、前記第1レンズ群の焦点距離f1が、次式
1.0 < f1/f < 1.6 (3)
を満足する顕微鏡対物レンズ。
In order from the object side, the first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power,
The first lens group includes at least one achromatic lens formed by bonding a positive lens and a negative lens;
The second lens group has at least one achromatic lens formed by joining a positive lens and a negative lens, and a diffractive optical surface is formed on at least one surface of an optical element constituting the second lens group. ,
The third lens group includes at least one achromatic lens formed by bonding a positive lens and a negative lens;
The refractive index for the d-line is nd, the refractive index for the light beam having a wavelength of 1064 nm is n1064, the refractive index for the h-line beam is nh, and the partial dispersion ratio P of the d-line and h-line for the light beam with a wavelength of 1064 nm
P = (nd−n1064) / (nh−n1064)
When defined in
The absolute value ΔP1 of the difference between the partial dispersion ratio of the glass material of the positive lens and the partial dispersion ratio of the glass material of the negative lens of the achromatic lens included in the first lens group, and included in the second lens group The absolute value ΔP2 of the difference between the partial dispersion ratio of the glass material of the positive lens and the partial dispersion ratio of the glass material of the negative lens of the achromatic lens is given by
ΔP1> 0.04, ΔP2> 0.04 (1)
Satisfied,
The absolute value Δνd1 of the difference between the Abbe number of the glass material of the positive lens and the Abbe number of the glass material of the negative lens of the achromatic lens included in the first lens group, and the color included in the second lens group The absolute value Δνd2 of the difference between the Abbe number of the glass material of the positive lens and the Abbe number of the glass material of the negative lens of the eraser lens is given by
Δνd1> 20.0, Δνd2> 20.0 (2)
Satisfied,
The focal length f of the entire system and the focal length f1 of the first lens group are given by
1.0 <f1 / f <1.6 (3)
Satisfying microscope objective lens.
前記第3レンズ群に含まれる前記色消しレンズの前記正レンズの硝材の部分分散比と前記負レンズの硝材の部分分散比との差の絶対値ΔP3が、次式
ΔP3 < 0.04 (4)
を満足する請求項1に記載の顕微鏡対物レンズ。
The absolute value ΔP3 of the difference between the glass material partial dispersion ratio of the positive lens and the glass material of the negative lens of the achromatic lens included in the third lens group is expressed by the following equation:
ΔP3 <0.04 (4)
The microscope objective lens according to claim 1, wherein:
前記回折光学面が、異なる樹脂材料から形成された2個の光学部材を接合してその接合面に回折格子が形成された回折光学素子で構成され、
前記第2レンズ群が、光学ガラス、前記回折光学素子、光学ガラスの順で接合した回折光学要素を有する請求項1または2に記載の顕微鏡対物レンズ。
The diffractive optical surface is composed of a diffractive optical element in which two optical members formed from different resin materials are bonded and a diffraction grating is formed on the bonded surface,
The microscope objective lens according to claim 1 or 2, wherein the second lens group includes a diffractive optical element joined in the order of optical glass, the diffractive optical element, and optical glass.
JP2006306223A 2006-11-13 2006-11-13 Microscope objective lens Pending JP2008122640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306223A JP2008122640A (en) 2006-11-13 2006-11-13 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306223A JP2008122640A (en) 2006-11-13 2006-11-13 Microscope objective lens

Publications (1)

Publication Number Publication Date
JP2008122640A true JP2008122640A (en) 2008-05-29

Family

ID=39507454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306223A Pending JP2008122640A (en) 2006-11-13 2006-11-13 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP2008122640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326071A (en) * 2021-12-14 2022-04-12 宁波永新光学股份有限公司 20-time large numerical aperture flat field apochromatic microscope objective

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326071A (en) * 2021-12-14 2022-04-12 宁波永新光学股份有限公司 20-time large numerical aperture flat field apochromatic microscope objective
CN114326071B (en) * 2021-12-14 2024-03-19 宁波永新光学股份有限公司 20-time large numerical aperture flat field apochromatic microscope objective lens

Similar Documents

Publication Publication Date Title
JP5109712B2 (en) Objective lens
US10890746B2 (en) Microscope objective lens
JP5458889B2 (en) Microscope objective lens
WO2009125778A1 (en) Microscope objective lens
EP2045644B1 (en) Optical system and eyepiece
JP5614448B2 (en) Microscope objective lens
JP6354170B2 (en) Objective lens
JPH11295590A (en) Optical system provided with diffraction optical element
JP5206085B2 (en) Microscope objective lens
JP4995525B2 (en) Achromatic lens system, optical device
JP4860500B2 (en) Achromatic lens system, optical device
US5798869A (en) Immersion-type microscope objective lens
JP2008122592A (en) Microscope objective lens
JP5190691B2 (en) Microscope objective lens
JP5434130B2 (en) Microscope objective lens
JP2008122640A (en) Microscope objective lens
JP5581182B2 (en) Eyepiece optical system and optical apparatus
JP2012189983A (en) Diffraction optical element and optical system including the same
WO2015107881A1 (en) Objective lens and microscope
WO2019225063A1 (en) Objective lens, optical system, and microscope
JP2004252100A (en) Projection lens
JP2004126059A (en) Teleconverter lens