Nothing Special   »   [go: up one dir, main page]

JP2008104269A - System for managing demand and supply in micro grid - Google Patents

System for managing demand and supply in micro grid Download PDF

Info

Publication number
JP2008104269A
JP2008104269A JP2006283634A JP2006283634A JP2008104269A JP 2008104269 A JP2008104269 A JP 2008104269A JP 2006283634 A JP2006283634 A JP 2006283634A JP 2006283634 A JP2006283634 A JP 2006283634A JP 2008104269 A JP2008104269 A JP 2008104269A
Authority
JP
Japan
Prior art keywords
load
supply
group
microgrid
demand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006283634A
Other languages
Japanese (ja)
Inventor
Kenji Okuyama
賢治 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2006283634A priority Critical patent/JP2008104269A/en
Publication of JP2008104269A publication Critical patent/JP2008104269A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for managing a demand and a supply in a micro grid which acquires information on a plurality of apparatuses at a time in addition to a condition confirmation, and stabilizes power supplied within the micro grid in comparison with conventional cases. <P>SOLUTION: The system for managing the demand and the supply in the micro grid has an information collectively-acquiring means 81, and a demand/supply controlling means 82. Since the information collectively-acquiring means 81 implements a multicast communication and collectively acquires the information on the apparatuses belonging to a group, the information on a plurality of the apparatuses can be acquired at a time in addition to the condition confirmation. The demand/supply controlling means 82 controls disconnections or connections of loads in each load group by using the multicast communication so as to prevent the magnitude of the loads 60, 61, 62, 63, 64, 65 connected within the micro grid 31 from being large than outputs from a plurality of distributed power supplies. A plurality of the loads are disconnected/connected at a time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、商用系統に接続でき、複数の分散型電源および複数の負荷を備えるマイクログリッドの需給を管理するマイクログリッドの需給管理システムに関する。   The present invention relates to a supply and demand management system for a microgrid that can be connected to a commercial system and manages the supply and demand of a microgrid having a plurality of distributed power sources and a plurality of loads.

マイクログリッドは、複数の分散型電源と複数の負荷を持つ小規模系統であって、当該複数の分散型電源が通信ネットワークを介して一括制御され、既存の商用系統から独立して運転可能なオンサイト型の電力供給システムのことである。このようなマイクログリッドは、負荷の計測装置や、分散型電源の制御装置、分散型電源の出力の計測装置などで通信ネットワークを構成する。そして、各装置のネットワーク設定や、マイクログリッド内で電力の需給を制御する制御装置(需給管理サーバ)への登録を手動で行う。また、需給制御のプログラムについても、現在の負荷、分散型電源、配電線の構成にあわせて手動でカスタマイズしている。このような方法では、負荷や分散型電源が導入・廃止されるたびに手動で登録・プログラムの変更を行う必要がある。   A microgrid is a small-scale system with multiple distributed power sources and multiple loads. The multiple distributed power sources are collectively controlled via a communication network and can be operated independently from existing commercial systems. It is a site-type power supply system. Such a microgrid constitutes a communication network with a load measuring device, a distributed power source control device, a distributed power source output measuring device, and the like. Then, the network setting of each device and the registration to the control device (supply / demand management server) that controls the supply / demand of power within the microgrid are manually performed. The supply and demand control program is also manually customized to match the current load, distributed power supply, and distribution line configuration. In such a method, it is necessary to manually register and change a program each time a load or a distributed power source is introduced or abolished.

上述した登録・プログラムの変更にかかる手間を低減するために、特許文献1に記載された技術をマイクログリッドに適用する方法が考えられる。すなわち、分散型電源や負荷をマイクログリッド内の系統に接続する際に識別符号の自動取得を行い、状態確認が成功するか失敗するかで登録/削除を行う。
特開2001−320754号公報
In order to reduce the labor required for the above-described registration / program change, a method of applying the technique described in Patent Document 1 to a microgrid can be considered. That is, when a distributed power source or a load is connected to a system in the microgrid, an identification code is automatically acquired, and registration / deletion is performed depending on whether the status check succeeds or fails.
JP 2001-320754 A

しかし、上述した方法を適用した技術では、分散型電源や負荷の情報(例えば電源容量や負荷容量等)を得るには状態確認とは個別にアクセスしなければならず、分散型電源や負荷を接続したり遮断する場合にも個別にしなければならない。分散型電源の中は気象条件によって大きく変動する機種(例えば太陽電池や風力発電機等)も少なくなく、供給可能な電力も大きく変動する場合がある。もし負荷の大きさが分散型電源の容量より大きくなると、マイクログリッド全体で電源供給が不安定になる可能性があった。   However, in the technology to which the above-described method is applied, in order to obtain information on the distributed power source and the load (for example, the power source capacity and the load capacity), the state confirmation must be accessed separately. It must also be individually connected or disconnected. There are not a few types of distributed power sources (for example, solar cells and wind power generators) that vary greatly depending on weather conditions, and the power that can be supplied may vary greatly. If the load is larger than the capacity of the distributed power supply, the power supply may become unstable throughout the microgrid.

本発明はこのような点に鑑みてなしたものであり、状態確認だけでなく一度に複数の装置にかかる情報を得ることができ、かつマイクログリッド内での電源供給を従来よりも安定化させ得るマイクログリッドの需給管理システムを提供することを目的とする。   The present invention has been made in view of the above points, and it is possible not only to check the status but also to obtain information related to a plurality of devices at a time, and to stabilize the power supply in the microgrid as compared with the prior art. An object of the present invention is to provide a microgrid supply and demand management system.

(1)課題を解決するための手段(以下では単に「解決手段」と呼ぶ。)1は、商用系統に接続でき、複数の分散型電源および複数の負荷を備えるマイクログリッドの需給を管理するマイクログリッドの需給管理システムであって、電源グループに属する前記複数の分散型電源と、二以上の負荷グループにグループ分けされた前記複数の負荷とについて、グループごとに異なるマルチキャストアドレスを設定しておき、マルチキャスト通信によってグループごとにアクセスし、アクセスしたグループに属する各装置の情報を一括して取得する情報一括取得手段と、前記情報一括取得手段によって取得した情報に基づいて、前記商用系統から切り離された状態のマイクログリッド内で接続している負荷の大きさが前記複数の分散型電源の出力よりも大きくならないように、マルチキャスト通信によって前記負荷グループごとに負荷の遮断または接続の制御を行う需給制御手段とを有するを要旨とする。 (1) Means for solving a problem (hereinafter simply referred to as “solution means”) 1 is a micro that can be connected to a commercial system and manages the supply and demand of a microgrid having a plurality of distributed power sources and a plurality of loads. A grid supply and demand management system, wherein a plurality of distributed power sources belonging to a power supply group and a plurality of loads grouped into two or more load groups are set with different multicast addresses for each group, Information is obtained from the commercial system based on the information obtained by the information collective acquisition means and the information collective acquisition means for obtaining information of each device belonging to the accessed group collectively by accessing each group by multicast communication The size of the load connected in the state microgrid is the output of the plurality of distributed power sources. Even so it does not increase, and gist and a supply control means for controlling the cut-off or connection of the load for each of the load groups via multicast communication.

解決手段1によれば、情報一括取得手段がマルチキャストアドレスに対してマルチキャスト通信を行うことにより、グループに属する各装置の情報を一括して取得する。そのため、状態確認だけでなく一度に複数の装置にかかる情報を得ることができる。一方、もしマイクログリッド内の系統に接続された全負荷の大きさが分散型電源の出力より大きくなったときには、需給制御手段がマルチキャスト通信(一斉通信)によって負荷グループを構成している複数の負荷を一度に遮断するので、マイクログリッド内における電源供給を従来よりも安定化させることができる。   According to the solution 1, the information batch acquisition unit acquires the information of each device belonging to the group in a batch by performing multicast communication with the multicast address. Therefore, it is possible to obtain information related to a plurality of devices at a time in addition to the state confirmation. On the other hand, if the total load connected to the system in the microgrid is larger than the output of the distributed power supply, the supply and demand control means uses a plurality of loads constituting a load group by multicast communication (simultaneous communication) Since the power supply is cut off at a time, the power supply in the microgrid can be stabilized more than in the prior art.

(2)解決手段2は、解決手段1に記載したマイクログリッドの需給管理システムであって、二以上の負荷グループについてそれぞれ異なる優先度を設定しておき、需給制御手段は、低い優先度が設定された負荷グループについて負荷の接続を遮断する制御を行うことを要旨とする。 (2) The solving means 2 is the microgrid supply and demand management system described in the solving means 1, in which different priorities are set for two or more load groups, and the supply and demand control means sets a low priority. The gist of the present invention is to perform control for blocking the connection of the load for the load group.

優先度の設定方法は任意であって、例えば負荷グループにおける負荷の大きさに従って設定したり、負荷の重要性(例えば病院や公共機関等)に従って設定する。解決手段2によれば、需給制御手段が低い優先度が設定された負荷グループから接続を遮断するので、高い優先度が設定された負荷グループは接続が維持される。よって、優先度の高い負荷の接続を維持しながらも、マイクログリッドの電源供給が不安定になるのを防止できる。   The priority setting method is arbitrary. For example, it is set according to the magnitude of the load in the load group, or according to the importance of the load (for example, a hospital or a public institution). According to the solving means 2, since the supply and demand control means cuts off the connection from the load group for which the low priority is set, the connection is maintained for the load group for which the high priority is set. Therefore, it is possible to prevent the power supply of the microgrid from becoming unstable while maintaining the connection of a load having a high priority.

本発明によれば、マルチキャスト通信によって負荷グループを構成している複数の負荷を一度に遮断するので、マイクログリッド内における電源供給を従来よりも安定化させることができる。   According to the present invention, since a plurality of loads constituting a load group are blocked at a time by multicast communication, the power supply in the microgrid can be stabilized more than before.

本発明を実施するための最良の形態について、図1〜図4を参照しながら説明する。図1にはマイクログリッドの構成例を模式的に表す。図2には需給制御処理の手続き例をフローチャートで表す。図3と図4には優先度リストの一例を表す。   The best mode for carrying out the present invention will be described with reference to FIGS. FIG. 1 schematically shows a configuration example of a microgrid. FIG. 2 is a flowchart showing an example of a procedure for supply and demand control processing. 3 and 4 show an example of the priority list.

図1は、商用系統10に対して三つのマイクログリッド30,31,32を接続する例を表す。商用系統10とマイクログリッド30の間は連結線L1によって接続され、連結線L1の途中に接続/遮断を行う開閉器(遮断器とも呼ぶ。以下同じ)20が備えられている。同様にして商用系統10とマイクログリッド31,32の間はそれぞれ連結線L2,L3によって接続され、連結線L2,L3の途中にそれぞれ接続/遮断を行う開閉器21,22が備えられている。マイクログリッド30,31,32は、複数の分散型電源および複数の負荷を備える点では同じであるが、具体的な数量は異なるのが一般的である。以下では、説明を簡単にするためにマイクログリッド31を代表して説明する。   FIG. 1 shows an example in which three microgrids 30, 31, 32 are connected to the commercial system 10. The commercial system 10 and the microgrid 30 are connected by a connection line L1, and a switch 20 (also referred to as a circuit breaker; the same applies hereinafter) 20 is provided in the middle of the connection line L1. Similarly, the commercial system 10 and the microgrids 31 and 32 are connected by connecting lines L2 and L3, respectively, and switches 21 and 22 for connecting / disconnecting are provided in the middle of the connecting lines L2 and L3. The microgrids 30, 31, and 32 are the same in that they have a plurality of distributed power sources and a plurality of loads, but the specific quantities are generally different. Hereinafter, the microgrid 31 will be described as a representative for the sake of simplicity.

図1に表すマイクログリッド31は、3つの分散型電源(太陽電池70,風力発電機71および燃料電池72)や、6つの負荷60,61,62,63,64,65、需給制御サーバ80などを有する。各々の分散型電源と負荷は、上述の連結線L2とともに自営線40に接続する。ただし、負荷60は自営線40との間に接続/遮断を行う開閉器50を介在させている。同様にして負荷61,62,63,64,65は自営線40との間にそれぞれ接続/遮断を行う開閉器51,52,53,54,55を介在させている。   The microgrid 31 shown in FIG. 1 includes three distributed power sources (solar cell 70, wind power generator 71 and fuel cell 72), six loads 60, 61, 62, 63, 64, 65, a supply and demand control server 80, and the like. Have Each distributed power source and load are connected to the private line 40 together with the connecting line L2. However, the load 60 interposes a switch 50 for connecting / disconnecting to / from the private line 40. Similarly, the switches 61, 62, 63, 64, and 65 are provided with switches 51, 52, 53, 54, and 55 for connecting / disconnecting to and from the private line 40.

需給制御サーバ80は、各々の分散型電源と負荷、さらには開閉器50,51,52,53,54,55などと通信可能にするためにネットワークN(図1では二点鎖線で表す)で接続する。このネットワークNは、例えばIPv6のようなマルチキャスト通信が可能なネットワークである。需給制御サーバ80は、情報取得手段81、需給制御手段82、記録部90などを有する。需給制御サーバ80の制御例は後述する(図2)。   The supply and demand control server 80 is a network N (represented by a two-dot chain line in FIG. 1) in order to be able to communicate with each distributed power source and load, as well as the switches 50, 51, 52, 53, 54, and 55. Connecting. This network N is a network capable of multicast communication such as IPv6. The supply and demand control server 80 includes an information acquisition unit 81, a supply and demand control unit 82, a recording unit 90, and the like. A control example of the supply and demand control server 80 will be described later (FIG. 2).

情報取得手段81は、マルチキャスト通信によってグループごとにアクセスし、グループごとに属する分散型電源と負荷(すなわちグループの構成要素)の情報を一括取得する。グループは、太陽電池70,風力発電機71および燃料電池72からなる電源グループと、負荷60,61,62,63,64,65を二以上にグループ分けした負荷グループとが該当する。需給制御手段82は、マイクログリッド31内で接続している負荷の大きさが電源グループの出力よりも大きくならないように、マルチキャスト通信によって負荷グループごとに負荷の遮断または接続の制御を行う。記録部90は例えばメモリやディスク記録装置等が該当し、負荷グループごとに優先度を設定するために優先度リストを予め記録しておく。   The information acquisition unit 81 accesses each group by multicast communication, and collectively acquires information on the distributed power source and the load (that is, the constituent elements of the group) belonging to each group. The group corresponds to a power supply group including the solar cell 70, the wind power generator 71, and the fuel cell 72, and a load group in which the loads 60, 61, 62, 63, 64, and 65 are grouped into two or more. The supply and demand control unit 82 performs load blocking or connection control for each load group by multicast communication so that the magnitude of the load connected in the microgrid 31 does not become larger than the output of the power supply group. The recording unit 90 corresponds to, for example, a memory or a disk recording device, and records a priority list in advance in order to set a priority for each load group.

上述のように構成された需給制御サーバ80において、需給制御の手続き例についてフローチャートで表した図2を参照しながら説明する。なお図2に表す需給制御処理は、需給制御サーバ80の電源がオンである間に繰り返されてリアルタイムで実行される。   In the supply and demand control server 80 configured as described above, an example procedure for supply and demand control will be described with reference to FIG. The supply and demand control process shown in FIG. 2 is repeated in real time while the power supply of the supply and demand control server 80 is on.

ここで、グループごとに予め異なるマルチキャストアドレスを設定しておく。すなわち、太陽電池70,風力発電機71および燃料電池72からなる電源グループと、二以上にグループ分けした負荷グループのそれぞれとで異なるマルチキャストアドレスを設定する。より具体的には一つ一つの装置(電源や負荷等)に対してそれぞれマルチキャストアドレスを設定する。グループ分けの方法は任意であって、例えば負荷の種類(例えば工業用や住宅用等)に従って分けたり、負荷の大きさに従って分けたり、負荷の重要性(例えば病院や公共機関等)に従って分ける等が該当する。グループ分けした負荷グループについて、図1では例えば負荷グループAを「(A)」で表し、負荷グループBを「(B)」で表す等のように括弧内に表している。   Here, different multicast addresses are set in advance for each group. That is, different multicast addresses are set for the power supply group including the solar cell 70, the wind power generator 71, and the fuel cell 72, and each of the load groups divided into two or more groups. More specifically, a multicast address is set for each device (power supply, load, etc.). The grouping method is arbitrary, for example, according to the type of load (for example, industrial or residential use), according to the size of the load, according to the importance of the load (for example, hospital or public institution), etc. Is applicable. In FIG. 1, for example, load group A is represented by “(A)”, load group B is represented by “(B)”, and the like in FIG.

また、自営線40と各負荷との間に介在させている開閉器50,51,52,53,54,55には上記負荷グループごとに設定したマルチキャストアドレスと同じアドレスを設定する。すなわち開閉器50には「2」を設定し、開閉器51,52,54には「3」を設定し、開閉器53,55には「4」を設定する。   In addition, the same address as the multicast address set for each load group is set in the switches 50, 51, 52, 53, 54, and 55 interposed between the private line 40 and each load. That is, “2” is set for the switch 50, “3” is set for the switches 51, 52, and 54, and “4” is set for the switches 53 and 55.

図2の需給制御処理では、まずマルチキャスト通信を行うにあたってアクセス用のマルチキャストアドレスを切り換え〔ステップS10〕、当該マルチキャスト通信によって各グループに属する分散型電源と負荷の情報を一括取得する〔ステップS11〕。この一括取得は、マイクログリッド31内の全ての装置にアクセスできるまで繰り返す(ステップS12でYES)。ステップS11における情報の一括取得では、分散型電源や負荷の各装置について容量,接続状態,稼働状況(出力)等が得られる。つまり、装置の状態確認だけでなく一度に複数の装置にかかる情報が得られる。   In the supply and demand control process of FIG. 2, first, when performing multicast communication, the multicast address for access is switched [step S10], and the distributed power supply and load information belonging to each group is acquired collectively by the multicast communication [step S11]. This collective acquisition is repeated until all devices in the microgrid 31 are accessible (YES in step S12). In the collective acquisition of information in step S11, the capacity, connection state, operation status (output), etc. are obtained for each device of the distributed power source and the load. That is, not only the status of the apparatus but also information on a plurality of apparatuses can be obtained at a time.

ステップS11で得た情報に基づいて、負荷グループ全体にかかる負荷の大きさが電源グループにかかる分散型電源の出力を超えた場合には(ステップS13でYES)、電源グループにかかる分散型電源の容量にまだ余裕があるかをチェックする〔ステップS14〕。もし電源グループにかかる分散型電源の容量にまだ余裕があれば(ステップS14でYES)、電源グループの出力を増やす〔ステップS15〕。   Based on the information obtained in step S11, if the load applied to the entire load group exceeds the output of the distributed power supply applied to the power supply group (YES in step S13), the distributed power supply applied to the power supply group is determined. It is checked whether the capacity is still sufficient [step S14]. If the capacity of the distributed power supply for the power supply group is still sufficient (YES in step S14), the output of the power supply group is increased [step S15].

一方、電源グループにかかる分散型電源の容量に余裕がなければ(ステップS14でNO)、記録部90に記録された優先度リストに従って稼働中の負荷グループのうちで優先度が最も低く設定された負荷グループにかかる開閉器に対してマルチキャスト通信による信号を出力して負荷を遮断する〔ステップS20〕。負荷の遮断は、対象となる負荷グループを構成する全部の負荷であってもよく、負荷の大きさが電源グループの全容量以内に収まるように一部の負荷であってもよい。   On the other hand, if the capacity of the distributed power supply for the power supply group is not sufficient (NO in step S14), the lowest priority is set among the active load groups according to the priority list recorded in the recording unit 90. A signal by multicast communication is output to the switch in the load group to cut off the load [step S20]. The interruption of the load may be all the loads constituting the target load group, or may be a part of the loads so that the magnitude of the load is within the total capacity of the power supply group.

ここで、優先度リストの一例について図3と図4を参照しながら説明する。図3に表す優先度リスト91は負荷の重要性に従って設定した例であり、図4に表す優先度リスト92は負荷グループにおける負荷の大きさに従って設定した例である。   Here, an example of the priority list will be described with reference to FIGS. The priority list 91 shown in FIG. 3 is an example set according to the importance of the load, and the priority list 92 shown in FIG. 4 is an example set according to the magnitude of the load in the load group.

優先度リスト91では、負荷の重要度の順番に三つの負荷グループA,B,Cにグループ分けしている。重要度の高いほうから、負荷グループAは負荷60のみ、負荷グループBは負荷61,62,64からなり、負荷グループCは負荷63,65からなる。また、負荷グループA,B,Cの順番で優先度を1,2,3に設定している。ステップS20で例えば負荷グループCを遮断する場合、需給制御サーバ80は「4」が設定されたマルチキャストアドレスに対してマルチキャスト通信により遮断する信号を一斉出力する。   The priority list 91 is grouped into three load groups A, B, and C in order of load importance. In order of importance, the load group A includes only the load 60, the load group B includes the loads 61, 62, and 64, and the load group C includes the loads 63 and 65. The priority is set to 1, 2, and 3 in the order of load groups A, B, and C. For example, when the load group C is shut off in step S20, the supply and demand control server 80 simultaneously outputs a signal for shutting down by multicast communication to the multicast address for which “4” is set.

優先度リスト92では、合計容量が多い順番となるように四つの負荷グループA,B,C,Dにグループ分けしている。合計容量の多いほうから順番に、負荷グループAは負荷65,62からなり、負荷グループBは負荷60のみ、負荷グループCは負荷63のみ、負荷グループDは負荷61,64からなる。優先度は、負荷グループB,C,A,Dの順番でそれぞれ1,2,3,4に設定している。   The priority list 92 is grouped into four load groups A, B, C, and D so that the total capacity is in descending order. In order from the largest total capacity, load group A is composed of loads 65 and 62, load group B is composed of only load 60, load group C is composed of only load 63, and load group D is composed of loads 61 and 64. The priorities are set to 1, 2, 3, and 4 in the order of load groups B, C, A, and D, respectively.

図2に戻って、負荷グループ全体にかかる負荷の大きさが電源グループにかかる分散型電源の出力を超えていない場合であって(ステップS13でNO)、負荷を追加して接続できる場合には(ステップS30でYES)、電源グループにかかる分散型電源の出力を超えない範囲で負荷グループまたは負荷を追加する〔ステップS31〕。どのように追加するかは任意である。例えば、負荷グループの全体を追加しても電源グループの全容量の範囲内に収まれば負荷グループの全体を追加し、収まらなければ負荷グループの一部の負荷を追加する等が該当する。電源容量に余裕があるときは、接続する負荷を増やすことができる。
なお、負荷グループ全体にかかる負荷の大きさが電源グループにかかる分散型電源の出力を超えず(ステップS13でNO)、かつ電源グループの全容量を超えるために負荷を追加して接続できなければ(ステップS30でNO)、何も行わない。
Returning to FIG. 2, when the load applied to the entire load group does not exceed the output of the distributed power supply applied to the power supply group (NO in step S13), and the load can be added and connected. (YES in step S30), a load group or a load is added within a range not exceeding the output of the distributed power source applied to the power source group [step S31]. How to add is arbitrary. For example, even if the entire load group is added, the entire load group is added if it falls within the range of the total capacity of the power supply group, and if it does not fit, a part of the load group is added. When the power capacity is sufficient, the load to be connected can be increased.
If the load applied to the entire load group does not exceed the output of the distributed power supply applied to the power supply group (NO in step S13) and exceeds the total capacity of the power supply group, an additional load cannot be connected. (NO in step S30), nothing is performed.

その後、需給制御を続ける場合には(ステップS16でYES)、マイクログリッド31全体の情報を取得するためにステップS10に戻って実行を継続する。これに対して需給制御を続けない場合には(ステップS16でNO)、需給制御処理を終える。このように需給制御処理はリアルタイムで実行される。   Thereafter, when the supply and demand control is continued (YES in step S16), the process returns to step S10 to continue the execution in order to obtain information on the entire microgrid 31. On the other hand, when the supply and demand control is not continued (NO in step S16), the supply and demand control process is terminated. Thus, the supply and demand control process is executed in real time.

上述した実施の形態によれば、以下に表す各効果を得ることができる。
(1)グループごとに異なるマルチキャストアドレスを設定しておき(図1を参照)、マルチキャスト通信によって各グループに属する分散型電源と負荷の情報を一括取得した(図2のステップS10〜S12;情報取得手段81に相当)。そのため、状態確認だけでなく一度に複数の装置にかかる情報を得ることができる。また、マイクログリッド31内の自営線40に接続された負荷60,61,62,63,64,65の大きさが太陽電池70,風力発電機71および燃料電池72の出力より大きくなったときには(図2のステップS13でYES)、マルチキャスト通信によって負荷グループを構成している複数の負荷を一度に遮断した(図2のステップS20;需給制御手段82に相当)。よって、マイクログリッド31内における電源供給を従来よりも安定化させることができる。
According to the embodiment described above, the following effects can be obtained.
(1) A different multicast address is set for each group (see FIG. 1), and information on distributed power sources and loads belonging to each group is acquired collectively by multicast communication (steps S10 to S12 in FIG. 2; information acquisition) Equivalent to means 81). Therefore, it is possible to obtain information related to a plurality of devices at a time in addition to the state confirmation. Further, when the load 60, 61, 62, 63, 64, 65 connected to the self-supported line 40 in the microgrid 31 is larger than the output of the solar cell 70, the wind power generator 71 and the fuel cell 72 ( 2), a plurality of loads constituting the load group were blocked at once by multicast communication (step S20 in FIG. 2; corresponding to the supply and demand control means 82). Therefore, the power supply in the microgrid 31 can be stabilized more than before.

(2)低い優先度が設定された負荷グループから接続を遮断するように制御したので(図2のステップS20;需給制御手段82に相当)、高い優先度が設定された負荷グループは接続が維持される。よって、優先度の高い負荷の接続を維持しながらも、マイクログリッド31の電源供給が不安定になるのを防止できる。 (2) Since the control is performed so that the connection is cut off from the load group for which the low priority is set (step S20 in FIG. 2; corresponding to the supply and demand control means 82), the load group for which the high priority is set maintains the connection. Is done. Therefore, it is possible to prevent the power supply of the microgrid 31 from becoming unstable while maintaining the connection of a load having a high priority.

〔他の実施の形態〕
以上では本発明を実施するための最良の形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することができる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
Although the best mode for carrying out the present invention has been described above, the present invention is not limited to this mode. In other words, the present invention can be implemented in various forms without departing from the gist of the present invention. For example, the following forms may be realized.

(1)上述した実施の形態では、複数の分散型電源として太陽電池70(すなわち太陽光発電装置),風力発電機71および燃料電池72を適用した(図1を参照)。この形態に代えて(あるいは加えて)、マイクロガスタービンや、電力貯蔵装置、バイオマス発電装置、波力発電装置、廃棄物発電装置等が該当する。図1の例では三機を接続したが、分散型電源の容量を多く確保する点では種類を問わずできるだけ多くの数の分散型電源を接続するのが望ましい。接続できる分散型電源の数が多くなるにつれて、マイクログリッド31内における電源供給の安定性が増す。 (1) In the above-described embodiment, the solar cell 70 (that is, the solar power generation device), the wind power generator 71, and the fuel cell 72 are applied as the plurality of distributed power sources (see FIG. 1). Instead of (or in addition to) this form, a micro gas turbine, a power storage device, a biomass power generation device, a wave power generation device, a waste power generation device, or the like is applicable. Although three machines are connected in the example of FIG. 1, it is desirable to connect as many distributed power sources as possible regardless of the type in terms of securing a large capacity of the distributed power sources. As the number of distributed power sources that can be connected increases, the stability of power supply in the microgrid 31 increases.

(2)上述した実施の形態では、商用系統10とマイクログリッド30,31,32との間をそれぞれ連結線L1,L2,L3で接続する構成とした(図1を参照)。この形態に加えて、マイクログリッド30,31,32の相互間を直接的に接続する構成としてもよい。こうすれば、マイクログリッドの相互間でも電力の授受を必要な時に行える。 (2) In embodiment mentioned above, it was set as the structure which connects between the commercial system | strain 10 and the microgrids 30, 31, and 32 by connection line L1, L2, L3, respectively (refer FIG. 1). In addition to this configuration, the microgrids 30, 31, 32 may be directly connected to each other. In this way, power can be exchanged between the microgrids when necessary.

(3)上述した実施の形態では、負荷をグループ分けしたが(図3,図4を参照)、分散型電源をグループ分けしてもよい。例えば、出力制御が不能な分散型電源(太陽電池や風力発電機等)と出力制御が可能な分散型電源(燃料電池やガスエンジンコージェネ等)とに分けたり、電源の使用目的(例えば工業用や住宅用等)ごとに分けたり、電源の容量がほぼ等しくなるように分ける等が該当する。出力制御の可否によってグループ分けした場合には、出力制御が可能な電源を容易に特定することができる。また、図2の需要制御処理は電源容量を一定と仮定して負荷の接続/遮断を制御したが、この処理と同様にして負荷が一定であると仮定して分散型電源の接続/遮断を制御を行うようにする。さらには、負荷の場合と同様にグループごとに優先度を設定するのが望ましい。このように分散型電源をグループ分けすれば、自営線40に供給する電源容量をほぼ一定に制御したり、負荷の需要に合わせて電源容量を調整するように制御することができる。 (3) Although the loads are grouped in the above-described embodiment (see FIGS. 3 and 4), the distributed power sources may be grouped. For example, it can be divided into distributed power sources that cannot control output (solar cells, wind power generators, etc.) and distributed power sources that can control output (fuel cells, gas engine cogeneration, etc.). Or for housing), or so that the capacity of the power source is almost equal. In the case of grouping according to whether output control is possible, it is possible to easily identify a power source capable of output control. In addition, the demand control process of FIG. 2 controls the connection / cutoff of the load assuming that the power capacity is constant, but the connection / cutoff of the distributed power supply is assumed assuming that the load is constant in the same manner as this process. Make control. Furthermore, it is desirable to set the priority for each group as in the case of load. If the distributed power sources are grouped in this way, the power source capacity supplied to the private line 40 can be controlled to be substantially constant, or the power source capacity can be adjusted to meet the load demand.

(4)上述した実施の形態では、自営線40(系統,電力線)とネットワークN(通信線,通信網)とを別個に設ける構成とした(図1を参照)。この形態に代えて、自営線40によりネットワークNを兼ねる構成、すなわち電力線通信(PLC;Power Line Communication)を構成してもよい。こうすれば、ネットワークNを構築する費用を省くことができるので、全体のコストを低く抑えることができる。 (4) In embodiment mentioned above, it was set as the structure which provided the private line 40 (system | strain, electric power line) and the network N (communication line, communication network) separately (refer FIG. 1). It replaces with this form and the structure which serves as the network N with the private line 40, ie, power line communication (PLC; Power Line Communication), may be comprised. In this way, the cost for constructing the network N can be omitted, and the overall cost can be kept low.

(5)上述した実施の形態では、マルチキャスト通信によって各グループに属する分散型電源と負荷の情報を一括取得するにあたって(図2のステップS11を参照)、マルチキャストアドレスを予め設定しておいた(図1を参照)。この形態に代えて、需給制御サーバ80が識別情報に基づいて各装置(電源や負荷等)にマルチキャストアドレスを設定するアドレス設定手段を備えてもよい。こうすれば、各装置に予めマルチキャストアドレスを設定しておく必要がないので、設定のための手間が省ける。
具体的には、太陽電池70,風力発電機71および燃料電池72と、負荷60,61,62,63,64,65には識別情報が予め記録されている。この識別情報は機器固有のデータであって、例えばIPアドレスや型番等が該当する。需給制御サーバ80は識別情報に基づいて負荷60,61,62,63,64,65を二以上にグループ分けし、さらにグループごとに異なるアドレスとなるように各装置(電源や負荷等)にマルチキャストアドレスを設定する。
(5) In the above-described embodiment, multicast information is set in advance when acquiring information on distributed power sources and loads belonging to each group by multicast communication (see step S11 in FIG. 2) (see FIG. 2). 1). Instead of this form, the supply and demand control server 80 may include address setting means for setting a multicast address for each device (power supply, load, etc.) based on the identification information. In this way, it is not necessary to set a multicast address in advance for each device, so that the time and effort for setting can be saved.
Specifically, identification information is recorded in advance in the solar cell 70, the wind power generator 71, the fuel cell 72, and the loads 60, 61, 62, 63, 64, 65. This identification information is device-specific data and corresponds to, for example, an IP address or a model number. The supply and demand control server 80 divides the loads 60, 61, 62, 63, 64, 65 into two or more groups based on the identification information, and further multicasts to each device (power supply, load, etc.) so as to have different addresses for each group. Set the address.

マイクログリッドの構成例を模式的に表す図である。It is a figure which represents typically the structural example of a microgrid. 需給制御処理の手続き例を表すフローチャートである。It is a flowchart showing the example of a procedure of supply-and-demand control processing. 優先度リストの一例を表す図である。It is a figure showing an example of a priority list. 優先度リストの一例を表す図である。It is a figure showing an example of a priority list.

符号の説明Explanation of symbols

10 商用系統
20,21,22 開閉器
30,31,32 マイクログリッド
40 自営線
50,51,52,53,54,55 開閉器
60,61,62,63,64,65 負荷
70 太陽電池(分散型電源)
71 風力発電機(分散型電源)
72 燃料電池(分散型電源)
80 需給制御サーバ
81 情報取得手段
82 需給制御手段
90 記録部
91,92 優先度リスト
L1,L2,L3 連結線
DESCRIPTION OF SYMBOLS 10 Commercial system 20, 21, 22 Switch 30, 31, 32 Microgrid 40 Self-supported line 50, 51, 52, 53, 54, 55 Switch 60, 61, 62, 63, 64, 65 Load 70 Solar cell (distribution) Type power supply)
71 Wind power generator (distributed power supply)
72 Fuel cell (distributed power supply)
80 Supply / Demand Control Server 81 Information Acquisition Unit 82 Supply / Demand Control Unit 90 Recording Unit 91, 92 Priority List L1, L2, L3 Connection Line

Claims (2)

商用系統に接続でき、複数の分散型電源および複数の負荷を備えるマイクログリッドの需給を管理するマイクログリッドの需給管理システムであって、
電源グループに属する前記複数の分散型電源と、二以上の負荷グループにグループ分けされた前記複数の負荷とについて、グループごとに異なるマルチキャストアドレスを設定しておき、
マルチキャスト通信によってグループごとにアクセスし、アクセスしたグループに属する各装置の情報を一括して取得する情報一括取得手段と、
前記情報一括取得手段によって取得した情報に基づいて、前記商用系統から切り離された状態のマイクログリッド内で接続している負荷の大きさが前記複数の分散型電源の出力よりも大きくならないように、マルチキャスト通信によって前記負荷グループごとに負荷の遮断または接続の制御を行う需給制御手段とを有するマイクログリッドの需給管理システム。
A microgrid supply and demand management system that can be connected to a commercial system and manages the supply and demand of a microgrid having a plurality of distributed power sources and a plurality of loads,
A different multicast address is set for each group for the plurality of distributed power sources belonging to the power group and the plurality of loads grouped into two or more load groups,
Information batch acquisition means for accessing each group by multicast communication, and collectively acquiring information of each device belonging to the accessed group;
Based on the information acquired by the information batch acquisition means, so that the size of the load connected in the microgrid in a state disconnected from the commercial system does not become larger than the output of the plurality of distributed power sources, A supply and demand management system for a microgrid, comprising supply and demand control means for controlling load blocking or connection for each load group by multicast communication.
請求項1に記載したマイクログリッドの需給管理システムであって、
二以上の負荷グループについてそれぞれ異なる優先度を設定しておき、
需給制御手段は、低い優先度が設定された負荷グループについて負荷の接続を遮断する制御を行うマイクログリッドの需給管理システム。
A microgrid supply and demand management system according to claim 1,
Set different priorities for two or more load groups,
The supply and demand control means is a microgrid supply and demand management system that performs control to cut off load connection for a load group with a low priority.
JP2006283634A 2006-10-18 2006-10-18 System for managing demand and supply in micro grid Pending JP2008104269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283634A JP2008104269A (en) 2006-10-18 2006-10-18 System for managing demand and supply in micro grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283634A JP2008104269A (en) 2006-10-18 2006-10-18 System for managing demand and supply in micro grid

Publications (1)

Publication Number Publication Date
JP2008104269A true JP2008104269A (en) 2008-05-01

Family

ID=39438162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283634A Pending JP2008104269A (en) 2006-10-18 2006-10-18 System for managing demand and supply in micro grid

Country Status (1)

Country Link
JP (1) JP2008104269A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263706A (en) * 2007-04-11 2008-10-30 Chugoku Electric Power Co Inc:The Controller for regulating demand and supply of power in microgrid
EP2214283A2 (en) 2009-01-28 2010-08-04 Kabushiki Kaisha Toshiba Supply-and-demand control system of distributed and coordinated type, for use in power systems
JP2011004542A (en) * 2009-06-19 2011-01-06 Chugoku Electric Power Co Inc:The Power supply system and method
WO2011030558A1 (en) * 2009-09-10 2011-03-17 Abe Rikiya Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
JP2011193645A (en) * 2010-03-15 2011-09-29 Chugoku Electric Power Co Inc:The Control method for power supply system and power supply system
JP2011229243A (en) * 2010-04-16 2011-11-10 Chugoku Electric Power Co Inc:The Method of controlling power supply system, and power supply system
JP2012010530A (en) * 2010-06-27 2012-01-12 Rikiya Abe Multiple terminal type electric power conversion device, electric power system and control program of the same
JP2012085516A (en) * 2010-10-04 2012-04-26 Boeing Co:The Smart micro grid
JP2012161202A (en) * 2011-02-02 2012-08-23 Mitsubishi Electric Corp Hierarchical type supply and demand controller and power system control system
US20120212060A1 (en) * 2009-02-17 2012-08-23 Lineage Power Corporation Dc plant for selecting among multiple power sources
CN103004054A (en) * 2010-05-05 2013-03-27 Bsh博世和西门子家用电器有限公司 Method For Supplying An Electric Domestic Appliance From A Low Voltage Supply Network And A Domestic Appliance Suitable For Carrying Out Said Method
WO2013136518A1 (en) * 2012-03-16 2013-09-19 株式会社日立製作所 Facilities management method and facilities management system
WO2014061259A1 (en) * 2012-10-19 2014-04-24 日本電気株式会社 Electric power router, electric power network system, electric power interchange method, and program for controlling operation of electric power router
JP2014183717A (en) * 2013-03-21 2014-09-29 Denso Corp Power supply system
JP2015039247A (en) * 2009-10-27 2015-02-26 阿部 力也 Multi-terminal power conversion/distribution device, electrical equipment, distribution network system and method of operating the same
AU2014202377B2 (en) * 2009-09-10 2015-04-30 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
CN105226717A (en) * 2015-11-06 2016-01-06 国网上海市电力公司 Micro-grid connection system in urban distribution network
JP2016063549A (en) * 2014-09-12 2016-04-25 株式会社東芝 Load selection device, load selection method and program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320754A (en) * 2000-05-10 2001-11-16 Nec Commun Syst Ltd Mobile communication system with automatic registration function of radio base station installed position, and automatic registration method for radio base station installed position
JP2002044870A (en) * 2000-07-27 2002-02-08 Nippon Telegr & Teleph Corp <Ntt> Dispersed energy community system and control method
JP2002300736A (en) * 2001-03-29 2002-10-11 Toshiba Corp Power system monitor control device and program for implementing the device
JP2003052127A (en) * 2001-08-03 2003-02-21 Toho Gas Co Ltd Network system of cogeneration apparatuses
JP2004282856A (en) * 2003-03-13 2004-10-07 Tm T & D Kk Power grid protection control system and method
JP2005318673A (en) * 2004-04-27 2005-11-10 Toyota Industries Corp Power supply control system
JP2006121846A (en) * 2004-10-22 2006-05-11 Toshiba Corp System combining system
JP2007159341A (en) * 2005-12-08 2007-06-21 Hitachi Ltd Load monitoring control method/system
JP2008061382A (en) * 2006-08-31 2008-03-13 Toshiba Corp Microgrid power supply and demand adjusting system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320754A (en) * 2000-05-10 2001-11-16 Nec Commun Syst Ltd Mobile communication system with automatic registration function of radio base station installed position, and automatic registration method for radio base station installed position
JP2002044870A (en) * 2000-07-27 2002-02-08 Nippon Telegr & Teleph Corp <Ntt> Dispersed energy community system and control method
JP2002300736A (en) * 2001-03-29 2002-10-11 Toshiba Corp Power system monitor control device and program for implementing the device
JP2003052127A (en) * 2001-08-03 2003-02-21 Toho Gas Co Ltd Network system of cogeneration apparatuses
JP2004282856A (en) * 2003-03-13 2004-10-07 Tm T & D Kk Power grid protection control system and method
JP2005318673A (en) * 2004-04-27 2005-11-10 Toyota Industries Corp Power supply control system
JP2006121846A (en) * 2004-10-22 2006-05-11 Toshiba Corp System combining system
JP2007159341A (en) * 2005-12-08 2007-06-21 Hitachi Ltd Load monitoring control method/system
JP2008061382A (en) * 2006-08-31 2008-03-13 Toshiba Corp Microgrid power supply and demand adjusting system

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749375B2 (en) * 2007-04-11 2011-08-17 中国電力株式会社 Control device for adjusting power supply and demand in microgrids
JP2008263706A (en) * 2007-04-11 2008-10-30 Chugoku Electric Power Co Inc:The Controller for regulating demand and supply of power in microgrid
EP2214283A2 (en) 2009-01-28 2010-08-04 Kabushiki Kaisha Toshiba Supply-and-demand control system of distributed and coordinated type, for use in power systems
US8140194B2 (en) 2009-01-28 2012-03-20 Kabushiki Kaisha Toshiba Supply-and-demand control system of distributed and coordinated type, for use in power systems
US20120212060A1 (en) * 2009-02-17 2012-08-23 Lineage Power Corporation Dc plant for selecting among multiple power sources
US9722421B2 (en) * 2009-02-17 2017-08-01 General Electric Company DC plant controller and method for selecting among multiple power sources
US9722422B2 (en) * 2009-02-17 2017-08-01 General Electric Company DC plant for selecting among multiple power sources
CN103384067A (en) * 2009-02-17 2013-11-06 通用电气公司 Dc plant controller and method for selecting among multiple power sources and dc plant employing the same
US20120217810A1 (en) * 2009-02-17 2012-08-30 Anurag Jagota Dc plant controller and method for selecting among multiple power sources
JP2011004542A (en) * 2009-06-19 2011-01-06 Chugoku Electric Power Co Inc:The Power supply system and method
AU2014202377B2 (en) * 2009-09-10 2015-04-30 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
CN102484369A (en) * 2009-09-10 2012-05-30 阿部力也 Multi-Terminal Power Conversion Device, Multi-Terminal Power Transfer Device, And Power Network System
US9013902B2 (en) 2009-09-10 2015-04-21 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
CN102484369B (en) * 2009-09-10 2015-12-16 国立大学法人东京大学 Multiterminal subtype power-converting device, multiterminal subtype electric power are subject to device and electric power networks system
EP2477297A4 (en) * 2009-09-10 2015-04-01 Univ Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
EP2477297A1 (en) * 2009-09-10 2012-07-18 Rikiya Abe Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
AU2010293719B2 (en) * 2009-09-10 2014-02-06 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
WO2011030558A1 (en) * 2009-09-10 2011-03-17 Abe Rikiya Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
AU2010293719C1 (en) * 2009-09-10 2014-07-10 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
JP2015039247A (en) * 2009-10-27 2015-02-26 阿部 力也 Multi-terminal power conversion/distribution device, electrical equipment, distribution network system and method of operating the same
JP2011193645A (en) * 2010-03-15 2011-09-29 Chugoku Electric Power Co Inc:The Control method for power supply system and power supply system
JP2011229243A (en) * 2010-04-16 2011-11-10 Chugoku Electric Power Co Inc:The Method of controlling power supply system, and power supply system
CN103004054A (en) * 2010-05-05 2013-03-27 Bsh博世和西门子家用电器有限公司 Method For Supplying An Electric Domestic Appliance From A Low Voltage Supply Network And A Domestic Appliance Suitable For Carrying Out Said Method
US9620961B2 (en) 2010-05-05 2017-04-11 Bsh Hausgeraete Gmbh Method for supplying an electric domestic appliance from a low voltage supply network and a domestic appliance suitable for carrying out said method
JP2013526259A (en) * 2010-05-05 2013-06-20 ベーエスハー ボッシュ ウント ジーメンス ハウスゲレーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for supplying power to home appliances from a low-voltage power supply network and home appliances suitable for carrying out the method
JP2012010530A (en) * 2010-06-27 2012-01-12 Rikiya Abe Multiple terminal type electric power conversion device, electric power system and control program of the same
JP2012085516A (en) * 2010-10-04 2012-04-26 Boeing Co:The Smart micro grid
US9240687B2 (en) 2010-10-04 2016-01-19 The Boeing Company Smart microgrid
JP2012161202A (en) * 2011-02-02 2012-08-23 Mitsubishi Electric Corp Hierarchical type supply and demand controller and power system control system
WO2013136518A1 (en) * 2012-03-16 2013-09-19 株式会社日立製作所 Facilities management method and facilities management system
JPWO2013136518A1 (en) * 2012-03-16 2015-08-03 株式会社日立製作所 Facility management method and facility management system
CN104040831B (en) * 2012-03-16 2016-08-24 株式会社日立制作所 Facilities control method and facilities management system
CN104040831A (en) * 2012-03-16 2014-09-10 株式会社日立制作所 Facilities management method and facilities management system
JPWO2014061259A1 (en) * 2012-10-19 2016-09-05 阿部 力也 Power router, power network system, power interchange method, and power router operation control program
WO2014061259A1 (en) * 2012-10-19 2014-04-24 日本電気株式会社 Electric power router, electric power network system, electric power interchange method, and program for controlling operation of electric power router
JP2014183717A (en) * 2013-03-21 2014-09-29 Denso Corp Power supply system
JP2016063549A (en) * 2014-09-12 2016-04-25 株式会社東芝 Load selection device, load selection method and program
CN105226717A (en) * 2015-11-06 2016-01-06 国网上海市电力公司 Micro-grid connection system in urban distribution network

Similar Documents

Publication Publication Date Title
JP2008104269A (en) System for managing demand and supply in micro grid
US8751053B2 (en) Method and system to provide a distributed local energy production system with high-voltage DC bus
US9535481B2 (en) Power grid remote access
US9490660B2 (en) Methods, systems, and apparatus for datacenter power distribution
CN102299933B (en) Engineering configuration management method and system for distributed control system (DCS)
US20190372352A1 (en) Method and device for controlling solar energy system, central controller and solar energy system
KR20130123372A (en) Microgrid control system
Ustun et al. Extending IEC 61850-7-420 for distributed generators with fault current limiters
CN110008005B (en) Cloud platform-based power grid communication resource virtual machine migration system and method
CN102497026B (en) Method and system for carrying out intelligent control on microgrid
Altun et al. Optimal reconfiguration of DC Networks
JP6572313B2 (en) Communication device, management server, and communication method
US11101689B2 (en) Systems and methods for providing network connection resiliency in power supply devices
CN114363164B (en) Cloud network service arrangement control method, system, storage medium and electronic equipment
KR101758558B1 (en) Energy managemnet server and energy managemnet system having thereof
Yin et al. Hierarchical control system for a flexible microgrid with dynamic boundary: design, implementation and testing
CN103916280B (en) A kind of blade server management network active DHCP distribution method
CN116192616A (en) Micro-service-based power standby and regulation system processing method and device and computer equipment
CN116048654A (en) Automatic configuration method and system for hardware resources
CN116071049A (en) Energy storage device fault removal method and device, computer device and storage medium
Chen et al. Distribution network topology identification based on IEC 61850 logical nodes
Borges et al. Power system real time operation based on security constrained optimal power flow and distributed processing
US8880910B2 (en) Power management system and method
KR101492730B1 (en) New renewable energy system
Issicaba et al. Islanding operation of active distribution grids using an agent-based architecture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830