Nothing Special   »   [go: up one dir, main page]

JP2008196352A - Fuel injection device for multi-cylinder engine - Google Patents

Fuel injection device for multi-cylinder engine Download PDF

Info

Publication number
JP2008196352A
JP2008196352A JP2007030966A JP2007030966A JP2008196352A JP 2008196352 A JP2008196352 A JP 2008196352A JP 2007030966 A JP2007030966 A JP 2007030966A JP 2007030966 A JP2007030966 A JP 2007030966A JP 2008196352 A JP2008196352 A JP 2008196352A
Authority
JP
Japan
Prior art keywords
injection
amount
cylinder
fuel injection
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007030966A
Other languages
Japanese (ja)
Inventor
Michihiro Hatake
道博 畠
Satoshi Nakazawa
聡 中澤
Tokuyuki Koga
徳幸 古賀
Kunimi Kanayama
訓己 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2007030966A priority Critical patent/JP2008196352A/en
Publication of JP2008196352A publication Critical patent/JP2008196352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection device for a multi-cylinder engine capable of more accurately performing injection amount control. <P>SOLUTION: The fuel injection device for the multi-cylinder engine 1 is provided with fuel injection valves 2 provided in the multi-cylinder engine 1; exhaust temperature detecting means 37 for detecting reference exhaust temperatures Tgb1 to Tgb4 from respective cylinders; a fuel injection control means A0 for injecting, from the fuel injection valves 2, target injection amount set in accordance with the operating state of the engine 1; an additional injection control means A02 for injecting additional injection amount qs1#1 to qs1#4 from the fuel injection valves 2 at predetermined injection timing ts delayed from injection timing of the target injection amount by the fuel injection control means A0 when the engine 1 is in a predetermined operating region; an additional injection amount correcting means A3 for correcting additional injection amount with respect to each cylinder so that detection values of the respective exhaust temperature detecting means 37 are within a predetermined range; and an injection control amount correcting means A4 for correcting injection control amount of each of the fuel injection valves 2 with respect to each cylinder at normal time based on correction results of the additional injection amount correcting means A3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料噴射装置の噴射量制御をより精度よく行うことができる多気筒エンジンの燃料噴射装置に関するものである。   The present invention relates to a fuel injection device for a multi-cylinder engine that can perform injection amount control of a fuel injection device with higher accuracy.

直噴エンジン、例えばコモンレールディーゼルエンジンは、燃料噴射ポンプにより燃料を高圧化し、その高圧燃料をコモンレールに送り、このコモンレールから各気筒に設けられた燃料噴射弁に導いている。各燃料噴射弁は、電磁式の噴射制御弁(ニードルバルブ)を備えており、燃料の噴射量、噴射時期、噴射回数に応じて噴射制御弁が開閉制御される。   In a direct injection engine, for example, a common rail diesel engine, fuel is increased in pressure by a fuel injection pump, the high pressure fuel is sent to a common rail, and the common rail guides the fuel injection valve provided in each cylinder. Each fuel injection valve includes an electromagnetic injection control valve (needle valve), and the injection control valve is controlled to open and close according to the fuel injection amount, the injection timing, and the number of injections.

ところで、エンジンの排気ガス性能を一層向上する、又は、エンジン駆動時に発生する騒音を一層抑制するためには、燃料噴射装置から噴射される燃料量が狙い通りの目標値となるように、噴射量精度を高めることが重要である。特に、通常噴射での主噴射に先駆けて行われているプレ噴射やパイロット噴射、あるいは主噴射後のアフタ噴射やポスト噴射などの小噴射量を一層的確に制御して、噴射量の精度を高めることが重要である。   By the way, in order to further improve the exhaust gas performance of the engine or to further suppress the noise generated when the engine is driven, the injection amount is set so that the fuel amount injected from the fuel injection device becomes a target value as intended. It is important to increase accuracy. In particular, the precision of injection quantity is improved by more accurately controlling small injection quantities such as pre-injection and pilot injection, which are performed prior to main injection in normal injection, or after injection and post-injection after main injection. This is very important.

ここで、パイロット噴射を例に採って、噴射量とスモーク及び騒音の発生との関係について説明する。
図14は、パイロット噴射量に対するスモーク、騒音の発生度合いの一例を表すグラフである。このグラフにおいては、上側の曲線がパイロット噴射量に対する騒音の発生特性を示し、下側の曲線がパイロット噴射量に対するスモークの発生特性を示している。
図14に示すように、パイロット噴射量が多いと騒音、スモーク共に悪化する傾向があり、逆に少なすぎる場合には騒音が極端に悪化する傾向がある。このため、スモークや騒音を抑制するためには、パイロット噴射やポスト噴射等の副噴射の噴射量制御をより精度よく行う必要がある。
Here, taking the pilot injection as an example, the relationship between the injection amount and the generation of smoke and noise will be described.
FIG. 14 is a graph showing an example of the degree of smoke and noise generation with respect to the pilot injection amount. In this graph, the upper curve shows the noise generation characteristic with respect to the pilot injection amount, and the lower curve shows the smoke generation characteristic with respect to the pilot injection amount.
As shown in FIG. 14, when the pilot injection amount is large, both noise and smoke tend to be deteriorated. Conversely, when the amount is too small, noise tends to be extremely deteriorated. For this reason, in order to suppress smoke and noise, it is necessary to perform injection amount control of sub-injection such as pilot injection and post injection more accurately.

ところが、パイロット噴射やポスト噴射等の副噴射は、主噴射に比べて噴射量が少なく、燃料噴射弁(インジェクタ)の個体差や経時劣化等の影響を受けやすく、気筒毎の噴射量のバラツキが生じやすい。そのため、従来より気筒毎のバラツキを抑制すべく、通常噴射での燃料噴射量を修正することが行われている。
例えば、特開2003−172185号公報(特許文献1)に開示の燃料噴射装置では、排気浄化触媒の温度を各運転条件に対応して最適な昇温効果を得ることのできる数値(学習値)に保持するため、複数の排気温度センサの検出信号に応じてエンジンへのポスト噴射量及び添加燃料量をフィードバック制御している。
However, sub-injection such as pilot injection and post-injection has a smaller injection amount than main injection, is easily affected by individual differences in fuel injection valves (injectors), deterioration over time, etc., and there is variation in the injection amount for each cylinder. Prone to occur. For this reason, in order to suppress variations among cylinders, the fuel injection amount in normal injection is corrected.
For example, in the fuel injection device disclosed in Japanese Patent Application Laid-Open No. 2003-172185 (Patent Document 1), a numerical value (learning value) that can obtain an optimum temperature rising effect corresponding to each operating condition for the temperature of the exhaust purification catalyst. Therefore, the post-injection amount and the added fuel amount to the engine are feedback-controlled in accordance with detection signals from a plurality of exhaust temperature sensors.

特開2003−172185号公報JP 2003-172185 A

ところで、特許文献1の燃料噴射装置は、排気浄化触媒の温度を最適値に保持するため、排気温度センサの温度情報に応じてポスト噴射量をフィードバック制御するものであるが、各気筒毎の燃焼特性の変動量を求めるものではなく、各気筒毎の目標噴射量(制御噴射量)の制御を充分に精度良く行えるとはいいがたい。
本発明は、上述のような問題点に着目してなされたもので、噴射量制御をより精度よく行うことができる多気筒エンジンの燃料噴射装置を提供することを目的とするものである。
Incidentally, the fuel injection device of Patent Document 1 performs feedback control of the post-injection amount according to the temperature information of the exhaust temperature sensor in order to maintain the temperature of the exhaust purification catalyst at an optimum value. This is not to obtain the characteristic fluctuation amount, and it is difficult to control the target injection amount (control injection amount) for each cylinder sufficiently accurately.
The present invention has been made paying attention to the above-described problems, and an object of the present invention is to provide a fuel injection device for a multi-cylinder engine that can perform injection amount control more accurately.

上述の目的を達成するため、請求項1の発明は、多気筒エンジンの各気筒に設けられた燃料噴射弁と、前記各気筒にそれぞれ対応して設置され、前記各気筒からの排気温度を検出する排温検出手段と、前記エンジンの運転状態に応じて設定される目標噴射量を前記燃料噴射弁から噴射させる噴射制御手段と、前記エンジンが所定の運転域にあるとき、前記噴射制御手段による前記目標噴射量の噴射よりも遅角させた所定の噴射時期に、前記各燃料噴射弁から追加噴射量を噴射させる追加噴射制御手段と、前記各排温検出手段の検出値が所定範囲内に収まるよう前記気筒毎の追加噴射量をそれぞれ修正する追加噴射量修正手段と、前記追加噴射量修正手段の修正結果に基づいて、通常時における前記各燃料噴射弁の噴射制御量を前記気筒毎に修正する噴射制御量修正手段と、を備えたことを特徴とする。
好ましくは、前記検出値は前記追加噴射量を噴射させる制御開始前の排気温度に対する排温上昇値で良い。
In order to achieve the above-mentioned object, the invention according to claim 1 is a fuel injection valve provided in each cylinder of a multi-cylinder engine, and is installed corresponding to each cylinder, and detects an exhaust temperature from each cylinder. An exhaust temperature detecting means for performing injection, a fuel injection valve for injecting a target injection amount set in accordance with an operating state of the engine, and an injection control means when the engine is in a predetermined operating range. Additional injection control means for injecting an additional injection amount from each fuel injection valve at a predetermined injection timing retarded from the injection of the target injection amount, and detection values of the respective exhaust temperature detecting means are within a predetermined range. Based on the correction result of the additional injection amount correction means for correcting the additional injection amount for each cylinder so as to be within the range, and the correction result of the additional injection amount correction means, the injection control amount of each fuel injection valve at the normal time is determined for each cylinder. Osamu And injection control amount correction means for, characterized by comprising a.
Preferably, the detected value may be an exhaust temperature increase value with respect to an exhaust temperature before starting control for injecting the additional injection amount.

請求項2の発明は、請求項1に記載の多気筒エンジンの燃料噴射装置において、前記所定の噴射時期は、前記追加噴射量の燃料が前記気筒内でほぼ完全燃焼し得る遅角側の時期であることを特徴とする。   According to a second aspect of the present invention, in the fuel injection device for a multi-cylinder engine according to the first aspect, the predetermined injection timing is a retarded timing at which the additional injection amount of fuel can almost completely burn in the cylinder. It is characterized by being.

請求項3の発明は、請求項1又は2に記載の多気筒エンジンの燃料噴射装置において、前記所定の運転域は、アイドル運転域であることを特徴とする。   According to a third aspect of the present invention, in the fuel injection device for a multi-cylinder engine according to the first or second aspect, the predetermined operating range is an idle operating range.

請求項1の発明は、エンジンが所定の運転域にあるとき各燃料噴射弁から追加噴射量を噴射させて、気筒毎の追加噴射量相当の排気温の変動量を検出値(温度上昇量)として求め、その検出値が所定範囲内に収まるよう気筒毎の追加噴射量をそれぞれ修正し、その制御結果である気筒毎の追加噴射量に基づき、各気筒毎の燃料噴射弁の噴射制御量を修正するので、噴射制御量の精度を一層正確にすることが出来る。これにより、噴射制御量の安定化を図ることができるので、騒音やスモークの発生を抑制することができる。   According to the first aspect of the present invention, when the engine is in a predetermined operating range, an additional injection amount is injected from each fuel injection valve, and a fluctuation amount of the exhaust temperature corresponding to the additional injection amount for each cylinder is detected (temperature increase amount). The additional injection amount for each cylinder is corrected so that the detected value falls within a predetermined range, and the injection control amount of the fuel injection valve for each cylinder is calculated based on the additional injection amount for each cylinder, which is the control result. Since the correction is made, the accuracy of the injection control amount can be made more accurate. Thereby, since the injection control amount can be stabilized, the generation of noise and smoke can be suppressed.

請求項2の発明は、追加噴射量の燃料が気筒内でほぼ完全燃焼し得るタイミングで、できるだけトルクに影響を与えないよう遅角させることで、通常時の噴射制御量に影響を与えずに追加噴射量と温度上昇量との相関を的確に維持できる。   According to the second aspect of the present invention, by delaying the additional injection amount of fuel so as not to affect the torque as much as possible at a timing at which the fuel of the additional injection amount can be almost completely combusted, the normal injection control amount is not affected. The correlation between the additional injection amount and the temperature rise amount can be accurately maintained.

請求項3の発明は、エンジン回転が比較的安定的なアイドル運転域において各気筒毎の排気温の検出値(排気温の変動量)の算出を行うことで、燃料噴射弁から追加噴射された噴射量の外乱によるばらつきを抑制でき、噴射制御量の精度を一層正確にすることができる。   The invention according to claim 3 is additionally injected from the fuel injection valve by calculating an exhaust temperature detection value (a variation amount of the exhaust temperature) for each cylinder in an idle operation region where engine rotation is relatively stable. Variations in the injection amount due to disturbance can be suppressed, and the accuracy of the injection control amount can be made more accurate.

図1には本発明の一実施形態としての多気筒エンジンの燃料噴射装置Aを備えたコモンレールディーゼルエンジン(以後、単にエンジン1と記す)を示した。
エンジン1は多気筒直噴式(本実施例では4気筒の例を説明しており、図1では4気筒のうち1気筒のみ示している)であり、各気筒の燃料噴射弁2を装備するシリンダヘッド3とシリンダブロック4とピストン5のキャビティ6とにより燃焼室7を形成する。エンジン1には各気筒に連通する吸気通路8及び排気通路9がそれぞれ設けられている。吸気通路8には過給機11のコンプレッサ12(図1で紙面裏側)が設けられ、排気通路9には過給機11のタービン13が設けられている。なお、本実施例の過給機11は可変容量式ターボ(VGT)である。過給機11は排気ガスのエネルギーを利用してタービン13を回転させ、その同軸上にあるコンプレッサ12を回転させて吸入空気を昇圧させるものである。そして、吸入空気が昇圧されることにより、高密度の空気が燃焼室7へと送り込まれると共に燃料噴射弁2を介して噴射された燃料が混合燃焼され、エンジン1の出力が増大される。
FIG. 1 shows a common rail diesel engine (hereinafter simply referred to as engine 1) provided with a fuel injection device A for a multi-cylinder engine as an embodiment of the present invention.
The engine 1 is a multi-cylinder direct injection type (in this embodiment, an example of four cylinders is described, and only one cylinder among the four cylinders is shown in FIG. 1), and a cylinder equipped with a fuel injection valve 2 for each cylinder. A combustion chamber 7 is formed by the head 3, the cylinder block 4, and the cavity 6 of the piston 5. The engine 1 is provided with an intake passage 8 and an exhaust passage 9 communicating with each cylinder. The intake passage 8 is provided with a compressor 12 (back side in FIG. 1) of the supercharger 11, and the exhaust passage 9 is provided with a turbine 13 of the supercharger 11. The supercharger 11 of this embodiment is a variable capacity turbo (VGT). The supercharger 11 uses the energy of the exhaust gas to rotate the turbine 13 and rotates the compressor 12 located on the same axis to boost the intake air. When the intake air is pressurized, high-density air is sent into the combustion chamber 7 and the fuel injected through the fuel injection valve 2 is mixed and burned, and the output of the engine 1 is increased.

吸気通路8のコンプレッサ12の上流にはエアクリーナー14が配備され、エアクリーナー14のケーシング内には吸入空気量検出手段であるエアーフローセンサ15が配備される。コンプレッサ12の下流にはインタクーラ16、吸気絞り弁20が設けられる。インタクーラ16は吸気冷却を行うことで、エンジン1の吸気の体積効率を向上させ、これにより出力アップを図ることができる。吸気絞り弁20は常開弁で吸気流量を適時に調整し、EGR増量のための負圧発生等に使用される。   An air cleaner 14 is disposed upstream of the compressor 12 in the intake passage 8, and an air flow sensor 15 serving as intake air amount detection means is disposed in the casing of the air cleaner 14. An intercooler 16 and an intake throttle valve 20 are provided downstream of the compressor 12. The intercooler 16 performs intake air cooling, thereby improving the volumetric efficiency of the intake air of the engine 1 and thereby increasing the output. The intake throttle valve 20 is a normally open valve that adjusts the intake flow rate in a timely manner, and is used for generating negative pressure for increasing the EGR.

一方、図1及び図6に示すように、排気通路9はシリンダヘッド3側の排気ポートepより延出し、排気マニホールド10と、過給機11のタービン13と、排気管36と、排ガス浄化装置17と、不図示のマフラーとに順次連通する。排気マニホールド10はシリンダヘッド3側の各排気ポートepよりの排ガスを各排気ガス分岐路esを通して排気ガス合流位置etにおいて合流させる。排気マニホールド10の下流に過給機11のタービン13が配備される。   On the other hand, as shown in FIGS. 1 and 6, the exhaust passage 9 extends from the exhaust port ep on the cylinder head 3 side, and the exhaust manifold 10, the turbine 13 of the supercharger 11, the exhaust pipe 36, and the exhaust gas purification device. 17 and a muffler (not shown) are sequentially communicated. The exhaust manifold 10 joins exhaust gas from the exhaust ports ep on the cylinder head 3 side through the exhaust gas branch paths es at the exhaust gas joining position et. A turbine 13 of the supercharger 11 is disposed downstream of the exhaust manifold 10.

ここで、シリンダヘッド3側の各排気ポートepには、各燃焼室7からの排気ガスの温度Tg1〜Tg4を検出する排温検出手段としての排温センサ37がそれぞれ設けられ、これらの温度情報は後述の制御手段であるコントローラ(エンジンECU)18に出力される。なお、各排温センサ37は、排気マニホールド10の各通路にそれぞれ配備しても良い。排気通路9には過給機11の下流に排ガス浄化装置17が配備される。   Here, each exhaust port ep on the cylinder head 3 side is provided with exhaust temperature sensors 37 as exhaust temperature detecting means for detecting exhaust gas temperatures Tg1 to Tg4 from the respective combustion chambers 7, and the temperature information thereof. Is output to a controller (engine ECU) 18 which is a control means described later. Each exhaust temperature sensor 37 may be provided in each passage of the exhaust manifold 10. An exhaust gas purification device 17 is disposed in the exhaust passage 9 downstream of the supercharger 11.

エンジン1の燃料噴射装置Aは、燃料供給装置19と、燃焼室7に燃料噴射を行う燃料噴射弁2と、これらの噴射制御手段であるコントローラ(エンジンECU)18とを備える。
シリンダヘッド3に取り付けられた燃料噴射弁2は、その本体内に励磁コイル21と、同励磁コイル21の励磁時に開弁作動する針弁22と、同針弁22により開閉されてコモンレール23から送り込まれている高圧燃料を燃焼室7に噴射可能なノズル24とを備える。
なお、シリンダヘッド3には燃料噴射弁2の近傍にグロープラグ30が取り付けられる。これはコントローラ18に接続され、エンジンの冷態始動時及び運転時の燃焼改善を図るように駆動される。
The fuel injection device A of the engine 1 includes a fuel supply device 19, a fuel injection valve 2 that injects fuel into the combustion chamber 7, and a controller (engine ECU) 18 that serves as these injection control means.
The fuel injection valve 2 attached to the cylinder head 3 has an exciting coil 21 in its main body, a needle valve 22 that opens when the exciting coil 21 is energized, and is opened and closed by the needle valve 22 and fed from the common rail 23. And a nozzle 24 capable of injecting the high-pressure fuel into the combustion chamber 7.
A glow plug 30 is attached to the cylinder head 3 in the vicinity of the fuel injection valve 2. This is connected to the controller 18 and is driven so as to improve combustion at the time of cold start and operation of the engine.

燃料供給装置19はコモンレール23と、同コモンレール23に接続される燃料噴射ポンプ25と、燃料タンク26と、噴射圧(コモンレール圧)Prを出力する噴射圧センサ27とを備える。
コモンレール23に蓄える燃料は、エンジン1の回転力を受けて駆動する燃料噴射ポンプ25から高圧管29を経由して供給される。このコモンレール23に蓄えられる燃料の噴射圧(コモンレール圧)Prの信号は、噴射圧センサ27によりコントローラ18に入力されている。
The fuel supply device 19 includes a common rail 23, a fuel injection pump 25 connected to the common rail 23, a fuel tank 26, and an injection pressure sensor 27 that outputs an injection pressure (common rail pressure) Pr.
The fuel stored in the common rail 23 is supplied via a high-pressure pipe 29 from a fuel injection pump 25 that is driven by the rotational force of the engine 1. A fuel injection pressure (common rail pressure) Pr signal stored in the common rail 23 is input to the controller 18 by an injection pressure sensor 27.

コントローラ18は、燃料噴射ポンプ25、即ち、エンジン1の運転条件に応じて、予め設定された複数の設定レール圧Pr1〜Pr3(図5参照)の一つを選択する。その上で、噴射圧センサ27により検出した噴射圧(コモンレール圧)Prが設定された設定レール圧(例えばPr1)となるように、制御信号をコントローラ18から直接燃圧調整器251に伝達する。これにより、コモンレール23内の噴射圧Prが、図5に示すような所定レール圧Prの一つ(例えばPr1)となるよう燃圧調整可能である。なお、図1中で符号31は燃料戻り管を示し、燃料噴射弁2からの低圧油を燃料タンク26に戻す。   The controller 18 selects one of a plurality of preset rail pressures Pr <b> 1 to Pr <b> 3 (see FIG. 5) set in advance according to the operating condition of the fuel injection pump 25, that is, the engine 1. Then, a control signal is directly transmitted from the controller 18 to the fuel pressure regulator 251 so that the injection pressure (common rail pressure) Pr detected by the injection pressure sensor 27 becomes a set rail pressure (for example, Pr1). Accordingly, the fuel pressure can be adjusted so that the injection pressure Pr in the common rail 23 becomes one of the predetermined rail pressures Pr (for example, Pr1) as shown in FIG. In FIG. 1, reference numeral 31 denotes a fuel return pipe that returns low-pressure oil from the fuel injection valve 2 to the fuel tank 26.

ここで、コントローラ18は、上述のセンサ類からの検出情報に基づいて噴射圧Prを設定し、さらに目標噴射量を実現する噴射制御量(噴射パルス幅)を算出する。その上で、燃料噴射ポンプ25の燃圧調整器251を制御して噴射圧Prを設定値に制御する。更に、各燃料噴射弁2を図2(a)、(b)に示す定常噴射(パイロット噴射)モード(定常噴射制御手段A01による)M1と、図3(a)、(b)に示す追加噴射モード(追加噴射制御手段A02による)M2とのいずれかで噴射作動させる機能を備える。   Here, the controller 18 sets the injection pressure Pr based on the detection information from the above-described sensors, and further calculates an injection control amount (injection pulse width) that realizes the target injection amount. Then, the fuel pressure regulator 251 of the fuel injection pump 25 is controlled to control the injection pressure Pr to a set value. Further, each fuel injection valve 2 is supplied to the steady injection (pilot injection) mode M1 (by the steady injection control means A01) M1 shown in FIGS. 2A and 2B, and the additional injection shown in FIGS. 3A and 3B. It has a function of performing the injection operation in any of the modes (by the additional injection control means A02) M2.

具体的には、コントローラ18は、2つの噴射方式を選択的に使用して燃料噴射弁2を駆動する。即ち、図2(a)、(b)に示すように定常(パイロット)噴射モード(定常噴射制御手段Aによる)M1では、エンジンの運転状態に応じて設定される目標噴射量を各燃料噴射弁から定常噴射させる。この場合、図2(a)、(b)に示す主噴射(駆動パルス幅)Tmとこれに先立つパイロット噴射Tpとを順次行う。この定常(パイロット)噴射モード(後述の定常噴射制御手段A01による)M1は、低中高の各負荷運転域や、アイドル回転数N1を保持するフィードバック制御時に使用される。   Specifically, the controller 18 drives the fuel injection valve 2 by selectively using two injection methods. That is, as shown in FIGS. 2A and 2B, in the steady (pilot) injection mode (by the steady injection control means A) M1, the target injection amount set according to the operating state of the engine is set to each fuel injection valve. To make a steady injection. In this case, the main injection (drive pulse width) Tm shown in FIGS. 2A and 2B and the pilot injection Tp preceding this are sequentially performed. This steady (pilot) injection mode (by a steady injection control means A01 described later) M1 is used during low, medium and high load operating ranges and during feedback control that maintains the idle speed N1.

更に、追加噴射モード(後述の追加噴射制御手段A02による)M2では、図3(a)、(b)に示すように、燃料噴射弁2を定常噴射(パイロット)噴射モードM1(図2参照)と同様に噴射駆動(Tp+Tm)させ、その後の所定遅角時期tsで追加噴射Ts(アフター噴射)を加えて排温を上昇させるよう作動する。
この追加噴射Ts(アフター噴射)は、膨張行程内で予め設定した所定遅角状態(リタード量δθ)、即ち、アイドル回転数N1に影響を与えないような、所定遅角時期tsが遅角量TDCA50°(一例)で行われる。これによってトルク発生に影響を与えることのない、排温上昇が図られるのみの少量噴射量qsが成される。
Further, in the additional injection mode (by additional injection control means A02 described later) M2, as shown in FIGS. 3 (a) and 3 (b), the fuel injection valve 2 is operated in a steady injection (pilot) injection mode M1 (see FIG. 2). In the same manner as in the above, the injection drive (Tp + Tm) is performed, and at the predetermined delay time ts thereafter, the additional injection Ts (after injection) is added to increase the exhaust temperature.
This additional injection Ts (after-injection) is performed in a predetermined retardation state (retard amount δθ) set in advance in the expansion stroke, that is, a predetermined retardation timing ts that does not affect the idle speed N1 is a retardation amount. TDCA is performed at 50 ° (an example). As a result, a small quantity of injection qs that does not affect torque generation and that only increases the exhaust temperature is achieved.

さらに、コントローラ18は、アイドル回転数N1を保持するエンジン回転数フィードバック制御を行い、その際に追加噴射Ts(アフター噴射)による排温上昇データを記憶する。なお、ここでの追加噴射Ts(アフター噴射)の追加噴射量qs♯1(噴射期間(パルス幅)相当)は後述のように、気筒毎(qs♯1〜qs♯4)に演算される。なお、エンジン回転数フィードバック制御は、定常噴射モードM1であるか追加噴射モードM2であるかによらず、主噴射Tm又はパイロット噴射Tpの増減で実現する。
このような追加噴射モードM2は、エンジン1が所定の運転域での作動中にのみ採用される。ここでの所定の運転域は、所定のアイドル回転数N1で、エンジン負荷がほぼゼロの場合として設定される。
Further, the controller 18 performs engine speed feedback control that maintains the idle speed N1, and stores exhaust temperature rise data by additional injection Ts (after injection) at that time. Here, the additional injection amount qs # 1 (corresponding to the injection period (pulse width)) of the additional injection Ts (after injection) is calculated for each cylinder (qs # 1 to qs # 4) as described later. Note that the engine speed feedback control is realized by increasing or decreasing the main injection Tm or the pilot injection Tp regardless of whether the injection mode is the steady injection mode M1 or the additional injection mode M2.
Such additional injection mode M2 is employed only when the engine 1 is operating in a predetermined operating range. The predetermined operating range here is set as a case where the engine load is substantially zero at a predetermined idle speed N1.

図1に示すように、コントローラ18は図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM、RAM、DRAM等)、中央処理装置(CPU)、図示しないタイマカウンタ等を備える。コントローラ18の入力端側には、アクセル操作量θaを検出するアクセルセンサ32、吸気量Qaを検出するエアーフローセンサ15、クランク角情報Δθを検出するクランク角センサ21、噴射圧Prを検出する噴射圧センサ27、水温wtを検出する水温センサ28、車速Vcを車速センサ33、エアコンスイッチ40、吸気管内の圧力Pbを検出する吸気圧センサ60等の各種センサ類が接続される。なお、ここでのクランク角情報Δθはコントローラ18においてエンジン回転数Neの導出に用いられる。   As shown in FIG. 1, the controller 18 includes an input / output device (not shown), a storage device (ROM, RAM, DRAM, etc.) used for storing control programs and control maps, a central processing unit (CPU), a timer counter (not shown). Etc. On the input end side of the controller 18, an accelerator sensor 32 that detects an accelerator operation amount θa, an airflow sensor 15 that detects an intake air amount Qa, a crank angle sensor 21 that detects crank angle information Δθ, and an injection that detects an injection pressure Pr. Various sensors such as a pressure sensor 27, a water temperature sensor 28 for detecting the water temperature wt, a vehicle speed Vc for the vehicle speed sensor 33, an air conditioner switch 40, and an intake pressure sensor 60 for detecting the pressure Pb in the intake pipe are connected. The crank angle information Δθ here is used by the controller 18 to derive the engine speed Ne.

出力側には燃料噴射弁2、燃料噴射ポンプ25、グロープラグ30、吸気絞り弁20、等の各種デバイス類が接続されている。
コントローラ18は周知のエンジン制御機能を発揮すると共に、本発明の特徴を成す多気筒エンジンの燃料噴射装置として機能する。即ち、図4に示すように、燃料噴射装置Aとしてのコントローラ18は定常噴射制御手段A01と追加噴射制御手段A02と、目標噴射量設定手段A1と、定常排温設定手段A2と、追加噴射量修正手段A3と、噴射制御量修正手段A4とを備えている。なお、ここでの定常噴射制御手段A01と追加噴射制御手段A02とは相互に関連させて制御機能を発揮するもので、これら手段が燃料噴射制御手段A0を成している。
燃料噴射装置Aの目標噴射量設定手段A1は、エンジン1の各気筒に対してエンジン運転情報であるアクセル開度θa、エンジン回転速度Ne等を取り込み、これらに基づき基本燃料噴射量INJbを求める。
Various devices such as the fuel injection valve 2, the fuel injection pump 25, the glow plug 30, and the intake throttle valve 20 are connected to the output side.
The controller 18 performs a well-known engine control function and functions as a fuel injection device for a multi-cylinder engine that characterizes the present invention. That is, as shown in FIG. 4, the controller 18 as the fuel injection device A includes a steady injection control means A01, an additional injection control means A02, a target injection amount setting means A1, a steady exhaust temperature setting means A2, and an additional injection amount. Correction means A3 and injection control amount correction means A4 are provided. Note that the steady injection control means A01 and the additional injection control means A02 here exhibit a control function in association with each other, and these means constitute the fuel injection control means A0.
The target injection amount setting means A1 of the fuel injection device A takes in the accelerator opening θa, the engine rotational speed Ne, and the like, which are engine operation information, for each cylinder of the engine 1, and obtains the basic fuel injection amount INJb based on these.

更に、目標噴射量設定手段A1で演算された基本燃料噴射量INJbは噴射制御量修正手段A4にも送信される。その噴射制御量修正手段A4は基本燃料噴射量INJbを適宜修正して燃料噴射制御手段A0に送信する。
なお、基本燃料噴射量INJbはエンジン1が予め設定された所定運転域である、停車中(Vc=0)で、アクセル開度(θa=0)で、アイドル回転数N1の条件が成立するアイドル運転域を判定する制御中において演算される。
コントローラ18の燃料噴射制御手段A0は、その時の運転情報に応じて選択されている定常噴射制御手段A01と追加噴射制御手段A02のいずれか一方が選択的に噴射制御を行う。即ち、定常噴射制御手段A01と追加噴射制御手段A02のいずれか一方に応じた噴射データに応じ、各気筒の燃料噴射弁2を駆動制御する。
なお、これら目標噴射量設定手段A1と燃料噴射制御手段A0としての制御はコントローラ18の不図示のメインルーチン側で所定制御周期毎に順次行われる。
Further, the basic fuel injection amount INJb calculated by the target injection amount setting means A1 is also transmitted to the injection control amount correction means A4. The injection control amount correction means A4 appropriately corrects the basic fuel injection amount INJb and transmits it to the fuel injection control means A0.
It should be noted that the basic fuel injection amount INJb is an idling condition in which the engine 1 is in a predetermined operating range that is set in advance, the vehicle is stopped (Vc = 0), the accelerator opening (θa = 0), and the condition of the idle speed N1 is satisfied. It is calculated during control for determining the operating range.
In the fuel injection control means A0 of the controller 18, either the steady injection control means A01 or the additional injection control means A02 selected according to the operation information at that time selectively performs injection control. That is, the fuel injection valve 2 of each cylinder is driven and controlled according to the injection data corresponding to one of the steady injection control means A01 and the additional injection control means A02.
The control as the target injection amount setting means A1 and the fuel injection control means A0 is sequentially performed at predetermined control cycles on the main routine (not shown) side of the controller 18.

燃料噴射装置A内の定常排温設定手段A2は、制御開始後の初期に、エンジンがアイドル運転域(所定の運転域)に達していると定常計測時(S1)と判断し、各気筒の燃料噴射弁2を所定の定常噴射モードM1としてのパイロット噴射モードで駆動する。このパイロット噴射モードM1では所定のエンジン運転状態としてのアイドル回転数N1を保持するフィードバック制御が成される。定常計測時(S1)の気筒の排ガス温度Tgは排温検出手段としての排温センサ37により複数回取り込まれ、排温変動が収まった時点で排温を基準排温Tgb1〜Tgb4として設定し、取り込み、コントローラ18の所定記憶領域にストアする。なお、各気筒の基準排温Tgb1〜Tgb4は、同時に取り込むようにしてもよいし、例えばNo1の気筒〜No4の気筒に順に取り込むようにしてもよいし、排温変動が収束した気筒から順に取り込むようにしてもよい。   The steady exhaust temperature setting means A2 in the fuel injection device A determines that the engine is in an idle operation range (predetermined operation range) at the initial stage after the start of control, and is in a steady measurement (S1). The fuel injection valve 2 is driven in a pilot injection mode as a predetermined steady injection mode M1. In the pilot injection mode M1, feedback control is performed to maintain the idle speed N1 as a predetermined engine operating state. The exhaust gas temperature Tg of the cylinder at the time of steady measurement (S1) is taken in a plurality of times by the exhaust temperature sensor 37 as the exhaust temperature detection means, and when the exhaust temperature fluctuation is settled, the exhaust temperature is set as reference exhaust temperatures Tgb1 to Tgb4. Capture and store in a predetermined storage area of the controller 18. The reference exhaust temperatures Tgb1 to Tgb4 of the respective cylinders may be taken at the same time, for example, may be taken sequentially into the No. 1 cylinder to the No. 4 cylinder, or taken sequentially from the cylinder where the exhaust temperature fluctuation has converged. You may do it.

このように、定常排温設定手段A2によって図7(a)〜図10(a)に示すような、基準排温Tgb1〜Tgb4を求めた後、追加噴射量修正手段A3は次のように機能する。
即ち、追加噴射量修正手段A3は、各気筒を定常のパイロット噴射モード(図2の符号M1)に代えて、膨張行程中に少量(1〜5mm/st)の追加噴射Ts(アフター噴射)を行う追加噴射モード(図3の符号M2)に切換える。この追加噴射時(S2)における追加噴射量qs1は、例えば2mm/st前後に調整される。
As described above, after obtaining the reference exhaust temperatures Tgb1 to Tgb4 as shown in FIGS. 7A to 10A by the steady exhaust temperature setting unit A2, the additional injection amount correcting unit A3 functions as follows. To do.
That is, the additional injection amount correcting means A3 replaces each cylinder with the steady pilot injection mode (reference numeral M1 in FIG. 2), and performs a small amount (1 to 5 mm 3 / st) of additional injection Ts (after injection) during the expansion stroke. Is switched to the additional injection mode (reference numeral M2 in FIG. 3). The additional injection amount qs1 at the time of this additional injection (S2) is adjusted to, for example, around 2 mm 3 / st.

次いで追加噴射量修正手段A3はこの追加噴射モード(符号M2)において、各排温検出手段による排気温の変動量、即ち、追加噴射量を噴射させる前の定常計測時(S1)の基準排温Tgb1〜Tgb4に対する排温上昇値を測定する。この場合、その検出値(温度上昇量)が所定範囲内に収まるよう、後述のように気筒毎の追加噴射量qs1をそれぞれ修正する。
即ち、図7(a)に示すような、1の気筒で先に設定された基準排温Tgb1を所定の昇温量ΔT1(追加噴射量qs1相当の値)だけ上昇するよう、即ち、その検出値が所定範囲内に収まるよう、1の気筒の追加噴射量qs1を修正し昇温させる。
Next, in this additional injection mode (reference M2), the additional injection amount correcting means A3 is the reference exhaust temperature at the time of steady measurement (S1) before injecting the fluctuation amount of the exhaust temperature by each exhaust temperature detecting means, that is, the additional injection amount. The exhaust temperature rise value with respect to Tgb1-Tgb4 is measured. In this case, the additional injection amount qs1 for each cylinder is corrected, as will be described later, so that the detected value (temperature rise amount) falls within a predetermined range.
That is, as shown in FIG. 7A, the reference exhaust temperature Tgb1 previously set in one cylinder is increased by a predetermined temperature increase amount ΔT1 (a value corresponding to the additional injection amount qs1), that is, the detection thereof. The additional injection amount qs1 of one cylinder is corrected to raise the temperature so that the value falls within the predetermined range.

このように、追加噴射量修正手段A3はこの追加噴射モード(符号M2)での運転において、噴射時期ts(図3参照)が固定され、追加噴射の駆動パルス幅Tsを増減修正、即ち、噴射量(パルス幅相当)qs1を増減修正し、目標排温Tgs1(=Tgb1+ΔT1)に保つようにフィードバック制御する。排気温が図7(a)に示すように上昇変動し、目標排温Tgs1に収まった運転域で、その際の制御結果である追加噴射Tsでの実際の噴射量qs1♯1が求められ、コントローラ18の所定記憶領域にストアされる。   In this way, the additional injection amount correcting means A3 has the injection timing ts (see FIG. 3) fixed in the operation in the additional injection mode (symbol M2), and the drive pulse width Ts of the additional injection is increased or decreased, that is, the injection The amount (corresponding to the pulse width) qs1 is increased or decreased, and feedback control is performed so as to maintain the target exhaust temperature Tgs1 (= Tgb1 + ΔT1). As shown in FIG. 7 (a), the actual injection amount qs1 # 1 at the additional injection Ts, which is the control result at that time, is obtained in the operating range where the exhaust temperature rises and falls within the target exhaust temperature Tgs1, as shown in FIG. Stored in a predetermined storage area of the controller 18.

このように追加噴射Tsが予め設定されたリタード量δθ、例えば遅角量TDCA50°の膨張行程内の噴射時期tsに固定して行われることで、トルク発生に影響を与えず、追加噴射量qs1が1の気筒の排ガス温度の上昇にのみ作用することとなる。
しかも、追加噴射量qs1の燃料が気筒内でほぼ完全燃焼して排出されることより、排温検出手段としての排温センサ3により検出した排気温の検出値ΔT1(温度上昇量)が、燃料噴射弁2からの実際の追加噴射量に対応するので、通常時の噴射制御量に影響を与えずに追加噴射量と温度上昇量との相関を的確に維持できる。
As described above, the additional injection Ts is performed at a fixed retard amount δθ, for example, the injection timing ts within the expansion stroke of the retard amount TDCA 50 °, so that the torque generation is not affected, and the additional injection amount qs1 However, this only affects the rise in the exhaust gas temperature of one cylinder.
In addition, since the fuel of the additional injection amount qs1 is almost completely combusted in the cylinder and discharged, the detected value ΔT1 (temperature increase amount) of the exhaust temperature detected by the exhaust temperature sensor 3 as the exhaust temperature detection means is the fuel. Since it corresponds to the actual additional injection amount from the injection valve 2, the correlation between the additional injection amount and the temperature rise amount can be accurately maintained without affecting the normal injection control amount.

同様に、図8に示すように、1の気筒(例えばNo2の気筒)の昇温量ΔT2(ΔT1と同一値でもよい)だけ昇温した目標排温Tgs2を保つに要する追加噴射Tsの噴射量qs1♯2を修正して学習し、図9、図10に示すように、No3、4の気筒においても、昇温量ΔT3,4(ここではΔT1と同一値)だけ昇温した目標排温Tgs3,4を保つに要する追加噴射Tsの実際の噴射量qs1♯3、qs1♯4を制御結果として学習して、コントローラ18の所定記憶領域にストアする。なお、各気筒の昇温量ΔT1〜ΔT4は、同時に学習してもよいし、例えばNo1の気筒〜No4の気筒に順に学習してもよい。
この後、追加噴射量修正手段A3の制御結果である、気筒毎の追加噴射量qs1♯1〜qs1♯4に基づき、噴射制御量修正手段A4は、通常時における各燃料噴射弁2の噴射制御量(噴射パルス幅)を各気筒毎に修正する。
Similarly, as shown in FIG. 8, the injection amount of the additional injection Ts required to maintain the target exhaust temperature Tgs2 that has been raised by the temperature increase amount ΔT2 (may be the same value as ΔT1) of one cylinder (for example, the No. 2 cylinder). As shown in FIGS. 9 and 10, learning is performed by correcting qs1 # 2, and in the No. 3 and 4 cylinders, the target exhaust temperature Tgs3 that is raised by the temperature increase amount ΔT3, 4 (here, the same value as ΔT1). , 4 are learned as control results of the actual injection amounts qs1 # 3 and qs1 # 4 of the additional injection Ts required to maintain the value 4, and stored in a predetermined storage area of the controller 18. The temperature increase amounts ΔT1 to ΔT4 of each cylinder may be learned at the same time, or may be learned in order from the No1 cylinder to the No4 cylinder, for example.
Thereafter, based on the additional injection amount qs1 # 1 to qs1 # 4 for each cylinder, which is the control result of the additional injection amount correcting unit A3, the injection control amount correcting unit A4 performs the injection control of each fuel injection valve 2 at the normal time. The amount (injection pulse width) is corrected for each cylinder.

これにより、各気筒毎の燃焼反応結果が反映された各燃料噴射弁2の噴射量誤差を修正でき、この時点以後、各燃料噴射弁2の噴射制御量(噴射パルス幅)を常に精度を適正に保って行うことが出来る。
次に、図1のコントローラ18の各制御処理を、図11のアイドル制御ルーチン、図12の定常排温設定ルーチンと、図13の追加噴射量修正ルーチンとに沿って説明する。ここでは、不図示のメインルーチンにおいて、予め、複数の目標の噴射圧Pr1、Pr2、Pr3より選択的に一つ、例えば、噴射圧Pr1が設定される。その上で、同噴射圧Pr1が保持されるように燃圧調整器251が駆動制御される。なお、これらルーチンはコントローラ18内のCPUにより所定の時間周期で実施される。
Thereby, the injection amount error of each fuel injection valve 2 in which the combustion reaction result for each cylinder is reflected can be corrected. After this time, the injection control amount (injection pulse width) of each fuel injection valve 2 is always accurate. It can be done in
Next, each control process of the controller 18 of FIG. 1 will be described along the idle control routine of FIG. 11, the steady exhaust temperature setting routine of FIG. 12, and the additional injection amount correction routine of FIG. Here, in a main routine (not shown), one of the plurality of target injection pressures Pr1, Pr2, and Pr3, for example, the injection pressure Pr1 is set in advance. After that, the fuel pressure regulator 251 is driven and controlled so that the injection pressure Pr1 is maintained. These routines are executed at predetermined time intervals by the CPU in the controller 18.

コントローラ18の制御処理がアイドル制御ルーチンへ移行すると、先ずステップs1において、吸気量センサ15、クランク角センサ21、噴射圧センサ27、水温センサ28、アクセル開度センサ32、車速センサ33、エアコンスイッチ40、各気筒の排温センサ37、吸気圧センサ60等からの各種信号に基づき、吸気量Qa、エンジン回転数Ne、噴射圧Pr、冷却水温wt、アクセル開度θa、車速Vc、エアコン信号Sa、排ガス温度Tg1〜Tg4、吸気圧Pb等の各運転情報がそれぞれ読み込まれる。   When the control process of the controller 18 shifts to the idle control routine, first, in step s1, the intake air amount sensor 15, the crank angle sensor 21, the injection pressure sensor 27, the water temperature sensor 28, the accelerator opening sensor 32, the vehicle speed sensor 33, and the air conditioner switch 40. Based on various signals from the exhaust temperature sensor 37 of each cylinder, the intake pressure sensor 60, etc., the intake air amount Qa, the engine speed Ne, the injection pressure Pr, the cooling water temperature wt, the accelerator opening degree θa, the vehicle speed Vc, the air conditioner signal Sa, Each operation information such as the exhaust gas temperatures Tg1 to Tg4 and the intake pressure Pb is read.

続いて、ステップs2において、エンジン1が予め設定された所定の運転域であるアイドル運転域であるか否かを判断する。この判断は、エンジン回転数Neが所定のアイドル回転数N1である、アクセル開度θaが全閉である、車速Vcが停車判定値以下である等に基づいて行われる。そして、アイドル運転域でない場合には、ステップs4へ移行し、非アイドル運転時の燃料噴射量制御処理へ移行して、不図示のメインルーチンに戻る。又、アイドル回転域である場合にはステップs3へ進む。
ステップs3においては、今回読み込まれた冷却水温wtが暖気判定値wt1を上回るか否か判断し、下回ると暖気前と判断し、不図示のメインルーチンに戻る。
Subsequently, in step s2, it is determined whether or not the engine 1 is in an idle operation region that is a predetermined operation region that is set in advance. This determination is made based on the engine speed Ne being a predetermined idle speed N1, the accelerator opening θa being fully closed, the vehicle speed Vc being equal to or less than the stop determination value, and the like. If it is not in the idling operation range, the process proceeds to step s4, the process proceeds to the fuel injection amount control process during non-idle operation, and the process returns to the main routine (not shown). On the other hand, if it is in the idling speed range, the process proceeds to step s3.
In step s3, it is determined whether or not the coolant temperature wt read this time is higher than the warm-up determination value wt1, and if it is lower, it is determined that the warm-up is not yet performed, and the process returns to a main routine (not shown).

一方、ステップs3で冷却水温wtが暖気判定値wt1を上回ると、暖気後のアイドル時と判断する。ここではステップs5に進み、所定のアイドル運転域であるとして目標アイドル回転数N1を保持すべくエンジン回転数Neを修正するフィードバック制御(ISC)に入る。なお、この目標アイドル回転数N1はエンジン負荷、例えばエアコン駆動の場合での運転に対処できる値があらかじめ設定されている。
この後、ステップs6に達すると、ここでは、定常排温サンプリングフラグがオン(FLG1=1)か否か判断し、最初はオフで、定常計測時S1を判断し、ステップs7、s8に進み、完了後は直接ステップs9に直接進む。
On the other hand, when the cooling water temperature wt exceeds the warm air determination value wt1 in step s3, it is determined that the engine is idling after warm air. Here, the process proceeds to step s5 and enters a feedback control (ISC) in which the engine speed Ne is corrected so as to maintain the target idle speed N1 assuming that it is in a predetermined idle operating range. The target idle speed N1 is set in advance to a value that can cope with engine load, for example, driving in the case of air conditioner driving.
Thereafter, when step s6 is reached, it is determined here whether or not the steady exhaust temperature sampling flag is on (FLG1 = 1), initially it is off, the steady measurement time S1 is determined, and the process proceeds to steps s7 and s8. After completion, the process directly proceeds to step s9.

ステップs7では定常排温設定処理を行う。
図12に示すように、定常排温設定処理でのステップa1では、エンジンがアイドル運転域(所定の運転域)に達していると判定し、各気筒の燃料噴射弁2をパイロット噴射モード(図2の符号M1)で、アイドル回転数N1を保持するようフィードバック制御する。そして、その時点を定常計測時(S1)と見做し、ステップa2に進む。
続いて、ステップa2では現運転域がアイドル回転数N1を保持した上でのアイドル運転域にあるか再度確認し、離脱時にはアイドル制御ルーチンにリターンし、再度、ステップa1の処理後ステップa2に戻り、Yes判定でステップa3に進む。
In step s7, a steady exhaust temperature setting process is performed.
As shown in FIG. 12, in step a1 in the steady exhaust temperature setting process, it is determined that the engine has reached the idle operating range (predetermined operating range), and the fuel injection valves 2 of each cylinder are set in the pilot injection mode (FIG. 12). 2, feedback control is performed so as to maintain the idle speed N1. Then, the time point is regarded as the steady measurement time (S1), and the process proceeds to step a2.
Subsequently, in step a2, it is checked again whether the current operating range is in the idling operating range while maintaining the idling speed N1, and when leaving, it returns to the idle control routine, and returns to step a2 after the processing of step a1 again. If YES, the process proceeds to step a3.

ステップa3では基準排温Tgb1〜Tgb4の前回値と今回値の全気筒の偏差ΔTgb1〜ΔTgb4を求める。次いでステップa4では全気筒の偏差ΔTgb1〜ΔTgb4が所定値h以下の低レベルに収束するのを待ち、収束したと判断するとステップa5で収束した値をコントローラ内にストアし、その後、アイドル制御ルーチンのステップs8に進む。
なお、図12ではNo1の気筒から順に基準排温を記憶処理するようになっているが、前述と同様に、基準排温Tgb1〜Tgb4は同時に取り込むようにしてもよいし、偏差が収束した気筒から順に取り込むようにしてもよい。
In step a3, deviations ΔTgb1 to ΔTgb4 of all cylinders between the previous value and the current value of the reference exhaust temperatures Tgb1 to Tgb4 are obtained. Next, in step a4, the system waits for the deviations ΔTgb1 to ΔTgb4 of all the cylinders to converge to a low level that is equal to or less than the predetermined value h. Proceed to step s8.
In FIG. 12, the reference exhaust temperature is stored in order from the No. 1 cylinder. However, as described above, the reference exhaust temperatures Tgb1 to Tgb4 may be taken in at the same time, or the cylinders whose deviations have converged. You may make it take in sequentially.

アイドル制御ルーチンのステップs8では、定常排温サンプリングフラグをオン(FLG1=1)にセットし、ステップs9に進む。
ステップs9では追加噴射量修正フラグが(FLG2=1)オンか否か判断し、最初または修正前ではオフで、ステップs10、s11に進み、修正後はステップs12に進む。
In step s8 of the idle control routine, the steady exhaust temperature sampling flag is set to ON (FLG1 = 1), and the process proceeds to step s9.
In step s9, it is determined whether or not the additional injection amount correction flag is (FLG2 = 1) ON. The process proceeds to steps s10 and s11 at the beginning or before correction, and proceeds to step s12.

ステップs10では追加噴射量修正処理を行う。
図13に示すように、追加噴射量修正処理のステップb1では、現運転域がアイドル回転数N1を保持した上でのアイドル運転域にあるか確認し、離脱時には図11に示すアイドル制御ルーチンにリターンし、再度、ステップb1に戻り、Yes判定でステップb2に進む。
ステップb2では、追加噴射時(S2)でエンジンがアイドル運転域(所定の運転域)に達していると判定し、各気筒の燃料噴射弁2を膨張行程中に少量の追加噴射Ts(アフター噴射)を含む追加噴射モード(図3の符号M2)で駆動し、定常計測時(S1)と同一のアイドル回転数N1を保持するようフィードバック制御する。
In step s10, an additional injection amount correction process is performed.
As shown in FIG. 13, in step b1 of the additional injection amount correction process, it is confirmed whether or not the current operation region is in the idle operation region while maintaining the idle rotation speed N1. Return to step b1 again, and proceed to step b2 with a Yes determination.
In step b2, it is determined that the engine has reached the idle operation range (predetermined operation range) at the time of additional injection (S2), and a small amount of additional injection Ts (after injection) is performed during the expansion stroke of the fuel injection valve 2 of each cylinder. ) Including additional injection modes (reference numeral M2 in FIG. 3), and feedback control is performed so as to maintain the same idle speed N1 as in the steady measurement (S1).

ステップb3では、この追加噴射モードでの運転において、噴射時期tsが固定され、追加噴射の駆動パルス幅Tsを増減修正、即ち、噴射量(パルス幅相当)qs1を増減修正し、目標排温Tgs1(=Tgb1+ΔT1)に保つようにフィードバック制御する。 次いで、ステップb4では、排気温が図7(a)に示すように上昇変動し、目標排温Tgs1〜Tgs4(第1〜第4気筒が同様に処理される)の収束範囲に収まった運転域であるか否かを判断する。詳しくは、排気温が目標排温Tgs1〜Tgs4に対する各気筒における目標排温の収束範囲、即ちTgs1±α〜Tgs4±α(αは一例で1〜3℃)の範囲に収まったか否かを判断する。   In step b3, in the operation in the additional injection mode, the injection timing ts is fixed, the drive pulse width Ts of the additional injection is increased or decreased, that is, the injection amount (corresponding to the pulse width) qs1 is increased or decreased, and the target exhaust temperature Tgs1. Feedback control is performed so as to maintain (= Tgb1 + ΔT1). Next, in step b4, the exhaust gas temperature fluctuates as shown in FIG. 7A, and the operating region is within the convergence range of the target exhaust temperatures Tgs1 to Tgs4 (the first to fourth cylinders are processed in the same manner). It is determined whether or not. Specifically, it is determined whether or not the exhaust temperature is within a convergence range of the target exhaust temperature in each cylinder with respect to the target exhaust temperatures Tgs1 to Tgs4, that is, a range of Tgs1 ± α to Tgs4 ± α (α is 1 to 3 ° C. as an example). To do.

全気筒の排気温がTgs1±α〜Tgs4±αに収束したと判断すると、ステップb5において、例えば、1の気筒が目標排温Tgs1(=Tgb1+ΔT1)に保たれるに要する追加噴射Tsの実際の噴射量qs1♯1を制御結果として記憶処理する。同様に第2〜第4気筒の実際の噴射量qs1♯2〜qs1♯4を制御結果としてコントローラ18の所定記憶領域にストアし、アイドル制御ルーチンのステップs16に進む。なお、4気筒全ての情報が揃う前に、例えばアイドル運転域から外れたような場合には、その時点で得られている気筒についての情報に基づき、学習結果を反映させる。   When it is determined that the exhaust temperatures of all cylinders have converged to Tgs1 ± α to Tgs4 ± α, in step b5, for example, the actual additional injection Ts required for maintaining one cylinder at the target exhaust temperature Tgs1 (= Tgb1 + ΔT1). The injection amount qs1 # 1 is stored as a control result. Similarly, the actual injection amounts qs1 # 2 to qs1 # 4 of the second to fourth cylinders are stored in the predetermined storage area of the controller 18 as a control result, and the process proceeds to step s16 of the idle control routine. In addition, before the information on all the four cylinders is gathered, for example, when the vehicle is out of the idle operation range, the learning result is reflected based on the information about the cylinder obtained at that time.

この後、アイドル制御ルーチンのステップs11に進み、追加噴射量修正フラグをオン(FLG2=1)にセットし、ステップs12に進む。
ステップs12では、学習結果である気筒毎の追加噴射量qs1♯1〜qs1♯4に基づき、通常時における各気筒毎の燃料噴射弁2の噴射制御量(噴射パルス幅)を修正し、この回の制御を終了する。これにより、各気筒毎の燃焼反応結果が反映された各燃料噴射弁2の噴射量誤差を修正でき、この時点以後、各燃料噴射弁2の噴射制御(例えば各燃料噴射弁2の駆動時間制御)を常に精度を適正に保って行うことが出来る。
Thereafter, the process proceeds to step s11 of the idle control routine, the additional injection amount correction flag is set to ON (FLG2 = 1), and the process proceeds to step s12.
In step s12, the injection control amount (injection pulse width) of the fuel injection valve 2 for each cylinder in the normal state is corrected based on the additional injection amounts qs1 # 1 to qs1 # 4 for each cylinder, which are learning results. End the control. Thereby, the injection amount error of each fuel injection valve 2 reflecting the combustion reaction result for each cylinder can be corrected. After this point, the injection control of each fuel injection valve 2 (for example, the drive time control of each fuel injection valve 2) ) Can always be performed with the accuracy kept appropriate.

このような制御により、各燃料噴射弁2の実噴射量の変動量、例えば各燃料噴射弁2の固体ばらつきや経時劣化等により燃料噴射量が変動する状態が生じたような場合でも、この実噴射量の変動を吸収し、より精度の良い燃料噴射制御を行うことができる。
なお、上述した各気筒の昇温量ΔT1〜ΔT4は、比較的放熱性の高い気筒については昇温量を小さく設定し、比較的放熱性の低い気筒については昇温量を大きく設定することで、より正確に噴射量誤差を修正でき、より精度の良い燃料噴射制御を実現することができる。
Even if a state in which the fuel injection amount fluctuates due to a variation amount of the actual injection amount of each fuel injection valve 2 due to such control, for example, variation in solids of each fuel injection valve 2 or deterioration with time, etc., this It is possible to absorb the fluctuation of the injection amount and perform more accurate fuel injection control.
Note that the temperature increase amounts ΔT1 to ΔT4 of the cylinders described above are set such that the temperature increase amount is set small for a cylinder with relatively high heat dissipation, and the temperature increase amount is set large for a cylinder with relatively low heat dissipation. Thus, the injection amount error can be corrected more accurately, and more accurate fuel injection control can be realized.

さらに、本実施の形態では、コントローラ18が複数の設定レール圧Pr1〜Pr3(図5参照)の一つを選択的に設定して各気筒の学習を行うものとして説明したが、まずレール圧Pr1について各気筒の学習を行った後、レール圧Pr2、Pr3について順次各気筒の学習を行うことができる。あるいは、特定の気筒についてレール圧Pr1〜Pr3毎の学習を行った後、順次他の気筒についてレール圧Pr1〜Pr3毎の学習を行うことも可能である。   Further, in the present embodiment, the controller 18 has been described as selectively learning one of the plurality of set rail pressures Pr1 to Pr3 (see FIG. 5). First, the rail pressure Pr1 After learning for each cylinder, the learning for each cylinder can be performed sequentially for the rail pressures Pr2 and Pr3. Alternatively, after learning for each rail pressure Pr1 to Pr3 for a specific cylinder, it is also possible to sequentially learn for each rail pressure Pr1 to Pr3 for another cylinder.

本発明の一実施形態としての多気筒エンジンの燃料噴射装置を備えた内燃機関の概略構成図である。1 is a schematic configuration diagram of an internal combustion engine including a fuel injection device for a multi-cylinder engine as one embodiment of the present invention. 図1の燃料噴射装置が行う定常噴射モードの特性説明線図である。FIG. 2 is a characteristic explanatory diagram of a steady injection mode performed by the fuel injection device of FIG. 1. 図1の燃料噴射装置が行う追加噴射を行う追加噴射モードの特性説明線図である。It is a characteristic explanatory view of the additional injection mode which performs the additional injection which the fuel-injection apparatus of FIG. 1 performs. 図1の燃料噴射装置の機能ブロック図である。It is a functional block diagram of the fuel-injection apparatus of FIG. 図1の燃料噴射装置のレール圧特性線図である。FIG. 2 is a rail pressure characteristic diagram of the fuel injection device of FIG. 1. 図1の燃料噴射装置を備えたエンジンのシリンダヘッド及び排気マニホールド部分の概略平面図で排温センサが排気ポートに配備される場合を示す。FIG. 2 is a schematic plan view of a cylinder head and an exhaust manifold portion of an engine provided with the fuel injection device of FIG. 図1の燃料噴射装置の機能説明図で、(a)は第1気筒における排温制御特性説明線図、(b)は少量追加噴射パターンの説明図である。FIGS. 2A and 2B are explanatory diagrams of functions of the fuel injection device of FIG. 1, in which FIG. 1A is an explanatory diagram of exhaust temperature control characteristics in a first cylinder, and FIG. 図1の燃料噴射装置の機能説明図で、(a)は第2気筒における排温制御特性説明線図、(b)は少量追加噴射パターンの説明図である。FIG. 2 is a function explanatory diagram of the fuel injection device of FIG. 1, (a) is an explanatory diagram of exhaust temperature control characteristics in a second cylinder, and (b) is an explanatory diagram of a small amount additional injection pattern. 図1の燃料噴射装置の機能説明図で、(a)は第3気筒における排温制御特性説明線図、(b)は少量追加噴射パターンの説明図である。FIG. 2 is a function explanatory diagram of the fuel injection device of FIG. 1, (a) is an explanatory diagram of exhaust temperature control characteristics in a third cylinder, and (b) is an explanatory diagram of a small amount additional injection pattern. 図1の燃料噴射装置の機能説明図で、(a)は第4気筒における排温制御特性説明線図、(b)は少量追加噴射パターンの説明図である。FIG. 2 is a function explanatory diagram of the fuel injection device of FIG. 1, (a) is an explanatory diagram of exhaust temperature control characteristics in a fourth cylinder, and (b) is an explanatory diagram of a small amount additional injection pattern. 図1の燃料噴射装置のアイドル運転制御ルーチンのフローチャートである。3 is a flowchart of an idle operation control routine of the fuel injection device of FIG. 1. 図1の燃料噴射装置の定常排温設定処理ルーチンのフローチャートである。It is a flowchart of the steady exhaust temperature setting process routine of the fuel injection device of FIG. 図1の燃料噴射装置の追加噴射量修正処理ルーチンのフローチャートである。3 is a flowchart of an additional injection amount correction process routine of the fuel injection device of FIG. 1. 従来燃料噴射装置におけるパイロット噴射量に対する騒音、スモーク特性線図である。It is a noise with respect to the pilot injection quantity in a conventional fuel injection device, and a smoke characteristic diagram.

符号の説明Explanation of symbols

1 エンジン
2 燃料噴射弁
18 コントローラ
19 燃料供給装置
37 排温センサ(排温検出手段)
qs1♯1〜qs1♯4 追加噴射量
A 燃料噴射装置
A0 燃料噴射制御手段
A01 定常噴射制御手段
A02 追加噴射制御手段
A1 目標噴射量設定手段
A2 定常排温設定手段
A3 追加噴射量修正手段
A4 噴射制御量修正手段
M1 定常噴射モード(パイロット噴射モード)
M2 追加噴射モード
Pr 噴射圧(コモンレール圧)
S1 定常計測時
S2 追加噴射時
Tgb1〜Tgb4 基準排温
Tgs1〜Tgs4 目標排温
ΔT1〜ΔT4 昇温量
ΔTgb1〜ΔTgb4 偏差
Ts 追加噴射(アフター噴射)
DESCRIPTION OF SYMBOLS 1 Engine 2 Fuel injection valve 18 Controller 19 Fuel supply apparatus 37 Waste temperature sensor (exhaust temperature detection means)
qs1 # 1 to qs1 # 4 Additional injection amount A Fuel injection device A0 Fuel injection control means A01 Steady injection control means A02 Additional injection control means A1 Target injection amount setting means A2 Steady exhaust temperature setting means A3 Additional injection amount correction means A4 Injection control Quantity correction means M1 steady injection mode (pilot injection mode)
M2 Additional injection mode Pr Injection pressure (common rail pressure)
S1 During steady measurement S2 During additional injection Tgb1 to Tgb4 Reference exhaust temperature Tgs1 to Tgs4 Target exhaust temperature ΔT1 to ΔT4 Temperature rise ΔTgb1 to ΔTgb4 Deviation Ts Additional injection (after injection)

Claims (3)

多気筒エンジンの各気筒に設けられた燃料噴射弁と、
前記各気筒にそれぞれ対応して設置され、前記各気筒からの排気温度を検出する排温検出手段と、
前記エンジンの運転状態に応じて設定される目標噴射量を前記燃料噴射弁から噴射させる噴射制御手段と、
前記エンジンが所定の運転域にあるとき、前記噴射制御手段による前記目標噴射量の噴射よりも遅角させた所定の噴射時期に、前記各燃料噴射弁から追加噴射量を噴射させる追加噴射制御手段と、
前記各排温検出手段の検出値が所定範囲内に収まるよう前記気筒毎の追加噴射量をそれぞれ修正する追加噴射量修正手段と、
前記追加噴射量修正手段の修正結果に基づいて、通常時における前記各燃料噴射弁の噴射制御量を前記気筒毎に修正する噴射制御量修正手段と、
を備えたことを特徴とする多気筒エンジンの燃料噴射装置。
A fuel injection valve provided in each cylinder of the multi-cylinder engine;
Exhaust temperature detection means that is installed corresponding to each cylinder and detects the exhaust temperature from each cylinder;
Injection control means for injecting from the fuel injection valve a target injection amount set in accordance with the operating state of the engine;
Additional injection control means for injecting an additional injection amount from each fuel injection valve at a predetermined injection timing retarded from the injection of the target injection amount by the injection control means when the engine is in a predetermined operating range. When,
Additional injection amount correction means for correcting the additional injection amount for each cylinder so that the detection value of each exhaust temperature detection means falls within a predetermined range;
Injection control amount correction means for correcting the injection control amount of each fuel injection valve for each cylinder based on the correction result of the additional injection amount correction means;
A fuel injection device for a multi-cylinder engine.
請求項1に記載の多気筒エンジンの燃料噴射装置において、
前記所定の噴射時期は、前記追加噴射量の燃料が前記気筒内でほぼ完全燃焼し得る遅角側の時期であることを特徴とする多気筒エンジンの燃料噴射装置。
The fuel injection device for a multi-cylinder engine according to claim 1,
The fuel injection device for a multi-cylinder engine, wherein the predetermined injection timing is a retarded timing at which the additional injection amount of fuel can almost completely burn in the cylinder.
請求項1又は2に記載の多気筒エンジンの燃料噴射装置において、
前記所定の運転域は、アイドル運転域であることを特徴とする多気筒エンジンの燃料噴射装置。
The fuel injection device for a multi-cylinder engine according to claim 1 or 2,
The fuel injection device for a multi-cylinder engine, wherein the predetermined operating range is an idle operating range.
JP2007030966A 2007-02-09 2007-02-09 Fuel injection device for multi-cylinder engine Pending JP2008196352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030966A JP2008196352A (en) 2007-02-09 2007-02-09 Fuel injection device for multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030966A JP2008196352A (en) 2007-02-09 2007-02-09 Fuel injection device for multi-cylinder engine

Publications (1)

Publication Number Publication Date
JP2008196352A true JP2008196352A (en) 2008-08-28

Family

ID=39755534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030966A Pending JP2008196352A (en) 2007-02-09 2007-02-09 Fuel injection device for multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP2008196352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190165A (en) * 2009-02-20 2010-09-02 Fuji Heavy Ind Ltd Fuel injection amount control device
JP2010203425A (en) * 2009-03-06 2010-09-16 Toyota Motor Corp Control device of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076624A (en) * 2002-08-13 2004-03-11 Isuzu Motors Ltd Fuel injection control device
JP2005273573A (en) * 2004-03-25 2005-10-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2006104989A (en) * 2004-10-04 2006-04-20 Hino Motors Ltd Exhaust emission control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076624A (en) * 2002-08-13 2004-03-11 Isuzu Motors Ltd Fuel injection control device
JP2005273573A (en) * 2004-03-25 2005-10-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2006104989A (en) * 2004-10-04 2006-04-20 Hino Motors Ltd Exhaust emission control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190165A (en) * 2009-02-20 2010-09-02 Fuji Heavy Ind Ltd Fuel injection amount control device
JP2010203425A (en) * 2009-03-06 2010-09-16 Toyota Motor Corp Control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4096924B2 (en) Injection amount control device for internal combustion engine
JP3966096B2 (en) Injection amount control device for internal combustion engine
US7841316B2 (en) Controller for direct injection engine
EP1362174B1 (en) Diesel engine control system and control method
US5988137A (en) Controller of in-cylinder injection spark ignition internal combustion engine
JP3768296B2 (en) In-cylinder injection type spark ignition internal combustion engine control device
US8903633B2 (en) Control system for internal combustion engine
JP4462018B2 (en) Engine control system
US8215288B2 (en) Control system and method for controlling an engine in response to detecting an out of range pressure signal
US20030079716A1 (en) Apparatus and a method for controlling an internal combustion engine
JP2007064157A (en) Control device for internal combustion engine
JP2008075641A (en) Control device for internal combustion engine
JP5146619B2 (en) Control device for internal combustion engine
JPH1061477A (en) Controller for inner-cylinder injection spark ignition type internal combustion engine
JP2008267207A (en) Control device for diesel engine
CN102828859B (en) EGR controller for internal combustion engine
JP2009250075A (en) Fuel injection amount control device and fuel injection system
JP3876766B2 (en) Injection rate control device for internal combustion engine
JP4615501B2 (en) Control device for internal combustion engine
JP2000204984A (en) Internal egr system for direct injection gasoline engine
JP4613121B2 (en) Intake air amount detection device for internal combustion engine
JP2008196352A (en) Fuel injection device for multi-cylinder engine
JP5490646B2 (en) Variable valve timing control device for internal combustion engine
JP4743090B2 (en) Fuel injection device for multi-cylinder engine
JP2004019539A (en) Fuel injection control device for internal-combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090319

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100831

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329