JP2008195994A - Surface modification method for titanium product, and surface modified titanium product - Google Patents
Surface modification method for titanium product, and surface modified titanium product Download PDFInfo
- Publication number
- JP2008195994A JP2008195994A JP2007030932A JP2007030932A JP2008195994A JP 2008195994 A JP2008195994 A JP 2008195994A JP 2007030932 A JP2007030932 A JP 2007030932A JP 2007030932 A JP2007030932 A JP 2007030932A JP 2008195994 A JP2008195994 A JP 2008195994A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- fine particles
- titanium
- titanium product
- product according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
本発明は,純チタン,α型チタン合金,β型チタン合金,又はα+β型チタン合金のいずれかから成る製品(本発明において,「チタン製品」という。)を処理対象とし,この処理対象の表面に,耐摩耗性及び疲労強度の向上をもたらす表面改質方法,及び前記方法により表面改質されたチタン製品に関する。 The present invention treats a product made of pure titanium, α-type titanium alloy, β-type titanium alloy, or α + β-type titanium alloy (referred to as “titanium product” in the present invention), and the surface of this treatment target. In particular, the present invention relates to a surface modification method for improving wear resistance and fatigue strength, and a titanium product surface-modified by the method.
前述した純チタンやチタン合金から成るチタン製品は,高い比強度,即ち軽くて強いという特性を有し,また耐食性にも優れているという特徴から,純チタンやチタン合金によって形成されたチタン製品を部品等として使用することは,各種の機械器具や装置類の軽量化・高効率化を図る上で有効である。 Titanium products made of pure titanium or titanium alloy described above have characteristics of high specific strength, that is, light and strong, and excellent corrosion resistance. Use as a component is effective in reducing the weight and efficiency of various machinery and equipment.
一方,チタンには耐摩耗性に劣るという致命的な欠点があり,そのために,チタン製の部品を摺動部に使用することを困難としている。 On the other hand, titanium has a fatal defect that it is inferior in wear resistance, which makes it difficult to use titanium parts for sliding parts.
このような耐摩耗性に劣るというチタン固有の問題は,純チタンのみならず,α型,β型のチタン合金,さらにはα+β型チタン合金(例えばTi-6Al-4V)についても例外ではなく,このような問題を克服するために現在までに種々の表面改質法が提案されている。 The problem inherent to titanium, which is inferior in wear resistance, is not limited to not only pure titanium but also α-type, β-type titanium alloys, and α + β-type titanium alloys (eg, Ti-6Al-4V). To overcome such problems, various surface modification methods have been proposed so far.
このような耐摩耗性向上のための方法の一つとして,チタン製品にガス窒化による表面処理を行い,これによりチタン製品の表面に硬化層を形成して耐摩耗性を向上させることが提案されている(非特許文献1参照)。 As one of the methods for improving the wear resistance, it has been proposed to perform surface treatment by gas nitriding on a titanium product, thereby forming a hardened layer on the surface of the titanium product to improve the wear resistance. (See Non-Patent Document 1).
この方法によれば,処理対象としたチタン製品の表面には,高硬さを有するTiNおよびTi2Nからなる化合物層が形成され,この化合物層の内側に,窒素の拡散により硬化した硬化層が形成されることから,耐摩耗性が著しく改善されることが報告されている。 According to this method, a compound layer made of TiN and Ti 2 N having high hardness is formed on the surface of the titanium product to be treated, and a hardened layer hardened by diffusion of nitrogen inside the compound layer. It has been reported that the wear resistance is significantly improved.
その一方で,チタン製品にこのようなガス窒化を行うと,前述のように耐摩耗性の改善は見られるものの,疲労強度が大幅に低下することが報告されている(非特許文献2参照)。 On the other hand, when such a gas nitriding is performed on a titanium product, it is reported that the fatigue strength is greatly reduced although the improvement in wear resistance is seen as described above (see Non-Patent Document 2). .
このような疲労強度の低下原因としては,
(1) 表面改質時に受ける熱履歴のため母材部(化合物層の内側部分)の組織が粗大化すること,
(2) 表面の化合物層が母材部よりも高いヤング率を有するため,化合物層と母材部が剥離せずにひずみの連続性が保たれる限り,化合物層には母材部よりも大きな応力が作用すること,
(3) 最表面に形成される化合物層が脆弱であるために,その破壊が比較的低い繰返し応力で生じ,その後は亀裂が停止することなく内部へ進展すること,が挙げられる。
As a cause of such a decrease in fatigue strength,
(1) The structure of the base material (inner part of the compound layer) becomes coarse due to the thermal history that is received during surface modification.
(2) Since the compound layer on the surface has a higher Young's modulus than the base metal part, the compound layer has a higher Young's modulus than the base material part as long as the continuity of strain is maintained without peeling between the compound layer and the base material part. A large stress is applied,
(3) Since the compound layer formed on the outermost surface is fragile, its fracture occurs at a relatively low cyclic stress, and then the crack progresses inside without stopping.
このような疲労強度の低下を抑制しつつ,耐摩耗性を向上させる新たな試みもされており,チタン製品にプラズマ浸炭を行った後,スチール系の硬質微粒子を衝突させるものや(特許文献1参照),チタン合金部材の表面に酸素を固溶状態で拡散浸透させ,粒子を含む気流をチタン合金部材の表面に投射するもの(特許文献2)が提案されている。 New attempts have been made to improve wear resistance while suppressing such a decrease in fatigue strength. After plasma carburizing a titanium product, steel-based hard fine particles are collided (Patent Document 1). (See Patent Document 2), in which oxygen is diffused and penetrated into the surface of a titanium alloy member in a solid solution state, and an air stream containing particles is projected onto the surface of the titanium alloy member.
この発明の先行技術文献情報としては次のものがある。
プラズマ浸炭やプラズマ酸化を行ったチタン製品に微粒子を衝突させる前記方法では,耐摩耗性の改善が得られるだけでなく,前述したガス窒化を行う場合のような疲労強度の大幅な低下が抑制できるものとなっている。 The above-mentioned method in which fine particles collide with titanium products subjected to plasma carburizing and plasma oxidation not only improve the wear resistance but also can suppress a significant decrease in fatigue strength as in the case of gas nitriding described above. It has become a thing.
しかし,前記方法により表面処理が施されたチタン製品では,表面硬さが上昇するとはいっても,摺動部品等において要求される高水準の耐摩耗性を獲得するに十分な程の硬度上昇は未だ得られていない。 However, with titanium products that have been surface-treated by the above method, although the surface hardness is increased, the hardness increase is sufficient to obtain the high level of wear resistance required for sliding parts. It has not been obtained yet.
また,前記方法による場合,疲労強度をプラズマ浸炭前の,未処理のチタン製品の疲労強度に近付けること,すなわち疲労強度の低下を『抑制』することはできたとしても,この未処理のチタン製品の疲労強度以上に疲労強度を超えて大幅に向上させることはできない。 Further, in the case of the above-described method, even if the fatigue strength is brought close to the fatigue strength of the untreated titanium product before plasma carburizing, that is, the decrease in fatigue strength can be “suppressed”, this untreated titanium product The fatigue strength cannot be significantly improved beyond the fatigue strength.
特に,硬化層の表面硬さの上昇を得ようとすれば,未処理の母材部の疲労強度を下回る疲労強度となり,ガス窒化に比較して疲労強度の下げ幅を低く抑えることができるに過ぎない。 In particular, if an attempt is made to increase the surface hardness of the hardened layer, the fatigue strength will be lower than the fatigue strength of the untreated base metal, and the reduction in fatigue strength can be kept low compared to gas nitriding. Not too much.
そこで本発明は,上記従来技術における欠点を解消するためになされたものであり,純チタン又はチタン合金,特にα+β型チタン合金,より好ましくはTi-6Al-4Vチタン合金から成るチタン製品の耐摩耗性を向上しつつ,疲労強度を未処理のチタン製品の疲労強度以上に改善することのできるチタン製品の表面改質方法,及び前記方法により表面改質されたチタン製品を提供することを目的とする。 Accordingly, the present invention has been made to eliminate the above-mentioned disadvantages of the prior art, and wear resistance of titanium products made of pure titanium or titanium alloys, particularly α + β type titanium alloys, more preferably Ti-6Al-4V titanium alloys. An object of the present invention is to provide a titanium product surface modification method capable of improving the fatigue strength more than the fatigue strength of an untreated titanium product while improving the properties, and a titanium product surface-modified by the method. To do.
上記目的を達成するために,本発明におけるチタン製品の表面改質方法は,純チタン,α型チタン合金,β型チタン合金,又はα+β型チタン合金のいずれかから成るチタン製品を処理対象としてプラズマ窒化を行い,前記処理対象の表面に窒素イオンを拡散して硬化層を形成するプラズマ窒化処理と,前記プラズマ窒化処理後の処理対象に対し,1種又は2種以上の微粒子を衝突させる微粒子衝突処理を行い,前記硬化層の表面に存在するTiN,Ti2N等の化合物層を,前記微粒子衝突処理によって除去することを特徴とする(請求項1)。 In order to achieve the above object, the method for modifying the surface of a titanium product according to the present invention uses a titanium product made of pure titanium, α-type titanium alloy, β-type titanium alloy, or α + β-type titanium alloy as a processing target. Plasma nitriding treatment that forms a hardened layer by diffusing nitrogen ions on the surface of the object to be treated, and fine particle collision that causes one or more kinds of fine particles to collide with the object to be treated after the plasma nitriding treatment And a compound layer such as TiN or Ti 2 N existing on the surface of the hardened layer is removed by the fine particle collision treatment (claim 1).
前記プラズマ窒化は,温度973〜1271K,処理時間0.5〜12時間として行うことが好ましく(請求項2),前記微粒子衝突で使用する微粒子としては,最大粒子径20μm〜200μmのものを使用することができる(請求項3)。 The plasma nitriding is preferably performed at a temperature of 973 to 1271 K and a processing time of 0.5 to 12 hours. (Claim 2) The fine particles used in the fine particle collision have a maximum particle diameter of 20 μm to 200 μm. (Claim 3).
また,前記微粒子衝突処理において,前記化合物層の除去に加え,前記処理対象に残留応力を付与することが好ましく(請求項4),さらに,前記処理対象の表面を平滑にするものとしても良い(請求項5)。 Further, in the fine particle collision treatment, it is preferable to apply a residual stress to the treatment target in addition to the removal of the compound layer (Claim 4), and the surface of the treatment target may be made smooth ( Claim 5).
前記微粒子衝突処理では,前記化合物層の除去を目的として,化合物層の除去が可能である程度の高硬度を有し,かつ除去時に化合物層に割れが生じてこれが硬化層の割れを誘発しないように低比重で,耐食性を悪化させない微粒子が好ましく,炭化ケイ素(SiC),アルミナ(Al2O3),ジルコニア(ZrO2)等の非金属系微粒子を衝突させる処理(請求項6)を含むものとすることができる。なお,好ましくは,モース硬さ9以上,比重6以下のものを適応できる。 In the fine particle collision treatment, for the purpose of removing the compound layer, the compound layer can be removed so that the compound layer has a certain degree of hardness, and a crack is generated in the compound layer at the time of removal so as not to induce cracking of the hardened layer. Fine particles that have a low specific gravity and do not deteriorate the corrosion resistance are preferable, and include a treatment for colliding non-metallic fine particles such as silicon carbide (SiC), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ) (Claim 6). Can do. Preferably, those having a Mohs hardness of 9 or more and a specific gravity of 6 or less can be applied.
残留応力の付与を目的としてハイス鋼等のスチール,チタン,スズ,亜鉛等の金属系微粒子を衝突させる処理(請求項7)を含むものとすることができる。 For the purpose of imparting residual stress, it may include a treatment for colliding metal steel fine particles such as steel such as high-speed steel, titanium, tin, and zinc (claim 7).
チタン製品の硬度,比重から,例えば,ビッカース硬さ300以上で比重4以上の微粒子が好ましい。 From the hardness and specific gravity of the titanium product, for example, fine particles having a Vickers hardness of 300 or more and a specific gravity of 4 or more are preferable.
また,この微粒子衝突処理には,前記金属系微粒子の衝突後,前記処理対象の表面に残る金属系微粒子の成分除去と,表面平滑化のためにアルミナ,ジルコニア(ZrO2)等の非金属系微粒子を更に衝突させる処理を含めることができる(請求項8)。 In addition, in the fine particle collision treatment, a non-metallic system such as alumina or zirconia (ZrO 2 ) is used for removing the components of the metallic fine particles remaining on the surface to be treated after the collision of the metallic fine particles and for smoothing the surface. A process of further colliding the fine particles can be included (claim 8).
なお,これらの各微粒子の衝突は,前記微粒子と高圧気体の固気2相混合流体を噴射圧力0.3MPa以上,又は噴射速度80m/sec以上で噴射して,処理率(処理面積/被処理面積)が100%以上となるように行うことが好ましい(請求項9)。 In addition, the collision of each of these fine particles is performed by injecting the solid-gas two-phase mixed fluid of the fine particles and the high-pressure gas at an injection pressure of 0.3 MPa or more or an injection speed of 80 m / sec or more. It is preferable to carry out such that the area is 100% or more (claim 9).
また,本発明の表面改質チタン製品は,前記方法によって表面改質を行うことにより得られたもので,プラズマ窒化により形成され,かつ,1種又は2種以上の微粒子の衝突により表面の化合物層が除去された硬化層を,純チタン,α型チタン合金,β型チタン合金,又はα+β型チタン合金のいずれかから成るチタン製品の表面に形成したことを特徴とする(請求項10)。 Further, the surface-modified titanium product of the present invention is obtained by performing surface modification by the above-described method, and is formed by plasma nitriding, and the surface compound is formed by collision of one kind or two or more kinds of fine particles. The hardened layer from which the layer has been removed is formed on the surface of a titanium product made of pure titanium, α-type titanium alloy, β-type titanium alloy, or α + β-type titanium alloy (claim 10).
前記硬化層の形成は,温度973〜1271K,処理時間0.5〜12時間としたプラズマ窒化により行うことができ(請求項11),化合物層の除去においては,最大粒子径20μm〜200μmの前記微粒子を使用することができる(請求項12)。 The hardened layer can be formed by plasma nitriding at a temperature of 973 to 1271 K and a processing time of 0.5 to 12 hours (claim 11). In removing the compound layer, the maximum particle size of 20 μm to 200 μm is obtained. Fine particles can be used (claim 12).
さらに,前記硬化層には,前記微粒子との衝突により残留応力が付与されていることが好ましい(請求項13)。 Further, it is preferable that residual stress is applied to the hardened layer by collision with the fine particles.
以上説明した本発明の構成により,本発明の表面改質方法によれば,以下の顕著な効果を得ることができた。 With the configuration of the present invention described above, the following remarkable effects can be obtained according to the surface modification method of the present invention.
(1) 処理対象としたチタン製品の耐摩耗性を向上させるものでありながら,疲労強度を未処理の状態にあるチタン製品の疲労強度以上に向上させることができた。 (1) While improving the wear resistance of the titanium products to be treated, the fatigue strength could be improved more than the fatigue strength of untreated titanium products.
(2) 特に,微粒子の衝突により残留応力を付与することで,表面化合物層の除去のみを行った場合に比較して,より一層,表面硬度を向上させることができると共に疲労強度の向上を得ることができ,更に,微粒子の衝突により表面を平滑化することで,このようにして得られた効果を損なうことなく表面の平滑化を行うことができた。 (2) In particular, by applying residual stress by collision of fine particles, the surface hardness can be further improved and fatigue strength can be improved as compared with the case where only the surface compound layer is removed. Furthermore, by smoothing the surface by collision of fine particles, it was possible to smooth the surface without impairing the effect thus obtained.
(3) 前記微粒子衝突処理において,炭化珪素(SiC),アルミナ,ジルコニア(ZrO2)等の非金属系微粒子の衝突を行う場合には,処理対象の表面に形成されているTiN,Ti2N等の化合物層を確実に除去することができた。 (3) In the case of collision of fine particles such as silicon carbide (SiC), alumina, zirconia (ZrO 2 ) in the fine particle collision treatment, TiN, Ti 2 N formed on the surface to be treated It was possible to remove the compound layer such as.
(4) 微粒子衝突において,ハイス鋼等のスチール,チタン,スズ,亜鉛等の金属系微粒子を衝突させる場合には,この衝突により前述の残留応力を付与することができた。なお,この金属系微粒子の衝突により残留応力の付与のみならず化合物層の除去をも行うことができる場合には,化合物層を除去するための前記非金属系微粒子を衝突させる処理は省略可能である。 (4) In the case of collision of fine particles, steel such as high-speed steel, metal fine particles such as titanium, tin, zinc, etc. could be applied with the above-mentioned residual stress. In addition, when not only the application of residual stress but also the removal of the compound layer can be performed by the collision of the metal-based fine particles, the process of causing the non-metallic fine particles to collide to remove the compound layer can be omitted. is there.
(5) また,前記金属微粒子の衝突を行った後に,アルミナ,ジルコニア(ZrO2),等の非金属系微粒子の衝突を更に行う場合には,処理対象に付与された耐摩耗性や疲労強度の向上という効果を損なうことなく,前記金属系微粒子の衝突時に処理対象表面に付着した金属系微粒子成分の除去や表面の平坦化を行うことができた。 (5) In addition, when collisions with non-metallic fine particles such as alumina and zirconia (ZrO 2 ) are performed after the metal fine particles have collided, the wear resistance and fatigue strength imparted to the object to be treated It was possible to remove the metal-based fine particle component adhering to the surface to be treated at the time of the collision of the metal-based fine particles and to flatten the surface without impairing the effect of improving the quality.
次に,本発明の実施形態を添付図面を参照しながら以下説明する。 Next, embodiments of the present invention will be described below with reference to the accompanying drawings.
1.全体構成
本発明におけるチタン製品の表面改質方法は,図1に示すようにプラズマ窒化によって処理対象であるチタン製品の母材部の表面付近に硬化層を形成するプラズマ窒化処理(図1(a))と,前記プラズマ窒化処理が完了した後のチタン製品表面に微粒子を衝突させて,前記窒化の際に硬化層の表面に生じたTiNやTi2N等の化合物層を除去し,必要に応じて母材部に圧縮残留応力の付与を行う微粒子衝突処理(図1(b))によって構成される。
1. Overall Structure The surface modification method for a titanium product according to the present invention is a plasma nitriding treatment in which a hardened layer is formed near the surface of a base material portion of a titanium product to be treated by plasma nitriding as shown in FIG. )) And fine particles collide with the titanium product surface after the plasma nitriding process is completed, and the compound layer such as TiN or Ti 2 N generated on the surface of the hardened layer during the nitriding is removed. Accordingly, it is constituted by a fine particle collision process (FIG. 1B) that applies compressive residual stress to the base material portion.
2.処理対象
本発明の方法による処理対象であるチタン製品は,純チタン又はチタン合金製の製品全般を処理対象とし,このチタン合金にはα型,β型,及びα+β型のいずれも含む。
2. Process Target Titanium products to be processed by the method of the present invention include all products made of pure titanium or titanium alloy, and these titanium alloys include α type, β type, and α + β type.
一例として,航空宇宙産業を中心に広く使用され,全チタン消費量中における消費量で高比率を占める(一例として米国では全チタン消費量の56%がTi-6Al-4V合金としての消費である。)代表的なα+β型チタン合金であるTi-6Al-4V合金は本発明の方法による処理対象であり,本発明の表面改質処理を施すことにより摺動部材としての用途を更に拡張可能である。 As an example, it is widely used mainly in the aerospace industry, and accounts for a high percentage of total titanium consumption (for example, in the US, 56% of total titanium consumption is consumed as Ti-6Al-4V alloy) .) Ti-6Al-4V alloy, which is a typical α + β type titanium alloy, is the object of treatment by the method of the present invention, and the application as a sliding member can be further expanded by applying the surface modification treatment of the present invention. is there.
3.プラズマ窒化処理
処理対象とするチタン製品に対しては,前述したように先ずプラズマ窒化処理が施され,これにより,チタン製品の母材部表面に硬化層の形成が行われる。この硬化層の形成により,チタン製品の表面硬度が上昇し,耐摩耗性が改善される。
3. Plasma nitriding treatment The titanium product to be treated is first subjected to plasma nitriding treatment, as described above, whereby a hardened layer is formed on the surface of the base material portion of the titanium product. The formation of this hardened layer increases the surface hardness of the titanium product and improves the wear resistance.
ここで,窒化によりチタン製品の表面に硬化層を形成する方法としては,本発明の方法で採用するプラズマ窒化の他に,ガス窒化等の方法もあるが,従来技術の欄で既に述べたように,ガス窒化によって表面硬化層を形成する場合,表面改質時に受ける熱履歴のため母材部の微視的組織が変化することが疲労強度を低下させる原因の一つとなっている。 Here, as a method of forming a hardened layer on the surface of the titanium product by nitriding, there is a method such as gas nitriding in addition to the plasma nitriding employed in the method of the present invention, but as already described in the section of the prior art. In addition, when a hardened surface layer is formed by gas nitriding, a change in the microscopic structure of the base material due to the thermal history experienced during the surface modification is one of the causes for reducing the fatigue strength.
そこで,プラズマ窒化によって比較的低温で前記表面硬化層を形成することにより,熱処理に伴う母材部の微視組織成長を最低限に抑制しつつ,高硬度を有する表面硬化層の形成を行うものとした。詳細には,イオン化した窒素(+)が負極となる被処理材(チタン)に引き付けられて高速で衝突する結果,比較的低温・短時間の条件で厚い硬化層が形成される。 Therefore, by forming the surface hardened layer at a relatively low temperature by plasma nitriding, the surface hardened layer having a high hardness is formed while minimizing the microstructure growth of the base material part due to the heat treatment. It was. Specifically, ionized nitrogen (+) is attracted to the material to be treated (titanium) as a negative electrode and collides at high speed, resulting in the formation of a thick hardened layer under relatively low temperature and short time conditions.
このように,母材部の微視的組織成長を最低限に抑制するためには,比較的低温で窒化を行うことが有効である一方,形成される硬化層は厚みが厚くなる程,耐摩耗性の向上に有効であり,この表面硬化層の厚みは窒化温度が高い程厚くなる。 Thus, nitriding at a relatively low temperature is effective for minimizing the microscopic structure growth of the base material, while the hardened layer formed becomes more resistant to thickening. This is effective in improving the wear resistance, and the thickness of the surface hardened layer increases as the nitriding temperature increases.
そこで本発明では,母材部の微視的組織成長を抑えつつ,硬化層を可及的に厚いものとするために,必要な硬化層の厚さの確保ができ,且つ,β変態点以下の範囲で,973K〜1271K,好ましくは973〜1123Kの温度でプラズマ窒化を行い,より好ましくは1023Kでプラズマ窒化を行う。 Therefore, in the present invention, the thickness of the hardened layer can be ensured in order to make the hardened layer as thick as possible while suppressing the microscopic structure growth of the base material portion, and the β transformation point or less. In this range, plasma nitridation is performed at a temperature of 973 K to 1271 K, preferably 973 to 1123 K, and more preferably 1023 K.
なお,処理対象とするチタン製品が,母材部をTi-6Al-4Vとする場合,処理温度が1271Kを越えると変態を起こし,βの単相となることから,窒化温度の上限は1271Kとする。 In addition, in the case where the titanium product to be processed is made of Ti-6Al-4V as the base material part, it undergoes transformation when the processing temperature exceeds 1271K and becomes a single phase of β, so the upper limit of the nitriding temperature is 1271K. To do.
プラズマ窒化の処理時間は,処理対象の材質やその他の処理条件にもよるが,微粒子衝突で破壊されない,必要な硬化層の厚さを確保するため,一例として1.8ks〜43.2ks(0.5〜12時間)であり,前述したTi-6Al-4Vを処理対象とする場合,好ましくは14.4ks(4時間)〜32.4ks(9時間)である。 The plasma nitriding treatment time depends on the material to be treated and other treatment conditions, but in order to ensure the necessary thickness of the hardened layer that is not destroyed by the fine particle collision, as an example, 1.8ks to 43.2ks (0 .5 to 12 hours), and when Ti-6Al-4V described above is a processing target, it is preferably 14.4ks (4 hours) to 32.4ks (9 hours).
4.微粒子衝突処理
以上のようにしてプラズマ窒化が完了したチタン製品に対しては,その後,微粒子を衝突させる微粒子衝突処理が行われる。
4). Particulate collision treatment Titanium products that have been subjected to plasma nitriding as described above are then subjected to particulate collision treatment for colliding the particulates.
この微粒子衝突処理では,前述したプラズマ窒化の際にチタン製品の表面(硬化層の表面)に形成された化合物層の除去が行われると共に,必要に応じて硬化層に残留応力を付与し,さらに必要に応じて表面の平坦化等の仕上げ処理が行われる。 In this fine particle collision treatment, the compound layer formed on the surface of the titanium product (the surface of the hardened layer) is removed during the plasma nitriding described above, and residual stress is applied to the hardened layer as necessary. A finishing process such as surface flattening is performed as necessary.
(1) 化合物層の除去
従来技術の説明で述べたように,ガス窒化によって表面硬化層を形成した場合に疲労強度の低下が生じる原因として,該窒化によって形成された化合物層と母材部との間にヤング率のずれがあること,及び,化合物層が脆弱であるために,その破壊が比較的低い繰返し応力で生じることを挙げた。
(1) Removal of compound layer As described in the description of the prior art, when a hardened surface layer is formed by gas nitriding, the cause of the decrease in fatigue strength is that the compound layer formed by nitriding, the base material part, It was mentioned that there was a shift in Young's modulus between the two, and that the fracture occurred at a relatively low cyclic stress because the compound layer was fragile.
本工程では,プラズマ窒化によっても生じるTiNやTi2N等の化合物層を除去することにより,前述したように化合物層が原因となる疲労強度の低下を解消する。 In this step, the compound layer such as TiN or Ti 2 N that is also generated by plasma nitriding is removed to eliminate the decrease in fatigue strength caused by the compound layer as described above.
このように,化合物層を除去するために使用する微粒子としては,一例として炭化珪素(SiC),アルミナ(Al2O3),ジルコニア(ZrO2)等の非金属系微粒子を使用することができる。 Thus, as an example of the fine particles used to remove the compound layer, non-metallic fine particles such as silicon carbide (SiC), alumina (Al 2 O 3 ), zirconia (ZrO 2 ) can be used. .
ここで噴射する非金属系微粒子としては,最大粒子径20μm〜200μmのものを使用し,このセラミックス系微粒子を,例えば既知のブラストないしショットピーニング装置によって投射することで,処理対象の表面に衝突させる。 As the non-metallic fine particles to be ejected here, particles having a maximum particle diameter of 20 μm to 200 μm are used, and the ceramic fine particles are caused to collide with the surface of the object to be treated by, for example, being projected by a known blast or shot peening apparatus. .
使用するブラストないしショットピーニング装置としては,遠心力により粒子を投射するもの,回転する羽根車との衝突により微粒子を投射するもの,圧縮ガスと共に粒子を噴射するもの等,既知の各種のものが使用可能であるが,微粒子である投射材の取り扱いが比較的容易であると共に,投射条件の調整が比較的容易である,圧縮ガスと共に粒体を噴射する形式のブラストないしショットピーニング装置の使用が好ましい。 As the blasting or shot peening device to be used, various known devices such as those that project particles by centrifugal force, those that project particles by collision with a rotating impeller, and those that inject particles with compressed gas are used. Although it is possible, it is preferable to use a blasting or shot peening device of a type that ejects particles together with compressed gas, which is relatively easy to handle the projection material which is fine particles and the adjustment of the projection conditions is relatively easy. .
一例として,非金属系微粒子の噴射条件は,噴射圧力0.3MPa以上,又は噴射速度80m/sec以上,好ましくは100〜150m/secで,処理率が100%以上となるように投射することが好ましい。 As an example, the injection condition of the nonmetallic fine particles may be an injection pressure of 0.3 MPa or more, or an injection speed of 80 m / sec or more, preferably 100 to 150 m / sec, and projected so that the treatment rate is 100% or more. preferable.
(2) 残留応力の付与
以上のように,化合物層が除去されて硬化層が露出されたチタン製品の表面に対し,必要に応じてさらにハイス鋼等のスチール,チタン,スズ,亜鉛等の金属系微粒子を衝突させて,硬化層の塑性変形に伴う残留圧縮応力を付与する。
(2) Application of residual stress As described above, steel such as high-speed steel, or metal such as titanium, tin, or zinc is further applied to the surface of the titanium product from which the compound layer is removed and the hardened layer is exposed. Residual compressive stress accompanying plastic deformation of the hardened layer is applied by colliding the system fine particles.
なお,金属微粒子の衝突により,非金属系微粒子を使用した前述の化合物層の除去を行うことなく化合物層についても除去できる場合には,前述した非金属系微粒子の衝突を省略して,直接,金属系微粒子を衝突させる処理を行っても良い。 If the compound layer can also be removed by the collision of the metal fine particles without removing the compound layer using the non-metallic fine particles, the collision of the non-metallic fine particles is omitted directly. You may perform the process which makes a metal type fine particle collide.
もっとも確実に化合物層の除去を行うためには,金属系微粒子の衝突に先立ち,前述し非金属系微粒子の衝突を行うことが好ましい。 In order to surely remove the compound layer, it is preferable to perform the collision of the nonmetallic fine particles as described above prior to the collision of the metallic fine particles.
ここで使用する金属系微粒子としては,最大粒子径20μm〜200μmのものを使用する。投射方法としては,前述した化合物層の除去の場合と同様,既知の各種の装置の使用が可能であり,一例としてこの金属系微粒子の衝突を直圧式のブラストないしショットピーニング装置により圧縮空気流に乗せて行う場合には,前記化合物層を除去する場合と同様の条件で噴射を行うことができる。 As the metal-based fine particles used here, those having a maximum particle diameter of 20 μm to 200 μm are used. As the projection method, as in the case of the removal of the compound layer described above, various known devices can be used. As an example, the collision of the metal fine particles is converted into a compressed air flow by a direct pressure type blast or shot peening device. In the case where it is placed, injection can be performed under the same conditions as when the compound layer is removed.
(3) 仕上げ
以上のように,金属系微粒子の衝突を行った後,必要に応じてさらに非金属系微粒子を衝突させて,チタン製品の硬化層上に残る前記ハイス鋼等の金属系微粒子成分を除去すると共に,硬化層を平坦化する。
(3) Finishing As described above, after colliding with metallic fine particles, if necessary, further colliding non-metallic fine particles and remaining metallic fine particle components such as high-speed steel remaining on the hardened layer of titanium products. Is removed and the hardened layer is flattened.
このような仕上げ用の非金属系微粒子としては,処理対象表面に粒子成分が残り難い材質のものであって,かつ,処理対象の表面を平坦化し得る研削・研磨性を発揮し得るものであれば如何なるものであっても良く,一例としてアルミナ,ジルコニウム,ガラス等の微粒子を使用することができる。 Such non-metallic fine particles for finishing must be made of a material in which the particle component does not easily remain on the surface to be processed, and can exhibit grinding and polishing properties that can flatten the surface to be processed. Any fine particles such as alumina, zirconium, and glass can be used as an example.
この仕上げ用の非金属系微粒子の粒径は,一例として20μm〜200μmであり,投射方法としては,前述した化合物層の除去の場合と同様,既知の各種の装置の使用が可能である。一例として,直圧式ブラスト装置によって投射する場合には,前記化合物層を除去する場合と同様の条件で噴射を行うことができる。 The particle diameter of the non-metallic fine particles for finishing is, for example, 20 μm to 200 μm, and various known devices can be used as the projection method as in the case of removing the compound layer described above. As an example, in the case of projecting with a direct pressure blast device, injection can be performed under the same conditions as in the case of removing the compound layer.
次に,本発明の方法により,代表的なα+β形チタン合金であるTi-6Al-4V合金よりなるチタン製品に対して表面改質処理を行った試験例を以下に示す。 Next, a test example in which a surface modification treatment is performed on a titanium product made of a Ti-6Al-4V alloy which is a typical α + β type titanium alloy by the method of the present invention will be described below.
なお,本試験に使用したTi-6Al-4V合金の化学的成分は,表1に示す通りである。 Table 1 shows the chemical composition of the Ti-6Al-4V alloy used in this test.
1.試験条件及び試験方法
(1)試験片
表1に示す化学成分を有する直径14mmのTi-6Al-4V合金圧延丸棒を,図2(a)〜(c)に示す3種類の試験片形状に機械加工して,各試験に使用する試験片とした。なお,図2中に記載した数値は各部のサイズであり,単位はmmである。
1. Test conditions and test method (1) Test piece The Ti-6Al-4V alloy rolled round bar having a chemical composition shown in Table 1 and having a diameter of 14 mm is formed into three types of test piece shapes shown in FIGS. Machined into test specimens for use in each test. In addition, the numerical value described in FIG. 2 is the size of each part, and a unit is mm.
このうち,ボタン型試験片(図2(a))は,平坦部の一方をエメリ研磨(♯100〜♯2000)およびバフ研磨(アルミナ粉末,平均粒子径0.03μm)により鏡面状に仕上げた。 Among these, the button-type test piece (FIG. 2A) was finished in a mirror-like shape by emery polishing (# 100 to # 2000) and buffing (alumina powder, average particle size 0.03 μm) on one of the flat portions.
また,引張試験片(図2(b))および疲労試験片(図2(c))については,試験部をエメリ研磨および電解研磨により鏡面状に仕上げた。 Moreover, about the tensile test piece (FIG.2 (b)) and the fatigue test piece (FIG.2 (c)), the test part was finished in mirror shape by emery polishing and electrolytic polishing.
(2)試料
(2-1) プラズマ窒化試料(微粒子衝突を行わないもの)
プラズマ窒化材に関する基礎的なデータの蓄積を図るため,処理時間を14.4 ks (4h)で共通とし,処理温度を973K(700℃),1023K(750℃),1073K(800℃),および1123K(850℃)としてプラズマ窒化処理を行った4種類の試料を作製した。
(2) Sample
(2-1) Plasma nitriding sample (one that does not collide with fine particles)
In order to accumulate basic data on plasma nitriding materials, the processing time is 14.4 ks (4h), the processing temperatures are 973K (700 ° C), 1023K (750 ° C), 1073K (800 ° C), and Four types of samples subjected to plasma nitriding treatment at 1123K (850 ° C.) were prepared.
なお,比較のために未処理の試料及び処理温度を1073K(800℃)及び1123K(850℃)としてプラズマ浸炭処理を行った2種類のプラズマ浸炭材を試料として作製した。 For comparison, an untreated sample and two types of plasma carburized materials that were subjected to plasma carburizing treatment at 1073 K (800 ° C.) and 1123 K (850 ° C.) were prepared as samples.
(2-2) 微粒子衝突試料
プラズマ窒化温度を1023Kとして得た試料,およびプラズマ窒化温度を1123Kとして得た試料に対し,表2に略記号FPB1,又はFPB2として示す微粒子衝突処理を行った試料(実施例1〜4の計4種類)を作製した。
(2-2) Particulate collision sample Sample obtained by performing the particle collision treatment shown as abbreviated symbol FPB1 or FPB2 in Table 2 for a sample obtained with a plasma nitriding temperature of 1023K and a sample obtained with a plasma nitriding temperature of 1123K ( A total of four types of Examples 1 to 4) were produced.
比較のために,プラズマ窒化,及び微粒子衝突のいずれも行っていない未処理の試料(比較例1),プラズマ窒化を行っていない未処理の試料に対してFPB1又はFPB2いずれかの微粒子衝突を行った試料(比較例2,3),1023K(750℃)でプラズマ窒化のみを行った試料(比較例4),1123K(850℃)で窒化のみを行った試料(比較例5)を準備した。 For comparison, either FPB1 or FPB2 particle collision was performed on an untreated sample that was not subjected to plasma nitridation or particle collision (Comparative Example 1), or an untreated sample that was not subjected to plasma nitridation. Samples (Comparative Examples 2 and 3), a sample (Comparative Example 4) subjected to only plasma nitriding at 1023K (750 ° C.), and a sample (Comparative Example 5) subjected to only nitriding at 1123K (850 ° C.) were prepared.
また,プラズマ浸炭に関する試料として,1023Kでプラズマ浸炭を行った試料(微粒子衝突なし;比較例6),及びこれにFPB1又はFPB2の微粒子衝突を行った試料(比較例7,8),並びに1123Kでプラズマ浸炭を行った試料(微粒子衝突なし;比較例9),及びこれにFPB1又はFPB2の微粒子衝突を行った試料(比較例10,11)を作製した。 In addition, as samples for plasma carburization, a sample subjected to plasma carburization at 1023K (no particle collision; Comparative Example 6), a sample subjected to particle collision of FPB1 or FPB2 (Comparative Examples 7 and 8), and 1123K A sample subjected to plasma carburization (no particle collision; Comparative Example 9) and a sample subjected to particle collision of FPB1 or FPB2 (Comparative Examples 10 and 11) were prepared.
なお,各試料とこれらの各資料に対して行った処理の内容を表2にまとめた。 Table 2 summarizes the contents of each sample and the processing performed on each of these materials.
上記表2における略記号FPB1は,化合物層の除去を目的としてSiC微粒子の衝突処理を,FPB2は,SiC微粒子の衝突後,ハイス鋼微粒子を衝突させて塑性変形により残留応力を付与し,さらに,アルミナ微粒子を衝突させて最終仕上げという3段階の処理を示す(表3参照)。 The abbreviation FPB1 in Table 2 above indicates the collision treatment of SiC fine particles for the purpose of removing the compound layer, and FPB2 gives the residual stress by plastic deformation by colliding high-speed steel fine particles after the collision of SiC fine particles. A three-stage process of final finishing by colliding alumina fine particles is shown (see Table 3).
なお,表3中の()内に示した数値は,本試験例で使用した各微粒子の最大直径である。 The numerical values shown in parentheses in Table 3 are the maximum diameters of the fine particles used in this test example.
(3)試験方法
(3-1) 表面硬さの測定
表面硬さの測定は,ボタン型試験片(図2(a))の表面において行った。その際,硬さは超マイクロビッカース硬さ計(荷重0.03N)を用いて1材料あたり5点測定し,それらの平均値を測定値とした。
(3) Test method
(3-1) Measurement of surface hardness Surface hardness was measured on the surface of a button-type test piece (Fig. 2 (a)). At that time, the hardness was measured at 5 points per material using an ultra micro Vickers hardness meter (load 0.03N), and the average value was measured.
(3-2) 硬さ分布の測定
硬さ分布の測定は,必要な処理を行ったボタン型試験片を切断後に縦断面をエメリ研磨およびバフ研磨により鏡面状に仕上げた後,マイクロビッカース硬さ計(荷重0.25N)を用いて各位置での硬さを5点測定し,平均値をその位置での測定値とした。
(3-2) Measurement of hardness distribution Hardness distribution is measured by cutting a button-type test piece that has been subjected to the necessary treatment, finishing the longitudinal section into a mirror surface by emery polishing and buffing, and then micro-Vickers hardness. Using a meter (load 0.25N), the hardness at each position was measured at five points, and the average value was taken as the measured value at that position.
(3-3) 表面状態の観察
表面状態の観察は,硬さ分布測定に用いたボタン型試験片の縦断面上で光学顕微鏡を用いて行った。その後,クロール氏液で腐食して母材部組織の観察を行うとともに,線分法によりα粒径を求めた。
(3-3) Observation of surface condition Observation of the surface condition was performed using an optical microscope on the longitudinal section of the button-type specimen used for the hardness distribution measurement. After that, it was corroded with Kroll's solution and the base material structure was observed, and the α particle size was obtained by the line segment method.
(3-4) 引張試験
引張試験は,油圧制御型万能試験機を用いて段階的に荷重を上昇させながらひずみを測定する方法で行った。引張試験には1材料あたり3本の試験片(JIS Z 2201,14A号試験片)を用い,それらから求めた各値の平均値を測定値とした.
(3-4) Tensile test The tensile test was performed by measuring the strain while increasing the load stepwise using a hydraulically controlled universal testing machine. Three specimens per material (JIS Z 2201, No. 14A specimen) were used for the tensile test, and the average value of each value obtained from them was taken as the measured value.
(3-5) X線解析
X線回折(Cu Kα線)は,ボタン型試験片の表面において2θ= 33〜43°の範囲で走査速度0.05°/s,ステップ0.01°の条件下で行った。
(3-5) X-ray analysis X-ray diffraction (Cu Kα-ray) was performed on the surface of the button-type test piece in the range of 2θ = 33 to 43 ° with a scanning speed of 0.05 ° / s and a step of 0.01 °. .
(3-6) X線残留応力測定
またX線残留応力測定(Co Kα線)は,疲労試験片を用いて試験片軸方向に回折角2θ=154.3°で行い,応力定数をK=-170.77 MPa/deg として残留応力値を求めた。
(3-6) X-ray residual stress measurement In addition, X-ray residual stress measurement (Co Kα ray) is performed using a fatigue test piece at a diffraction angle of 2θ = 154.3 ° in the direction of the specimen axis, and the stress constant is K = -170.77. The residual stress value was determined as MPa / deg.
(3-7) 平面曲げ疲労試験
平面曲げ疲労試験は,応力比R=-1,繰返し速度33Hzの条件で行った。上記疲労試験に使用した試験片は,JIS Z 2274に規定されている2号試験片形状とした。
(3-7) Plane bending fatigue test The plane bending fatigue test was performed under the conditions of a stress ratio R = -1 and a repetition rate of 33 Hz. The specimen used for the fatigue test was in the shape of the No. 2 specimen specified in JIS Z 2274.
2.試験結果
(1)窒化温度の変化に伴う試料の諸特性等の変化の確認
未処理の試料,及び窒化温度を50K刻みで変化させ,973K,1023K,1073K,1123Kとしてプラズマ窒化処理を行った試料の計5種類について,ヤング率,降伏応力,引張強さ,伸び,絞り,α粒径,硬化層の厚み,及び表面硬さをそれぞれ測定した。その結果を表4に,表面からの距離と硬度との関係を示したグラフを図3に,母材部の断面状態を図4にそれぞれ示す。
2. Test results (1) Confirmation of changes in various characteristics of sample with changes in nitriding temperature Untreated samples and samples subjected to plasma nitriding as 973K, 1023K, 1073K, 1123K by changing nitriding temperature in 50K increments Were measured for Young's modulus, yield stress, tensile strength, elongation, drawing, α particle size, thickness of the hardened layer, and surface hardness. The results are shown in Table 4, a graph showing the relationship between the distance from the surface and hardness is shown in FIG. 3, and the cross-sectional state of the base material is shown in FIG.
以上の結果から,プラズマ窒化温度の上昇に伴い,耐摩耗性の向上に寄与する硬化層厚さの増大,及び表面硬さの上昇が見られる一方,α粒(組織)の成長(表4),即ち疲労強度の低下原因となる母材部組織の粗大化が確認された(図4)。 From the above results, as the plasma nitriding temperature increases, the thickness of the hardened layer and the surface hardness increase, which contribute to the improvement of wear resistance, are observed, while the growth of α grains (structure) (Table 4) That is, it was confirmed that the base metal structure was coarsened, which caused a decrease in fatigue strength (FIG. 4).
従って,比較的高い温度でのプラズマ窒化処理は,耐摩耗性の向上には有効であるが高すぎると疲労強度の低下を招き,比較的低い温度でのプラズマ窒化処理は,母材部組織の粗大化を抑制して疲労強度の低下を防止する上では有効であるものの,低すぎると耐摩耗性の向上に貢献する硬化層の厚さ及び表面硬さの増大を得ることができなくなり,疲労強度を犠牲とすることなく耐摩耗性の向上を得るためには,窒化温度の選択が重要であることが確認された。 Therefore, plasma nitriding at a relatively high temperature is effective in improving wear resistance, but if it is too high, the fatigue strength will be reduced. Although it is effective in suppressing the coarsening and preventing the fatigue strength from being reduced, if it is too low, it will not be possible to obtain an increase in the thickness of the hardened layer and the increase in surface hardness that contributes to the improvement in wear resistance. It was confirmed that the selection of the nitriding temperature is important to improve the wear resistance without sacrificing the strength.
なお,窒化温度の上昇と共に,α粒(組織)が成長すると,引張強さが若干低下傾向となり,また,表面硬化層の厚み増大に伴い,延伸指標(伸び・絞り)が低下することが確認された。 As α grains (structures) grow with increasing nitriding temperature, the tensile strength tends to decrease slightly, and the stretch index (elongation / squeezing) decreases as the thickness of the hardened surface layer increases. It was done.
また,図3から硬さは内部に向かうに従って滑らかに低下していることが確認された。 In addition, it was confirmed from FIG. 3 that the hardness decreased smoothly toward the inside.
(2)プラズマ窒化,プラズマ浸炭における硬さ分布の比較
硬化層の形成をプラズマ窒化によって行うことの優位性を確認するために,処理温度を973K,1023Kとしてプラズマ窒化処理を行った試料,処理温度を1073K,1123Kとしてプラズマ浸炭処理を行った試料,及び未処理の試料のそれぞれについて表面からの硬さ分布を比較した(図5参照)。
(2) Comparison of hardness distribution in plasma nitriding and plasma carburizing In order to confirm the superiority of forming a hardened layer by plasma nitriding, the samples subjected to plasma nitriding treatment at 973K and 1023K, the processing temperature The hardness distribution from the surface was compared for each of the samples that were subjected to plasma carburizing treatment at 1073K and 1123K and untreated samples (see FIG. 5).
図5から明らかなように,プラズマ窒化では,プラズマ浸炭よりも低い温度で高硬度,かつ,厚みの大きな硬化層が得られており,プラズマ浸炭に比較して,プラズマ窒化は耐摩耗性を改善する上で優位であることが判る。 As is clear from FIG. 5, in plasma nitriding, a hardened layer with high hardness and thickness is obtained at a lower temperature than plasma carburizing, and plasma nitriding improves wear resistance compared to plasma carburizing. It turns out that it is superior in doing.
また,同じ硬度上昇を得る場合には,プラズマ浸炭に比較してプラズマ窒化は処理温度を低くできることから,疲労強度の低下をもたらす母材部組織の粗大化を抑制でき,疲労強度を改善する上でもプラズマ浸炭に比較して優位であることが確認された。 In addition, when the same increase in hardness is obtained, the plasma nitriding can lower the processing temperature compared to plasma carburizing, so that the coarsening of the base metal structure that causes a decrease in fatigue strength can be suppressed, and the fatigue strength can be improved. However, it was confirmed that it is superior to plasma carburizing.
(3)微粒子衝突前後における硬さ分布の比較
プラズマ窒化を行った試料(表2における実施例1〜4及び比較例4,5)について,硬さ分布を測定した結果を図6(a),(b)に示す。
(3) Comparison of hardness distribution before and after collision with fine particles For the samples subjected to plasma nitriding (Examples 1 to 4 and Comparative Examples 4 and 5 in Table 2), the results of measuring the hardness distribution are shown in FIG. Shown in (b).
温度条件を1023Kとしてプラズマ窒化処理を行った試料(図6(a))に比較して,1123Kとしてプラズマ窒化を行った試料(図6(b))の方が,表面からの深さがより深い位置まで硬度が上昇しており,耐摩耗性の向上に寄与する硬化層の厚さがより大きいことが確認できる。 Compared to the sample (FIG. 6 (a)) subjected to the plasma nitriding treatment at the temperature condition of 1023K, the sample (FIG. 6 (b)) subjected to the plasma nitriding at 1123K has a greater depth from the surface. It can be confirmed that the hardness has increased to a deep position and the thickness of the hardened layer contributing to the improvement of wear resistance is larger.
また,プラズマ窒化を行ったのみで,その後に微粒子衝突を行っていない試料(比較例4,5)と,微粒子衝突を行った試料(実施例1〜4)とで,硬さ分布に大きな違いが見られないことから,微粒子衝突は,プラズマ窒化によって生じた硬さ分布に対して影響を与えていないことが確認でき,プラズマ窒化により形成された拡散層による耐摩耗性の向上という効果を維持しながら,高硬度微粒子の衝突によって疲労強度低下の原因の1つである化合物層を除去でき,かつ,残留応力を付与できることが確認できた。 In addition, there is a large difference in hardness distribution between the samples that have been subjected to plasma nitriding but have not collided with fine particles thereafter (Comparative Examples 4 and 5) and the samples that have undergone fine particle collisions (Examples 1 to 4). Therefore, it can be confirmed that the particle collision does not affect the hardness distribution caused by plasma nitriding, and the effect of improving wear resistance by the diffusion layer formed by plasma nitriding is maintained. However, it was confirmed that the compound layer which is one of the causes of the fatigue strength reduction can be removed and the residual stress can be applied by the collision of the high hardness fine particles.
(4)機械的性質の比較等
上記表2に示した実施例1〜4の試料,及び比較例1〜11の各試料について,機械的特性を測定した結果を表5に,表面硬化層厚さ,表面硬さ,圧縮残留応力,疲労強度及び疲労強度/引張強さの比を測定した結果を表6,実施例1〜4及び比較例1〜5の断面顕微鏡写真を図7にそれぞれ示す。
(4) Comparison of mechanical properties Table 5 shows the results of measuring the mechanical properties of the samples of Examples 1 to 4 and Comparative Examples 1 to 11 shown in Table 2 above. Table 6, the results of measuring the ratio of hardness, surface hardness, compressive residual stress, fatigue strength and fatigue strength / tensile strength are shown in FIG. 7, and cross-sectional micrographs of Examples 1 to 4 and Comparative Examples 1 to 5 are shown in FIG. .
なお,表5及び表6中,FPB1及びFPB2の略記号は,それぞれ表3に示した通りである。 In Tables 5 and 6, the abbreviations for FPB1 and FPB2 are as shown in Table 3, respectively.
表5の結果から,プラズマ窒化を行っていない試料(比較例1〜3),1023Kでプラズマ窒化を行った試料(比較例4及び実施例1,2),及び1123Kでプラズマ窒化を行った試料(比較例5及び実施例3,4)のいずれにおいても,微粒子衝突の前後において機械的な特性について大きな変化は見られず,微粒子の衝突が機械的な特性に大きな影響を与えていないことが確認された。このことは,プラズマ浸炭を行った試料についても同様である。 From the results shown in Table 5, samples that were not plasma-nitrided (Comparative Examples 1 to 3), samples that were plasma-nitrided at 1023K (Comparative Example 4 and Examples 1 and 2), and samples that were plasma-nitrided at 1123K In any of (Comparative Example 5 and Examples 3 and 4), there is no significant change in the mechanical characteristics before and after the particle collision, and the collision of the particles does not significantly affect the mechanical characteristics. confirmed. The same applies to the samples that have been plasma carburized.
また,表6の結果から,ハイス鋼微粒子による微粒子衝突処理に伴い,残留応力が付与されていると共に,残留応力の付与に伴って疲労強度の改善がなされていることが確認された。 Further, from the results of Table 6, it was confirmed that the residual stress was applied with the fine particle collision treatment with the high-speed steel fine particles, and the fatigue strength was improved with the application of the residual stress.
疲労強度について更に検討すると,窒化温度を1023Kとし,微粒子の衝突を行っていない試料(比較例4)の疲労強度(630MPa)は,窒化も微粒子の衝突も行っていない未処理の試料(比較例1)の疲労強度(570MPa)に対して若干上昇し,さらに微粒子衝突を行うことにより改善されていることが確認された(実施例1で740MPa,実施例2で840MPaに上昇)。 Further examination of the fatigue strength reveals that the fatigue strength (630 MPa) of the sample (Comparative Example 4) in which the nitriding temperature is 1023K and the fine particles are not collided is the untreated sample (Comparative Example) in which neither the nitridation nor the fine particles are collided. It was confirmed that the fatigue strength (570 MPa) of 1) was slightly increased, and further improved by carrying out fine particle collision (increased to 740 MPa in Example 1 and 840 MPa in Example 2).
特に,微粒子衝突による化合物層の除去と,圧縮残留応力の付与を共に行った試料(実施例2)にあっては,疲労強度は極端に高い水準(840MPa)に達していることが確認できた。ここで達成される疲労強度の向上は,既存の如何なる技術によっても達成し得ない水準であり,特に,疲労強度/引張強度比で91%を達成していることは,未処理材が55〜60%(表6では59%)であるのに対して飛躍的に向上している。 In particular, it was confirmed that the fatigue strength reached an extremely high level (840 MPa) in the sample (Example 2) in which the removal of the compound layer by fine particle collision and the application of compressive residual stress were both performed. . The improvement in fatigue strength achieved here is at a level that cannot be achieved by any existing technology. In particular, the fact that the fatigue strength / tensile strength ratio of 91% is achieved is that the untreated material is 55 to 55%. This is a dramatic improvement from 60% (59% in Table 6).
窒化温度を1123Kとした試料(微粒子の衝突なし)の疲労強度(470MPa)では,未処理材(比較例1)の疲労強度(570MPa)以下の値に低下しているが,これはプラズマ窒化に伴い微視組織が成長すると共に比較的厚い化合物層が形成されたためであると考えられる。 The fatigue strength (470 MPa) of the sample with nitriding temperature 1123 K (no collision of fine particles) decreased to a value lower than the fatigue strength (570 MPa) of the untreated material (Comparative Example 1). This is considered to be because the microscopic tissue grew and a relatively thick compound layer was formed.
従って,窒化温度を1123Kとした場合であっても,実施例3,実施例4に示すようにその後に高硬度微粒子の衝突を行って化合物層を除去することで,疲労強度の大幅な上昇を得ることができ,化合物層の除去が疲労強度の向上に極めて効果的であると共に,未処理材の疲労強度(570MPa)を越える疲労強度(実施例3,4共に660MPa)に上昇していることが確認された。 Therefore, even when the nitriding temperature is 1123 K, as shown in Example 3 and Example 4, collision of high-hardness fine particles is performed thereafter to remove the compound layer, thereby significantly increasing fatigue strength. The removal of the compound layer is extremely effective in improving the fatigue strength, and the fatigue strength of the untreated material (570 MPa) exceeds the fatigue strength (660 MPa in both Examples 3 and 4). Was confirmed.
なお,1023K,1123Kで窒化を行ったいずれの試料についても,微粒子衝突後において硬化層の厚みに変化はなく,硬化層の厚みの減少に伴う耐摩耗性の低減は生じていないといえる。 Note that in any of the samples nitrided at 1023K and 1123K, there is no change in the thickness of the hardened layer after the fine particle collision, and it can be said that the wear resistance is not reduced as the thickness of the hardened layer is reduced.
また,1023K,1123Kで窒化を行った試料に対して微粒子衝突を行うと,高硬さを有すると共に脆弱である化合物層が図7から判るように除去され,その結果,表面硬さが幾分低下し,特に化合物層の厚みが厚い1123Kでプラズマ窒化を行った試料では,表面硬さの下げ幅が若干大きなものとなっている。 Moreover, when fine particle collision is performed on the samples nitrided at 1023K and 1123K, the compound layer having high hardness and weakness is removed as shown in FIG. 7, and as a result, the surface hardness is somewhat increased. In particular, in the sample subjected to plasma nitriding at 1123K where the thickness of the compound layer is thick, the amount of decrease in the surface hardness is slightly large.
しかし,微粒子衝突後においても表面硬さは依然としていずれの試料共に高い水準にあり,この表面硬さの低下によって生じる耐摩耗性の低下は実用上問題のない程度のものである。 However, the surface hardness of all samples is still at a high level even after the collision with fine particles, and the decrease in wear resistance caused by the decrease in surface hardness is such that there is no practical problem.
これに対し,1023Kの温度でプラズマ浸炭を行い,微粒子の衝突は行っていない試料(比較例6)の疲労強度(590MPa)は,未処理材の疲労強度(570MPa)と略同程度であり,疲労強度の改善は殆ど見られない。また,表面硬さの向上の程度についても,プラズマ窒化を行った場合に比較して低い値に留まっている。 On the other hand, the fatigue strength (590 MPa) of the sample (Comparative Example 6) that was subjected to plasma carburization at a temperature of 1023 K and not collided with fine particles was approximately the same as the fatigue strength (570 MPa) of the untreated material, Fatigue strength is hardly improved. Also, the degree of improvement in surface hardness remains low compared to the case where plasma nitriding is performed.
また,上記プラズマ浸炭後に,SiC微粒子の衝突を行った試料(比較例7)にあっても,疲労強度は590MPaで変化せず,疲労強度の向上は得られなかった。 Further, even in the sample (Comparative Example 7) in which SiC fine particles collided after the plasma carburization, the fatigue strength did not change at 590 MPa, and the fatigue strength was not improved.
さらに,ハイス鋼微粒子の衝突と,アルミナ微粒子の衝突を行った試料(比較例8)にあっては,疲労強度が僅かに向上(740MPa)するものの,実施例2として示したプラズマ窒化材のように,飛躍的な疲労強度の改善を得ることはできなかった。 Further, in the sample (Comparative Example 8) subjected to the collision of the high-speed steel fine particles and the alumina fine particles (Comparative Example 8), although the fatigue strength is slightly improved (740 MPa), it is similar to the plasma nitride shown in Example 2. In addition, a dramatic improvement in fatigue strength could not be obtained.
また,1123Kの温度でプラズマ浸炭を行い,微粒子の衝突を行っていない試料(比較例9)の疲労強度(490MPa)は,未処理材の疲労強度(570MPa)に対して低下している点については,1123Kの温度でプラズマ窒化を行った場合と同様であるが(比較例5を参照),プラズマ窒化の場合では,その後に微粒子の衝突を行うことで未処理材以上の数値に疲労強度を改善することができたのに対し,1123Kの温度でプラズマ浸炭を行った後にSiC微粒子の衝突を行った試料(比較例10)では,疲労強度は490MPaのまま変化が見られなかった。 In addition, the fatigue strength (490 MPa) of the sample (Comparative Example 9) that was subjected to plasma carburization at a temperature of 1123 K and that did not collide with fine particles was lower than the fatigue strength (570 MPa) of the untreated material. Is the same as when plasma nitriding is performed at a temperature of 1123 K (see Comparative Example 5), but in the case of plasma nitriding, the fatigue strength is increased to a value higher than that of the untreated material by collision of fine particles thereafter. In contrast to the improvement, in the sample (Comparative Example 10) in which the SiC fine particles collided after plasma carburizing at a temperature of 1123 K, the fatigue strength remained unchanged at 490 MPa.
また,その後に,ハイス鋼微粒子の衝突,アルミナ微粒子の衝突を行った試料(比較例11)では,僅かに疲労強度が向上するものの(560MPaに上昇),未処理材(比較例1)の疲労強度(570MPa)の値に迄回復させることはできなかった。 Further, after that, in the sample (Comparative Example 11) in which high-speed steel fine particle collision and alumina fine particle collision were performed, although the fatigue strength was slightly improved (increased to 560 MPa), the fatigue of the untreated material (Comparative Example 1) It was not possible to recover the strength (570 MPa).
以上の結果から,疲労強度を維持,向上しつつ,耐摩耗性の向上を得るためには,プラズマ窒化による表面硬化層の形成と,微粒子の衝突による化合物層を除去との組合せが極めて効果的であり,さらに,微粒子衝突による残留応力の付与により,より効果的に疲労強度の向上を得られることが確認された。 Based on the above results, the combination of the formation of a hardened surface layer by plasma nitriding and the removal of the compound layer by collision of fine particles is extremely effective for obtaining improved wear resistance while maintaining and improving fatigue strength. Furthermore, it was confirmed that fatigue strength can be improved more effectively by applying residual stress due to fine particle collision.
(5)X線解析試験結果
窒化を行っておらず,かつ,微粒子衝突を行っていない未処理の試料(比較例1),前記未処理の試料にそれぞれ異なる微粒子衝突(FPB1,FPB2)を行った試料(比較例2,3)のX線解析結果を図8(a)に,1023Kで窒化処理を行った試料(比較例4)及びこれに対してそれぞれ異なる微粒子衝突(FPB1,FPB2)を行った試料(実施例1,2)のX線解析結果を図8(b)に,1123Kで窒化処理を行った試料(比較例5)及びこれに対してそれぞれ異なる微粒子衝突(FPB1,FPB2)を行った試料(実施例3,4)のX線解析結果を図8(c)にそれぞれ示す。
(5) Results of X-ray analysis test An untreated sample (Comparative Example 1) that was not nitrided and not subjected to particle collision was subjected to different particle collisions (FPB1, FPB2) on the untreated sample. Fig. 8 (a) shows the result of X-ray analysis of the sample (Comparative Examples 2 and 3). The sample subjected to nitriding at 1023K (Comparative Example 4) and different fine particle collisions (FPB1 and FPB2) are shown. The X-ray analysis results of the samples (Examples 1 and 2) are shown in FIG. 8 (b), the sample subjected to nitriding treatment at 1123K (Comparative Example 5), and the different fine particle collisions (FPB1, FPB2). FIG. 8C shows the X-ray analysis results of the samples subjected to the above (Examples 3 and 4).
図8(a)に示す解析結果から,チタンのピーク(α相,β相)が認められるが,微粒子衝突処理にともないピーク高さが低下し,ピークの幅(半価幅)が大となっている。このことから,微粒子衝突を行った試料では,極表面の組織がナノ結晶化していることが予想される。 From the analysis results shown in FIG. 8 (a), titanium peaks (α phase, β phase) are recognized, but the peak height decreases and the peak width (half-value width) increases with the particle collision treatment. ing. From this, it is expected that the microstructure of the extreme surface is nanocrystallized in the sample subjected to particle collision.
図8(b)に示す解析結果から,1023Kでのプラズマ窒化にともない試料表面に化合物(Ti2N)層が形成されていることが確認できる。そして微粒子衝突処理にともない,化合物の存在を示すピークが消失しており,微粒子の衝突により化合物層の除去が行われたことが判る。さらに,この微粒子衝突処理にともない,チタンのピーク高さが低下し,ピークの幅(半価幅)が大きくなっており,試料の極表面の組織がナノ結晶化していることが予想される。 From the analysis result shown in FIG. 8B, it can be confirmed that a compound (Ti 2 N) layer is formed on the surface of the sample due to plasma nitridation at 1023K. With the fine particle collision treatment, the peak indicating the presence of the compound disappears, and it can be seen that the compound layer was removed by the fine particle collision. In addition, with this fine particle collision treatment, the peak height of titanium decreases, the peak width (half-value width) increases, and it is expected that the structure on the extreme surface of the sample is nanocrystallized.
図8(c)に示す解析結果からは,1123Kでのプラズマ窒化にともない化合物(TiNおよびTi2N)が形成されていることが確認され,微粒子衝突処理にともない,両化合物の存在を示すピーク消失していることから,化合物層が除去されたことが確認できる。また,この微粒子衝突に伴い,チタンのピーク高さが低下し,ピークの幅(半価幅)が大となっていることから,試料の極表面の組織がナノ結晶化していることが予測される。 From the analysis result shown in FIG. 8 (c), it was confirmed that the compounds (TiN and Ti 2 N) were formed with the plasma nitriding at 1123K, and the peak indicating the presence of both compounds with the fine particle collision treatment was confirmed. Since it has disappeared, it can be confirmed that the compound layer has been removed. In addition, as the particle collides, the peak height of titanium decreases and the peak width (half-value width) increases, so it is predicted that the microstructure of the extreme surface of the sample is nanocrystallized. The
ここで,極表面の微細化(ナノ結晶化)は,表面現象である疲労き裂の発生を抑制する効果があり,本願方法によって表面処理が施されたチタン製品にあっては,このナノ結晶化によっても疲労強度や耐摩耗性の向上が期待できる。 Here, miniaturization of the extreme surface (nanocrystallization) has the effect of suppressing the occurrence of fatigue cracks, which is a surface phenomenon. For titanium products that have been surface-treated by the present method, this nanocrystal The improvement in fatigue strength and wear resistance can be expected even by making it easier.
(6)疲労試験結果
窒化を行っておらず,かつ,微粒子衝突を行っていない未処理の試料(比較例1),前記未処理の試料に異なる種類の微粒子衝突(FPB1,FPB2)を行った試料(比較例2,3)の疲労試験結果を図9(a)に,1023Kで窒化処理を行った試料(比較例4)及びこれに対して異なる種類の微粒子衝突(FPB1,FPB2)を行った試料(実施例1,2)の疲労試験結果を図9(b)に,1123Kで窒化処理を行った試料(比較例5)及びこれに対して異なる種類の微粒子衝突(FPB1,FPB2)を行った試料(実施例3,4)の疲労試験結果を図9(c)にそれぞれ示す。
(6) Fatigue test results Untreated sample (Comparative Example 1) that was not nitrided and not subjected to fine particle collision, and different types of fine particle collisions (FPB1, FPB2) were performed on the untreated sample. The fatigue test results of the samples (Comparative Examples 2 and 3) are shown in FIG. 9 (a). The sample subjected to nitriding treatment at 1023K (Comparative Example 4) and different types of fine particle collisions (FPB1 and FPB2) were performed. Fig. 9 (b) shows the fatigue test results of the samples (Examples 1 and 2). Fig. 9 (b) shows a sample subjected to nitriding treatment at 1123K (Comparative Example 5) and different types of fine particle collisions (FPB1, FPB2). The fatigue test results of the samples (Examples 3 and 4) performed are shown in FIG. 9 (c), respectively.
図9(a)において,未処理材(比較例1)では,微粒子衝突処理にともなう表面硬さの上昇および残留応力の付与により,疲労寿命および疲労強度が大幅に改善されていることが確認された。 In FIG. 9 (a), it is confirmed that the fatigue life and fatigue strength of the untreated material (Comparative Example 1) are greatly improved by increasing the surface hardness and applying the residual stress accompanying the fine particle collision treatment. It was.
図9(b)では,温度1023Kでのプラズマ窒化にともない疲労強度が若干上昇するが,疲労寿命は大幅に短寿命化することが確認された。これに対し,微粒子衝突処理により化合物層を除去し,また若干残留応力が付与された試料(実施例1,2)では,疲労寿命および疲労強度が大幅に改善され,特に,ハイス鋼微粒子の衝突を行った実施例2において飛躍的な疲労強度の向上が得られることは,本疲労試験結果においても明らかとなった。 In FIG. 9B, it was confirmed that the fatigue strength slightly increased with plasma nitriding at a temperature of 1023 K, but the fatigue life was significantly shortened. In contrast, in the samples (Examples 1 and 2) in which the compound layer was removed by the fine particle collision treatment and a slight residual stress was applied, the fatigue life and fatigue strength were greatly improved. It was also clarified in the results of this fatigue test that a dramatic improvement in fatigue strength was obtained in Example 2 where the test was performed.
図9(c)では,温度1123Kでのプラズマ窒化にともない疲労強度が大幅に低下しているが,微粒子衝突処理にともない,疲労強度の低下原因となる化合物層が除去され,疲労寿命および疲労強度が大幅に改善され,未処理材以上の水準に到達していることが確認された。 In FIG. 9 (c), the fatigue strength significantly decreases with plasma nitriding at a temperature of 1123K, but with the fine particle collision treatment, the compound layer that causes the fatigue strength to decrease is removed, and the fatigue life and fatigue strength are reduced. Was significantly improved, and it was confirmed that it reached a level higher than that of untreated materials.
本発明の表面処理方法,及び本発明の方法により表面処理がされたチタン製品は,チタン製品の既知の用途全般に適用することができ,特に耐摩耗性と疲労強度が求められる用途,チタンの主な用途の一つであるジェットエンジン部品等の宇宙航空産業部門での用途の他,鉄道,船舶,自動車,各種工作機器,建築材料等,各種の用途において使用されるチタン製品に適用可能である。 The surface treatment method of the present invention and the titanium product surface-treated by the method of the present invention can be applied to all known uses of the titanium product, particularly for applications requiring wear resistance and fatigue strength. It can be applied to titanium products used in various applications such as railways, ships, automobiles, various machine tools, building materials, as well as applications in the aerospace industry such as jet engine parts, which are one of the main applications. is there.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007030932A JP2008195994A (en) | 2007-02-09 | 2007-02-09 | Surface modification method for titanium product, and surface modified titanium product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007030932A JP2008195994A (en) | 2007-02-09 | 2007-02-09 | Surface modification method for titanium product, and surface modified titanium product |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008195994A true JP2008195994A (en) | 2008-08-28 |
Family
ID=39755207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007030932A Pending JP2008195994A (en) | 2007-02-09 | 2007-02-09 | Surface modification method for titanium product, and surface modified titanium product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008195994A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010028060A1 (en) * | 2008-09-02 | 2010-03-11 | Zimmer, Inc. | Method for enhancing fretting fatigue resistance of alloys |
WO2011040243A1 (en) * | 2009-09-30 | 2011-04-07 | 新東工業株式会社 | Shot peening treatment method for steel product |
JP2014506293A (en) * | 2010-12-22 | 2014-03-13 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Fabrication of nano-twinned titanium materials by casting |
CN103834887A (en) * | 2014-03-05 | 2014-06-04 | 大连交通大学 | Method of nano-crystallizing heat engine compound process for improving fatigue strength of titanium alloy |
CN104419884A (en) * | 2013-09-04 | 2015-03-18 | 天津大学 | Application of cryogenic treatment in eliminating residual stress of titanium alloy electron beam welding |
WO2016084980A1 (en) * | 2014-11-28 | 2016-06-02 | 新日鐵住金株式会社 | Titanium alloy member and method of manufacturing titanium alloy member |
CN106011875A (en) * | 2016-05-13 | 2016-10-12 | 温州大学 | Surface modification method for titanium alloy |
KR20180027572A (en) | 2015-07-29 | 2018-03-14 | 신닛테츠스미킨 카부시키카이샤 | Titanium composites and titanium materials for hot rolling |
RU2647963C2 (en) * | 2016-08-03 | 2018-03-21 | Общество с ограниченной ответственностью "ТБ композит" | Composite material on base of titanium alloy and procedure for its manufacture |
CN112159951A (en) * | 2020-10-26 | 2021-01-01 | 杭州汽轮机股份有限公司 | Preparation process of water erosion resistant layer of titanium alloy blade of steam turbine |
US11066727B2 (en) | 2015-07-29 | 2021-07-20 | Nippon Steel Corporation | Titanium composite material and titanium material for hot working |
CN113696103A (en) * | 2021-08-18 | 2021-11-26 | 武汉钢铁有限公司 | Long-service-life steel rail treatment method |
WO2023069496A1 (en) * | 2021-10-20 | 2023-04-27 | Schaeffler Technologies AG & Co. KG | Bearing cage treated with plasma-nitriding |
-
2007
- 2007-02-09 JP JP2007030932A patent/JP2008195994A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010028060A1 (en) * | 2008-09-02 | 2010-03-11 | Zimmer, Inc. | Method for enhancing fretting fatigue resistance of alloys |
WO2011040243A1 (en) * | 2009-09-30 | 2011-04-07 | 新東工業株式会社 | Shot peening treatment method for steel product |
JP4775525B2 (en) * | 2009-09-30 | 2011-09-21 | 新東工業株式会社 | Shot peening treatment method for steel products |
CN102574273A (en) * | 2009-09-30 | 2012-07-11 | 新东工业株式会社 | Shot peening treatment method for steel product |
KR101237915B1 (en) | 2009-09-30 | 2013-02-27 | 신토고교 가부시키가이샤 | Shot peening treatment method for steel product |
CN102574273B (en) * | 2009-09-30 | 2013-09-18 | 新东工业株式会社 | Shot peening treatment method for steel product |
US9056386B2 (en) | 2009-09-30 | 2015-06-16 | Sintokogio, Ltd. | Method of shot-peening treatment of steel product |
EP2484493A4 (en) * | 2009-09-30 | 2016-03-30 | Sintokogio Ltd | Shot peening treatment method for steel product |
JP2014506293A (en) * | 2010-12-22 | 2014-03-13 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Fabrication of nano-twinned titanium materials by casting |
CN104419884A (en) * | 2013-09-04 | 2015-03-18 | 天津大学 | Application of cryogenic treatment in eliminating residual stress of titanium alloy electron beam welding |
CN103834887A (en) * | 2014-03-05 | 2014-06-04 | 大连交通大学 | Method of nano-crystallizing heat engine compound process for improving fatigue strength of titanium alloy |
US10669619B2 (en) | 2014-11-28 | 2020-06-02 | Nippon Steel Corporation | Titanium alloy member and method for manufacturing the same |
EP3225715A4 (en) * | 2014-11-28 | 2018-05-02 | Nippon Steel & Sumitomo Metal Corporation | Titanium alloy member and method of manufacturing titanium alloy member |
JPWO2016084980A1 (en) * | 2014-11-28 | 2017-10-05 | 新日鐵住金株式会社 | Titanium alloy member and method for producing titanium alloy member |
WO2016084980A1 (en) * | 2014-11-28 | 2016-06-02 | 新日鐵住金株式会社 | Titanium alloy member and method of manufacturing titanium alloy member |
US11066727B2 (en) | 2015-07-29 | 2021-07-20 | Nippon Steel Corporation | Titanium composite material and titanium material for hot working |
KR20180027572A (en) | 2015-07-29 | 2018-03-14 | 신닛테츠스미킨 카부시키카이샤 | Titanium composites and titanium materials for hot rolling |
US10920300B2 (en) | 2015-07-29 | 2021-02-16 | Nippon Steel Corporation | Titanium composite material and titanium material for hot rolling |
US11814703B2 (en) | 2015-07-29 | 2023-11-14 | Nippon Steel Corporation | Titanium material for hot working |
CN106011875B (en) * | 2016-05-13 | 2018-06-08 | 温州大学 | A kind of method that surface modification is carried out to titanium alloy |
CN106011875A (en) * | 2016-05-13 | 2016-10-12 | 温州大学 | Surface modification method for titanium alloy |
RU2647963C2 (en) * | 2016-08-03 | 2018-03-21 | Общество с ограниченной ответственностью "ТБ композит" | Composite material on base of titanium alloy and procedure for its manufacture |
CN112159951A (en) * | 2020-10-26 | 2021-01-01 | 杭州汽轮机股份有限公司 | Preparation process of water erosion resistant layer of titanium alloy blade of steam turbine |
CN113696103A (en) * | 2021-08-18 | 2021-11-26 | 武汉钢铁有限公司 | Long-service-life steel rail treatment method |
WO2023069496A1 (en) * | 2021-10-20 | 2023-04-27 | Schaeffler Technologies AG & Co. KG | Bearing cage treated with plasma-nitriding |
US11674550B2 (en) | 2021-10-20 | 2023-06-13 | Schaeffler Technologies AG & Co. KG | Bearing cage treated with plasma-nitriding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008195994A (en) | Surface modification method for titanium product, and surface modified titanium product | |
Tsuji et al. | Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti–6Al–4V alloy | |
WO2013157579A1 (en) | Nitrided steel member and process for producing same | |
RU2407822C2 (en) | Procedure for production of wear and fatigue resistant surface layers of items out of titanium alloy and item produced by this procedure | |
EP3845685A1 (en) | Cold spraying | |
Li et al. | Surface modification by gas nitriding for improving cavitation erosion resistance of CP-Ti | |
Kikuchi et al. | Evaluation of the gas nitriding of fine grained AISI 4135 steel treated with fine particle peening and its effect on the tribological properties | |
Qu et al. | The effect of electric pulse aided ultrasonic rolling processing on the microstructure evolution, surface properties, and fatigue properties of a titanium alloy Ti5Al4Mo6V2Nb1Fe | |
Cheng et al. | Tribology property of laser cladding crack free Ni/WC composite coating | |
JPWO2004103615A1 (en) | Surface toughening method of sintered body cutting tool and long-life sintered body cutting tool | |
Morita et al. | Improvement of fatigue strength of Ti–6Al–4V alloy by hybrid surface treatment composed of plasma nitriding and fine-particle bombarding | |
Morita et al. | Effects of Particle Collision Treatments on Fatigue Strength of Ti–6Al–4V Alloy with Polishing Marks | |
Tadi et al. | Formation of surface nano/ultrafine structure using deep rolling process on the AISI 316L stainless steel | |
Kumbhar et al. | Gradient Microstructure and Properties of Surface Mechanical Attrition–Treated AZ91D Alloy: An Effect of Colliding Balls Velocity | |
Chang et al. | Enhancement of erosion resistance on AISI H13 tool steel by oxynitriding treatment | |
Tokaji et al. | Fatigue behaviour of beta Ti-22V-4Al alloy subjected to surface-microstructural modification | |
JP6644334B2 (en) | Mold cooling hole surface treatment method and mold | |
Sobiyi et al. | The Influence of scanning speed on the laser metal deposition of Ti/Tic powders | |
Zhang et al. | Shot peening coverage effect on laser powder bed fused steel | |
US11414717B2 (en) | Surface hardening of substrates by a particle-containing cavitating waterjet | |
JPH10100069A (en) | Shot peening method and treated article | |
Bin Abdullah et al. | Solid Particle Erosion Behavior of Electron Beam Melted (EBM) Ti6Al4V at Different Built Orientation | |
Chen et al. | Surface nanocrystallization of C45E4 steel by ultrafast electropulsing-ultrasonic surface treatment | |
JP6996700B2 (en) | Metal processing method | |
Mohammed et al. | Wear resistance of 304 austenitic stainless-steel friction welded joints |