Nothing Special   »   [go: up one dir, main page]

JP2008190652A - Rolling bearing device - Google Patents

Rolling bearing device Download PDF

Info

Publication number
JP2008190652A
JP2008190652A JP2007026705A JP2007026705A JP2008190652A JP 2008190652 A JP2008190652 A JP 2008190652A JP 2007026705 A JP2007026705 A JP 2007026705A JP 2007026705 A JP2007026705 A JP 2007026705A JP 2008190652 A JP2008190652 A JP 2008190652A
Authority
JP
Japan
Prior art keywords
pressure
pressurizing chamber
outer ring
fluid
set pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007026705A
Other languages
Japanese (ja)
Other versions
JP5034531B2 (en
Inventor
Kanichi Kouda
寛一 耕田
Kiyoshi Ogino
清 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007026705A priority Critical patent/JP5034531B2/en
Priority to US12/068,308 priority patent/US7997804B2/en
Priority to DE602008001096T priority patent/DE602008001096D1/en
Priority to DE602008000588T priority patent/DE602008000588D1/en
Priority to EP08002204A priority patent/EP1956253B1/en
Priority to EP08021194A priority patent/EP2050974B1/en
Publication of JP2008190652A publication Critical patent/JP2008190652A/en
Application granted granted Critical
Publication of JP5034531B2 publication Critical patent/JP5034531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • General Details Of Gearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing device enabling the saving of energy when a preload is applied thereto by using a fluid pressure such as an oil pressure. <P>SOLUTION: When a fluid pressure in a fluid supply passage is higher than a first set pressure, a fluid in the fluid supply passage 48 is supplied to a pressure chamber 45 via a check valve 44, and when the pressure in the pressure chamber 45 becomes lower than the first set pressure, the fluid is supplied from a hydraulic pump 49 to the pressure chamber 45 via the check valve 44. When the pressure in the pressure chamber 45 becomes higher than a second set pressure, the fluid is discharged from the pressure chamber 45 via a relief valve 50, and also when the pressure in the pressure chamber becomes higher than a third set pressure which is higher than the first set pressure but is lower than the second set pressure, the supply of the fluid is stopped by a fluid supply control part 60. With this system, the pressure in the pressure chamber 45 is maintained at a level between the first and second set pressures without always supplying the fluid from the hydraulic pump 49 into the pressure chamber 45. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、円錐コロ軸受、アンギュラ玉軸受などの予圧をかけて使用する転がり軸受装置に関する。   The present invention relates to a rolling bearing device that is used with a preload applied, such as a conical roller bearing or an angular ball bearing.

円錐ころ軸受やアンギュラ玉軸受は、軸方向の予圧をかけた状態で使用される。例えば、トランスミッションユニット等の自動車用のギア式駆動伝達ユニットには、その要所(例えばトランスミッションユニットでは終減速装置部分)に円錐ころ軸受が採用されている。図3(a)に示すように、前記円錐ころ軸受111は、内輪133に回転軸115を圧入するとともに、トランスミッションケースの軸受用ハウジング125に外輪132を嵌合し、その後に軸方向一方側(矢印a)へ向けて予圧を付与している。このように予圧を与えると、外輪132は円錐ころ134の傾斜した転動面上での分力を受けて軸方向及び径方向に変位し、その左端面132cと外周面132bとがハウジング125の内端面125cと内周面125aとに押しつけられて予圧が支持される。   Tapered roller bearings and angular contact ball bearings are used with axial preload applied. For example, in a gear-type drive transmission unit for an automobile such as a transmission unit, a tapered roller bearing is adopted at its main point (for example, a final reduction gear portion in the transmission unit). As shown in FIG. 3 (a), the tapered roller bearing 111 press-fits the rotating shaft 115 into the inner ring 133, fits the outer ring 132 into the bearing housing 125 of the transmission case, and then axially one side ( Preload is applied in the direction of arrow a). When the preload is applied in this manner, the outer ring 132 receives a component force on the inclined rolling surface of the tapered roller 134 and is displaced in the axial direction and the radial direction, and the left end surface 132 c and the outer peripheral surface 132 b are connected to the housing 125. The preload is supported by being pressed against the inner end face 125c and the inner peripheral face 125a.

一方、近年軽量化の一環として、トランスミッションケースをアルミニウム(Al)合金などの軽金属で構成することが行なわれている。Alは構造材料中でも線膨張係数が最も高く(室温で約23.5×10−6/℃:以下、線膨張係数の単位はppm/℃と略記する)、回転軸や円錐ころ軸受を構成する鋼(Fe系材料)の線膨張係数(室温で約12ppm/℃)とは相当の差がある。 On the other hand, as a part of weight reduction in recent years, a transmission case is made of a light metal such as an aluminum (Al) alloy. Al has the highest linear expansion coefficient among structural materials (about 23.5 × 10 −6 / ° C. at room temperature: hereinafter, the unit of linear expansion coefficient is abbreviated as ppm / ° C.) and constitutes a rotating shaft and a tapered roller bearing. There is a considerable difference from the linear expansion coefficient of steel (Fe-based material) (about 12 ppm / ° C. at room temperature).

回転軸とハウジングとが同じ材料である場合、温度による寸法変化も同じであるので、円錐ころ軸受にかかる予圧に大きな変化はない。しかし、ハウジングを軽金属で構成すると、温度上昇によってハウジングが回転軸よりも大きく寸法変化し、予圧が抜けてしまうおそれがある。
具体的には、図3(b)に示すように、トランスミッションが昇温すると、ハウジング125及び回転軸115が膨張するが、その膨張による寸法変化の差によって、外輪132の内周軌道面132aが円錐ころ134の転動面から矢印b方向に離反する。つまり、円錐ころ軸受111のアキシャル隙間及びラジアル隙間が温度により大きく変化し、予圧不足となる。このような予圧不足は、ギヤのガタツキを招き、騒音発生の原因となる。
When the rotating shaft and the housing are made of the same material, the dimensional change due to temperature is the same, so there is no significant change in the preload applied to the tapered roller bearing. However, if the housing is made of a light metal, the housing may change in size more than the rotating shaft due to temperature rise, and the preload may be lost.
Specifically, as shown in FIG. 3B, when the temperature of the transmission rises, the housing 125 and the rotating shaft 115 expand, but due to the difference in dimensions due to the expansion, the inner circumferential raceway surface 132a of the outer ring 132 changes. It moves away from the rolling surface of the tapered roller 134 in the direction of arrow b. That is, the axial gap and the radial gap of the tapered roller bearing 111 vary greatly depending on the temperature, resulting in insufficient preload. Such a shortage of preload causes gear rattle and causes noise.

かかる問題を解消し得るものとして、下記特許文献1には、油圧やバネによって外輪に予圧を付与するようにした転がり軸受装置が開示されている。具体的には、ハウジングに有底筒形のシリンダを形成し、このシリンダ内に、外輪を軸方向に摺動可能に嵌合するとともに、外輪の軸方向外端部に当該外端部の開口を閉塞する円盤状の予圧部材を沿わせ、シリンダ内面と予圧部材とに囲まれた加圧室に油圧ポンプによって作動油を供給するようになっている。さらに、加圧室内には、予圧部材を軸方向内方に付勢する圧縮コイルバネを設けている。   In order to solve such a problem, Patent Document 1 below discloses a rolling bearing device in which a preload is applied to an outer ring by hydraulic pressure or a spring. Specifically, a cylindrical cylinder with a bottom is formed in the housing, and an outer ring is slidably fitted in the cylinder in the axial direction, and the opening of the outer end is opened at the axial outer end of the outer ring. A disc-shaped preload member that closes the cylinder is disposed, and hydraulic oil is supplied to a pressurization chamber surrounded by the cylinder inner surface and the preload member by a hydraulic pump. Further, a compression coil spring that biases the preload member inward in the axial direction is provided in the pressurizing chamber.

この構成では、油圧及び圧縮コイルバネによって予圧部材に予圧を付与する一方、昇温によってハウジングが回転軸及び外輪よりも大きく寸法変化したときには、圧縮コイルバネと油圧の作用によって、予圧部材を介して外輪を軸方向内方に移動させ、円錐ころ軸受のアキシャル隙間及びラジアル隙間の変化を抑えて予圧不足を解消することが可能である。
特開2006−153090号公報
In this configuration, preload is applied to the preload member by the hydraulic pressure and the compression coil spring, and when the housing changes in size more greatly than the rotation shaft and the outer ring due to temperature rise, the outer ring is moved via the preload member by the action of the compression coil spring and the hydraulic pressure. It is possible to eliminate the shortage of preload by moving inward in the axial direction and suppressing changes in the axial gap and radial gap of the tapered roller bearing.
JP 2006-153090 A

ところが、特許文献1の技術によれば、加圧室内の油圧を一定圧に維持するために、油圧ポンプから加圧室に作動油を常に供給しておく必要があるので、エネルギー消費が大きいという問題があった。特に、前記した予圧不足を解消する機構をオートマチックトランスミッションに採用する場合には、当該トランスミッションの油圧制御に用いる作動油の一部を前記加圧室に供給することが考えられるが、この場合、加圧室に供給する作動油分だけ油圧ポンプの吐出量を高める必要があるので、余分なエネルギーが必要になるという問題があった。   However, according to the technique of Patent Document 1, it is necessary to always supply hydraulic oil from the hydraulic pump to the pressurizing chamber in order to maintain the hydraulic pressure in the pressurizing chamber at a constant pressure, which means that energy consumption is large. There was a problem. In particular, when the mechanism for eliminating the preload shortage is employed in an automatic transmission, it is conceivable to supply a part of the hydraulic oil used for hydraulic control of the transmission to the pressurizing chamber. Since it is necessary to increase the discharge amount of the hydraulic pump by the amount of hydraulic oil supplied to the pressure chamber, there is a problem that extra energy is required.

本発明は、このような問題点に鑑みてなされたものであり、油圧等の流体圧を用いて転がり軸受に予圧を付与するにあたり、省エネルギー化を図ることができる転がり軸受装置を提供することを目的とする。   The present invention has been made in view of such problems, and provides a rolling bearing device capable of saving energy when applying a preload to a rolling bearing using fluid pressure such as hydraulic pressure. Objective.

本発明に係る転がり軸受装置は、転動体と、この転動体が転動するとともに当該転動体からの径方向荷重と軸方向一方側へ向く荷重とを受ける軌道面を内周に有し、且つ第1の線膨脹係数を有する外輪と、前記転動体が転動する軌道面を外周に有し、予圧が付与された状態で前記転動体を介して外輪に組み込まれた内輪と、前記外輪の外周面が軸方向へ移動可能に嵌合しているとともに、前記外輪の線膨脹係数よりも大きい第2の線膨張係数を有するハウジングと、前記内輪の内周面に嵌合し、第2の線膨張係数よりも小さい第3の線膨張係数を有する回転軸と、前記外輪の前記軸方向一方側の端部部材と前記ハウジングとの間に密封可能な空間として構成された加圧室と、前記加圧室に流体圧を作用させて前記外輪を軸方向他方側へ移動させることにより、前記ハウジングの熱膨張に伴う前記予圧の低下を抑制する予圧保持手段と、を備える転がり軸受装置であって、前記予圧保持手段が、流体供給路を介して前記加圧室に接続された圧力源と、前記加圧室と圧力源との間の流体供給路に設けられ、流体圧が第1の設定圧力以上で前記加圧室への流体の流入を許容する逆止弁と、前記加圧室が第1の設定圧力よりも高い第2の設定圧力以上で、当該加圧室から流体を排出させる排出路に設けられたリリーフ弁と、前記加圧室が第1の設定圧力未満になると、前記圧力源から前記逆止弁を通して加圧室に流体を供給し、第1の設定圧力以上且つ第2の設定圧力未満である第3の設定圧力以上になると当該流体の供給を停止させる流体供給制御部と、を備えることを特徴としている。   A rolling bearing device according to the present invention has a rolling element and a raceway surface on the inner periphery that receives the rolling element and a radial load from the rolling element and a load directed to one side in the axial direction. An outer ring having a first linear expansion coefficient, a raceway surface on which the rolling element rolls, and an inner ring incorporated in the outer ring via the rolling element in a state where a preload is applied; A housing having a second linear expansion coefficient larger than a linear expansion coefficient of the outer ring, and a second outer expansion surface fitted to the inner peripheral surface of the inner ring; A rotating shaft having a third linear expansion coefficient smaller than the linear expansion coefficient, a pressurizing chamber configured as a space that can be sealed between the end member on the one axial side of the outer ring and the housing; Fluid pressure is applied to the pressurizing chamber to move the outer ring to the other side in the axial direction. A preload holding means for suppressing a decrease in the preload associated with thermal expansion of the housing, wherein the preload holding means is connected to the pressurizing chamber via a fluid supply path. And a check valve that is provided in a fluid supply path between the pressurizing chamber and the pressure source and that allows the fluid to flow into the pressurizing chamber when the fluid pressure is equal to or higher than a first set pressure. A relief valve provided in a discharge passage for discharging the fluid from the pressurization chamber at a second set pressure higher than the first set pressure, and the pressurization chamber being the first set When the pressure is less than the pressure, the fluid is supplied from the pressure source to the pressurizing chamber through the check valve, and when the pressure is higher than the first set pressure and less than the second set pressure, the fluid is supplied. And a fluid supply control unit for stopping the operation.

このような構成の転がり軸受装置によれば、前記流体供給路の流体圧が第1の設定圧力以上であると、当該流体供給路の流体を前記逆止弁を通して加圧室へ供給することができ、前記加圧室が第1の設定圧力以下になると、前記流体供給制御部によって、前記圧力源から逆止弁を通して加圧室に流体を供給することができる。また、一旦昇温した後、転がり軸受装置の稼働の停止に伴う冷却等によって前記加圧室が第2の設定圧力以上になると、リリーフ弁を通して加圧室から流体を排出させることができる。そして、前記加圧室が前記第3の設定圧力以上になると前記流体供給制御部によって前記流体の供給を停止させることができる。したがって、圧力源から加圧室に流体を常に供給しておくことなく、昇温時には加圧室内の圧力を第1の設定圧力から第3の設定圧力の間に維持することができ、これらの加圧室の圧力によって、前記外輪を軸方向他方側へ移動させて、前記ハウジングの熱膨張に伴う前記予圧の低下を抑制することができる。また、冷却時等には加圧室内の圧力が過剰に上昇するのを防止することができる。   According to the rolling bearing device having such a configuration, when the fluid pressure in the fluid supply path is equal to or higher than the first set pressure, the fluid in the fluid supply path can be supplied to the pressurizing chamber through the check valve. When the pressure chamber becomes equal to or lower than a first set pressure, the fluid supply control unit can supply fluid from the pressure source to the pressure chamber through a check valve. In addition, after the temperature has been raised once, when the pressure chamber becomes equal to or higher than the second set pressure due to cooling accompanying the stop of the operation of the rolling bearing device, the fluid can be discharged from the pressure chamber through the relief valve. And when the said pressurization chamber becomes more than the said 3rd setting pressure, the supply of the said fluid can be stopped by the said fluid supply control part. Therefore, without always supplying fluid from the pressure source to the pressurizing chamber, the pressure in the pressurizing chamber can be maintained between the first set pressure and the third set pressure when the temperature is raised. The outer ring can be moved to the other side in the axial direction by the pressure in the pressurizing chamber, and a decrease in the preload due to thermal expansion of the housing can be suppressed. Further, it is possible to prevent the pressure in the pressure chamber from rising excessively during cooling or the like.

また、前記加圧室を構成する端部部材が、前記外輪の前記軸方向一方側の端部開口を塞いでいることが好ましい。この場合、流体が外輪を付勢するときの接触面積を増やすことができるとともに、当該流体供給時の流体圧の斑が生じにくくなり外輪が傾くのを防止することができる。   Moreover, it is preferable that the end part member which comprises the said pressurization chamber has block | closed the edge part opening of the said axial direction one side of the said outer ring | wheel. In this case, it is possible to increase the contact area when the fluid urges the outer ring, and it is possible to prevent the occurrence of uneven fluid pressure when the fluid is supplied and to prevent the outer ring from tilting.

また、前記外輪と前記端部部材とは一体形成されているのが好ましい。この場合には、外輪の剛性を高めることができるので、ハウジングに対して外輪を軸方向へ移動可能に嵌合しているにもかかわらず、当該外輪の軌道面の真円度が悪化するのを抑制することができる。このため、軸受が振動したり寿命が低下したりするのを防止することができる。   Further, it is preferable that the outer ring and the end member are integrally formed. In this case, since the rigidity of the outer ring can be increased, the roundness of the raceway surface of the outer ring is deteriorated even though the outer ring is fitted to the housing so as to be movable in the axial direction. Can be suppressed. For this reason, it can prevent that a bearing vibrates or a lifetime falls.

本発明によれば、加圧室への流体の供給が必要なときにのみ圧力源から流体を供給することができるので、圧力源から流体を常に供給するものに比べて省エネルギー化を達成することができる。   According to the present invention, since the fluid can be supplied from the pressure source only when the fluid supply to the pressurizing chamber is necessary, energy saving can be achieved as compared with the case where the fluid is always supplied from the pressure source. Can do.

図1は、本発明の第1実施形態に係る転がり軸受装置10を構成したトランスミッションを示す断面図である。このトランスミッションは、ケース12と、ケース12の内部に組み込まれたギヤボックス13と、ギヤボックス13を貫通させた状態で互いに平行に設けられた入力軸14及び出力軸(回転軸)15とを備えている。入力軸14及び出力軸15は、ギヤボックス13内の変速ギヤ16により連動して回転するようになっている。   FIG. 1 is a cross-sectional view showing a transmission that constitutes a rolling bearing device 10 according to a first embodiment of the present invention. The transmission includes a case 12, a gear box 13 incorporated in the case 12, and an input shaft 14 and an output shaft (rotary shaft) 15 provided in parallel to each other with the gear box 13 being passed therethrough. ing. The input shaft 14 and the output shaft 15 are rotated in conjunction with a transmission gear 16 in the gear box 13.

変速ギヤ16は、例えば、マニュアルタイプとされており、入力軸14に互いに歯数の異なる複数枚の入力ギヤ18を設けるとともに、出力軸15に互いに歯数の異なる出力ギヤ19を設け、得るべき変速比又は前進又は後退の区別に応じて、入力軸14上のギヤ18と出力軸15上のギヤ19との噛み合いの組み合わせを切り替えることによって変速可能となっている。これら入力ギヤ18及び出力ギヤ19にはスパーギヤやヘリカルギヤが用いられる。なお、変速ギヤ16は、遊星ギヤ機構等を用いたオートマチックタイプであってもよい。   The transmission gear 16 is, for example, a manual type, and the input shaft 14 is provided with a plurality of input gears 18 having different numbers of teeth, and the output shaft 15 is provided with output gears 19 having different numbers of teeth. Shifting is possible by switching the combination of the meshing of the gear 18 on the input shaft 14 and the gear 19 on the output shaft 15 according to the speed ratio or the distinction between forward and reverse. As the input gear 18 and the output gear 19, a spur gear or a helical gear is used. The transmission gear 16 may be an automatic type using a planetary gear mechanism or the like.

入力軸14の両端は、ケース12内の内側に固定された円筒ころ軸受21及び玉軸受22によりそれぞれ回転可能に支持されている。出力軸15の両端は、軸方向一方側(左側)の第1円錐ころ軸受11及び軸方向他方側(右側)の第2円錐ころ軸受23によりそれぞれ支持されている。第1円錐ころ軸受11は、ケース12と一体の第1ハウジング25に嵌合され、第2円錐ころ軸受23は、ケース12と一体の第2ハウジング26に嵌合固定されている。また、第1円錐ころ軸受11は、予圧保持手段30により軸方向内方(右方向)へ向く予圧が付与されている。この予圧保持手段30については後に詳述する。   Both ends of the input shaft 14 are rotatably supported by cylindrical roller bearings 21 and ball bearings 22 fixed inside the case 12. Both ends of the output shaft 15 are supported by a first tapered roller bearing 11 on one axial side (left side) and a second tapered roller bearing 23 on the other axial side (right side). The first tapered roller bearing 11 is fitted into a first housing 25 integral with the case 12, and the second tapered roller bearing 23 is fitted and fixed to a second housing 26 integral with the case 12. The first tapered roller bearing 11 is preloaded by the preload holding means 30 in the axially inward (rightward) direction. The preload holding means 30 will be described in detail later.

図2は、本発明の要部を拡大して示す断面図である。同図に示すように、第1円錐ころ軸受11は、外輪32と、内輪33と、外輪32及び内輪33の間に配置された複数の円錐ころ(転動体)34とを備えている。外輪32の外周面は、第1ハウジング25の内周面に嵌合され、外輪32の内周面には、円錐ころ34が斜接して転動する内周軌道面32aが形成されている。内輪33の外周面には、円錐ころ34が斜接して転動する外周軌道面33aが形成され、内輪33の内周面には出力軸15が嵌合されている。内輪33と円錐ころ34との接触角および円錐ころ34と外輪32との接触角は、軸方向内側(右側)から軸方向外側(左側)に向けて拡径するように設定されている。なお、ここで接触角は、JISB0104−1991に規定された呼び接触角に準じる。   FIG. 2 is an enlarged cross-sectional view showing the main part of the present invention. As shown in the figure, the first tapered roller bearing 11 includes an outer ring 32, an inner ring 33, and a plurality of tapered rollers (rolling elements) 34 disposed between the outer ring 32 and the inner ring 33. An outer peripheral surface of the outer ring 32 is fitted to an inner peripheral surface of the first housing 25, and an inner peripheral raceway surface 32 a is formed on the inner peripheral surface of the outer ring 32. On the outer peripheral surface of the inner ring 33, an outer peripheral raceway surface 33 a on which the tapered rollers 34 roll obliquely is formed, and the output shaft 15 is fitted on the inner peripheral surface of the inner ring 33. The contact angle between the inner ring 33 and the tapered roller 34 and the contact angle between the tapered roller 34 and the outer ring 32 are set so as to increase in diameter from the axially inner side (right side) toward the axially outer side (left side). Here, the contact angle conforms to the nominal contact angle defined in JIS B0104-1991.

第1円錐ころ軸受11の外輪32には、閉塞部材(端部部材)36が設けられている。この閉塞部材36は、外輪32の軸方向外端部(左端部)において、外輪32の開口部を塞ぐように外輪32と一体に形成されている。したがって、外輪32は、軸方向外端部が中実構造となり、軸方向内端部のみが開口した形状となっている。
また、外輪32の外周の軸方向外端部側は縮径されており、この縮径部32cの外周面にはシール部材38が嵌合されている。
The outer ring 32 of the first tapered roller bearing 11 is provided with a closing member (end member) 36. The closing member 36 is formed integrally with the outer ring 32 so as to close the opening of the outer ring 32 at the axially outer end (left end) of the outer ring 32. Therefore, the outer ring 32 has a solid structure in the outer end portion in the axial direction, and has a shape in which only the inner end portion in the axial direction is opened.
Further, the outer peripheral side of the outer ring 32 is reduced in diameter in the axial outer end portion, and a seal member 38 is fitted to the outer peripheral surface of the reduced diameter portion 32c.

シール部材38は、強化ゴム製の耐圧シールであり、縮径部32cの外周面に嵌合した円筒部38aと、円筒部38aから径方向外方に突出するリップ部38bとを有している。シール部材38に使用するゴムの材質は、機械的強度と耐油性とを両立できるゴム、例えば、ニトリルゴム(特に水素化ニトリルゴム)、アクリルゴム、シリコンゴム及びフッ素ゴム等が好適である。   The seal member 38 is a pressure-resistant seal made of reinforced rubber, and has a cylindrical portion 38a fitted to the outer peripheral surface of the reduced diameter portion 32c, and a lip portion 38b protruding radially outward from the cylindrical portion 38a. . The rubber material used for the seal member 38 is preferably a rubber capable of achieving both mechanical strength and oil resistance, such as nitrile rubber (particularly hydrogenated nitrile rubber), acrylic rubber, silicon rubber, and fluorine rubber.

リップ部38bは、円筒部38aの軸方向内端部(右端部)を基端として径方向外方に延びる円環部38dと、円環部38dの径方向外端部から軸方向外方(左方)に延びる当接部38cとを有している。当接部38cの外周面は、径方向外方へ向けて先細り状となる山形状とされている。リップ部38bは、径方向内方に弾性変形することにより第1ハウジング25の内周面に圧接されている。なお、リップ部38bの形状は、これに限定されるものではなく、円筒部38aから径方向外方及び軸方向外方へ略直線的に斜めに延びる形状としてもよい。   The lip portion 38b has an annular portion 38d extending radially outward from the axially inner end portion (right end portion) of the cylindrical portion 38a, and an axially outward portion from the radially outer end portion of the annular portion 38d ( And a contact portion 38c extending to the left. The outer peripheral surface of the contact portion 38c has a mountain shape that is tapered outward in the radial direction. The lip portion 38b is in pressure contact with the inner peripheral surface of the first housing 25 by elastically deforming radially inward. The shape of the lip portion 38b is not limited to this, and may be a shape that extends obliquely substantially linearly from the cylindrical portion 38a outward in the radial direction and outward in the axial direction.

第1円錐ころ軸受11の外輪32は、第1の線膨張係数を有している。これに対して、第1ハウジング25は、第1の線膨張係数よりも大きい第2の線膨張係数を有している。また、出力軸15は、第2の線膨張係数よりも小さい第3の線膨張係数を有している。
例えば、第1円錐ころ軸受11は、外輪32、内輪33及び転動体34が、いずれも鋼(例えば、軸受鋼、はだ焼鋼、浸炭鋼)にて形成され、第1ハウジング25は、軽金属製(Al又はMgのいずれかを主成分(50質量%以上の含有率)とする金属)にて形成され、出力軸15は、鋼(例えば、機械構造用炭素鋼)にて形成されている。好ましくは、第1ハウジング25は、加工性及び耐食性の観点からAlまたはAl合金が使用され、Al合金としては、例えばダイキャスト用Al合金が使用される。本実施形態では、ケース12(図1)もAl合金製であり、第1ハウジング25はケース12の内面に一体化されている。
The outer ring 32 of the first tapered roller bearing 11 has a first linear expansion coefficient. In contrast, the first housing 25 has a second linear expansion coefficient larger than the first linear expansion coefficient. The output shaft 15 has a third linear expansion coefficient smaller than the second linear expansion coefficient.
For example, in the first tapered roller bearing 11, the outer ring 32, the inner ring 33, and the rolling element 34 are all formed of steel (for example, bearing steel, case hardened steel, carburized steel), and the first housing 25 is a light metal. The output shaft 15 is formed of steel (for example, carbon steel for machine structure). . Preferably, the first housing 25 is made of Al or an Al alloy from the viewpoints of workability and corrosion resistance. As the Al alloy, for example, an Al alloy for die casting is used. In the present embodiment, the case 12 (FIG. 1) is also made of an Al alloy, and the first housing 25 is integrated with the inner surface of the case 12.

第1ハウジング25の主成分であるAlの線膨張係数(第2の線膨張係数)は23〜24ppm/℃、出力軸15及び第1円錐ころ軸受11の主成分であるFeの線膨張係数(第1,第3の線膨張係数)は、約12〜13ppm/℃である。また、一般に、自動車のトランスミッションにおける軸受使用環境温度は−40℃以上150℃以下の範囲(寒冷地及び高速連続運転等を除いた通常到達温度は、50℃以上80℃以下)である。   The linear expansion coefficient (second linear expansion coefficient) of Al that is the main component of the first housing 25 is 23 to 24 ppm / ° C., and the linear expansion coefficient of Fe that is the main component of the output shaft 15 and the first tapered roller bearing 11 ( The first and third linear expansion coefficients are about 12 to 13 ppm / ° C. In general, the bearing use environment temperature in the automobile transmission is in the range of −40 ° C. to 150 ° C. (normally reached temperature excluding cold regions and high-speed continuous operation is 50 ° C. to 80 ° C.).

前記予圧保持手段30は、第1円錐ころ軸受11に軸方向内方への予圧を付与するものであり、第1ハウジング25に設けられた有底円筒状のシリンダ43と、このシリンダ43に接続され、シリンダ43内に作動油を供給する作動油供給機構Aと、シリンダ43内の作動油を排出させる作動油排出機構Bとを備えている。
シリンダ43の内周には、外輪32の大径部32bが軸方向に摺動可能に嵌合されており、シリンダ43内面と外輪32の閉塞部材36との間に形成される空間がシール部材38によって密封可能な空間である加圧室45として構成されている。外輪32の外周面には、摺動をスムーズにするために固体潤滑剤がコーティングされている。固体潤滑剤としては、例えば、ポリテトラフルオロエチレン等のフッ素樹脂や二硫化モリブデン、グラファイト又はモリブデンやこれらを樹脂に分散させたものを使用することができる。
The preload holding means 30 applies axially inward preload to the first tapered roller bearing 11, and is connected to the cylinder 43 with a bottomed cylindrical cylinder 43 provided in the first housing 25. The hydraulic oil supply mechanism A for supplying the hydraulic oil into the cylinder 43 and the hydraulic oil discharge mechanism B for discharging the hydraulic oil in the cylinder 43 are provided.
A large diameter portion 32b of the outer ring 32 is fitted to the inner periphery of the cylinder 43 so as to be slidable in the axial direction, and a space formed between the inner surface of the cylinder 43 and the closing member 36 of the outer ring 32 is a seal member. The pressurizing chamber 45 is a space that can be sealed by the pressure chamber 38. A solid lubricant is coated on the outer peripheral surface of the outer ring 32 in order to make sliding smoothly. As the solid lubricant, for example, a fluororesin such as polytetrafluoroethylene, molybdenum disulfide, graphite or molybdenum, or a dispersion of these in a resin can be used.

作動油供給機構Aは、流体供給路48と、この流体供給路48を介して加圧室45に接続された圧力源としての油圧ポンプ49と、この油圧ポンプ49と加圧室45との間の流体供給路48に設けられた逆止弁44と、前記油圧ポンプ49による流体の供給と供給停止とを制御する流体供給制御部60とを備えている。
この実施の形態において、逆止弁44はシリンダ43の底壁43aに配設されており、その内部空間(第1の内部空間)44dを流路に沿って移動可能な第1のチェックボール44bと、この第1のチェックボール44bを軸方向外方に第1の設定圧力で付勢する第1の付勢部材44cとを備えている。
The hydraulic oil supply mechanism A includes a fluid supply path 48, a hydraulic pump 49 serving as a pressure source connected to the pressurizing chamber 45 through the fluid supply path 48, and the hydraulic pump 49 and the pressurizing chamber 45. A check valve 44 provided in the fluid supply path 48 and a fluid supply control unit 60 for controlling supply and stop of supply of the fluid by the hydraulic pump 49.
In this embodiment, the check valve 44 is disposed on the bottom wall 43a of the cylinder 43, and a first check ball 44b that can move along an internal space (first internal space) 44d along the flow path. And a first urging member 44c that urges the first check ball 44b axially outward with a first set pressure.

前記第1の付勢部材44cは圧縮コイルばねで構成されており、その第1の設定圧力は、加圧室45の体積や形状、軸受の形式、大きさ等の緒元により設定される。第1のチェックボール44bは、第1の付勢部材44cによって軸方向外方に押しやられて第1の内部空間44dの左端部(流体供給路48の孔)を閉塞する。また、油圧ポンプ49から第1の設定圧力以上の圧力で作動油が供給されると、第1のチェックボール44bは、第1の付勢部材44cの付勢力に抗して軸方向内方に移動して第1の内部空間44dと油圧ポンプ49側の流体供給路48とが連通され、作動油が加圧室45内に流入する。言い換えると、第1の設定圧力は、油圧ポンプ49から逆止弁44に負荷される作動油の油圧に負けて第1の付勢部材44cが第1のチェックボール44bを軸方向内方に移動させることのできる加圧室側の最大の油圧であり、実質的に、油圧ポンプ49から供給される作動油の流体圧と、逆止弁44を連通させるときに必要な最小の差圧aとの差に基づく。   The first urging member 44c is composed of a compression coil spring, and the first set pressure is set according to the specifications such as the volume and shape of the pressurizing chamber 45, the type and size of the bearing. The first check ball 44b is pushed outward in the axial direction by the first urging member 44c to close the left end portion (the hole of the fluid supply path 48) of the first internal space 44d. When the hydraulic oil is supplied from the hydraulic pump 49 at a pressure equal to or higher than the first set pressure, the first check ball 44b moves inward in the axial direction against the urging force of the first urging member 44c. The first internal space 44d and the fluid supply path 48 on the hydraulic pump 49 side communicate with each other, and hydraulic oil flows into the pressurizing chamber 45. In other words, the first urging member 44c moves the first check ball 44b inward in the axial direction by losing the hydraulic pressure of the hydraulic oil loaded from the hydraulic pump 49 to the check valve 44 from the first set pressure. The maximum hydraulic pressure on the pressurizing chamber side that can be generated, substantially the fluid pressure of the hydraulic oil supplied from the hydraulic pump 49, and the minimum differential pressure a required when the check valve 44 is communicated Based on the difference.

このように油圧ポンプ49により流体供給路48及び逆止弁44を介して加圧室45に作動油が供給されると、外輪32が軸方向内方へ微少移動して予圧が付与される。外輪32は、円錐ころ34の傾斜した転動面から分力を受けて軸方向及び径方向に変位し、径方向の予圧は、外輪32の外周面がシリンダ43の内周面に押しつけられることによって支持される。   In this way, when hydraulic oil is supplied to the pressurizing chamber 45 by the hydraulic pump 49 via the fluid supply path 48 and the check valve 44, the outer ring 32 slightly moves inward in the axial direction and preload is applied. The outer ring 32 receives a component force from the inclined rolling surface of the tapered roller 34 and is displaced in the axial direction and the radial direction, and the preload in the radial direction is such that the outer peripheral surface of the outer ring 32 is pressed against the inner peripheral surface of the cylinder 43. Supported by.

作動油排出機構Bは、シリンダ43の底壁43aに配設されたリリーフ弁50と、このリリーフ弁50を介して加圧室45と油タンク52とを接続する排出路51とを備えている。このリリーフ弁50は、その内部空間(第2の内部空間)50dを移動可能な第2のチェックボール50bと、この第2のチェックボール50bを軸方向内方に第2の設定圧力で付勢する第2の付勢部材50cとを備えている。すなわち、リリーフ弁50は逆止弁44と基本的構造が同じものを、作動油の排出方向と流入方向とを左右逆にした状態で配置したものである。   The hydraulic oil discharge mechanism B includes a relief valve 50 disposed on the bottom wall 43 a of the cylinder 43, and a discharge passage 51 that connects the pressurizing chamber 45 and the oil tank 52 via the relief valve 50. . The relief valve 50 has a second check ball 50b that can move in the internal space (second internal space) 50d, and urges the second check ball 50b inward in the axial direction with a second set pressure. And a second urging member 50c. That is, the relief valve 50 has the same basic structure as the check valve 44 and is disposed in a state in which the hydraulic oil discharge direction and the inflow direction are reversed from side to side.

第2の設定圧力は、第1の設定圧力よりも高い圧力に設定されている。第2のチェックボール50bは第2の付勢部材50cによって押圧され、軸方向内方に押しやられて第2の内部空間50dの右端部(排出路51の孔)を閉塞する。また、加圧室45内の圧力が第2の設定圧力以上になると、第2のチェックボール50bが軸方向外方に移動して加圧室45と第2の内部空間50dとが連通され、加圧室45の作動油が排出路51を通して油タンク52に回収されるようになっている。言い換えると、第2の設定圧力は、加圧室45からリリーフ弁50に負荷される作動油の圧力に負けて第2の付勢部材50cが第2のチェックボール50bを軸方向外方に移動させることのできる加圧室45側の最小の圧力であり、実質的に、排出側の流体圧(本実施例では油タンク52内の圧力であり、大気圧)と、リリーフ弁50を連通させるときに必要な最小の差圧bとの和に基づく。なお、作動油がトランスミッションの潤滑油と同じである場合には、作動油排出機構Bによりトランスミッション内に作動油を排出してもよい。このときは当然、第2の設定圧力は、トランスミッション内の圧力と、リリーフ弁50を連通させるときに必要な最小の差圧bとの和に基づくことになる。
第2の設定圧力は、第1の設定圧力以上の圧力に設定されているので、前述した逆止弁44とリリーフ弁50の機能によって、加圧室45内部の圧力が第1の設定圧力と第2の設定圧力との間に維持されることになる。
The second set pressure is set to a pressure higher than the first set pressure. The second check ball 50b is pressed by the second urging member 50c and is pushed inward in the axial direction to close the right end portion (the hole of the discharge passage 51) of the second inner space 50d. Further, when the pressure in the pressurizing chamber 45 becomes equal to or higher than the second set pressure, the second check ball 50b moves outward in the axial direction, and the pressurizing chamber 45 and the second internal space 50d communicate with each other. The hydraulic oil in the pressurizing chamber 45 is collected in the oil tank 52 through the discharge passage 51. In other words, the second set pressure loses the pressure of the hydraulic oil loaded from the pressurizing chamber 45 to the relief valve 50, and the second urging member 50c moves the second check ball 50b outward in the axial direction. This is the minimum pressure on the pressurizing chamber 45 side that can be made, and substantially makes the fluid pressure on the discharge side (in this embodiment, the pressure in the oil tank 52 and atmospheric pressure) communicate with the relief valve 50. Sometimes based on the sum of the minimum differential pressure b required. When the hydraulic oil is the same as the lubricating oil for the transmission, the hydraulic oil may be discharged into the transmission by the hydraulic oil discharge mechanism B. In this case, naturally, the second set pressure is based on the sum of the pressure in the transmission and the minimum differential pressure b required when the relief valve 50 is communicated.
Since the second set pressure is set to a pressure equal to or higher than the first set pressure, the pressure in the pressurizing chamber 45 is set to the first set pressure by the functions of the check valve 44 and the relief valve 50 described above. It is maintained between the second set pressure.

流体供給制御部60は、加圧室45の油圧を検知するセンサ61を有しており、このセンサ61からの検知信号に基づいて油圧ポンプ49を駆動したり停止させたりすることができる。すなわち、流体供給制御部60は、加圧室45内の油圧が第1の設定圧力未満になったことをセンサ61が検知すると、油圧ポンプ49を駆動して逆止弁44を通して加圧室45に作動油を供給し、加圧室45内の油圧が第1の設定圧力以上且つ第2の設定圧力未満である第3の設定圧力以上になったことをセンサ61が検知すると、油圧ポンプ49の駆動を停止させて加圧室45への作動油の供給を中止させる。この場合、油圧ポンプ49から逆止弁44に負荷される作動油の油圧は、第3の設定圧力と逆止弁44を連通させるときに必要な最小の差圧aとの和以上であればよい。このことで加圧室45内の作動油の油圧は略第3の設定圧力以上になる。加圧室45内の作動油の圧力が第2の設定圧力よりも大きければリリーフ弁50から作動油が排出され、センサ61によって加圧室45内部の油圧が第2の設定圧力未満である第3の設定圧力以上となったことが検知されるため、油圧ポンプ49の駆動は停止する。このため、好ましくは、油圧ポンプ49の余分な駆動をなくすために、油圧ポンプ49の逆止弁44に負荷される作動油の圧力の最大値は、第2の設定圧力よりも小さいほうがよい。また、第3の設定圧力は第1の設定圧力と同じ値でもよい。   The fluid supply control unit 60 includes a sensor 61 that detects the hydraulic pressure of the pressurizing chamber 45, and can drive or stop the hydraulic pump 49 based on a detection signal from the sensor 61. That is, when the sensor 61 detects that the hydraulic pressure in the pressurizing chamber 45 has become less than the first set pressure, the fluid supply control unit 60 drives the hydraulic pump 49 and passes through the check valve 44 to pressurize the chamber 45. When the sensor 61 detects that the hydraulic pressure in the pressurizing chamber 45 is equal to or higher than the third set pressure that is equal to or higher than the first set pressure and lower than the second set pressure, the hydraulic pump 49 is supplied. Is stopped and the supply of hydraulic oil to the pressurizing chamber 45 is stopped. In this case, the hydraulic pressure of the hydraulic oil loaded from the hydraulic pump 49 to the check valve 44 is equal to or greater than the sum of the third set pressure and the minimum differential pressure a required for communicating the check valve 44. Good. As a result, the hydraulic pressure of the hydraulic oil in the pressurizing chamber 45 becomes substantially equal to or higher than the third set pressure. If the pressure of the hydraulic oil in the pressurizing chamber 45 is larger than the second set pressure, the hydraulic oil is discharged from the relief valve 50, and the sensor 61 sets the hydraulic pressure in the pressurizing chamber 45 below the second set pressure. Since it is detected that the pressure exceeds the set pressure of 3, the drive of the hydraulic pump 49 is stopped. For this reason, it is preferable that the maximum value of the pressure of the hydraulic oil loaded on the check valve 44 of the hydraulic pump 49 is smaller than the second set pressure in order to eliminate excessive driving of the hydraulic pump 49. Further, the third set pressure may be the same value as the first set pressure.

以上の構成の転がり軸受装置10において、当該転がり軸受装置10が組み込まれたトランスミッションの温度が比較的低温で一定に保たれている場合、第1ハウジング25、外輪32、出力軸15の熱膨張による寸法変化の差はさほど生じず、予圧も一定に保たれる。この際、加圧室45には作動油が供給されており、その油圧は第1の設定圧力と第2の設定圧力との間に維持されているとともに、油圧ポンプ49は流体供給制御部60によって駆動停止されている。   In the rolling bearing device 10 having the above-described configuration, when the temperature of the transmission in which the rolling bearing device 10 is incorporated is kept relatively constant at a relatively low temperature, the first housing 25, the outer ring 32, and the output shaft 15 are thermally expanded. The difference in dimensional change does not occur so much and the preload is kept constant. At this time, hydraulic oil is supplied to the pressurizing chamber 45, and the hydraulic pressure is maintained between the first set pressure and the second set pressure, and the hydraulic pump 49 is connected to the fluid supply control unit 60. The drive is stopped by.

トランスミッションが昇温すると、出力軸15の線膨張係数よりもトランスミッション、第1ハウジング25及び第2ハウジング26の線膨張係数の方が大きいため、トランスミッション、第1ハウジング25及び第2ハウジング26が軸方向に大きく膨張し、外輪32が円錐ころ34から離反しようとする。
また、第1円錐ころ軸受11よりも第1ハウジング25の方が線膨張係数が大きいため、第1ハウジング25(シリンダ43)の内周面が拡径し、外輪32の外周面から離反しようとする。つまり、第1ハウジング25の内周面による外輪32の外周面の支持位置が径方向外方に変化し、第1ハウジング25による外輪32への反力が減少する。
When the transmission rises in temperature, the linear expansion coefficients of the transmission, the first housing 25 and the second housing 26 are larger than the linear expansion coefficient of the output shaft 15, so that the transmission, the first housing 25 and the second housing 26 are axial. The outer ring 32 tends to be separated from the tapered roller 34.
Further, since the first housing 25 has a larger linear expansion coefficient than the first tapered roller bearing 11, the inner peripheral surface of the first housing 25 (cylinder 43) expands, and tries to separate from the outer peripheral surface of the outer ring 32. To do. That is, the support position of the outer peripheral surface of the outer ring 32 by the inner peripheral surface of the first housing 25 changes radially outward, and the reaction force to the outer ring 32 by the first housing 25 decreases.

すると、外輪32は、加圧室45内の油圧によって軸方向内方へ押圧され、外輪32に付与される予圧と、第1ハウジング25からの反力とがバランスする位置まで移動する。その結果、温度上昇によって外輪32の外周面の支持位置が移動しても、外輪32に対する予圧はほぼ一定に保たれる。この外輪32の移動に伴って加圧室45の油圧が第1の設定圧力よりも低下すると、流体供給制御部60は油圧ポンプ49を駆動して加圧室45内に作動油を供給し、加圧室45内の油圧が第3の設定圧力になると油圧ポンプ49を停止させて作動油の供給を中止させる。   Then, the outer ring 32 is pressed inward in the axial direction by the hydraulic pressure in the pressurizing chamber 45, and moves to a position where the preload applied to the outer ring 32 and the reaction force from the first housing 25 are balanced. As a result, even if the support position of the outer peripheral surface of the outer ring 32 moves due to a temperature rise, the preload on the outer ring 32 is kept substantially constant. When the hydraulic pressure in the pressurizing chamber 45 drops below the first set pressure as the outer ring 32 moves, the fluid supply control unit 60 drives the hydraulic pump 49 to supply hydraulic oil into the pressurizing chamber 45. When the hydraulic pressure in the pressurizing chamber 45 reaches the third set pressure, the hydraulic pump 49 is stopped to stop supplying hydraulic oil.

このように、前記転がり軸受装置10は、加圧室45の圧力が低下したときのみ油圧ポンプ49を駆動して、加圧室45の圧力を第1の設定圧力と第3の設定圧力との間に維持するものであるので、常に油圧ポンプ49を駆動させて加圧室45の圧力を維持するものに比べて、油圧ポンプ49の駆動に要するエネルギーを低減させることができる。   As described above, the rolling bearing device 10 drives the hydraulic pump 49 only when the pressure in the pressurizing chamber 45 is reduced, and the pressure in the pressurizing chamber 45 is changed between the first set pressure and the third set pressure. Since the pressure is maintained in between, the energy required for driving the hydraulic pump 49 can be reduced as compared with the case where the hydraulic pump 49 is always driven to maintain the pressure in the pressurizing chamber 45.

また、図2に示すように、第1ハウジング25の内周面が拡径し、外輪32の外周面から離反すると、外輪32に設けたシール部材38のリップ部38bが第1ハウジング25の内周面に追従して弾性復元し、圧接(密着)した状態を維持する。したがって、第1ハウジング25の内周面と外輪32の外周面との隙間から作動油が漏れることはほとんどなく、予圧を維持することができる。   Further, as shown in FIG. 2, when the inner peripheral surface of the first housing 25 is expanded in diameter and separated from the outer peripheral surface of the outer ring 32, the lip portion 38 b of the seal member 38 provided on the outer ring 32 is formed inside the first housing 25. The elastic recovery is performed following the peripheral surface, and the pressure contact (adhesion) state is maintained. Therefore, the hydraulic oil hardly leaks from the gap between the inner peripheral surface of the first housing 25 and the outer peripheral surface of the outer ring 32, and the preload can be maintained.

トランスミッションの稼働停止に伴ってその温度が低下すると、第1ハウジング25が軸方向及び径方向に熱収縮し、加圧室45が縮小する。これにより、加圧室45内の作動油が加圧され、第1円錐ころ軸受11に過剰な予圧が付与されようとする。しかし、加圧室45内が第2の設定圧力以上になると、作動油排出機構Bのリリーフ弁50が開口して排出路51と連通し、加圧室45から作動油を排出することにより、加圧室45の圧力が適正に保たれる。また、この場合、逆止弁44の作用により、油圧ポンプ49に作動油が逆流するのが食い止められている。
このように、前記転がり軸受装置10の温度が低下したときでも、前記リリーフ弁50の作用によって、加圧室45の圧力が第2の設定圧力に維持されるものであるので、加圧室45の圧力が過剰に上昇するのを防止することができる。
When the temperature of the transmission decreases as the transmission stops, the first housing 25 is thermally contracted in the axial direction and the radial direction, and the pressurizing chamber 45 is contracted. As a result, the hydraulic oil in the pressurizing chamber 45 is pressurized, and an excessive preload is applied to the first tapered roller bearing 11. However, when the inside of the pressurizing chamber 45 becomes equal to or higher than the second set pressure, the relief valve 50 of the hydraulic oil discharge mechanism B opens and communicates with the discharge passage 51, and the hydraulic oil is discharged from the pressurization chamber 45. The pressure in the pressurizing chamber 45 is maintained appropriately. In this case, the check valve 44 prevents the hydraulic oil from flowing back to the hydraulic pump 49.
As described above, even when the temperature of the rolling bearing device 10 is lowered, the pressure of the pressurizing chamber 45 is maintained at the second set pressure by the action of the relief valve 50. It is possible to prevent an excessive increase in pressure.

第1の設定圧力は、第1円錐ころ軸受11に付与する所定の予圧の範囲のうち略最小の予圧を付与するために必要な圧力であり、第2の設定圧力は第1円錐ころ軸受11に付与する所定の予圧の範囲の略最大の予圧を付与するために必要な圧力である。   The first set pressure is a pressure necessary for applying a substantially minimum preload within a predetermined preload range to be applied to the first tapered roller bearing 11, and the second set pressure is the first tapered roller bearing 11. This is a pressure necessary for applying a substantially maximum preload within a predetermined preload range to be applied.

さらに、トランスミッションの変速やクラッチ(図示略)の断接等によって、出力軸15に予圧付与方向とは逆方向(軸方向外方)への衝撃荷重等が加わった場合、内輪33、円錐ころ34を介して外輪32が加圧室45内の油圧に抗して軸方向に移動し、第1円錐ころ軸受11に過剰な予圧が付与されるおそれがあるが、この場合でも、作動油排出機構Bが機能して加圧室45内の作動油を排出することにより、第1円錐ころ軸受11に過剰な予圧が付与されるのを防止することができる。また、この場合、加圧室45の油圧が瞬間的に上昇するが、逆止弁44の作用によって油圧ポンプ49に作動油が逆流するのが防止される。
また、この衝撃荷重が加わることによって瞬間的に加圧室45内が昇圧したとしても、外輪32には耐圧シールからなるシール部材38が設けられているので、第1ハウジング25の内周面と外輪32の外周面との間の隙間から作動油が漏れ出すおそれがない。
Further, when an impact load or the like is applied to the output shaft 15 in the direction opposite to the preload application direction (axially outward) due to transmission speed change or clutch (not shown) connection / disconnection, the inner ring 33 and the tapered roller 34 are applied. The outer ring 32 moves in the axial direction against the hydraulic pressure in the pressurizing chamber 45 through the shaft, and an excessive preload may be applied to the first tapered roller bearing 11. When B functions and discharges the hydraulic oil in the pressurizing chamber 45, it is possible to prevent the first tapered roller bearing 11 from being given an excessive preload. In this case, the hydraulic pressure in the pressurizing chamber 45 rises momentarily, but the hydraulic oil is prevented from flowing back to the hydraulic pump 49 by the action of the check valve 44.
Further, even if the pressure in the pressurizing chamber 45 is instantaneously increased due to the impact load, the outer ring 32 is provided with the seal member 38 made of a pressure-resistant seal. There is no possibility that the hydraulic oil leaks from the gap between the outer ring 32 and the outer peripheral surface.

一方、前記転がり軸受装置10をオートマチックトランスミッションに適用し、当該トランスミッションの油圧制御に用いる作動油の一部を加圧室45に供給するように構成する場合には、加圧室45に供給する作動油分だけトランスミッション用の油圧ポンプの吐出量を高める必要があるが、当該加圧室45の油圧が一旦第3の設定圧力以上となった後は、加圧室45への作動油の供給が不要であるので、その供給を制御バルブ等によって規制することにより、油圧ポンプによる作動油の供給量を削減することができる。このため油圧ポンプの駆動に必要なエネルギーを削減することができる。   On the other hand, when the rolling bearing device 10 is applied to an automatic transmission and configured to supply a part of hydraulic oil used for hydraulic control of the transmission to the pressurizing chamber 45, the operation to supply the pressurizing chamber 45 is performed. Although it is necessary to increase the discharge amount of the hydraulic pump for transmission by the amount of oil, it is not necessary to supply hydraulic oil to the pressurizing chamber 45 once the hydraulic pressure in the pressurizing chamber 45 has exceeded the third set pressure. Therefore, by restricting the supply by a control valve or the like, the amount of hydraulic oil supplied by the hydraulic pump can be reduced. For this reason, the energy required for driving the hydraulic pump can be reduced.

なお、閉塞部材36は、外輪32とは別体に構成することが可能である。但し、本実施形態のように、外輪32と閉塞部材36とを一体に形成することによって、外輪32の剛性が高められるので、トランスミッションの昇温に伴って、第1ハウジング25の内周面と外輪32の外周面との間に隙間が生じた場合でも、軌道真円度の悪化を抑制し、軸受性能を維持することができる。また、外輪32と閉塞部材36とが別体であると、第1ハウジング25の内周面が拡径したときに外輪32と閉塞部材36とが個別に傾き易くなり、外輪32と閉塞部材36とが相互に位置ずれして擦れによる摩耗を生じる恐れがあるが、外輪32と閉塞部材36とを一体に形成することによって、このような不都合も生じなくなる。   The closing member 36 can be configured separately from the outer ring 32. However, since the rigidity of the outer ring 32 is increased by integrally forming the outer ring 32 and the closing member 36 as in this embodiment, the inner peripheral surface of the first housing 25 is increased with the temperature rise of the transmission. Even when a gap is generated between the outer ring 32 and the outer peripheral surface, the deterioration of the roundness of the raceway can be suppressed and the bearing performance can be maintained. Further, when the outer ring 32 and the closing member 36 are separate, the outer ring 32 and the closing member 36 are easily inclined individually when the inner peripheral surface of the first housing 25 is expanded, and the outer ring 32 and the closing member 36 are easily inclined. However, by forming the outer ring 32 and the closing member 36 integrally, such inconvenience does not occur.

また、上記実施例では、センサ61を加圧室45の油圧を検知するため加圧室45に配設したが、逆止弁44、さらに言えば第1のチェックボール44bよりも加圧室45側の流体供給路48に配設してもよく、リリーフ弁50、さらに言えば第2のチェックボール50bよりも加圧室45側の排出路51に配設してもよい。これらの位置にセンサ61を配設することで、加圧室45の油圧を検知することができる。   In the above embodiment, the sensor 61 is disposed in the pressurizing chamber 45 to detect the hydraulic pressure of the pressurizing chamber 45. However, the pressurizing chamber 45 is more than the check valve 44, more specifically, the first check ball 44b. It may be disposed in the fluid supply path 48 on the side, or may be disposed in the discharge path 51 on the pressurizing chamber 45 side with respect to the relief valve 50, more specifically, the second check ball 50b. By disposing the sensor 61 at these positions, the hydraulic pressure in the pressurizing chamber 45 can be detected.

また、上記実施例では、逆止弁44を第1のチェックボール44bと第1の付勢部材44cと第1の内部空間44dとで構成したが、電磁弁により構成されてもよい。この場合、センサ61で第1の設定圧力未満を検知すると、油圧ポンプ49を駆動するとともに前記電磁弁を開けることで、加圧室45の油圧を第1の設定圧力以上で維持することができる。さらに、少なくとも第1の設定圧力以上、好ましくは第3の設定圧力以上を検知すると前記電磁弁を閉じるようにしておけば、衝撃荷重等が加わって、第1円錐ころ軸受11に過剰な予圧が付与されようとし、加圧室45の油圧が瞬間的に上昇した場合に、油圧ポンプ49に作動油が逆流するのを防止することができる。   Moreover, in the said Example, although the non-return valve 44 was comprised by the 1st check ball | bowl 44b, the 1st biasing member 44c, and the 1st internal space 44d, you may comprise by an electromagnetic valve. In this case, when the sensor 61 detects that the pressure is less than the first set pressure, the hydraulic pressure in the pressurizing chamber 45 can be maintained at the first set pressure or higher by driving the hydraulic pump 49 and opening the electromagnetic valve. . Furthermore, if the solenoid valve is closed when at least the first set pressure or more, preferably the third set pressure or more is detected, an impact load or the like is applied and an excessive preload is applied to the first tapered roller bearing 11. When the hydraulic pressure in the pressurizing chamber 45 increases momentarily, the hydraulic oil can be prevented from flowing back to the hydraulic pump 49.

本発明は、前記実施形態に限定されることなく適宜設計変更可能である。例えば、前記実施形態では、トランスミッションに用いられる転がり軸受装置を示しているが、四輪駆動車の駆動分配軸用のギヤユニット等、他の装置にも適用することができる。
また、転がり軸受としては、円錐ころ軸受に限らずアンギュラ玉軸受、深みぞ玉軸受等の予圧を使用する他の転がり軸受であってもよい。
The present invention is not limited to the embodiment described above, and can be appropriately changed in design. For example, although the rolling bearing device used in the transmission is shown in the above embodiment, the present invention can be applied to other devices such as a gear unit for a drive distribution shaft of a four-wheel drive vehicle.
Further, the rolling bearing is not limited to the tapered roller bearing, but may be another rolling bearing using a preload such as an angular ball bearing or a deep groove ball bearing.

本発明の実施形態に係る転がり軸受装置を構成したトランスミッション示す断面図である。It is sectional drawing which shows the transmission which comprised the rolling bearing apparatus which concerns on embodiment of this invention. 転がり軸受装置の要部の拡大断面図である。It is an expanded sectional view of the principal part of a rolling bearing device. 従来の転がり軸受装置の要部の拡大断面図である。It is an expanded sectional view of the principal part of the conventional rolling bearing apparatus.

符号の説明Explanation of symbols

10 転がり軸受装置
11 第1円錐ころ軸受(転がり軸受)
15 出力軸(回転軸)
25 第1ハウジング(ハウジング)
30 予圧保持手段
32 外輪
32a 内周軌道面
33 内輪
33a 外周軌道面
34 円錐ころ(転動体)
36 閉塞部材(端部部材)
44 逆止弁
45 加圧室
48 流体供給路
49 油圧ポンプ(圧力源)
50 リリーフ弁
51 排出路
A 作動油供給機構
B 作動油排出機構
DESCRIPTION OF SYMBOLS 10 Rolling bearing apparatus 11 1st tapered roller bearing (rolling bearing)
15 Output shaft (rotary shaft)
25 First housing (housing)
30 Preload holding means 32 Outer ring 32a Inner raceway surface 33 Inner ring 33a Outer raceway surface 34 Tapered roller (rolling element)
36 Closure member (end member)
44 Check valve 45 Pressurizing chamber 48 Fluid supply path 49 Hydraulic pump (pressure source)
50 Relief valve 51 Drain path A Hydraulic oil supply mechanism B Hydraulic oil discharge mechanism

Claims (3)

転動体と、
この転動体が転動するとともに当該転動体からの径方向荷重と軸方向一方側へ向く荷重とを受ける軌道面を内周に有し、且つ第1の線膨脹係数を有する外輪と、
前記転動体が転動する軌道面を外周に有し、予圧が付与された状態で前記転動体を介して外輪に組み込まれた内輪と、
前記外輪の外周面が軸方向へ移動可能に嵌合しているとともに、前記外輪の線膨脹係数よりも大きい第2の線膨張係数を有するハウジングと、
前記内輪の内周面に嵌合し、第2の線膨張係数よりも小さい第3の線膨張係数を有する回転軸と、
前記外輪の前記軸方向一方側の端部部材と前記ハウジングとの間に密封可能な空間として構成された加圧室と、
前記加圧室に流体圧を作用させて前記外輪を軸方向他方側へ移動させることにより、前記ハウジングの熱膨張に伴う前記予圧の低下を抑制する予圧保持手段と、を備える転がり軸受装置であって、
前記予圧保持手段が、
流体供給路を介して前記加圧室に接続された圧力源と、
前記加圧室と圧力源との間の流体供給路に設けられ、流体圧が第1の設定圧力以上で前記加圧室への流体の流入を許容する逆止弁と、
前記加圧室が第1の設定圧力よりも高い第2の設定圧力以上で、当該加圧室から流体を排出させる排出路に設けられたリリーフ弁と、
前記加圧室が第1の設定圧力未満になると、前記圧力源から前記逆止弁を通して加圧室に流体を供給し、第1の設定圧力以上且つ第2の設定圧力未満である第3の設定圧力以上になると当該流体の供給を停止させる流体供給制御部と、を備えることを特徴とする転がり軸受装置。
Rolling elements,
An outer ring having a raceway surface on the inner periphery that receives a radial load from the rolling element and a load directed to one side in the axial direction, and has a first linear expansion coefficient;
An inner ring that has a raceway surface on which the rolling element rolls on the outer periphery and is incorporated in an outer ring via the rolling element in a state in which a preload is applied;
A housing having a second linear expansion coefficient larger than a linear expansion coefficient of the outer ring, and an outer peripheral surface of the outer ring is fitted so as to be movable in the axial direction;
A rotating shaft fitted to the inner peripheral surface of the inner ring and having a third linear expansion coefficient smaller than the second linear expansion coefficient;
A pressurizing chamber configured as a sealable space between the end member on one axial side of the outer ring and the housing;
And a preload holding means for suppressing a decrease in the preload accompanying thermal expansion of the housing by applying fluid pressure to the pressurizing chamber to move the outer ring to the other side in the axial direction. And
The preload holding means is
A pressure source connected to the pressurizing chamber via a fluid supply path;
A check valve provided in a fluid supply path between the pressurizing chamber and a pressure source and allowing fluid to flow into the pressurizing chamber when the fluid pressure is equal to or higher than a first set pressure;
A relief valve provided in a discharge path for discharging the fluid from the pressurizing chamber at a pressure equal to or higher than a second set pressure higher than the first set pressure;
When the pressurizing chamber is less than the first set pressure, a fluid is supplied from the pressure source to the pressurizing chamber through the check valve, and the third set pressure is not less than the first set pressure and less than the second set pressure. A rolling bearing device comprising: a fluid supply control unit that stops supply of the fluid when the pressure exceeds a set pressure.
前記加圧室を構成する端部部材が、前記外輪の前記軸方向一方側の端部開口を塞いでいる請求項1に記載の転がり軸受装置。   The rolling bearing device according to claim 1, wherein an end member constituting the pressurizing chamber closes an end opening on the one axial side of the outer ring. 前記外輪と前記端部部材とが一体形成されている請求項1又は2に記載の転がり軸受装置。   The rolling bearing device according to claim 1, wherein the outer ring and the end member are integrally formed.
JP2007026705A 2007-02-06 2007-02-06 Rolling bearing device Expired - Fee Related JP5034531B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007026705A JP5034531B2 (en) 2007-02-06 2007-02-06 Rolling bearing device
US12/068,308 US7997804B2 (en) 2007-02-06 2008-02-05 Rolling bearing apparatus
DE602008001096T DE602008001096D1 (en) 2007-02-06 2008-02-06 Rolling device
DE602008000588T DE602008000588D1 (en) 2007-02-06 2008-02-06 Rolling device
EP08002204A EP1956253B1 (en) 2007-02-06 2008-02-06 Rolling bearing apparatus
EP08021194A EP2050974B1 (en) 2007-02-06 2008-02-06 Rolling bearing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026705A JP5034531B2 (en) 2007-02-06 2007-02-06 Rolling bearing device

Publications (2)

Publication Number Publication Date
JP2008190652A true JP2008190652A (en) 2008-08-21
JP5034531B2 JP5034531B2 (en) 2012-09-26

Family

ID=39750933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026705A Expired - Fee Related JP5034531B2 (en) 2007-02-06 2007-02-06 Rolling bearing device

Country Status (1)

Country Link
JP (1) JP5034531B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810058B1 (en) * 2016-06-28 2017-12-18 공주대학교 산학협력단 Air injection device for preventing puncture of tire
JP2019052719A (en) * 2017-09-15 2019-04-04 Ihi運搬機械株式会社 Plummer block

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132351A (en) * 1975-05-13 1976-11-17 Koyo Seiko Co Ltd Pre-pressure adjusting type bearing device
JPH0510835A (en) * 1991-06-28 1993-01-19 Nippon Seiko Kk Method and device for measuring pre-load of antifriction bearing
JPH06278440A (en) * 1993-02-25 1994-10-04 Unisia Jecs Corp Active suspension
JPH10157639A (en) * 1996-11-27 1998-06-16 Unisia Jecs Corp Power steering device
JP2003307161A (en) * 2002-04-16 2003-10-31 Mitsubishi Electric Corp Fuel supply device for car
JP2005067345A (en) * 2003-08-22 2005-03-17 Akebono Brake Ind Co Ltd Sliding door structure for vehicle
JP2006153090A (en) * 2004-11-26 2006-06-15 Jtekt Corp Bearing pre-load mechanism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132351A (en) * 1975-05-13 1976-11-17 Koyo Seiko Co Ltd Pre-pressure adjusting type bearing device
JPH0510835A (en) * 1991-06-28 1993-01-19 Nippon Seiko Kk Method and device for measuring pre-load of antifriction bearing
JPH06278440A (en) * 1993-02-25 1994-10-04 Unisia Jecs Corp Active suspension
JPH10157639A (en) * 1996-11-27 1998-06-16 Unisia Jecs Corp Power steering device
JP2003307161A (en) * 2002-04-16 2003-10-31 Mitsubishi Electric Corp Fuel supply device for car
JP2005067345A (en) * 2003-08-22 2005-03-17 Akebono Brake Ind Co Ltd Sliding door structure for vehicle
JP2006153090A (en) * 2004-11-26 2006-06-15 Jtekt Corp Bearing pre-load mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810058B1 (en) * 2016-06-28 2017-12-18 공주대학교 산학협력단 Air injection device for preventing puncture of tire
JP2019052719A (en) * 2017-09-15 2019-04-04 Ihi運搬機械株式会社 Plummer block

Also Published As

Publication number Publication date
JP5034531B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
EP1956253B1 (en) Rolling bearing apparatus
EP1967749B1 (en) Tapered roller bearing with lubrication
JP5488296B2 (en) Rolling bearing and camshaft device
CN104564674B (en) Compressor
CN104520166B (en) Yoke assembly for a rack and pinion steering gear and method for producing the same
EP2085626B1 (en) Rolling bearing and rolling bearing device
WO2009090120A2 (en) Seal and rolling bearing comprising such a seal.
JP5034531B2 (en) Rolling bearing device
JP4449716B2 (en) Bearing preload mechanism
JP2016014437A (en) Electric actuator
JP2014095418A (en) Lubrication structure of driving force transmission device
JP2008121788A (en) Roller bearing and roller bearing device
JP4935340B2 (en) Rolling bearing device
JP4905220B2 (en) Rolling bearing device
JP2008121787A (en) Roller bearing and roller bearing device
JP2008101674A (en) Rolling bearing device
JP2009275718A (en) Continuously variable transmission
JP2008196570A (en) Rolling bearing device
JP3692675B2 (en) Clutch device
JP6254880B2 (en) Lubricating oil supply structure and transmission
JP2008185191A (en) Rolling bearing device
JP2011033168A (en) Control device of automatic transmission for vehicle
JP2008101673A (en) Rolling bearing and rolling bearing device
JP2016142375A (en) Hydraulic engagement device
JP4819109B2 (en) Connection structure and connection method between motor shaft and hollow shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees