Nothing Special   »   [go: up one dir, main page]

JP2008189844A - Vibration-proofing rubber composition - Google Patents

Vibration-proofing rubber composition Download PDF

Info

Publication number
JP2008189844A
JP2008189844A JP2007027132A JP2007027132A JP2008189844A JP 2008189844 A JP2008189844 A JP 2008189844A JP 2007027132 A JP2007027132 A JP 2007027132A JP 2007027132 A JP2007027132 A JP 2007027132A JP 2008189844 A JP2008189844 A JP 2008189844A
Authority
JP
Japan
Prior art keywords
rubber
natural rubber
vibration
silica
epoxidized natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007027132A
Other languages
Japanese (ja)
Inventor
Norio Minouchi
則夫 箕内
Terukazu Terauchi
輝和 寺内
Ishiki Yokota
石樹 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2007027132A priority Critical patent/JP2008189844A/en
Publication of JP2008189844A publication Critical patent/JP2008189844A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration-proofing rubber composition which can especially be used for various vibration-proofing rubber products such as the engine mounts, strut mounts, body mounts, and suspension bushes of vehicles such as automobiles, and has both low dynamic magnification and high attenuation in high degrees. <P>SOLUTION: This vibration-proofing composition comprises a rubber component comprising natural rubber and epoxidized natural rubber and having an epoxidation degree of 2 to 25%, and silica having a BET specific surface area of 50 to 170 m<SP>2</SP>/g. The vibration-proofing composition has a sea-island structure which comprises a sea phase comprising the natural rubber and an island phase comprising the epoxidized natural rubber, wherein the silica is localized in the island phase, and a temperature-loss coefficient tan δ curve exhibits a two mountain structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、防振ゴム組成物に関し、特に自動車等の車両のエンジンマウント、ストラットマウント、ボディマウント、サスペンションブッシュなどの各種防振ゴムとして用いることができる防振ゴム組成物に関するものである。   The present invention relates to an anti-vibration rubber composition, and more particularly to an anti-vibration rubber composition that can be used as various anti-vibration rubbers for engine mounts, strut mounts, body mounts, suspension bushes, and the like of vehicles such as automobiles.

一般に、自動車にはエンジンや車体の振動を吸収し、乗り心地の向上や騒音を防止するためのエンジンマウント等の防振ゴムが用いられている。   In general, a vibration-proof rubber such as an engine mount for absorbing vibrations of an engine and a vehicle body and improving riding comfort and preventing noise is used in an automobile.

かかる防振ゴムにおいては、100Hz前後の高周波数域における騒音の抑制と、15Hz前後の低周波数域における振動の減衰が求められる。そして、前者の高周波数域における騒音抑制には、動倍率(動ばね定数(Kd)/静ばね定数(Ks))の値を小さくすることが有効であり、即ち、エンジンの振動を伝達する振動状態での動バネ定数が小さく、かつエンジンや車体の支持性能を示す静的剛性すなわち静バネ定数が大きいことが有効である。一方、後者の低周波数域における振動減衰には、減衰係数を小さくすることが有効である。更に、防振ゴムにおいては、実用に耐えうる耐久性を保持する必要もある。   Such anti-vibration rubber is required to suppress noise in a high frequency region around 100 Hz and to attenuate vibration in a low frequency region around 15 Hz. For noise suppression in the former high frequency range, it is effective to reduce the value of dynamic magnification (dynamic spring constant (Kd) / static spring constant (Ks)), that is, vibration that transmits engine vibration. It is effective that the dynamic spring constant in the state is small and that the static rigidity indicating the support performance of the engine and the vehicle body, that is, the static spring constant is large. On the other hand, it is effective to reduce the damping coefficient for vibration damping in the latter low frequency range. Furthermore, the anti-vibration rubber also needs to maintain durability that can withstand practical use.

そこで、従来より、防振ゴム組成物には、動倍率が低く強度の高い天然ゴムの単独、あるいは天然ゴムを主体としてブタジエンゴムやスチレンブタジエンゴム等のジエン系合成ゴムをブレンドしたものをゴム成分とし、カーボンブラックを配合したものが使用されている。   Therefore, conventionally, an anti-vibration rubber composition includes a natural rubber having a low dynamic ratio and high strength, or a natural rubber blended with a synthetic rubber such as butadiene rubber or styrene butadiene rubber mainly composed of natural rubber. And carbon black is used.

しかしながら、上記した防振ゴムの2大動特性である動倍率と減衰性とは二律背反の関係にあり、単なる天然ゴム系の配合により、これらのバランスを改良することは難しい。   However, the above-described two major dynamic characteristics of the vibration-proof rubber are a dynamic relationship between the dynamic magnification and the damping property, and it is difficult to improve the balance by simply blending with natural rubber.

下記非特許文献1には、天然ゴム系の防振ゴム組成物において防振性能を改良する目的で、溶液重合SBR(スチレンブタジエンゴム)の末端を変性したものと天然ゴムとのブレンドにより防振性能を改良できることが報告されている。しかしながら、それにおいても動倍率は天然ゴムよりも悪化し、減衰性の改良も十分ではなく、近年の厳しい要求性能には応えられない。   The following Non-Patent Document 1 describes that for the purpose of improving vibration-proof performance in a natural rubber-based vibration-proof rubber composition, vibration-proofing is achieved by blending a natural rubber with a solution-polymerized SBR (styrene butadiene rubber) modified end. It has been reported that performance can be improved. However, even in that case, the dynamic magnification is worse than that of natural rubber, the damping performance is not sufficiently improved, and it is not possible to meet the severely required performance in recent years.

一方、下記特許文献1には、動倍率を低減することを目的として、フィラーとして、特定のシリカを用いることが提案されている。しかしながら、一般に、シリカはゴム成分に対する分散性に劣ることから、シリカの凝集により動倍率低減効果を十分に発揮させることは難しい。すなわち、シリカは表面に存在するシラノール基により親油性の天然ゴム中では自己凝集しやすく、シリカが凝集すると、粒子間の相互作用により撓み変形時にせん断弾性率の変化が大きく、このことが動倍率の低減を妨げてしまう。   On the other hand, in the following Patent Document 1, it is proposed to use specific silica as a filler for the purpose of reducing dynamic magnification. However, in general, since silica is inferior in dispersibility with respect to a rubber component, it is difficult to sufficiently exhibit a dynamic power reduction effect by aggregation of silica. In other words, silica tends to self-aggregate in lipophilic natural rubber due to the silanol groups present on the surface, and when silica agglomerates, the change in shear modulus during bending deformation is large due to the interaction between the particles, which is a dynamic power factor. This will hinder the reduction.

ところで、下記特許文献2には、天然ゴムなどのジエン系ゴムを主成分とし、これに有機化層状粘土鉱物と、メタクリル酸変性液状イソプレンゴムと、アミン系シランカップリング剤と、エポキシ化天然ゴムなどのエポキシ化変性エラストマーとを配合してなる防振ゴム組成物が提案されている。このように同文献には、エポキシ化天然ゴムを配合することは開示されているものの、同文献において、エポキシ化天然ゴムは、シランカップリング剤との併用により、ナノ分散された有機化層状粘土鉱物を、ポリマー成分であるジエン系ゴムと、化学的に結合させるために配合されている。そのため、動倍率の低減を意図したものではあるが、高減衰性との両立効果は示されておらず、後述する本発明の特徴を何ら示唆するものではない。   By the way, in the following Patent Document 2, a diene rubber such as natural rubber is a main component, and an organic layered clay mineral, a methacrylic acid-modified liquid isoprene rubber, an amine silane coupling agent, and an epoxidized natural rubber. An anti-vibration rubber composition obtained by blending with an epoxidized modified elastomer such as has been proposed. Thus, although it is disclosed in the same document that an epoxidized natural rubber is blended, in the same document, the epoxidized natural rubber is combined with a silane coupling agent to form a nano-dispersed organic layered clay. It is blended for chemically combining minerals with diene rubber, which is a polymer component. Therefore, although intended to reduce the dynamic magnification, the effect of compatibility with high attenuation is not shown, and does not suggest any features of the present invention described later.

また、下記特許文献3には、エチレン−α−オレフィン−非共役ジエン共重合体ゴム(EPDM)を主成分とし、これにマレイン化エチレン−α−オレフィン共重合体ゴムと、エポキシ化天然ゴムと、天然ゴムとを配合してなる防振ゴム組成物が提案されている。この文献でも、エポキシ化天然ゴムと天然ゴムとの併用が開示されているものの、EPDMを主成分とするため、天然ゴムを海相とし、エポキシ化天然ゴムを島相とする海島構造が得られず、低動倍率と高減衰性とを高度に両立させることはできない。
特開2006−199899号公報 特開2005−187583号公報 特開2005−089625号公報 T. OHYAMA, A. UEDA他, RUBBER DIVISION, ACS, DETROIT, 1989
Patent Document 3 listed below contains ethylene-α-olefin-nonconjugated diene copolymer rubber (EPDM) as a main component, and includes maleated ethylene-α-olefin copolymer rubber, epoxidized natural rubber, An anti-vibration rubber composition obtained by blending with natural rubber has been proposed. Although this document also discloses the combined use of epoxidized natural rubber and natural rubber, since EPDM is the main component, a sea-island structure is obtained in which natural rubber is the sea phase and epoxidized natural rubber is the island phase. Therefore, it is impossible to achieve both a low dynamic magnification and a high attenuation at a high level.
JP 2006-199899 A Japanese Patent Laid-Open No. 2005-187583 Japanese Patent Laying-Open No. 2005-089625 T. OHYAMA, A. UEDA, RUBBER DIVISION, ACS, DETROIT, 1989

本発明は、以上の点に鑑みてなされたものであり、低動倍率と高減衰性を高度に両立させることができる防振ゴム組成物を提供することを目的とする。   This invention is made | formed in view of the above point, and it aims at providing the vibration-proof rubber composition which can make low dynamic magnification and high damping property highly compatible.

本発明に係る防振ゴム組成物は、天然ゴムとエポキシ化天然ゴムとからなるゴム成分であってエポキシ化率が2〜25%であるゴム成分と、BET比表面積が50〜170m/gであるシリカと、を含有するものである。 The anti-vibration rubber composition according to the present invention is a rubber component composed of natural rubber and epoxidized natural rubber and having an epoxidation rate of 2 to 25%, and a BET specific surface area of 50 to 170 m 2 / g. And silica.

また、本発明に係る防振ゴム組成物は、前記天然ゴムからなる海相と、前記エポキシ化天然ゴムからなる島相とからなる海島構造を有することが好ましい。   Moreover, it is preferable that the vibration-proof rubber composition which concerns on this invention has the sea island structure which consists of the sea phase which consists of the said natural rubber, and the island phase which consists of the said epoxidized natural rubber.

本発明の防振ゴム組成物であると、低い動倍率と高い減衰性を高度に両立させることができ、また十分な強度も確保することができる。   With the anti-vibration rubber composition of the present invention, a low dynamic magnification and a high damping property can be achieved at a high level, and sufficient strength can be ensured.

以下、本発明の実施に関連する事項について詳細に説明する。   Hereinafter, matters related to the implementation of the present invention will be described in detail.

減衰性(減衰係数)の指標となる損失係数(tanδ)には温度依存性があり、天然ゴム単独での温度(横軸)−tanδ(縦軸)曲線は、図1に示されるように、超低温域にピークを持ち、常温域でほぼ平坦な1山構造をとる。この曲線は、測定周波数の違いによって横軸方向にシフトし、図1に示すある周波数での曲線上では、低温ほど低周波数側のデータに相当する(なお、図1に示すデータの測定周波数は15Hzである。)。   The loss coefficient (tan δ), which is an index of the damping property (damping coefficient), is temperature-dependent, and the natural rubber alone temperature (horizontal axis) -tan δ (vertical axis) curve is as shown in FIG. It has a peak in the ultra-low temperature range and has a single flat structure in the normal temperature range. This curve shifts in the horizontal axis direction due to the difference in the measurement frequency. On the curve at a certain frequency shown in FIG. 1, the lower the temperature, the lower the frequency corresponding to the data (the measurement frequency of the data shown in FIG. 1 is 15 Hz).

ところで、高い減衰性(即ち、tanδが高いこと)が求められるのは15Hz前後の低周波数域であり、低い動倍率が求められるのは100Hz前後の高周波数域である。そのため、常温域における上記曲線の勾配が大きいほど、低動倍率と高減衰性の両立には有利である。上記曲線の勾配が大きければ、高周波数域で低いtanδによる低動倍率効果を得ながら、低周波数域で高いtanδにより高減衰性を発揮することができるからである。天然ゴム単独では、上記のように常温域での曲線の勾配が小さいため、低動倍率と高減衰性を高度に両立させることはできない。   By the way, high attenuation (that is, high tan δ) is required in a low frequency region around 15 Hz, and low dynamic magnification is required in a high frequency region around 100 Hz. Therefore, the greater the slope of the curve in the room temperature region, the more advantageous is the compatibility between low dynamic magnification and high attenuation. This is because, if the slope of the curve is large, high attenuation can be exhibited by high tan δ in the low frequency region while obtaining a low dynamic magnification effect due to low tan δ in the high frequency region. Since natural rubber alone has a small curve slope in the normal temperature region as described above, it is impossible to achieve both a low dynamic magnification and a high damping performance at a high level.

これに対し、天然ゴムにエポキシ化天然ゴムをブレンドした2成分系では、図1に示されるように、上記曲線が超低温域と低温域とにそれぞれピークを持つ2山構造となる(例えば、「NR(60)/ENR50(40)」の曲線を参照)。そのため、常温域における曲線の勾配を大きくすることができ、この勾配を利用して、低動倍率と高減衰性を高度に両立させることができる。ちなみに、上記従来の天然ゴムとSBRとのブレンドではこのような明確な2山構造は得られなかった。   On the other hand, in the two-component system in which epoxidized natural rubber is blended with natural rubber, as shown in FIG. 1, the above curve has a two-crest structure with peaks in the ultra-low temperature region and the low-temperature region (for example, “ NR (60) / ENR50 (40) "). Therefore, the gradient of the curve in the normal temperature range can be increased, and the low dynamic magnification and the high attenuation can be made compatible with each other by using this gradient. Incidentally, such a clear two-crest structure could not be obtained by blending the above-mentioned conventional natural rubber and SBR.

なお、図1において、NRは天然ゴム、ENR50はエポキシ化率50%のエポキシ化天然ゴム、ENR25はエポキシ化率25%のエポキシ化天然ゴムを意味し、各括弧書きはゴム成分の配合比率を示す(図2において同じ。)。従って、「NR(80)/ENR50(20)」は、ゴム成分が天然ゴム80重量%とエポキシ化率50%のエポキシ化天然ゴム20重量%とで構成された例を示す。各例のゴム組成物としての基本配合は、後記実施例と同じである。   In FIG. 1, NR means natural rubber, ENR50 means epoxidized natural rubber with an epoxidation rate of 50%, ENR25 means epoxidized natural rubber with an epoxidation rate of 25%, and each bracket indicates the blending ratio of rubber components. (Same in FIG. 2). Therefore, “NR (80) / ENR50 (20)” shows an example in which the rubber component is composed of 80% by weight of natural rubber and 20% by weight of epoxidized natural rubber having an epoxidation rate of 50%. The basic composition of each example as a rubber composition is the same as in the examples described later.

このように本発明に係る防振ゴム組成物においては、天然ゴム(NR)とエポキシ化天然ゴム(ENR)とをブレンドしたゴム成分を用いることを特徴とし、通常は天然ゴムとエポキシ化天然ゴムのみでゴム成分が構成される。ここで、エポキシ化天然ゴムとは、天然ゴムの主鎖の二重結合にエポキシ基が導入されたものであり、エポキシ化天然ゴム自体のエポキシ化率としては、10〜60%のものが好適に用いられ、より好ましくは20〜40%のものである。   As described above, the anti-vibration rubber composition according to the present invention is characterized by using a rubber component blended with natural rubber (NR) and epoxidized natural rubber (ENR), and usually natural rubber and epoxidized natural rubber. Only the rubber component is composed. Here, the epoxidized natural rubber is one in which an epoxy group is introduced into the double bond of the main chain of the natural rubber, and the epoxidized natural rubber itself preferably has an epoxidation rate of 10 to 60%. More preferably, it is 20 to 40%.

ゴム成分全体のエポキシ化率は2〜25%であり、より好ましくは5〜25%である。ゴム成分のエポキシ化率が2%未満では、上記2山構造による本発明特有の作用効果が得られない。逆に、ゴム成分のエポキシ化率が25%を超えると、強度が不十分となる。また、図2に示すように、温度(横軸)−貯蔵ばね弾性率E’(縦軸)曲線において、−10℃以下での立ち上がりがエポキシ化天然ゴム単独の場合と同様に急激となり、低温域で硬くなりすぎるため、防振ゴムとして好ましくない。   The epoxidation rate of the whole rubber component is 2 to 25%, more preferably 5 to 25%. When the epoxidation rate of the rubber component is less than 2%, the operation and effect peculiar to the present invention due to the two-crest structure cannot be obtained. Conversely, when the epoxidation rate of the rubber component exceeds 25%, the strength becomes insufficient. In addition, as shown in FIG. 2, in the temperature (horizontal axis) -storage spring elastic modulus E ′ (vertical axis) curve, the rise at −10 ° C. or less becomes abrupt as in the case of epoxidized natural rubber alone, and the temperature is low. Since it becomes too hard in the region, it is not preferable as a vibration-proof rubber.

詳細には、エポキシ化率が30%である「NR(40)/ENR50(60)」及びエポキシ化率が40%である「NR(20)/ENR50(80)」では、エポキシ化天然ゴム単独の「ENR50(100)」に近い曲線の立ち上がりを示していた。エポキシ化率が30%以上のものでは、走査プローブ顕微鏡(SPM:Scaning Probe Microscope)で確認したところ、エポキシ化天然ゴムからなる相が海相を形成しており、このことが要因と考えられる。   Specifically, in “NR (40) / ENR50 (60)” in which the epoxidation rate is 30% and “NR (20) / ENR50 (80)” in which the epoxidation rate is 40%, epoxidized natural rubber alone The curve rises close to “ENR50 (100)”. When the epoxidation rate is 30% or more, it was confirmed by a scanning probe microscope (SPM) that a phase composed of epoxidized natural rubber forms a sea phase, which is considered to be a factor.

天然ゴムとエポキシ化天然ゴムとの配合比については、天然ゴムが90〜20重量%であり、エポキシ化天然ゴムが10〜80重量%であることが好ましい。より好ましくは、天然ゴムが80〜50重量%で、エポキシ化天然ゴムが20〜50重量%である。エポキシ化天然ゴムのエポキシ化率にもよるが、このような配合比に設定することで、上記2山構造をより明確にするとともに、天然ゴムを海相とし、エポキシ化天然ゴムを島相とする好ましい海島構造をとりやすくなる。   About the compounding ratio of a natural rubber and an epoxidized natural rubber, it is preferable that a natural rubber is 90 to 20 weight% and an epoxidized natural rubber is 10 to 80 weight%. More preferably, the natural rubber is 80 to 50% by weight and the epoxidized natural rubber is 20 to 50% by weight. Although it depends on the epoxidation rate of the epoxidized natural rubber, by setting such a compounding ratio, the above two mountain structure is made clearer, natural rubber is the sea phase, and epoxidized natural rubber is the island phase. It becomes easy to take a preferable sea-island structure.

本発明の防振ゴム組成物は、BET比表面積が50〜170m/gであるシリカを含有する。より好ましくは、BET比表面積が60〜100m/gであるシリカを配合することである。BET比表面積が50m/g未満であると、粒子径が大きくなり、補強性が低下して、強度や耐久性が不十分となる。逆に、BET比表面積が170m/gを超えると、分散性/加工性が悪化し、動倍率も不利になる。シリカの配合量は特に限定されないが、上記ゴム成分100重量部に対して20〜80重量部であることが好ましい。ここで、BET比表面積は、ISO 5794/1に準じて測定される値である。 The anti-vibration rubber composition of the present invention contains silica having a BET specific surface area of 50 to 170 m 2 / g. More preferably, silica having a BET specific surface area of 60 to 100 m 2 / g is blended. When the BET specific surface area is less than 50 m 2 / g, the particle diameter is increased, the reinforcing property is lowered, and the strength and durability are insufficient. On the contrary, when the BET specific surface area exceeds 170 m 2 / g, dispersibility / workability deteriorates and the dynamic magnification becomes disadvantageous. Although the compounding quantity of a silica is not specifically limited, It is preferable that it is 20-80 weight part with respect to 100 weight part of said rubber components. Here, the BET specific surface area is a value measured according to ISO 5794/1.

本発明の防振ゴム組成物においては、加硫された状態にて、海相をなす天然ゴムのマトリックス中に、エポキシ化天然ゴムからなる島相が分散した海島構造をなしていることが好ましい。かかる海島構造を呈することにより、図1に示す温度−tanδ曲線において明確な2山構造とすることができ、低動倍率と高減衰性を高度に両立させることができる。また、天然ゴム相が海相を構成することで、防振ゴムとして必要な靱性、強度、耐久性を備えることができ、また、図2に示す温度−E’曲線において−10℃以下での急激な曲線の立ち上がりを抑えて、低温域での過大な硬度上昇を抑えることができる。   The anti-vibration rubber composition of the present invention preferably has a sea-island structure in which an island phase composed of epoxidized natural rubber is dispersed in a natural rubber matrix that forms a sea phase in a vulcanized state. . By exhibiting such a sea-island structure, it is possible to obtain a clear two-peak structure in the temperature-tan δ curve shown in FIG. 1, and to achieve both a low dynamic magnification and a high damping property at a high level. In addition, since the natural rubber phase constitutes the sea phase, it can be provided with toughness, strength and durability necessary as a vibration-proof rubber, and in the temperature-E ′ curve shown in FIG. By suppressing the sudden rise of the curve, it is possible to suppress an excessive increase in hardness at low temperatures.

また、シリカは、その表面に存在するシラノール基(Si−OH)の存在により、エポキシ化天然ゴムの主鎖中のエポキシ基と相互作用するので、主としてエポキシ化天然ゴム中に分散した状態で存在する。そして、上記海島構造をとることで、シリカは、エポキシ化天然ゴムからなる島相に局在化し、かつ該島相中で分散性を確保しながら存在する。このように、シリカの分散性を向上することができるので、シリカの自己凝集による粒子間の物理結合を減らして、動倍率を低減することができる。従って、エポキシ化天然ゴムのブレンドによる上記2山構造の効果と相俟って、低動倍率と高減衰性の両立効果を一層向上させることができる。   Silica interacts with the epoxy groups in the main chain of the epoxidized natural rubber due to the presence of silanol groups (Si-OH) present on its surface, so it exists mainly in a dispersed state in the epoxidized natural rubber. To do. And by taking the said sea island structure, silica exists in the island phase which consists of an epoxidized natural rubber, ensuring dispersibility in this island phase. Thus, since the dispersibility of a silica can be improved, the physical coupling | bonding between the particles by the self-aggregation of a silica can be reduced, and a dynamic magnification can be reduced. Therefore, combined with the effect of the above-mentioned two-peak structure by blending epoxidized natural rubber, the effect of coexistence of low dynamic magnification and high damping can be further improved.

上記海島構造を呈するかどうかは、走査プローブ顕微鏡(SPM:Scaning Probe Microscope)により確認することができる。   Whether or not the above-described sea-island structure is exhibited can be confirmed by a scanning probe microscope (SPM).

本発明に係る防振ゴム組成物には、シリカをゴム成分と結合を促進するために各種シランカップリング剤を配合することができる。シランカップリング剤としては、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−ニトロプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシランなどが挙げられる。シランカップリング剤は、シリカ100重量部に対して、通常5〜20重量部配合される。   In the anti-vibration rubber composition according to the present invention, various silane coupling agents can be blended in order to promote the bonding of silica to the rubber component. Examples of the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, Examples include 3-mercaptopropyltriethoxysilane, 3-nitropropyltrimethoxysilane, and γ-aminopropyltriethoxysilane. The silane coupling agent is usually blended in an amount of 5 to 20 parts by weight with respect to 100 parts by weight of silica.

本発明に係る防振ゴム組成物には、上記ゴム成分とシリカの他に、カーボンブラック等の他のフィラー、老化防止剤、亜鉛華、ステアリン酸、軟化剤、硫黄などの加硫剤、加硫促進剤、加硫遅延剤など、防振ゴム組成物において通常に用いられる各種添加剤を配合することができる。   In addition to the rubber component and silica, the anti-vibration rubber composition according to the present invention includes other fillers such as carbon black, anti-aging agents, zinc oxide, stearic acid, softeners, vulcanizing agents such as sulfur, Various additives usually used in vibration-proof rubber compositions such as a vulcanization accelerator and a vulcanization retarder can be blended.

本発明に係る防振ゴム組成物は、通常の方法、例えば、バンバリーミキサー、ニーダー、ローラーなどの混練機を用いて混練りすることにより得られ、所定形状に成形加工後、加硫を行うことで、防振ゴム材を得ることができる。かかる防振ゴム材は、上記ゴム組成物からなる加硫ゴム弾性体を備えるものであれば、該加硫ゴム弾性体単独で構成されるものであっても良く、あるいはまた、該加硫ゴム弾性体と金属部材や樹脂部材とを一体化してなるものであってもよい。   The anti-vibration rubber composition according to the present invention is obtained by kneading using a usual method, for example, a kneader such as a Banbury mixer, a kneader, or a roller, and is vulcanized after being molded into a predetermined shape. Thus, an anti-vibration rubber material can be obtained. Such an anti-vibration rubber material may be composed of the vulcanized rubber elastic body alone as long as it has a vulcanized rubber elastic body made of the rubber composition, or alternatively, the vulcanized rubber. An elastic body and a metal member or a resin member may be integrated.

上記防振ゴム材の具体例としては、エンジンマウント、ストラットマウント、ボディマウント、キャブマウント、メンバーマウント、デフマウントなどのマウント、サスペンションブッシュ、アームブッシュ、トルクブッシュなどのブッシュ、マフラーハンガー、ダンパープーリ、ダイナミックダンパーなどの自動車を始めとする各種車両の防振ゴム材(防振装置)が挙げられる。   Specific examples of the anti-vibration rubber material include engine mounts, strut mounts, body mounts, cab mounts, member mounts, differential mounts, etc., suspension bushings, arm bushings, torque bushing bushes, muffler hangers, damper pulleys, Anti-vibration rubber materials (anti-vibration devices) for various vehicles including automobiles such as dynamic dampers.

以下、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

バンバリーミキサーを使用し、下記表1に示す配合に従い、ゴム成分を素練りした後、シリカを始めとする各種添加剤を加えて、実施例及び比較例の各防振ゴム組成物を調製した。表1中の各成分は以下の通りである。なお、シリカの配合量は、各ゴム組成物において静ばね定数の値が一致するように適宜変量した。   Using a Banbury mixer, the rubber components were masticated according to the composition shown in Table 1 below, and then various additives such as silica were added to prepare anti-vibration rubber compositions of Examples and Comparative Examples. Each component in Table 1 is as follows. In addition, the compounding quantity of the silica was changed suitably so that the value of the static spring constant might correspond in each rubber composition.

・NR:天然ゴム(RSS#3)、
・ENR−25:エポキシ化率が25%のエポキシ化天然ゴム(マレーシアのMRB社製「ENR−25」)、
・ENR−50:エポキシ化率が50%のエポキシ化天然ゴム(マレーシアのMRB社製「ENR−50」)、
・SBR:スチレンブタジエンゴム(JSR社製「SBR1502」)、
・シリカ1:デグッサ社製「VN2」、BET比表面積=125m/g)、
・シリカ2:デグッサ社製「FK360」、BET比表面積=60m/g)。
NR: natural rubber (RSS # 3),
ENR-25: Epoxidized natural rubber with an epoxidation rate of 25% (“ENR-25” manufactured by MRB, Malaysia),
ENR-50: Epoxidized natural rubber with an epoxidation rate of 50% (“ENR-50” manufactured by MRB, Malaysia),
SBR: Styrene butadiene rubber (“SBR1502” manufactured by JSR),
Silica 1: “VN2” manufactured by Degussa, BET specific surface area = 125 m 2 / g),
Silica 2: “FK360” manufactured by Degussa, BET specific surface area = 60 m 2 / g).

各ゴム組成物には、共通配合として、シランカップリング剤(デグサ社製「Si69」)をシリカの配合量の8重量%配合するとともに、ゴム成分100重量部に対し、亜鉛華(三井金属鉱業株式会社製「亜鉛華1号」)5重量部、ステアリン酸(花王株式会社製「ルナックS−20」)1重量部、老化防止剤6C(大内新興化学工業株式会社製「ノクラック6C」)2重量部、老化防止剤RD(大内新興化学工業株式会社製「ノクラック224」)2重量部、硫黄(細井化学工業製「粉末硫黄150メッシュ」)2重量部、及び、加硫促進剤CZ(大内新興化学工業株式会社製「ノクセラーCZ」)1.5重量部を配合した。   In each rubber composition, a silane coupling agent (“Si69” manufactured by Degussa Co., Ltd.), 8% by weight of the amount of silica, is blended as a common blend, and zinc white (Mitsui Metal Mining) "Zinc Hana 1" manufactured by Co., Ltd.) 5 parts by weight, stearic acid ("Lunac S-20" manufactured by Kao Corporation) 1 part by weight, anti-aging agent 6C ("Nocrack 6C" manufactured by Ouchi Shinsei Chemical Co., Ltd.) 2 parts by weight, 2 parts by weight of anti-aging agent RD (“NOCRACK 224” manufactured by Ouchi Shinsei Chemical Co., Ltd.), 2 parts by weight of sulfur (“Powder Sulfur 150 Mesh” manufactured by Hosoi Chemical Co., Ltd.), and vulcanization accelerator CZ ("Noxeller CZ" manufactured by Ouchi Shinsei Chemical Co., Ltd.) 1.5 parts by weight was blended.

各ゴム組成物を150℃×25分間の加硫条件で加硫して各テストピースを作製し、引っ張り強さ(TB)と破断伸び(EB)を測定するとともに、静ばね定数(Ks)と動ばね定数(Kd100)を測定して動倍率を計算し、更に、減衰係数(C15)を測定して、動倍率と減衰性の改良効果を評価した。各測定評価方法は以下の通りである。   Each rubber composition was vulcanized under vulcanization conditions of 150 ° C. × 25 minutes to prepare each test piece, and the tensile strength (TB) and elongation at break (EB) were measured, and the static spring constant (Ks) The dynamic spring constant (Kd100) was measured to calculate the dynamic magnification, and the damping coefficient (C15) was further measured to evaluate the effect of improving the dynamic magnification and damping. Each measurement evaluation method is as follows.

・引っ張り強さ、破断伸び:JIS K6251に準拠して測定し(3号形ダンベル使用)、比較例1の値を100とした指数で表示した。 -Tensile strength, elongation at break: measured in accordance with JIS K6251 (using No. 3 type dumbbell) and displayed as an index with the value of Comparative Example 1 being 100.

・動倍率:静ばね定数(Ks)は、オリエンテック(株)製テンシロンを測定機に用い、50mmφ×25mmの加硫済みテストピースにつき、10mm/分のクロスヘッドスピードで0〜5mm間の圧縮を2回繰返し、2回目の荷重−たわみ線図を描き、次式(1)に基づいて算出した。 -Dynamic magnification: Static spring constant (Ks) is compression between 0 and 5 mm at a crosshead speed of 10 mm / min for a vulcanized test piece of 50 mmφ x 25 mm using an orientec Tensilon as a measuring machine. Was repeated twice and a second load-deflection diagram was drawn and calculated based on the following equation (1).

静バネ定数(N/mm)=(w2−w1)/(δ2−δ1)……(1)
ここで、w1はたわみ量δ1が1.3mm時の荷重(N)、w2はたわみ量δ2が3.8mm時の荷重(N)である。
Static spring constant (N / mm) = (w2-w1) / (δ2-δ1) (1)
Here, w1 is a load (N) when the deflection amount δ1 is 1.3 mm, and w2 is a load (N) when the deflection amount δ2 is 3.8 mm.

動バネ定数(Kd)は、(株)鷺宮製作所製ダイナミックサーボを測定機に用い、初期歪10%、周波数100Hz、振幅±0.05mmで行い、JIS K6394に記載の計算方法によりを求めた。   The dynamic spring constant (Kd) was determined by the calculation method described in JIS K6394, using a dynamic servo manufactured by Kinomiya Seisakusho Co., Ltd. as a measuring machine, with an initial strain of 10%, a frequency of 100 Hz, and an amplitude of ± 0.05 mm.

そして、上記で得られた静ばね定数に対する動ばね定数の比(動ばね定数(Kd)/静ばね定数(Ks))である動倍率を算出し、比較例1の値を100とした指数で表示した。指数が小さいほど、動倍率が低く、高周波数域での騒音遮断効果に優れることを示す。   Then, a dynamic magnification which is a ratio of the dynamic spring constant to the static spring constant obtained above (dynamic spring constant (Kd) / static spring constant (Ks)) is calculated, and an index with the value of Comparative Example 1 as 100 is calculated. displayed. The smaller the index, the lower the dynamic magnification, and the better the noise blocking effect in the high frequency range.

・減衰係数:上記動ばね定数と同じ測定機を用い、条件は15Hz、初期歪10%、振幅2%として、減衰係数(C15)=E”/(2πωt)を求め、比較例1の値を100とした指数で表示した。指数が大きいほど、振動遮断能が大きく、低周波数域での振動減衰効果に優れることを示す。 -Damping coefficient: Using the same measuring device as the above dynamic spring constant, the condition is 15 Hz, the initial strain is 10%, the amplitude is 2%, the damping coefficient (C15) = E "/ (2πωt) is obtained, and the value of Comparative Example 1 is obtained. The index is represented by an index of 100. The larger the index, the greater the vibration blocking ability and the better the vibration damping effect in the low frequency range.

・動倍率と減衰性の改良効果:上記動倍率の指数に対する減衰係数の指数の比(C15/(Kd/Ks))を算出し、比較例1の値を100とした指数で表示した。指数が大きいほど、低動倍率と高減衰性の両立効果に優れることを示す。
-Improvement effect of dynamic magnification and damping property: Ratio of exponent of damping coefficient to exponent of dynamic magnification (C15 / (Kd / Ks)) was calculated and displayed as an index with the value of Comparative Example 1 as 100. It shows that it is excellent in the coexistence effect of low dynamic magnification and high damping property, so that an index | exponent is large.

表1に示すように、天然ゴムにSBRをブレンドした比較例2では、天然ゴム単独の比較例1に対して、減衰性は向上するものの、それに対する動倍率の悪化が大きく、低動倍率と高減衰性の両立効果という点ではむしろ悪化していた。   As shown in Table 1, in Comparative Example 2 in which SBR is blended with natural rubber, although the damping property is improved as compared with Comparative Example 1 of natural rubber alone, the deterioration of the dynamic magnification is large, and the low dynamic magnification is It was rather worse in terms of the coexistence effect of high attenuation.

これに対し、天然ゴムとエポキシ化天然ゴムとをブレンドした実施例1〜6では、低動倍率と高減衰性が高度に両立されており、また、十分な強度も確保されていた。特に、エポキシ化率が20〜40%のエポキシ化天然ゴムを20〜50重量部の範囲内でブレンドした実施例2,3では、比較例1に対して動倍率を低減するものでありながら、減衰係数が増加しており、低動倍率かつ高減衰性の効果に優れていた。   On the other hand, in Examples 1-6 which blended natural rubber and epoxidized natural rubber, low dynamic magnification and high attenuation | damping property were highly compatible, and sufficient intensity | strength was ensured. In particular, in Examples 2 and 3 in which epoxidized natural rubber having an epoxidation rate of 20 to 40% was blended within a range of 20 to 50 parts by weight, the dynamic magnification was reduced with respect to Comparative Example 1, The damping coefficient increased, and the effect of low dynamic magnification and high damping was excellent.

なお、ゴム成分中のエポキシ化率が低すぎる比較例3では、減衰性の効果が小さい。また、ゴム成分のエポキシ化率が高すぎる比較例4では、動倍率と減衰性の改良効果は認められるものの、動倍率の上昇が大きすぎ、また、引っ張り強度が低下していた。   In addition, in Comparative Example 3 in which the epoxidation rate in the rubber component is too low, the damping effect is small. Further, in Comparative Example 4 in which the epoxidation rate of the rubber component was too high, the dynamic magnification and the damping effect were improved, but the dynamic magnification was increased too much and the tensile strength was reduced.

実施例1〜6の各ゴム組成物のテストピースについて、SPMにより位相像を確認したところ、天然ゴムを海相とし、エポキシ化天然ゴムを島相とする海島構造を有しており、シリカは島相に局在化し、島相中で均一に分散していた。より詳細には、シリカは、その配合量の70重量%以上が島相中に存在していた(島相中のシリカ存在量は、SPM位相像において海相と島相のシリカ数を測定することにより算出)。これに対し、比較例1のゴム組成物のテストピースでは、天然ゴム中で一部凝集していた。また、比較例4のゴム組成物のテストピースでは、エポキシ化天然ゴムを海相とし、天然ゴムを島相とする海島構造を有していた。   About the test piece of each rubber composition of Examples 1-6, when the phase image was confirmed by SPM, it has a sea-island structure in which natural rubber is the sea phase and epoxidized natural rubber is the island phase, and silica is It was localized in the island phase and was uniformly dispersed in the island phase. More specifically, 70% by weight or more of the compounding amount of silica was present in the island phase (the amount of silica present in the island phase is determined by measuring the number of silica in the sea phase and the island phase in the SPM phase image. Calculated by In contrast, the rubber composition test piece of Comparative Example 1 was partially agglomerated in natural rubber. Moreover, the test piece of the rubber composition of Comparative Example 4 had a sea-island structure in which epoxidized natural rubber was the sea phase and natural rubber was the island phase.

各ゴム組成物についての温度と損失係数tanδの関係を示すグラフである。It is a graph which shows the relationship between temperature about each rubber composition, and loss coefficient tan-delta. 各ゴム組成物についての温度と貯蔵ばね弾性率E’の関係を示すグラフである。It is a graph which shows the relationship between the temperature about each rubber composition, and the storage spring elastic modulus E '.

Claims (2)

天然ゴムとエポキシ化天然ゴムとからなるゴム成分であって、エポキシ化率が2〜25%であるゴム成分と、
BET比表面積が50〜170m/gであるシリカと、
を含有する防振ゴム組成物。
A rubber component composed of natural rubber and epoxidized natural rubber, the rubber component having an epoxidation rate of 2 to 25%;
Silica having a BET specific surface area of 50 to 170 m 2 / g;
Antivibration rubber composition containing
前記天然ゴムからなる海相と、前記エポキシ化天然ゴムからなる島相とからなる海島構造を有する請求項1記載の防振ゴム組成物。   The anti-vibration rubber composition according to claim 1, which has a sea-island structure comprising a sea phase composed of the natural rubber and an island phase composed of the epoxidized natural rubber.
JP2007027132A 2007-02-06 2007-02-06 Vibration-proofing rubber composition Withdrawn JP2008189844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027132A JP2008189844A (en) 2007-02-06 2007-02-06 Vibration-proofing rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027132A JP2008189844A (en) 2007-02-06 2007-02-06 Vibration-proofing rubber composition

Publications (1)

Publication Number Publication Date
JP2008189844A true JP2008189844A (en) 2008-08-21

Family

ID=39750246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027132A Withdrawn JP2008189844A (en) 2007-02-06 2007-02-06 Vibration-proofing rubber composition

Country Status (1)

Country Link
JP (1) JP2008189844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270835A (en) * 2009-05-21 2010-12-02 Kurashiki Kako Co Ltd Vibration isolating member
JP2012107139A (en) * 2010-11-18 2012-06-07 Toyo Tire & Rubber Co Ltd Railcar shock absorber rubber composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270835A (en) * 2009-05-21 2010-12-02 Kurashiki Kako Co Ltd Vibration isolating member
JP2012107139A (en) * 2010-11-18 2012-06-07 Toyo Tire & Rubber Co Ltd Railcar shock absorber rubber composition

Similar Documents

Publication Publication Date Title
JP6165406B2 (en) Anti-vibration rubber composition and anti-vibration rubber
JP5420224B2 (en) Rubber composition for anti-vibration rubber, anti-vibration rubber and method for producing the same
JP2006193621A (en) Vibration-proof rubber composition and vibration-proof rubber
JP6673351B2 (en) Anti-vibration rubber composition and anti-vibration rubber
JP2017119873A (en) Vibration-proof rubber composition and vibration-proof rubber
WO2020026657A1 (en) Vibration-damping rubber composition, method for producing same, and vibration-damping rubber member
JP2006199792A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP3411557B2 (en) High damping rubber composition
JP2009298880A (en) Vibration-insulating rubber composition, and vibration-insulating rubber using the same
JP2006199899A (en) Vibration-proof rubber composition and vibration-proof rubber
JP7543051B2 (en) Rubber composition and vibration-proof rubber obtained by vulcanization molding of the rubber composition
JP2006037002A (en) Vibration-damping rubber composition and vibration-damping rubber member
EP3663347A1 (en) Rubber composition for anti-vibration rubbers, and anti-vibration rubber for vehicles
CN110582533A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber for vehicle
JP2008189844A (en) Vibration-proofing rubber composition
JP6644962B1 (en) Anti-vibration rubber composition and anti-vibration rubber member
JP2008007546A (en) Vibration-insulating rubber composition and vibration-insulating rubber
JP2009019076A (en) Vibration-proof rubber composition and vibration-proof rubber
JP2008189845A (en) Vibration-proofing rubber composition
JP2010209285A (en) Rubber composition for vibration-damping rubber and vibration-damping rubber
JP2013151584A (en) Rubber composition for rubber vibration isolator
JP5968191B2 (en) Anti-vibration rubber composition
JP2011162585A (en) Rubber composition for vibration-damping rubber, and vibration-damping rubber
JP6760606B2 (en) Rubber composition, rubber composition for anti-vibration rubber and anti-vibration rubber
JP2020090665A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406