Nothing Special   »   [go: up one dir, main page]

JP2008185307A - Fin for heat exchanger - Google Patents

Fin for heat exchanger Download PDF

Info

Publication number
JP2008185307A
JP2008185307A JP2007021066A JP2007021066A JP2008185307A JP 2008185307 A JP2008185307 A JP 2008185307A JP 2007021066 A JP2007021066 A JP 2007021066A JP 2007021066 A JP2007021066 A JP 2007021066A JP 2008185307 A JP2008185307 A JP 2008185307A
Authority
JP
Japan
Prior art keywords
ridge
protrusion
fin
heat exchanger
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007021066A
Other languages
Japanese (ja)
Inventor
Akihiro Okajima
章裕 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2007021066A priority Critical patent/JP2008185307A/en
Publication of JP2008185307A publication Critical patent/JP2008185307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fin for a heat exchanger improving heat exchange performance. <P>SOLUTION: The fin 10 for the heat exchanger is disposed in contact with tubes 20 in an air blowing space part SP provided between the tubes 20, 20 for blowing air and exchanging heat. A vertical row 32 of protrusions with a plurality of protrusion sets 31 arranged at spaces in an orthogonal direction to blast are provided as a plurality of protruding parts protruded from the plate surface of a plate part 12, wherein a pair of protrusions 30, 30 spaced in a blast orthogonal direction (RA) and inclined with respect to an air blowing direction are arranged in approximately truncated chevron shape so that a space is enlarged in the air blowing direction W. A plurality of vertical rows 32 of protrusions are provided in the air blowing direction W, and the blast upstream tip part of each protrusion 30 in the downstream vertical row 32 of protrusions is arranged overlapping the blast downstream direction of a protrusion space 34 formed between the protrusions of each protrusion set and a set space 35 formed between the protrusion sets in the upstream vertical row 32 of protrusions. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エンジンの冷却を行うラジエータ、空調装置のコンデンサおよびエバポレータなどの自動車や産業機械用の熱交換器に用いられる熱交換器用に用いられる熱交換器用フィンに関し、特に、フィンの平坦部に突起が形成されているものに関する。   The present invention relates to a heat exchanger fin used for a heat exchanger used in a heat exchanger for an automobile or industrial machine such as a radiator for cooling an engine, a condenser of an air conditioner, and an evaporator, and in particular, in a flat portion of the fin. It is related with what the protrusion is formed.

従来、熱交換器として、波板状の複数の熱交換器用フィンと熱交換器用の流体が流されるチューブとを積層したものが知られている。
そして、熱交換器用フィンとして、波状のフィンの対向する平板部に、板面から所定の高さで突出させた突起や切り起しなどから成る突部を設け、送風との熱交換性能を高めたものが知られている(例えば、特許文献1参照)。
特開2006−138503号公報
2. Description of the Related Art Conventionally, a heat exchanger in which a plurality of corrugated plate-like heat exchanger fins and tubes through which a heat exchanger fluid flows is known.
And as a fin for heat exchangers, the flat plate part facing the corrugated fin is provided with a protrusion made of a protrusion or a cut and raised from the plate surface at a predetermined height to enhance the heat exchange performance with the air blower. Are known (for example, see Patent Document 1).
JP 2006-138503 A

しかしながら、上述の熱交換器用フィンは、突部として、送風が流れる方向に略直交する方向に波状に延在させた突条を、一定の高さで一定のピッチで複数形成していた。
このため、送風の入口方向から見て、突条の頂点の下流側には、同じ高さの突条が送風方向で重なって配置されているため、下流側の突条には、送風が当たりにくく、風下側では熱交換性能が低下していた。
However, the fin for the heat exchanger described above has a plurality of protrusions extending in a wave shape in a direction substantially orthogonal to the direction in which the air flows as protrusions at a constant height and a constant pitch.
For this reason, as viewed from the inlet direction of the blast, the ridges of the same height are arranged on the downstream side of the top of the ridges so as to overlap in the blast direction. It was difficult, and the heat exchange performance decreased on the leeward side.

本発明は、上述のような従来の問題に着目して成されたもので、熱交換性能の向上を図ることのできる熱交換器用フィンを提供することを目的とする。   The present invention has been made paying attention to the conventional problems as described above, and an object thereof is to provide a heat exchanger fin capable of improving the heat exchange performance.

上述の目的を達成するために請求項1に記載の発明は、送風と熱交換を行う熱交換部材の間に設けられた送風空間部に、前記熱交換部材と接触状態で配置され、前記送風空間部の送風方向に延在される平板部を複数有し、この平板部の板表面から突出された複数の突部を備えた熱交換器用フィンであって、前記突部として、送風直交方向に離間するとともに送風方向に対して傾斜した一対の突条が、送風方向に間隔が広がるよう略八の字状に配置された突条組を、送風直交方向に間隔を空けて複数配置した突条縦列が設けられ、かつ、この突条縦列が送風方向に複数列設けられ、前記突条縦列は、下流側の突条縦列の各突条の送風上流側の先端部が、上流側の突条縦列において各突条組の突条間に形成された突条間隔ならびに突条組間に形成された組間隔の送風下流方向に重なって配置されていることを特徴とする熱交換器用フィンとした。
また、請求項2に記載の発明は、請求項1に記載の熱交換器用フィンにおいて、各突条縦列は、前記突条間隔ならびに組間隔が、各突条の送風直交方向の寸法よりも大きな寸法に形成されていることを特徴とする熱交換器用フィンとした。
また、請求項3に記載の発明は、請求項1または請求項2に記載の熱交換器用フィンにおいて、各突条縦列の前記突条組の一方の突条と、その直下流の突起縦列の前記突条組の一方の突条とが、一直線上に並んで配置されていることを特徴とする熱交換器用フィンとした。
In order to achieve the above-mentioned object, the invention according to claim 1 is arranged in contact with the heat exchange member in a blower space provided between a heat exchange member that performs air exchange and heat exchange. A fin for a heat exchanger having a plurality of flat plate portions extending in the air blowing direction of the space portion, and having a plurality of protrusions protruding from the plate surface of the flat plate portion, and as the protrusions, the air blowing orthogonal direction A pair of protrusions that are spaced apart in the direction of air flow and that are inclined in the air blowing direction so that the distance between them extends in the air blowing direction. A plurality of rows of protrusions are provided in the air blowing direction, and each of the protrusions is connected to the upstream end of each of the protrusions on the downstream side. In the row of ridges, the ridge interval formed between the ridges of each ridge group and formed between the ridge groups It was heat exchanger fins, characterized in being arranged to overlap in the blast downstream of the set interval.
Moreover, the invention according to claim 2 is the fin for the heat exchanger according to claim 1, wherein each of the protrusions in the row of protrusions has a larger interval between the protrusions and a set interval than dimensions of the protrusions in the direction perpendicular to the air blowing direction. It was set as the fin for heat exchangers characterized by being formed in the dimension.
The invention according to claim 3 is the fin for the heat exchanger according to claim 1 or 2, wherein one of the protrusions in each protrusion column and the protrusion column immediately downstream thereof are provided. A fin for a heat exchanger is characterized in that one of the ridges is arranged in a straight line.

さらに、請求項4に記載の発明は、請求項1〜請求項3のいずれか1項に記載の熱交換器用フィンにおいて、前記突条縦列と隣り合う突条縦列との間に、平坦面が送風直交方向に延在されていることを特徴とする熱交換器用フィンとした。
請求項5に記載の発明は、請求項1〜請求項4のいずれか1項に記載の熱交換起用フィンにおいて、前記平板部は、波板状のコルゲートフィンにおいて前記熱交換器に当接される波頂部どうしを連結する部分であることを特徴とする熱交換起用フィンとした。
Furthermore, the invention according to claim 4 is the fin for a heat exchanger according to any one of claims 1 to 3, wherein a flat surface is provided between the protrusion column and the adjacent protrusion column. The heat exchanger fins are characterized by extending in the direction perpendicular to the air flow.
According to a fifth aspect of the present invention, in the heat exchanging fin according to any one of the first to fourth aspects, the flat plate portion is brought into contact with the heat exchanger in a corrugated corrugated fin. The heat exchanging fins are characterized in that the wave crests are connected to each other.

本発明の熱交換器用フィンでは、送風方向に対して傾斜した突条では、送風方向に伸びる渦が発生するが、この渦の下流に次の縦列の八の字の突条が配置されているため、突条を送風方向で重なるように配置したものと比較して、下流側の突条に当る送風量が増加して、熱交換効率を向上させることができる。
しかも、突条をフィンの平坦部に設けているため、熱交換部材との接触面積を確保することができ、これによっても熱交換性能を確保できる。
In the fin for the heat exchanger of the present invention, a ridge extending in the blowing direction is generated in the ridge inclined with respect to the blowing direction, but the next vertical column of eight-shaped ridges is arranged downstream of this vortex. For this reason, compared to the arrangement in which the protrusions are arranged so as to overlap in the blowing direction, the amount of blown air hitting the downstream protrusions is increased, and the heat exchange efficiency can be improved.
And since the protrusion is provided in the flat part of a fin, a contact area with a heat exchange member can be ensured, and heat exchange performance is securable also by this.

さらに、請求項2に記載した発明では、各突条の送風直交方向寸法よりも、その前方に配置された各間隔の送風直交方向の寸法の方が大きいため、各突条の送風直交方向寸法が各間隔の送風直交方向寸法よりも小さい場合よりも、各突条に当る送風量を確保でき、その分、熱交換効率がさらに向上する。   Furthermore, in the invention described in claim 2, since the dimension in the direction perpendicular to the air flow of each interval arranged in front thereof is larger than the dimension in the direction perpendicular to the air flow of each protrusion, the dimension in the air orthogonal direction of each protrusion. As compared with the case where is smaller than the dimension in the direction perpendicular to the air blowing at each interval, the amount of air blown against each protrusion can be secured, and the heat exchange efficiency is further improved accordingly.

加えて、請求項3に記載の発明では、突条組の一方の突条が、その下流の突条と一直線上に並んで配置されているため、一直線上に配置されていないものと比較して、突条で送風下流に形成された渦が、次々と下流の突条に導かれ、より熱交換効率が向上する。   In addition, in the invention described in claim 3, since one of the ridges is arranged in a straight line with the downstream ridge, it is compared with the one not arranged in a straight line. Thus, the vortex formed downstream of the blast by the ridge is guided to the downstream ridge one after another, and the heat exchange efficiency is further improved.

また、請求項4に記載の発明では、突条縦列と突条縦列との間に、平坦部を設けたため、請求項3のように、突条を一直線上に配置させながら、突条と突条とを送風方向に離間させて、両者の間で送風の渦が発生しやすくして、上述の熱交換性能を発揮できる。
請求項5に記載の発明では、突条を、熱交換部材に接触する波頂部を除く平板部に形成しているため、熱交換器用フィンと熱交換部材との接触面積を確保することができ、これにより、熱交換性能を確保できる。
Further, in the invention described in claim 4, since the flat portion is provided between the ridge columns and the ridge columns, the protrusions and the protrusions are arranged in a straight line as in claim 3. The strips are separated from each other in the blowing direction, and a vortex of blowing is easily generated between them, so that the heat exchange performance described above can be exhibited.
In the invention according to claim 5, since the protrusion is formed on the flat plate portion excluding the wave crest portion that contacts the heat exchange member, the contact area between the heat exchanger fin and the heat exchange member can be secured. Thereby, heat exchange performance can be secured.

以下、本発明の実施の形態を図面に基づいて説明する。
この実施の形態の熱交換器用フィンは、送風と熱交換を行う熱交換部材(20)の間に設けられた送風空間部(SP)に、前記熱交換部材(20)と接触状態で配置され、前記送風空間部(SP)の送風方向に延在される平板部(12)を複数有し、この平板部(12)の板表面から突出された複数の突部を備えた熱交換器用フィンであって、前記突部として、送風直交方向に離間するとともに送風方向に対して傾斜した一対の突条(30)が、送風方向に間隔が広がるよう略八の字状に配置された突条組(31)を、送風直交方向に間隔を空けて複数配置した突条縦列(32)が設けられ、かつ、この突条縦列(32)が送風方向に複数列設けられ、前記突条縦列(32)は、下流側の突条縦列(32)の各突条(30)の送風上流側の先端部が、上流側の突条縦列(32)において各突条組(31)の突条間に形成された突条間隔(34)ならびに突条組間に形成された組間隔(35)の送風下流方向に重なって配置されていることを特徴とする熱交換器用フィンである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The heat exchanger fin of this embodiment is arranged in contact with the heat exchange member (20) in the air blowing space (SP) provided between the heat exchange member (20) that performs air exchange and heat exchange. A fin for a heat exchanger having a plurality of flat plate portions (12) extending in the air blowing direction of the blower space portion (SP) and having a plurality of protrusions protruding from the plate surface of the flat plate portion (12). And as said protrusion, a pair of protrusion (30) which was spaced apart in the ventilation orthogonal direction and inclined with respect to the ventilation direction is arranged in the shape of an approximately eight character so that a space | interval may spread in a ventilation direction. A plurality of ridge columns (32) in which a plurality of sets (31) are arranged at intervals in the air blowing orthogonal direction are provided, and a plurality of the ridge columns (32) are provided in the air blowing direction. 32) is a tip on the upstream side of each ridge (30) in the ridge column (32) on the downstream side. The section is a ridge interval (34) formed between the ridges of each ridge group (31) in the ridge column (32) on the upstream side, and an air flow of the group interval (35) formed between the ridge groups. It is a fin for heat exchangers characterized by being arranged in the downstream direction.

以下に、図1〜図4に基づいて、この発明の最良の実施の形態の実施例1の熱交換器用フィン10を用いた熱交換器Aについて説明する。   Below, based on FIGS. 1-4, the heat exchanger A using the fin 10 for heat exchangers of Example 1 of the best embodiment of this invention is demonstrated.

図3に示すように、熱交換器Aは、コア部1の左右をヘッダタンク2,3で支持して構成されている。ヘッダタンク2,3には、冷却水や冷媒などの熱交換器用の流体が供給および排出される。
コア部1は、熱交換器用フィン10と複数のチューブ(熱交換部材)20とを交互に積層し、その積層したものの上下をプレート5,5で挟んで形成されている。
As shown in FIG. 3, the heat exchanger A is configured by supporting the left and right sides of the core portion 1 with header tanks 2 and 3. The header tanks 2 and 3 are supplied and discharged with heat exchanger fluids such as cooling water and refrigerant.
The core portion 1 is formed by alternately stacking heat exchanger fins 10 and a plurality of tubes (heat exchange members) 20, and sandwiching the stacked layers between plates 5 and 5.

チューブ20は、例えば、アルミや銅などの熱交換効率の高い金属を押出成形して長方形の板状に形成されており、内部には熱交換器用の流体を流す流路20a,20bが押出方向の全長に亘って形成されている。
なお、各チューブ20の長手方向両端部が、それぞれヘッダタンク2,3に差し込まれ、これらヘッダタンク2,3内の流体が、これら流路20a,20bを、その一方の端部から、もう一方の端部へ向けて流れる。
The tube 20 is formed in a rectangular plate shape by extruding a metal having high heat exchange efficiency such as aluminum or copper, and flow paths 20a and 20b through which a fluid for a heat exchanger flows are disposed in the extrusion direction. Is formed over the entire length.
Both end portions in the longitudinal direction of each tube 20 are inserted into the header tanks 2 and 3, respectively, and the fluid in the header tanks 2 and 3 passes through the flow paths 20a and 20b from one end to the other. It flows toward the end of the.

熱交換器用フィン10は、チューブ20の外気への熱交換を助けるために、チューブ20,20の間に設けられた送風空間部SPに介在されたもので、例えば、アルミや銅などの熱交換効率の高い金属により、略円弧状の頂部11と、この頂部11を連結する平板部12とが交互に連続され、対向する平板部12,12の間に送風通路13を有した波形薄板状に形成されている。   The heat exchanger fins 10 are interposed in the ventilation space SP provided between the tubes 20 and 20 in order to help heat exchange of the tubes 20 to the outside air. For example, heat exchange of aluminum or copper is performed. Due to the metal having high efficiency, the substantially arcuate top portions 11 and the flat plate portions 12 connecting the top portions 11 are alternately continued, and in the form of a corrugated thin plate having a ventilation passage 13 between the opposed flat plate portions 12 and 12. Is formed.

平板部12には、送風通路13に向けて突出した筋状の突条30が、平板部12の矢印Wで示す送風方向の略全長に亘って形成されている。   In the flat plate portion 12, a streak-like ridge 30 protruding toward the air passage 13 is formed over substantially the entire length in the air blowing direction indicated by the arrow W of the flat plate portion 12.

この突条30は、図2に示すように、一対の八の字状の突条組31を、矢印RAで示す送風直交方向に並べた突条縦列32を、送風方向に複数(n)並べて設けて構成されている。なお、図において符号32の右横の()内の数字は、送風方向の上流側からの順番を示している。   As shown in FIG. 2, this ridge 30 has a plurality (n) of ridge columns 32 in which a pair of eight-shaped ridges 31 are arranged in the blowing orthogonal direction indicated by arrow RA in the blowing direction. It is provided and configured. In addition, the number in () of the right side of the code | symbol 32 in the figure has shown the order from the upstream of a ventilation direction.

すなわち、突条30は、平板部12をプレス成形して、図4に示すように頂点が滑らかな半球面状の断面形状となるように突出させたもので、送風方向(W)に長さLの寸法を有し、送風方向(W)に対して角度θで傾斜している。そして、突条組31は、一対の突条30,30を、送風直交方向(RA)に間隔(この間隔を突条間隔34と称する)を空けて配置するとともに、この突条間隔34が送風下流に対称に拡がる略八の字状に配置されている。   That is, the protrusion 30 is formed by press-molding the flat plate portion 12 so as to protrude into a semispherical cross-sectional shape with a smooth apex as shown in FIG. 4, and has a length in the blowing direction (W). It has a dimension of L and is inclined at an angle θ with respect to the blowing direction (W). And the protrusion set 31 arrange | positions a pair of protrusions 30 and 30 at intervals in the ventilation orthogonal direction (RA) (this space | interval is called the protrusion space | interval 34), and this protrusion space | interval 34 is blowing. It is arranged in a substantially eight-letter shape that extends symmetrically downstream.

そして、この突条組31を、送風直交方向(RA)に間隔(この間隔を組間隔35と称する)を空けて複数配置して1つの突条縦列32が形成されている。
本実施例1では、突条間隔34の送風直交方向(RA)の寸法P1と組間隔35の送風直交方向(RA)の寸法P2とが、同一の寸法に形成されており、各突条30が、一定ピッチで配置されている。また、両間隔34,35の各寸法P1,P2は、1つの突条30の送風直交方向(RA)の寸法Hよりも、僅かに大きな寸法に設定されている。
A plurality of protrusions 31 are arranged in the direction perpendicular to the ventilation direction (RA) with an interval (this interval is referred to as an interval 35) to form one protrusion column 32.
In the first embodiment, the dimension P1 in the blower orthogonal direction (RA) with the rib interval 34 and the dimension P2 in the blower orthogonal direction (RA) with the set interval 35 are formed in the same dimension. Are arranged at a constant pitch. In addition, the dimensions P1 and P2 of the distances 34 and 35 are set to be slightly larger than the dimension H of the one protrusion 30 in the direction perpendicular to the ventilation (RA).

さらに、各突条縦列32と突条縦列32との間には、送風方向(W)に寸法L2の平坦面で形成された列間隔33が送風直交方向(RA)に設けられている。   Furthermore, between each protrusion column 32 and the protrusion column 32, the row | line | column space | interval 33 formed in the ventilation direction (W) with the flat surface of the dimension L2 is provided in the ventilation orthogonal direction (RA).

そして、各突条縦列32は、送風方向(W)に隣り合うものと、各突条組31のピッチP2を、送風直交方向(RA)に1/4ピッチずらして配置されている。したがって、送風上流側の突条縦列32の突条間隔34および組間隔35の送風方向(W)の下流に、次の突条縦列32の突条30が、送風直交方向(RA)の全寸法H分が重なって配置されており、かつ、突条組31を構成する一対の突条30,30の一方が、例えば、図2において、一点鎖線aに示すように、一直線上に並んで配置されている。   And each protrusion row | line | column 32 is arrange | positioned by shifting the pitch P2 of each protrusion set 31 adjacent to the ventilation direction (W) and 1/4 pitch in the ventilation orthogonal direction (RA). Therefore, the ridge 30 of the next ridge column 32 is downstream of the ridge interval 34 and the assembly interval 35 on the upstream side of the blast column 32 in the blowing direction (W). For example, one of the pair of protrusions 30 and 30 constituting the protrusion set 31 is arranged side by side in a straight line as shown by a one-dot chain line a in FIG. Has been.

次に、実施例1の作用を説明する。
この実施例1の熱交換器Aでは、図3において、送風が矢印Wで示すようにコア部1の前面からコア部1を横切るように流れる場合に、熱交換器用フィン10にあっては、図1に示す送風通路13を矢印W方向へ移動する。
Next, the operation of the first embodiment will be described.
In the heat exchanger A of the first embodiment, in FIG. 3, when the air flow flows across the core portion 1 from the front surface of the core portion 1 as indicated by the arrow W, The air passage 13 shown in FIG.

このとき、平板部12に沿って流れる送風は、突条30の延在方向に斜めに方向を変えながら進み、このとき、突条30の延長方向に伸びる渦wpが発生する。これらの渦wpは、図示のように突条30を挟んでその上下で方向が逆向きとなっており、これら逆向きの渦wpが合流して乱流が生じる部位に、その下流の突条縦列32の突条30が配置されている。
このため、突条30と送風との接触面積が増加して熱交換効率が良好となる。
そして、このような作用が、送風上流から下流に向けて各突条縦列32において繰り返される。
At this time, the blast flowing along the flat plate portion 12 proceeds while changing the direction obliquely in the extending direction of the ridges 30, and at this time, a vortex wp extending in the extending direction of the ridges 30 is generated. As shown in the drawing, these vortices wp are opposite in direction above and below the ridge 30, and the ridges downstream of the vortex wp are formed at a portion where the vortex wp in the opposite direction merges to generate turbulence. The ridges 30 in the column 32 are arranged.
For this reason, the contact area of the protrusion 30 and ventilation is increased, and the heat exchange efficiency is improved.
And such an effect | action is repeated in each protrusion row | line | column 32 toward air flow from upstream to downstream.

しかも、一対の突条30の一方は、一直線(a)上に並んで配置されているため、上述の乱流で送風が滞ることなく、この一直線方向に導かれ、効率良く熱交換できる。
また、突条30は、熱交換器用フィン10の全面ではなく、頂部11を除いて平板部12に設けているため、頂部11に設けた場合と比較して、チューブ20との接触面積を確保することができ、これによっても熱交換性能を確保できる。
And since one of a pair of protrusion 30 is arrange | positioned along with the straight line (a), it is guide | induced to this straight line direction, and air can be efficiently heat-exchanged, without airflow being delayed by the above-mentioned turbulent flow.
Further, since the protrusion 30 is provided not on the entire surface of the heat exchanger fin 10 but on the flat plate portion 12 except for the top portion 11, the contact area with the tube 20 is ensured as compared with the case where it is provided on the top portion 11. This also ensures heat exchange performance.

さらに、各突条30の送風直交方向(RA)の寸法Hよりも、その前方に配置された各間隔P1,P2の送風直交方向(RA)の寸法を大きく形成したため、各突条30の送風直交方向(RA)の寸法Hが各間隔P1,P2の送風直交方向(RA)の寸法よりも小さい場合よりも、各突条30に当る送風量を確保でき、その分、熱交換効率がさらに向上する。   Furthermore, since the dimension of the air blow orthogonal direction (RA) of each space | interval P1, P2 arrange | positioned ahead is formed rather than the dimension H of the air blow orthogonal direction (RA) of each protrusion 30, the air flow of each protrusion 30 is formed. Compared with the case where the dimension H in the orthogonal direction (RA) is smaller than the dimension in the blowing orthogonal direction (RA) of the intervals P1 and P2, it is possible to secure the amount of air blown against each protrusion 30 and further increase the heat exchange efficiency. improves.

次に、図5に基づいてこの発明の実施の形態の実施例2の熱交換器用フィン210について説明する。なお、この実施例2は、実施例1の変形例であるため、その相違点についてのみ説明し、実施例1と同様の構成および作用効果については説明を省略する。   Next, a heat exchanger fin 210 according to Example 2 of the embodiment of the present invention will be described with reference to FIG. Since the second embodiment is a modification of the first embodiment, only the difference will be described, and the description of the same configuration and operational effects as the first embodiment will be omitted.

この実施例2では、熱交換器用フィン210の平板部12に形成された突条30a,30bは、突条縦列32の2列おきに、その突出方向を逆に形成されている。すなわち、図5において、突条30aは、図中左方向に突出されており、突条30bは、図中右方向に突出されている。
なお、作用効果は、実施例1と同様であるので、説明を省略する。
In the second embodiment, the protrusions 30a and 30b formed on the flat plate portion 12 of the heat exchanger fins 210 are formed in every two rows of the protrusion columns 32 so that the protruding directions thereof are reversed. That is, in FIG. 5, the protrusion 30a protrudes in the left direction in the figure, and the protrusion 30b protrudes in the right direction in the figure.
In addition, since an effect is the same as that of Example 1, description is abbreviate | omitted.

以上、図面を参照して、本発明の実施の形態および実施例1,2を詳述してきたが、具体的な構成は、この実施の形態および実施例1,2に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   As described above, the embodiment of the present invention and Examples 1 and 2 have been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment and Examples 1 and 2, and the present invention is not limited thereto. Design changes that do not depart from the gist are included in the present invention.

例えば、実施例1,2では、熱交換部材として、熱交換器用の流体を流すチューブ20を示したが、この熱交換部材は、このように流体を流すものに限定されるものではなく、例えば、通電により発熱するPCTヒータなどを用いてもよい。
また、実施例1,2では、チューブ20は、2つの流路20a,20bを備えたものを示したが、流路20a,20bの形状および数は、これに限定されるものではなく、多数の小孔が形成されたものなど他の形状のものを用いることができる。
さらに、実施例1,2のチューブ20は、押出成形により形成したものを示したが、これに限定されず、図6に示すチューブ620のように、金属製の薄板を折り曲げ、プレス成形して形成したものを用いるようにしてもよい。なお、620aは、熱交換媒体を流す流路である。
For example, in the first and second embodiments, the tube 20 through which the fluid for the heat exchanger flows is shown as the heat exchange member. However, the heat exchange member is not limited to the one through which the fluid flows in this way, for example, Alternatively, a PCT heater that generates heat when energized may be used.
In the first and second embodiments, the tube 20 includes the two flow paths 20a and 20b. However, the shape and number of the flow paths 20a and 20b are not limited to this, and many Other shapes such as those having small holes can be used.
Furthermore, although the tube 20 of Example 1, 2 showed what was formed by extrusion molding, it is not limited to this, A metal thin plate is bend | folded like the tube 620 shown in FIG. 6, and it press-molds. You may make it use what was formed. In addition, 620a is a flow path through which the heat exchange medium flows.

また、実施例1,2では、熱交換器用フィン10として、波板状のものを示したが、複数の平板部を有したものであれば、その形状は、波板状のものに限定されるものではなく、例えば、頂部11を円弧状ではなく、矩形の平面で形成してもよい。   Moreover, in Example 1, 2, although the corrugated sheet-like thing was shown as the fin 10 for heat exchangers, if it has a some flat plate part, the shape will be limited to a corrugated sheet-like thing. For example, the top 11 may be formed in a rectangular plane instead of an arc.

また、実施例1,2では、突条組31を、一定ピッチで配置したものを示したが、不定ピッチで配置したものを用いてもよい。
さらに、実施例1,2では、突条間隔34ならびに組間隔35の寸法P1,P2を、突条30の送風直交方向(RA)の寸法Hよりも大きく形成した例を示したが、これに限定されるものではなく、仮に、これら寸法P1,P2が寸法Hよりも小さくしても、両間隔34,35を通過した送風が、その下流の突条30に効率良く当たって、良好な熱交換効率が得られる。また、突条30の傾斜角度θやその長さLも、実施例1,2で示した角度および長さに限定されるものではない。
In the first and second embodiments, the protrusions 31 are arranged at a constant pitch, but those arranged at an indefinite pitch may be used.
Furthermore, in Examples 1 and 2, although the dimension P1, P2 of the protrusion interval 34 and the set interval 35 was shown larger than the dimension H of the protrusion 30 in the air blower orthogonal direction (RA), Although not limited, even if these dimensions P1 and P2 are smaller than the dimension H, the air that has passed through the gaps 34 and 35 efficiently hits the downstream ridge 30 and has good heat. Exchange efficiency is obtained. Further, the inclination angle θ of the protrusion 30 and its length L are not limited to the angles and lengths shown in the first and second embodiments.

本発明の最良の実施の形態の実施例1の熱交換器用フィン10およびこれに積層されたチューブ20を示す斜視図である。It is a perspective view which shows the fin 10 for heat exchangers of Example 1 of the best form of this invention, and the tube 20 laminated | stacked on this. 実施例1の熱交換器用フィン10の突条30の配置および配列の説明図である。It is explanatory drawing of arrangement | positioning and arrangement | sequence of the protrusion 30 of the fin 10 for heat exchangers of Example 1. FIG. 実施例1の熱交換器用フィン10を適用した熱交換器Aの斜視図である。It is a perspective view of the heat exchanger A to which the fin 10 for heat exchangers of Example 1 is applied. 実施例1の熱交換器用フィン10の要部の断面図である。It is sectional drawing of the principal part of the fin 10 for heat exchangers of Example 1. FIG. 実施例2の熱交換器用フィン210およびこれに積層されたチューブ20を示す斜視図である。It is a perspective view which shows the fin 210 for heat exchangers of Example 2, and the tube 20 laminated | stacked on this. チューブの他の例を示す斜視図である。It is a perspective view which shows the other example of a tube.

符号の説明Explanation of symbols

10 熱交換器用フィン
11 頂部
12 平板部
13 送風通路
20 チューブ
30 突条
31 突条組
32 突条縦列
33 列間隔
34 突条間隔
35 組間隔
A 熱交換器
SP 送風空間部
DESCRIPTION OF SYMBOLS 10 Heat exchanger fin 11 Top part 12 Flat plate part 13 Blower passage 20 Tube 30 ridge 31 ridge group 32 ridge column 33 row interval 34 ridge interval 35 group interval A heat exchanger SP ventilation space part

Claims (5)

送風と熱交換を行う熱交換部材の間に設けられた送風空間部に、前記熱交換部材と接触状態で配置され、前記送風空間部の送風方向に延在される平板部を複数有し、この平板部の板表面から突出された複数の突部を備えた熱交換器用フィンであって、
前記突部として、送風直交方向に離間するとともに送風方向に対して傾斜した一対の突条が、送風方向に間隔が広がるよう略八の字状に配置された突条組を、送風直交方向に間隔を空けて複数配置した突条縦列が設けられ、かつ、この突条縦列が送風方向に複数列設けられ、
前記突条縦列は、下流側の突条縦列の各突条の送風上流側の先端部が、上流側の突条縦列において各突条組の突条間に形成された突条間隔ならびに突条組間に形成された組間隔の送風下流方向に重なって配置されていることを特徴とする熱交換器用フィン。
A plurality of flat plate portions arranged in contact with the heat exchange member and extending in the air blowing direction of the air blowing space, in the air blowing space provided between the heat exchange members performing air exchange and heat exchange, A heat exchanger fin having a plurality of protrusions protruding from the plate surface of the flat plate part,
As the protrusions, a pair of protrusions that are spaced apart in the blowing direction and inclined with respect to the blowing direction are arranged in an approximately eight-letter shape so that the interval is widened in the blowing direction. A plurality of ridge columns arranged at intervals are provided, and a plurality of ridge columns are provided in the blowing direction,
The ridge column includes a ridge interval formed between the ridges of each ridge group in the upstream ridge column and the ridge upstream end of each ridge in the downstream ridge column. A heat exchanger fin, wherein the fins are arranged so as to overlap in the downstream direction of the air flow between the groups formed between the groups.
各突条縦列は、前記突条間隔ならびに組間隔が、各突条の送風直交方向の寸法よりも大きな寸法に形成されていることを特徴とする請求項1に記載の熱交換器用フィン。   2. The fin for a heat exchanger according to claim 1, wherein each of the protrusion columns is formed such that the protrusion interval and the set interval are larger than the dimension of each protrusion in the direction perpendicular to the air blowing direction. 各突条縦列の前記突条組の一方の突条と、その直下流の突起縦列の前記突条組の一方の突条とが、一直線上に並んで配置されていることを特徴とする請求項1または請求項2に記載の熱交換器用フィン。   One ridge of the ridge group of each ridge column and one ridge of the ridge group of the protrusion column immediately downstream thereof are arranged in a straight line. The fin for heat exchangers of Claim 1 or Claim 2. 前記突条縦列と隣り合う突条縦列との間に、平坦面が送風直交方向に延在されていることを特徴とする請求項1〜請求項3のいずれか1項に記載の熱交換器用フィン。   4. The heat exchanger according to claim 1, wherein a flat surface extends in a direction perpendicular to the air flow between the protrusion column and the adjacent protrusion column. 5. fin. 前記平板部は、波板状のコルゲートフィンにおいて前記熱交換器に当接される波頂部どうしを連結する部分であることを特徴とする請求項1〜請求項4のいずれか1項に記載の熱交換起用フィン。   The said flat plate part is a part which connects the wave crest parts contact | abutted by the said heat exchanger in a corrugated fin of a corrugated sheet shape, The Claim 1 characterized by the above-mentioned. Fin for heat exchange.
JP2007021066A 2007-01-31 2007-01-31 Fin for heat exchanger Pending JP2008185307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021066A JP2008185307A (en) 2007-01-31 2007-01-31 Fin for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021066A JP2008185307A (en) 2007-01-31 2007-01-31 Fin for heat exchanger

Publications (1)

Publication Number Publication Date
JP2008185307A true JP2008185307A (en) 2008-08-14

Family

ID=39728472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021066A Pending JP2008185307A (en) 2007-01-31 2007-01-31 Fin for heat exchanger

Country Status (1)

Country Link
JP (1) JP2008185307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548437A (en) * 2018-06-08 2018-09-18 陕西益信伟创智能科技有限公司 Based on bionical fishbone type small staggeredly alveolar heat exchanger core body and heat exchanger
CN116892845A (en) * 2023-07-11 2023-10-17 山东博宇重工科技集团有限公司 Fin tube heat exchanger with vortex generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548437A (en) * 2018-06-08 2018-09-18 陕西益信伟创智能科技有限公司 Based on bionical fishbone type small staggeredly alveolar heat exchanger core body and heat exchanger
CN108548437B (en) * 2018-06-08 2023-11-03 陕西益信伟创智能科技有限公司 Bionic-based fishbone-type micro-staggered alveolar heat exchanger core and heat exchanger
CN116892845A (en) * 2023-07-11 2023-10-17 山东博宇重工科技集团有限公司 Fin tube heat exchanger with vortex generator
CN116892845B (en) * 2023-07-11 2024-03-08 山东博宇重工科技集团有限公司 Fin tube heat exchanger with vortex generator

Similar Documents

Publication Publication Date Title
US6786274B2 (en) Heat exchanger fin having canted lances
JP5453797B2 (en) Heat exchanger
JP2006322698A (en) Heat exchanger
JP5803768B2 (en) Heat exchanger fins and heat exchangers
JP6011481B2 (en) Heat exchanger fins
JP2008170041A (en) Heat exchanger
WO2009144909A1 (en) Fin-tube heat exchanger
KR101977817B1 (en) Heat exchanger
WO2013001744A1 (en) Fin tube heat exchanger
WO2006028253A1 (en) Heat exchanger
JP2010025478A (en) Heat exchanger
EP1977180B1 (en) Fin and tube heat exchanger
JP4483536B2 (en) Heat exchanger
JP2019002588A5 (en)
US20060169443A1 (en) Heat exchanger
JP2009270792A (en) Heat exchanger
US20060266503A1 (en) Heat transfer fin, heat exchanger, evaporator and condenser for use in car air-conditioner
JP2008185307A (en) Fin for heat exchanger
JPWO2013018270A1 (en) Finned tube heat exchanger
JP2009162433A (en) Heat transfer member
WO2019229180A1 (en) A core of a heat exchanger comprising corrugated fins
CN112888909B (en) Heat exchanger and air conditioner having the same
JP2009204278A (en) Heat exchanger
JP2006349208A (en) Heat exchanger
JP2005308311A (en) Fin tube