Nothing Special   »   [go: up one dir, main page]

JP2008180887A - Wide angle lens system - Google Patents

Wide angle lens system Download PDF

Info

Publication number
JP2008180887A
JP2008180887A JP2007013915A JP2007013915A JP2008180887A JP 2008180887 A JP2008180887 A JP 2008180887A JP 2007013915 A JP2007013915 A JP 2007013915A JP 2007013915 A JP2007013915 A JP 2007013915A JP 2008180887 A JP2008180887 A JP 2008180887A
Authority
JP
Japan
Prior art keywords
lens
angle
object side
wide
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007013915A
Other languages
Japanese (ja)
Other versions
JP4932508B2 (en
Inventor
Takahiro Tanabe
貴大 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2007013915A priority Critical patent/JP4932508B2/en
Publication of JP2008180887A publication Critical patent/JP2008180887A/en
Application granted granted Critical
Publication of JP4932508B2 publication Critical patent/JP4932508B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wide angle lens system which has a short entire length, a wide angle and a large diameter, by an extremely simple configuration. <P>SOLUTION: The wide angle lens system 1 with a total field angle (2ω) of 90 degrees or more comprises a first single lens and a second single lens in order from an object side and a third single lens on an image side, across a diaphragm surface 4. The first lens 5 is a negative meniscus lens whose convex surface faces the object side, the second lens 6 is a positive or negative meniscus lens whose concave surface faces the object side, and the third lens 7 is a biconvex lens. When the radius of curvature of the object side surface of the second lens is defined as R1 and the radius of curvature of the image side surface thereof is defined as R2, expression of 0.5<R1/R2<2 is satisfied. When the focal length of the entire system is defined as f, the entire length L and an image height H' satisfy L/(H'×f)≤5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、監視カメラ、車載カメラ等に用いられる小型且つ安価で全長の短い広角レンズ系に関する。   The present invention relates to a small-sized and inexpensive wide-angle lens system having a short overall length used for a surveillance camera, an in-vehicle camera, and the like.

従来から、監視カメラ、車載カメラ等の産業分野では、光学系を小型化しつつ、特殊な射影方式の下、広い画角を実現する必要があった。又、撮像素子としてCCD或はCMOS等を使用する為、バックフォーカスを大きくとり、且つ主光線が光軸と平行であること(テレセントリック性)も求められていた。   Conventionally, in industrial fields such as surveillance cameras and in-vehicle cameras, it has been necessary to realize a wide angle of view under a special projection method while miniaturizing an optical system. In addition, since a CCD or CMOS is used as the image pickup device, it is also required that the back focus be increased and that the principal ray be parallel to the optical axis (telecentricity).

通常の射影方式とは異なる広角レンズでは、極めて大きな画角を持って入射する主光線を大きく屈折させ、適切な角度で像面に入射させねばならない。その為、絞りより物体側に位置する群、即ち、前群に、大きな画角の主光線の角度を減少させる発散群を配置し、絞りより撮像素子側に位置する群、即ち後群に、前群で角度を緩められた主光線を略テレセントリックに像面に入射させ、且つ像を結ばせる役割を担う正のレンズを配置する。   In a wide-angle lens different from the normal projection method, it is necessary to refract the chief ray incident with a very large angle of view and to enter the image plane at an appropriate angle. Therefore, a divergent group that reduces the chief ray angle with a large angle of view is disposed in the group located on the object side from the stop, i.e., the front group, and the group located on the image sensor side from the stop, i.e., the rear group. A positive lens having a role of causing the principal ray whose angle is relaxed in the front group to be incident on the image plane in a substantially telecentric manner and forming an image is disposed.

その結果、レンズ構成としては、物体側に負のパワーを配置し、像側に正のパワーを配置した、所謂レトロフォーカス型(非対称型)の構成が採られている。   As a result, the lens configuration employs a so-called retrofocus type (asymmetric type) configuration in which negative power is disposed on the object side and positive power is disposed on the image side.

これらの役割分担の下では、前群は負のレンズのみで構成し、後群は正のレンズのみで構成することが望ましい。   Under these roles, it is desirable that the front group is composed of only negative lenses and the rear group is composed of only positive lenses.

特に前群の構成について述べると、負のレンズ群は、主光線についてのみ考えれば非点収差及び歪曲を制御するという積極的な役割を持っているが、大口径化に主に関係する球面収差を増大するという負の側面を持っている。又、前群の負の成分を増加させることは、レトロフォーカス作用を増大させ、全長を長くする作用を持っている。   In particular, regarding the configuration of the front group, the negative lens group has an active role of controlling astigmatism and distortion when considering only the chief ray, but spherical aberration mainly related to the increase in aperture. Has the negative side of increasing. Also, increasing the negative component of the front group has the effect of increasing the retrofocus effect and lengthening the total length.

従来の広角レンズ系に於いて、前群の有すべきパワーを複数のレンズに分担させ、レンズ1枚当たりの収差の負担を軽減するという構成が採られていたが、この様な構成では、レンズ1枚当りの負のパワーは却って増加し、上記問題が増幅するという問題があった。又、従来のレンズ構成では、一般的に口径を大きくとることが困難であり、同時に広角レンズ系全長が長くなってしまうという問題もあった。   In a conventional wide-angle lens system, a configuration has been adopted in which the power that the front group should have is shared by a plurality of lenses, and the burden of aberration per lens is reduced, but in such a configuration, The negative power per lens increased on the contrary, and the above problem was amplified. In addition, with the conventional lens configuration, it is generally difficult to increase the aperture, and at the same time, there is a problem that the entire length of the wide-angle lens system becomes long.

ところで、近年、光学材料として使用可能な樹脂の実用化によって、非球面の製作が容易になり、非球面を持った樹脂レンズが組込まれた様々な仕様のレンズ系が実用化されている。又非球面レンズの採用は、広角レンズ系の広角化と大口径化に役立つものである。然し乍ら、大口径化と広角化の要求は相矛盾するものであり、同時に広角レンズ系全長を充分に短縮することは現在に於いても大きな課題である。   By the way, in recent years, the practical use of a resin that can be used as an optical material has facilitated the production of an aspherical surface, and various types of lens systems in which a resin lens having an aspherical surface is incorporated have been put into practical use. The use of an aspheric lens is useful for widening and widening the wide-angle lens system. However, the demands for a large aperture and a wide angle are contradictory, and at the same time, sufficiently shortening the entire length of the wide angle lens system is a major problem.

特開2001−75006号公報JP 2001-750006 A

特開2001−83409号公報JP 2001-83409 A

特開2005−309210号公報JP 2005-309210 A

本発明は斯かる実情に鑑み、上記課題を解決すべく、極めて簡単な構成により、全長の短い、広角且つ大口径の広角レンズ系を提供するものである。   In view of such a situation, the present invention provides a wide-angle lens system having a short overall length and a wide angle and a large aperture with an extremely simple configuration in order to solve the above problems.

本発明は、全画角(2ω)が90°以上である広角レンズ系に於いて、絞り面を挟んで物体側から第1、第2、像側に第3のそれぞれ単レンズからなり、第1のレンズは、物体側に凸面を向けた負のメニスカスレンズであり、第2のレンズは物体側に凹面を向けた正又は負のメニスカスレンズであり、第3のレンズは両凸レンズであり、前記第2のレンズの物体側面の曲率半径をR1、像側面の曲率半径をR2とする時、0.5<R1/R2<2を満たし、全系の焦点距離をfとする時、全長Lと像高H′は、L/(H′×f)≦5を満たす広角レンズ系に係るものである。   The present invention is a wide-angle lens system having a total angle of view (2ω) of 90 ° or more, and includes a first single lens from the object side and a second single lens from the object side across the diaphragm surface, The first lens is a negative meniscus lens having a convex surface facing the object side, the second lens is a positive or negative meniscus lens having a concave surface facing the object side, and the third lens is a biconvex lens, When the radius of curvature of the object side surface of the second lens is R1 and the radius of curvature of the image side surface is R2, when 0.5 <R1 / R2 <2 is satisfied and the focal length of the entire system is f, the total length L The image height H ′ relates to a wide-angle lens system that satisfies L / (H ′ × f) ≦ 5.

本発明によれば、全画角(2ω)が90°以上である広角レンズ系に於いて、絞り面を挟んで物体側から第1、第2、像側に第3のそれぞれ単レンズからなり、第1のレンズは、物体側に凸面を向けた負のメニスカスレンズであり、第2のレンズは物体側に凹面を向けた正又は負のメニスカスレンズであり、第3のレンズは両凸レンズであり、前記第2のレンズの物体側面の曲率半径をR1、像側面の曲率半径をR2とする時、0.5<R1/R2<2を満たし、全系の焦点距離をfとする時、全長Lと像高H′は、L/(H′×f)≦5を満たす様にしたので、簡単な構成で、広角レンズ系の全長を短くすることができ、小型且つ安価な広角レンズ系とすることができるという優れた効果を発揮する。   According to the present invention, in a wide-angle lens system in which the total angle of view (2ω) is 90 ° or more, each of the first and second images from the object side and the third lens from the image side with the stop surface interposed therebetween. The first lens is a negative meniscus lens having a convex surface facing the object side, the second lens is a positive or negative meniscus lens having a concave surface facing the object side, and the third lens is a biconvex lens. Yes, when the radius of curvature of the object side surface of the second lens is R1 and the radius of curvature of the image side surface is R2, when 0.5 <R1 / R2 <2 is satisfied and the focal length of the entire system is f, Since the total length L and the image height H ′ satisfy L / (H ′ × f) ≦ 5, the overall length of the wide-angle lens system can be shortened with a simple configuration, and a small and inexpensive wide-angle lens system. The excellent effect of being able to be demonstrated.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本発明に係る広角レンズ系では、前群に正のパワーを適切な形で組込むという構成を有している。   The wide-angle lens system according to the present invention has a configuration in which positive power is incorporated into the front group in an appropriate form.

図1は第1の実施の形態に係る広角レンズ系1の構成を示し、図中、2は光軸、3は撮像素子等が配設される像面を示している。   FIG. 1 shows a configuration of a wide-angle lens system 1 according to the first embodiment, in which 2 denotes an optical axis, and 3 denotes an image plane on which an image sensor and the like are arranged.

前記光軸2上には絞り4が配設され、又該絞り4より物体側に第1レンズ5、第2レンズ6が配設され、前記第1レンズ5、前記第2レンズ6により前群が構成される。前記絞り4より前記像面3側には第3レンズ7が配設され、該第3レンズ7は後群を構成する。   A diaphragm 4 is disposed on the optical axis 2, and a first lens 5 and a second lens 6 are disposed on the object side of the diaphragm 4, and a front group is formed by the first lens 5 and the second lens 6. Is configured. A third lens 7 is disposed on the image plane 3 side of the diaphragm 4, and the third lens 7 forms a rear group.

前群の内、最も物体側に位置する前記第1レンズ5として、物体側に凸面を向けた負のパワーを持つメニスカスレンズを採用し、負のパワーを負担すべき前記第2レンズ6に、物体側に凹面を向け、前記絞り4側に凸面を向けた厚いメニスカスレンズを採用している。   As the first lens 5 located closest to the object side in the front group, a meniscus lens having a negative power with the convex surface facing the object side is adopted, and the second lens 6 that should bear the negative power is used. A thick meniscus lens having a concave surface facing the object side and a convex surface facing the diaphragm 4 side is employed.

又、後群の前記第3レンズ7は、前記絞り4側、前記像面3側それぞれの面が凸面をした凸レンズとなっている。   The third lens 7 in the rear group is a convex lens having convex surfaces on the diaphragm 4 side and the image plane 3 side.

前記第2レンズ6の物体側の面で負のパワーを分担し、主光線傾角を小さくすると共に、該第2レンズ6の前記絞り4側の面に正のパワーを持たせることによって、全長の短縮化、大口径化を実現している。尚、前記第2レンズ6自体のパワーは、前記広角レンズ系1全体が要求するパワーとなり、正の場合も負の場合もあり得る。   By sharing negative power on the object side surface of the second lens 6 to reduce the chief ray tilt angle, and giving positive power to the surface of the second lens 6 on the diaphragm 4 side, Shortening and large diameter are realized. The power of the second lens 6 itself is the power required by the entire wide-angle lens system 1 and may be positive or negative.

尚、前記第2レンズ6は、貼合わせ面を持たず、色収差を積極的に補正するエレメントを持たない。   The second lens 6 does not have a bonding surface and does not have an element that positively corrects chromatic aberration.

ところで、想定される用途に於いては、一般に像面サイズは小さく、且つ、画角は大きい為、焦点距離の小さな設計のもとで製造され、実用に供される。   By the way, in the assumed use, since the image plane size is generally small and the angle of view is large, the image is manufactured under a design with a small focal length and is put into practical use.

ここで、色収差を含む諸収差は、焦点距離に比例する。又、収差の許容量は画像を電子的に取得する場合、撮像素子のサイズ、フィルム等で取得する場合、感光面の乳剤粒子の径のみに依存することが知られている。そこで、適切な硝材、及び樹脂材料を選択することで軸上及び倍率色収差をその素子サイズに適した適切な大きさに低減することができる。   Here, various aberrations including chromatic aberration are proportional to the focal length. In addition, it is known that the allowable amount of aberration depends only on the size of the emulsion grains on the photosensitive surface when the image is acquired electronically, when the size of the image sensor is acquired, and when the image is acquired with a film. Therefore, by selecting an appropriate glass material and resin material, axial and lateral chromatic aberration can be reduced to an appropriate size suitable for the element size.

又、図1中に於いて、11は軸上光線、12は最軸外光線(画角ω=80°)を示している。   In FIG. 1, 11 indicates an on-axis light beam, and 12 indicates a most off-axis light beam (view angle ω = 80 °).

又第1の実施の形態に於いて、前記第1レンズ5の物体側面を第1面、前記絞り4側面を第2面、前記第2レンズ6の物体側面を第3面(曲率半径R1)、前記絞り4側面を第4面(曲率半径R2)、前記絞り4を第5面、前記第3レンズ7の前記絞り4側面を第6面、前記像面3側面を第7面とすると、前記第2レンズ6の第3面、第4面は非球面、前記第3レンズ7の第6面、第7面は非球面となっている。   In the first embodiment, the object side surface of the first lens 5 is the first surface, the diaphragm 4 side surface is the second surface, and the object side surface of the second lens 6 is the third surface (curvature radius R1). When the diaphragm 4 side surface is the fourth surface (curvature radius R2), the diaphragm 4 is the fifth surface, the diaphragm 4 side surface of the third lens 7 is the sixth surface, and the image surface 3 side surface is the seventh surface. The third and fourth surfaces of the second lens 6 are aspheric surfaces, and the sixth and seventh surfaces of the third lens 7 are aspheric surfaces.

第1の実施の形態では、前記第1レンズ5の材質としては硝子、前記第2レンズ6、前記第3レンズ7の材質としては樹脂が用いられている。各レンズの諸元は図2に示され、図中、Nは屈折率、νはアッベ数を示している。尚、前記第2レンズ6には樹脂1が用いられ、前記第3レンズ7には樹脂2が用いられ、樹脂1、樹脂2の屈折率は図17に示されている。   In the first embodiment, the first lens 5 is made of glass, and the second lens 6 and the third lens 7 are made of resin. The specifications of each lens are shown in FIG. 2, in which N is the refractive index and ν is the Abbe number. Incidentally, the resin 1 is used for the second lens 6, the resin 2 is used for the third lens 7, and the refractive indexes of the resin 1 and the resin 2 are shown in FIG. 17.

前記第2レンズ6の第3面の曲率をR1とし、第4面の曲率をR2とすると、R1/R2=1.018135であり、又、前記広角レンズ系1の焦点距離をfとすると、f=1.625mm、全長L=12.5mm、像高H′=2.3mm、又、L/(H′×f)=12.5/(2.3×1.625)=3.3445である。   When the curvature of the third surface of the second lens 6 is R1, the curvature of the fourth surface is R2, R1 / R2 = 1.018135, and the focal length of the wide-angle lens system 1 is f. f = 1.625 mm, total length L = 12.5 mm, image height H ′ = 2.3 mm, and L / (H ′ × f) = 12.5 / (2.3 × 1.625) = 3.3445 It is.

又、前記広角レンズ系1に於ける、レンズのFナンバーをF/noとし、画角、焦点距離、バックフォーカスは図3に示される。更に、レンズの非球面の形状が、光軸方向にx、光軸からの離反距離Hとして(1式)で表されるとし、レンズ各面の非球面係数R、K、A、B、Cは図4で表される。   In the wide-angle lens system 1, the F number of the lens is F / no, and the angle of view, focal length, and back focus are shown in FIG. Further, it is assumed that the aspherical shape of the lens is expressed by (Expression 1) as x in the optical axis direction and a separation distance H from the optical axis, and the aspherical coefficients R, K, A, B, C of each surface of the lens Is represented in FIG.

x=H/R(1+√[1−(1+K)(H/R)])+AH+BH+CH (1式) x = H 2 / R (1 + √ [1− (1 + K) (H / R) 2 ]) + AH 4 + BH 6 + CH 8 (1 formula)

上記構成の広角レンズ系1に於ける、球面収差及び正弦条件の収差が図5に示される。   FIG. 5 shows spherical aberration and sinusoidal aberration in the wide-angle lens system 1 having the above-described configuration.

図5に示される様に、球面収差及びコマ収差は望ましく小さい状態で補正されている。   As shown in FIG. 5, the spherical aberration and the coma aberration are corrected in a desirably small state.

又、非点収差については図6に示されている。尚、図6中、ΔSはサジタル像面、ΔMはメリディオナル像面であり、図6に示される様に非点収差及び像面湾曲は望ましく小さい状態で補正されている。   Further, astigmatism is shown in FIG. In FIG. 6, ΔS is a sagittal image plane, and ΔM is a meridional image plane. As shown in FIG. 6, astigmatism and field curvature are corrected in a desirably small state.

又、歪曲収差については図7に示され、図7に示される様に歪曲は等距離射影の下、望ましく小さい状態で補正されている。   Further, the distortion aberration is shown in FIG. 7, and as shown in FIG. 7, the distortion is corrected in a desirably small state under an equidistant projection.

又、図8は、入射光F1の画角ω=0(光軸上の光線)、入射光F2の画角ω=70°、入射光F3の画角ω=80°の場合のMTF特性(空間周波数応答特性)を示している。又、RADはRadial方向の特性、又、TANはtangential方向の特性を示している。又、F1,F2,F3が示すMTF特性は、それぞれC線(波長656.27nm)、d線(波長587.56nm)、F線(波長486.13nm)についてのMTF特性を、C線:d線:F線=1:2:1で加重平均して示したものである。   FIG. 8 shows the MTF characteristics when the angle of view F1 of the incident light F1 (light on the optical axis), the angle of view ω of the incident light F2 = 70 °, and the angle of view ω = 80 ° of the incident light F3 ( (Spatial frequency response characteristics). RAD indicates a characteristic in the radial direction, and TAN indicates a characteristic in the tangential direction. The MTF characteristics indicated by F1, F2, and F3 are the MTF characteristics for the C line (wavelength 656.27 nm), the d line (wavelength 587.56 nm), and the F line (wavelength 486.13 nm), respectively. Line: F line = 1: 2: 1.

このグラフによると、前記広角レンズ系1は、色収差を初めとする諸収差は望ましく小さい状態に補正され、撮像素子の一般的なサイズに対する空間周波数(50lp/mm:1mm当りの白黒の線の対が50本を意味する。尚、lpはLine pairを示す。)に於いて充分な解像力を持つことが見て取れる。   According to this graph, the wide-angle lens system 1 is corrected to a state in which various aberrations including chromatic aberration are desirably small, and a spatial frequency (50 lp / mm: a pair of black and white lines per 1 mm with respect to the general size of the image sensor. Means 50. Note that lp is a line pair).

図9は第2の実施の形態に係る広角レンズ系15の構成を示し、該広角レンズ系15は第1の実施の形態に於ける広角レンズ系1と同等の構成を有しており、図9中、図1中で示したものと同等のものには同符号を付してある。   FIG. 9 shows a configuration of a wide-angle lens system 15 according to the second embodiment. The wide-angle lens system 15 has a configuration equivalent to that of the wide-angle lens system 1 according to the first embodiment. 9, the same symbols are given to the same components as those shown in FIG.

又図9中に於いて、11は軸上光線、12は最軸外光線(画角ω=55°)を示している。   In FIG. 9, 11 indicates an on-axis light beam, and 12 indicates a most off-axis light beam (view angle ω = 55 °).

第1レンズ5の物体側面を第1面、絞り4側面を第2面、第2レンズ6の物体側面を第3面(曲率半径R1)、前記絞り4側面を第4面(曲率半径R2)、前記絞り4を第5面、第3レンズ7の前記絞り4側面を第6面、像面3側面を第7面とし、前記第2レンズ6の第3面、第4面は非球面、前記第3レンズ7の第6面、第7面は非球面となっている。   The object side surface of the first lens 5 is the first surface, the diaphragm 4 side surface is the second surface, the object side surface of the second lens 6 is the third surface (curvature radius R1), and the aperture 4 side surface is the fourth surface (curvature radius R2). The diaphragm 4 is the fifth surface, the diaphragm 4 side surface of the third lens 7 is the sixth surface, and the image surface 3 side surface is the seventh surface, and the third and fourth surfaces of the second lens 6 are aspherical surfaces, The sixth surface and the seventh surface of the third lens 7 are aspherical surfaces.

第2の実施の形態では、前記第1レンズ5の材質としては硝子、前記第2レンズ6、前記第3レンズ7の材質としては樹脂が用いられている。各レンズの諸元は図10に示され、図中、Nは屈折率、νはアッベ数を示している。尚、前記第2レンズ6には樹脂1が用いられ、前記第3レンズ7には樹脂3が用いられ、樹脂1、樹脂3の屈折率は図17に示されている。   In the second embodiment, glass is used as the material of the first lens 5, and resin is used as the material of the second lens 6 and the third lens 7. The specifications of each lens are shown in FIG. 10, in which N is the refractive index and ν is the Abbe number. The resin 1 is used for the second lens 6, the resin 3 is used for the third lens 7, and the refractive indexes of the resin 1 and the resin 3 are shown in FIG.

前記第2レンズ6の第3面の曲率をR1とし、第4面の曲率をR2とすると、R1/R2=1.4380であり、前記広角レンズ系15の焦点距離をfとすると、f=2.365mm、全長L=6.385mm、像高H′=2.3mm、又、L/(H′×f)=6.385/(2.3×2.365)=1.1738である。   When the curvature of the third surface of the second lens 6 is R1 and the curvature of the fourth surface is R2, R1 / R2 = 1.4380, and when the focal length of the wide-angle lens system 15 is f, f = 2.365 mm, total length L = 6.385 mm, image height H ′ = 2.3 mm, and L / (H ′ × f) = 6.385 / (2.3 × 2.365) = 1.1738. .

又、前記広角レンズ系1に於ける、レンズのFナンバーをF/noとし、画角、焦点距離、バックフォーカスは図11に示される。更に、レンズの非球面の形状が、光軸方向にx、光軸からの離反距離Hとして(1式)で表されるとし、レンズ各面の非球面係数R、K、A、B、Cは図12で表される。   In the wide angle lens system 1, the F number of the lens is F / no, and the angle of view, focal length, and back focus are shown in FIG. Further, it is assumed that the aspherical shape of the lens is expressed by (Expression 1) as x in the optical axis direction and a separation distance H from the optical axis, and the aspherical coefficients R, K, A, B, and C of each lens surface Is represented in FIG.

図13に示される様に、球面収差及びコマ収差は望ましく小さい状態で補正されている。   As shown in FIG. 13, the spherical aberration and the coma aberration are corrected in a desirably small state.

又、非点収差については図14に示されている。尚、図14中、ΔSはサジタル像面、ΔMはメリディオナル像面であり、図14に示される様に非点収差及び像面湾曲は望ましく小さい状態で補正されている。   Further, astigmatism is shown in FIG. In FIG. 14, ΔS is a sagittal image plane and ΔM is a meridional image plane. As shown in FIG. 14, astigmatism and curvature of field are corrected in a desirably small state.

又、歪曲収差については図15に示され、図15に示される様に歪曲は等距離射影の下、望ましく小さい状態で補正されている。   Further, the distortion aberration is shown in FIG. 15, and as shown in FIG. 15, the distortion is corrected in a desirably small state under the equidistant projection.

又、図16は、入射光F1の画角ω=0(光軸上の光線)、入射光F2の画角ω=40°、入射光F3の画角ω=55°の場合のMTF特性(空間周波数応答特性)を示している。又、F1,F2,F3が示すMTF特性は、それぞれC線(波長656.27nm)、d線(波長587.56nm)、F線(波長486.13nm)についてのMTF特性を、C線:d線:F線=1:2:1で加重平均して示したものである。又、図16中、RADはRadial方向のMTF特性、又、TANはtangential方向のMTF特性を示している。   FIG. 16 shows the MTF characteristics when the angle of view ω = 0 of incident light F1 (ray on the optical axis), the angle of view ω = 40 ° of incident light F2, and the angle of view ω = 55 ° of incident light F3 ( (Spatial frequency response characteristics). The MTF characteristics indicated by F1, F2, and F3 are the MTF characteristics for the C line (wavelength 656.27 nm), the d line (wavelength 587.56 nm), and the F line (wavelength 486.13 nm), respectively. Line: F line = 1: 2: 1. In FIG. 16, RAD indicates the MTF characteristic in the radial direction, and TAN indicates the MTF characteristic in the tangential direction.

このグラフによると、前記広角レンズ系15は、色収差を初めとする諸収差は望ましく小さい状態に補正され、撮像素子の一般的なサイズに対する空間周波数(50lp/mm:1mm当りの白黒の線の対が50本)に於いて充分な解像力を持つことが見て取れる。   According to this graph, the wide-angle lens system 15 is corrected to a state in which various aberrations including chromatic aberration are desirably small, and a spatial frequency (50 lp / mm: a pair of black and white lines per 1 mm) with respect to the general size of the image sensor. It can be seen that there is sufficient resolving power at 50).

上記した様に、第1レンズ5には硝子が使用され、第2レンズ6、第3レンズ7には樹脂が使用されている。前記第2レンズ6、前記第3レンズ7に使用される樹脂硝材1,2,3の特性としては、図17で示すものが例示され、図17は656.27nm(C線)、587.56nm(d線)、486.13nm(F線)の屈折率を示している。   As described above, glass is used for the first lens 5, and resin is used for the second lens 6 and the third lens 7. Examples of the characteristics of the resin glass materials 1, 2, and 3 used for the second lens 6 and the third lens 7 include those shown in FIG. 17, and FIG. 17 shows 656.27 nm (C line) and 587.56 nm. (D line), The refractive index of 486.13 nm (F line) is shown.

又、上記第1の実施の形態、第2の実施の形態に於ける広角レンズ系の諸元をまとめると、図18の通りである。   The specifications of the wide-angle lens system in the first and second embodiments are summarized as shown in FIG.

尚、上記実施の形態に限らず、前記第2レンズ6の第3面の曲率R1、第4面の曲率R2は、0.5<R1/R2<2を満たし、又広角レンズ系1、広角レンズ系15の全系の焦点距離f、全長L、像高H′は、L/(H′×f)≦5を満たせばよい。   The curvature R1 of the third surface and the curvature R2 of the fourth surface of the second lens 6 satisfy 0.5 <R1 / R2 <2, and the wide-angle lens system 1 and the wide-angle lens are not limited to the above embodiments. The focal length f, the total length L, and the image height H ′ of the entire lens system 15 may satisfy L / (H ′ × f) ≦ 5.

又、従来では、特許文献1〜3に示す様に、f=1mmで、L=14mm程度、像高2.3(1/4′′CCD)位が限度であったが、0.5<R1/R2<2、L/(H′×f)≦5を満足させることで、広角レンズ系の全長を短くすることができる。   Conventionally, as shown in Patent Documents 1 to 3, f = 1 mm, L = 14 mm, and image height 2.3 (1/4 ″ CCD), but the limit is 0.5 < By satisfying R1 / R2 <2 and L / (H ′ × f) ≦ 5, the overall length of the wide-angle lens system can be shortened.

更に、本発明は、監視カメラ、車載カメラ等に限らず、カメラ付き携帯電話のカメラや、デジタルカメラ、ビデオカメラその他にも適用することができ、小型且つ安価で、又全長の短い広角レンズ系なので装置本体もコンパクトにすることができる。   Furthermore, the present invention can be applied not only to a surveillance camera and an in-vehicle camera but also to a camera-equipped mobile phone camera, a digital camera, a video camera, and the like. Therefore, the device body can be made compact.

本発明の第1の実施の形態を示す概略構成図である。It is a schematic block diagram which shows the 1st Embodiment of this invention. 同前第1の実施の形態に於ける各レンズの諸元を示す図である。It is a figure which shows the item of each lens in 1st Embodiment same as the above. 同前第1の実施の形態に於ける広角レンズ系の諸元を示す図である。It is a figure which shows the item of the wide angle lens system in 1st Embodiment before the same. 同前第1の実施の形態に於ける各レンズの非球面形状に関する係数を示す図である。It is a figure which shows the coefficient regarding the aspherical shape of each lens in 1st Embodiment same as the above. 同前第1の実施の形態に於ける球面収差、正弦条件を示す図である。It is a figure which shows the spherical aberration and sine condition in 1st Embodiment same as the above. 同前第1の実施の形態に於ける非点収差を示す図である。It is a figure which shows the astigmatism in 1st Embodiment before the same. 同前第1の実施の形態に於ける歪曲収差を示す図である。It is a figure which shows the distortion aberration in 1st Embodiment before the same. 同前第1の実施の形態に於けるMTF特性を示す図である。It is a figure which shows the MTF characteristic in 1st Embodiment same as the above. 本発明の第2の実施の形態を示す概略構成図である。It is a schematic block diagram which shows the 2nd Embodiment of this invention. 同前第2の実施の形態に於ける各レンズの諸元を示す図である。It is a figure which shows the item of each lens in 2nd Embodiment same as the above. 同前第2の実施の形態に於ける広角レンズ系の諸元を示す図である。It is a figure which shows the item of the wide angle lens system in 2nd Embodiment same as the above. 同前第2の実施の形態に於ける各レンズの非球面形状に関する係数を示す図である。It is a figure which shows the coefficient regarding the aspherical shape of each lens in 2nd Embodiment same as the above. 同前第2の実施の形態に於ける球面収差、正弦条件を示す図である。It is a figure which shows the spherical aberration and sine condition in 2nd Embodiment same as the above. 同前第2の実施の形態に於ける非点収差を示す図である。It is a figure which shows the astigmatism in 2nd Embodiment same as the above. 同前第2の実施の形態に於ける歪曲収差を示す図である。It is a figure which shows the distortion aberration in 2nd Embodiment same as the above. 同前第2の実施の形態に於けるMTF特性を示す図である。It is a figure which shows the MTF characteristic in 2nd Embodiment same as the above. レンズに使用される樹脂材料の屈折率を示す図である。It is a figure which shows the refractive index of the resin material used for a lens. 第1の実施の形態、第2の実施の形態の諸元のまとめを示す図である。It is a figure which shows the summary of the item of 1st Embodiment and 2nd Embodiment.

符号の説明Explanation of symbols

1 広角レンズ系
2 光軸
3 像面
4 絞り
5 第1レンズ
6 第2レンズ
7 第3レンズ
11 軸上光線
12 最軸外光線
15 広角レンズ系
DESCRIPTION OF SYMBOLS 1 Wide-angle lens system 2 Optical axis 3 Image surface 4 Aperture 5 1st lens 6 2nd lens 7 3rd lens 11 On-axis light beam 12 Most off-axis light beam 15 Wide-angle lens system

Claims (1)

全画角(2ω)が90°以上である広角レンズ系に於いて、絞り面を挟んで物体側から第1、第2、像側に第3のそれぞれ単レンズからなり、第1のレンズは、物体側に凸面を向けた負のメニスカスレンズであり、第2のレンズは物体側に凹面を向けた正又は負のメニスカスレンズであり、第3のレンズは両凸レンズであり、前記第2のレンズの物体側面の曲率半径をR1、像側面の曲率半径をR2とする時、0.5<R1/R2<2を満たし、全系の焦点距離をfとする時、全長Lと像高H′は、L/(H′×f)≦5を満たすことを特徴とする広角レンズ系。   In a wide-angle lens system in which the total angle of view (2ω) is 90 ° or more, the first lens from the object side and the second lens from the object side, and the third lens from the image side across the diaphragm surface, the first lens is , A negative meniscus lens having a convex surface directed toward the object side, the second lens is a positive or negative meniscus lens having a concave surface directed toward the object side, and the third lens is a biconvex lens, When the radius of curvature of the object side surface of the lens is R1 and the radius of curvature of the image side surface is R2, when 0.5 <R1 / R2 <2 is satisfied and the focal length of the entire system is f, the total length L and the image height H ′ Is a wide-angle lens system characterized by satisfying L / (H ′ × f) ≦ 5.
JP2007013915A 2007-01-24 2007-01-24 Wide-angle lens system Expired - Fee Related JP4932508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013915A JP4932508B2 (en) 2007-01-24 2007-01-24 Wide-angle lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013915A JP4932508B2 (en) 2007-01-24 2007-01-24 Wide-angle lens system

Publications (2)

Publication Number Publication Date
JP2008180887A true JP2008180887A (en) 2008-08-07
JP4932508B2 JP4932508B2 (en) 2012-05-16

Family

ID=39724841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013915A Expired - Fee Related JP4932508B2 (en) 2007-01-24 2007-01-24 Wide-angle lens system

Country Status (1)

Country Link
JP (1) JP4932508B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145839A (en) * 2007-12-18 2009-07-02 Olympus Corp Fisheye lens and imaging apparatus having the same
WO2012008312A1 (en) * 2010-07-14 2012-01-19 オリンパスメディカルシステムズ株式会社 Objective optical system
JP2016218242A (en) * 2015-05-20 2016-12-22 キヤノン株式会社 Optical system, imaging apparatus, and lens device
JP2018013704A (en) * 2016-07-22 2018-01-25 日本電産サンキョー株式会社 Wide-angle lens
CN113433676A (en) * 2021-08-27 2021-09-24 江西联创电子有限公司 Optical imaging lens and imaging apparatus
USRE48828E1 (en) 2015-01-09 2021-11-23 Largan Precision Co., Ltd. Compact optical system, image capturing unit and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102072249B1 (en) * 2013-11-21 2020-03-02 현대모비스 주식회사 Lens system for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321742A (en) * 2004-05-10 2005-11-17 Hideaki Ishizuki Super-wide angle high resolution lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321742A (en) * 2004-05-10 2005-11-17 Hideaki Ishizuki Super-wide angle high resolution lens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145839A (en) * 2007-12-18 2009-07-02 Olympus Corp Fisheye lens and imaging apparatus having the same
WO2012008312A1 (en) * 2010-07-14 2012-01-19 オリンパスメディカルシステムズ株式会社 Objective optical system
US8422150B2 (en) 2010-07-14 2013-04-16 Olympus Medical Systems Corp. Objective optical system
USRE48828E1 (en) 2015-01-09 2021-11-23 Largan Precision Co., Ltd. Compact optical system, image capturing unit and electronic device
USRE49703E1 (en) 2015-01-09 2023-10-17 Largan Precision Co., Ltd. Compact optical system, image capturing unit and electronic device
JP2016218242A (en) * 2015-05-20 2016-12-22 キヤノン株式会社 Optical system, imaging apparatus, and lens device
JP2018013704A (en) * 2016-07-22 2018-01-25 日本電産サンキョー株式会社 Wide-angle lens
CN107643585A (en) * 2016-07-22 2018-01-30 日本电产三协株式会社 Wide-angle lens
CN113433676A (en) * 2021-08-27 2021-09-24 江西联创电子有限公司 Optical imaging lens and imaging apparatus

Also Published As

Publication number Publication date
JP4932508B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP6861458B2 (en) Imaging lens
JP4879600B2 (en) Imaging lens
CN110730922B (en) Lens system, camera system, and imaging system
CN110730920B (en) Lens system, camera system, and imaging system
JP5496809B2 (en) Imaging lens and imaging apparatus
JP6631770B2 (en) Imaging optical system, stereo camera device, in-vehicle camera device and various devices
JP2021039237A (en) Imaging lens
CN112305711A (en) Camera lens
WO2013099214A1 (en) Imaging lens and imaging device
US9323033B2 (en) Zoom lens and imaging apparatus
JP2009008867A (en) Imaging lens
CN110730921B (en) Lens system, camera system, and imaging system
CN111913274A (en) Imaging optical system and imaging device
JPH1152228A (en) Wide angle lens
JP2007086485A (en) Imaging lens
JP2019045665A (en) Image capturing lens
JP4932508B2 (en) Wide-angle lens system
JP2008164989A (en) Imaging optical system
TWM486776U (en) Imaging lens and imaging apparatus including the imaging lens
JP2019184723A (en) Image capturing lens
JP2009237477A (en) Zoom lens
JP2007212743A (en) Wide-angle zoom lens
US20120050886A1 (en) Zoom lens, optical apparatus and zoom lens manufacturing method
JP2010243737A (en) Variable imaging optical system
JP6646128B2 (en) Imaging lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees