Nothing Special   »   [go: up one dir, main page]

JP2008171809A - Lithium secondary cell and anode - Google Patents

Lithium secondary cell and anode Download PDF

Info

Publication number
JP2008171809A
JP2008171809A JP2007326879A JP2007326879A JP2008171809A JP 2008171809 A JP2008171809 A JP 2008171809A JP 2007326879 A JP2007326879 A JP 2007326879A JP 2007326879 A JP2007326879 A JP 2007326879A JP 2008171809 A JP2008171809 A JP 2008171809A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
spherical
negative electrode
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007326879A
Other languages
Japanese (ja)
Other versions
JP5430063B2 (en
Inventor
Toshiya Naruto
俊也 鳴戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007326879A priority Critical patent/JP5430063B2/en
Publication of JP2008171809A publication Critical patent/JP2008171809A/en
Application granted granted Critical
Publication of JP5430063B2 publication Critical patent/JP5430063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary cell having enough active material intensity and adhesiveness in an anode by making exist a spherical substance in an anode active material layer with the use of a scale-like carbon substance, even if housed in a case having shape changeability. <P>SOLUTION: In the lithium secondary cell made by housing lithium secondary cell elements consisting of a cathode, an anode and electrolyte in a case having shape changeability, the anode contains a scale-like carbon substance with an aspect ratio of 1.1 to 2.9, and a spherical substance with an aspect ratio of 1.0 to 1.5, and the scale-like carbon substance is a graphite carbonaceous object at least with a part of the surface coated with amorphous coke, with the spherical graphite of meso-carbon micro beads. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池に関する。   The present invention relates to a lithium secondary battery.

カメラ一体型VTR装置、オーディオ機器、携帯型コンピュータ、携帯電話等様々な機器の小型化、軽量化が進んでおり、これら機器の電源としての電池に対する高性能化の要請が高まっている。中でも高電圧、高エネルギー密度の実現が可能なリチウム二次電池の開発が盛んになっている。
リチウム二次電池の負極に使用される活物質として、鱗片状黒鉛等の鱗片状炭素性物質を使用することが知られている。鱗片状炭素性物質は、リチウム金属を負極に使用する場合に比べリチウムデンドライトの生成が抑制され、高い容量と高い安全性を確保できる優れた負極活物質である。鱗片状炭素性物質を使用した場合、リチウムは炭素の層状構造の層間にインターカレートされる。また、通常、このような電極は、活物質を含む活物質層を集電体上に形成してなる。
Various devices such as camera-integrated VTR devices, audio devices, portable computers, and cellular phones are becoming smaller and lighter, and there is an increasing demand for higher performance of batteries as power sources for these devices. In particular, lithium secondary batteries capable of realizing high voltage and high energy density are actively developed.
As an active material used for the negative electrode of a lithium secondary battery, it is known to use a scaly carbonaceous material such as scaly graphite. The flaky carbonaceous material is an excellent negative electrode active material that suppresses the formation of lithium dendrite compared to the case where lithium metal is used for the negative electrode, and can ensure high capacity and high safety. When a scaly carbonaceous material is used, lithium is intercalated between layers of a carbon layered structure. In general, such an electrode is formed by forming an active material layer containing an active material on a current collector.

一方、近年、正極と負極と電解質とを有するリチウム二次電池要素(以下、本明細書においては、これを単に「リチウム二次電池要素」又は「電池要素」という場合がある。)を、従来の金属缶に代えて、金属層と樹脂層と積層してなる、形状可変性を有するラミネートフィルム製ケースに収納することが提案されている。このようなラミネートフィルムは、従来の金属缶よりも加工が容易であるばかりではなく、より薄型・軽量なので、電池全体の体積エネルギー密度や重量エネルギー密度をより向上させることができる。   On the other hand, in recent years, a lithium secondary battery element having a positive electrode, a negative electrode, and an electrolyte (hereinafter, this may be simply referred to as “lithium secondary battery element” or “battery element” in the present specification) has been conventionally used. In place of the metal can, it has been proposed to be housed in a laminated film case having a shape changeability formed by laminating a metal layer and a resin layer. Such a laminate film is not only easier to process than conventional metal cans, but also thinner and lighter, so that the volume energy density and weight energy density of the entire battery can be further improved.

しかしながら、本発明者らの検討によれば、上記のような鱗片状炭素性物質を電極に用いた場合、活物質層の強度が弱く、接着性も劣ることが判明した。つまり、鱗片状炭素性物質が充放電時に膨張収縮することにより、充放電を繰り返していくと、最終的には活物質層が集電体から剥がれてしまうことによりリチウム二次電池の特性が大きく劣化するのである。   However, according to the study by the present inventors, it has been found that when the above scaly carbonaceous material is used for an electrode, the strength of the active material layer is weak and the adhesiveness is poor. In other words, the scale-like carbonaceous material expands and contracts during charge and discharge, and when charging and discharging are repeated, the active material layer is eventually peeled off from the current collector, so that the characteristics of the lithium secondary battery are large. It will deteriorate.

上記活物質層の強度不足や接着性が劣ることによるリチウム二次電池の特性劣化は、リチウム二次電池要素を収納するケースとして、形状可変性を有するケースを用いる場合に特に問題となる。即ち、金属缶に電池要素を収納する場合は、金属缶そのものの強度が大きいので外力に対する活物質層の強度や接着性はそれ程大きな問題とならないのみならず、電池要素全体が金属缶に押し付けられているので充放電に伴って電極の活物質が膨張収縮しても活物質層に与える影響は小さい。一方、形状可変性を有するケースを用いた場合、外力によって活物質層が破壊されやすいだけでなく、ケースによって電池要素全体を押さえ付ける力も弱いので活物質の膨張収縮の繰り返しが活物質層の耐久性そのものや活物質層と集電体との接着性に与える影響は大きい。   The characteristic deterioration of the lithium secondary battery due to insufficient strength and poor adhesion of the active material layer becomes a problem particularly when a case having shape variability is used as a case for housing a lithium secondary battery element. That is, when the battery element is stored in the metal can, the strength of the active material layer and the adhesiveness against the external force are not so serious problems because the strength of the metal can itself is large, and the entire battery element is pressed against the metal can. Therefore, even if the active material of the electrode expands and contracts with charge / discharge, the effect on the active material layer is small. On the other hand, when a case with shape changeability is used, the active material layer is not only easily destroyed by external force, but also the force to hold down the entire battery element by the case is weak, so that the active material layer is repeatedly expanded and contracted. The effect on the adhesiveness between the active material layer itself and the active material layer and the current collector is large.

従って、鱗片状炭素性物質を電極に用いることによる上記問題点は、例えば、リチウム二次電池のサイクル特性に悪影響を与えるが、特に電池要素を形状可変性を有するケースに収納した場合、これらの問題点は特に顕在化するのである。
本発明の目的は、十分な活物質強度と接着性とを有する負極を有するリチウム二次電池を得ることにあり、特に、形状可変姓を有するケースに収納した場合においても十分な活物質強度と接着性とを有する負極を有するリチウム二次電池を得ることにある。
Therefore, the above-mentioned problems due to the use of the scaly carbonaceous material for the electrode adversely affect the cycle characteristics of the lithium secondary battery, for example. Especially when the battery element is housed in a case having shape changeability, The problem is particularly apparent.
An object of the present invention is to obtain a lithium secondary battery having a negative electrode having sufficient active material strength and adhesiveness, and in particular, sufficient active material strength even when housed in a case having a variable shape. The object is to obtain a lithium secondary battery having a negative electrode having adhesiveness.

本発明によれば、鱗片状炭素性物質を有する負極を有するリチウム二次電池要素をケースに収納した場合に特有の問題である、負極活物質層の強度不足及び接着力不足を有効に解消し、サイクル特性、レート特性、容量、安全性等優れた性能を有するリチウム二次電池及びこのようなリチウム二次電池を実現できるリチウム二次電池用負極を得ることができる。   According to the present invention, it is possible to effectively solve the problem of insufficient strength and adhesive strength of the negative electrode active material layer, which is a particular problem when a lithium secondary battery element having a negative electrode having a scaly carbonaceous material is housed in a case. A lithium secondary battery having excellent performance such as cycle characteristics, rate characteristics, capacity, and safety, and a negative electrode for a lithium secondary battery capable of realizing such a lithium secondary battery can be obtained.

本発明者は、問題点を解決するために鋭意検討した結果、鱗片状炭素性物質を用いた活物質層の強度及び接着性不足は、活物質層に球状物質を存在させることによって解決できることを見出し、特に、リチウム二次電池要素を形状可変性を有するケースに収納したリチウム二次電池においては、活物質層に球状物質を存在させることによる効果が顕著に発揮されることを見出し本発明を完成した。   As a result of intensive studies to solve the problem, the present inventor has found that the lack of strength and adhesion of the active material layer using the scaly carbonaceous material can be solved by the presence of a spherical material in the active material layer. In particular, in a lithium secondary battery in which a lithium secondary battery element is housed in a case having shape changeability, it is found that the effect of the presence of a spherical material in the active material layer is remarkably exhibited. completed.

即ち、本発明の要旨は、下記(1)〜(17)に存する。
(1)正極と負極と電解質とを有するリチウム二次電池要素をケースに収納してなるリチウム二次電池において、前記負極が、アスペクト比が1.1〜2.9の鱗片状炭素性物質と球状物質とを含有することを特徴とするリチウム二次電池。
(2)正極と負極と電解質とを有するリチウム二次電池要素を形状可変性を有するケースに収納してなるリチウム二次電池において、前記負極が、鱗片状炭素性物質と球状物質とを含有することを特徴とするリチウム二次電池。
(3)鱗片状炭素性物質のアスペクト比が1.1〜6.0、球状物質のアスペクト比が1.0〜1.5である(2)に記載のリチウム二次電池。
(4)鱗片状炭素性物質のアスペクト比が1.1〜2.9である(2)又は(3)に記載のリチウム二次電池。
(5)球状物質の平均粒径が、鱗片状炭素性物質の平均粒径の2/3以下である(1)乃至(4)のいずれかに記載のリチウム二次電池。
(6)球状物質が、球状炭素性物質である(1)乃至(5)のいずれか1つに記載のリチウム二次電池。
(7)鱗片状炭素性物質が、表面の少なくとも一部がアモルファスなコークスで被覆された黒鉛系炭素質物である(1)乃至(6)のいずれか1つに記載のリチウム二次電池。
(8)鱗片状炭素性物質に対する球状物質の重量比が、10〜70%である(1)乃至(7)のいずれか1つに記載のリチウム二次電池。
(9)鱗片状炭素性物質が鱗片状の黒鉛であり、球状物質が球状の黒鉛である(1)乃至(8)のいずれか1つに記載のリチウム二次電池。
(10)球状の黒鉛が、メソカーボンマイクロビーズである(9)に記載のリチウム二次電池。
(11)鱗片状の黒鉛の表面の少なくとも一部にアモルファスなコークスが被覆してなる(9)又は(10)に記載のリチウム二次電池。
(12)正極と負極との間に非流動性の電解質を有する(1)乃至(11)のいずれか1つに記載のリチウム二次電池。
(13)形状可変性を有するケースが、ガスバリア層の両面に樹脂層を設けてなるラミネートフィルムからなる(2)乃至(12)のいずれか1つに記載のリチウム二次電池。
(14)リチウム二次電池要素がケースに減圧封入されてなる(2)乃至(13)のいずれか1つに記載のリチウム二次電池。
(15)電解質がリチウム塩を非水系溶媒に溶解してなる電解液を含み、前記非水系溶媒の60体積%以上が沸点150℃以上の高沸点溶媒である(1)乃至(14)のいずれか1つに記載のリチウム二次電池。
(16)高沸点溶媒が、プロピレンカーボネート、エチレンカーボネート及びγ−ブチロラクトンからなる群から選ばれる少なくとも1種を含む(15)に記載のリチウム二次電池。
(17)アスペクト比が1.1〜2.9の鱗片状炭素性物質と球状物質とを含有することを特徴とするリチウム二次電池用負極。
That is, the gist of the present invention resides in the following (1) to (17).
(1) A lithium secondary battery in which a lithium secondary battery element having a positive electrode, a negative electrode, and an electrolyte is housed in a case, wherein the negative electrode is a flaky carbonaceous material having an aspect ratio of 1.1 to 2.9. A lithium secondary battery comprising a spherical substance.
(2) In a lithium secondary battery in which a lithium secondary battery element having a positive electrode, a negative electrode, and an electrolyte is housed in a case having shape changeability, the negative electrode contains a scaly carbonaceous material and a spherical material. A lithium secondary battery characterized by that.
(3) The lithium secondary battery according to (2), wherein the scaly carbonaceous material has an aspect ratio of 1.1 to 6.0 and the spherical material has an aspect ratio of 1.0 to 1.5.
(4) The lithium secondary battery according to (2) or (3), wherein the scale-like carbonaceous material has an aspect ratio of 1.1 to 2.9.
(5) The lithium secondary battery according to any one of (1) to (4), wherein an average particle diameter of the spherical substance is 2/3 or less of an average particle diameter of the scaly carbonaceous substance.
(6) The lithium secondary battery according to any one of (1) to (5), wherein the spherical substance is a spherical carbonaceous substance.
(7) The lithium secondary battery according to any one of (1) to (6), wherein the scaly carbonaceous material is a graphite-based carbonaceous material in which at least a part of the surface is coated with amorphous coke.
(8) The lithium secondary battery according to any one of (1) to (7), wherein the weight ratio of the spherical substance to the scaly carbonaceous substance is 10 to 70%.
(9) The lithium secondary battery according to any one of (1) to (8), wherein the scaly carbonaceous material is scaly graphite and the spherical material is spherical graphite.
(10) The lithium secondary battery according to (9), wherein the spherical graphite is mesocarbon microbeads.
(11) The lithium secondary battery according to (9) or (10), wherein amorphous coke is coated on at least part of the surface of the scaly graphite.
(12) The lithium secondary battery according to any one of (1) to (11), which has a non-fluidic electrolyte between the positive electrode and the negative electrode.
(13) The lithium secondary battery according to any one of (2) to (12), wherein the case having shape variability is made of a laminate film in which a resin layer is provided on both surfaces of the gas barrier layer.
(14) The lithium secondary battery according to any one of (2) to (13), wherein the lithium secondary battery element is enclosed in a case under reduced pressure.
(15) Any of (1) to (14), wherein the electrolyte includes an electrolytic solution obtained by dissolving a lithium salt in a non-aqueous solvent, and 60% by volume or more of the non-aqueous solvent is a high boiling point solvent having a boiling point of 150 ° C. or higher. The lithium secondary battery as described in any one.
(16) The lithium secondary battery according to (15), wherein the high boiling point solvent includes at least one selected from the group consisting of propylene carbonate, ethylene carbonate, and γ-butyrolactone.
(17) A negative electrode for a lithium secondary battery, comprising a flaky carbonaceous material having an aspect ratio of 1.1 to 2.9 and a spherical material.

本発明のリチウム二次電池は、正極と負極と電解質とを有する。
本発明の特徴の1つは、上記負極中に、鱗片状炭素性物質と球状物質とを共存させることにある。
The lithium secondary battery of the present invention has a positive electrode, a negative electrode, and an electrolyte.
One of the characteristics of the present invention is that a scaly carbonaceous material and a spherical material coexist in the negative electrode.

鱗片状炭素性物質は、後述の通り、通常その形状が平板状なので、負極活物質層中で負極膜厚方向と垂直な方向に配向しやすい。従って、鱗片状炭素性物質を含有する負極は、負極膜厚方向にはがれやすいという問題がある。そのため球状物質を負極中にさらに含有させれば、上記配向が抑制されるため、負極活物質層の強度及び接着性が強くなる。
鱗片状炭素性物質は、容量が高くリチウム二次電池の負極材料として有用な材料である。鱗片状炭素性物質は、形状異方性を有し、その形状は通常平板状である。そしてアスペクト比(最長径と最短径との比)が1よりも大きいのが特徴である。ここで、最長径と最短径とはSEM(Scanning Electron Microscope)にて測定することができる。
As described later, since the shape of the scaly carbonaceous material is usually a flat plate, it is easily oriented in the negative electrode active material layer in the direction perpendicular to the negative electrode film thickness direction. Therefore, the negative electrode containing scaly carbonaceous material has a problem that it tends to peel off in the negative electrode thickness direction. Therefore, if a spherical substance is further contained in the negative electrode, the orientation is suppressed, and the strength and adhesiveness of the negative electrode active material layer are increased.
The scaly carbonaceous material has a high capacity and is a useful material as a negative electrode material for a lithium secondary battery. The scaly carbonaceous material has shape anisotropy, and its shape is usually a flat plate shape. The aspect ratio (the ratio between the longest diameter and the shortest diameter) is larger than 1. Here, the longest diameter and the shortest diameter can be measured by SEM (Scanning Electron Microscope).

本願発明に用いる鱗片状炭素性物質は、アスペクト比を所定の範囲とすることが好ましい。ここで、アスペクト比の上限は、通常6.0以下、好ましくは3.0以下、より好ましくは2.9以下、特に好ましくは2.8以下である。アスペクト比が大きい場合、鱗片状炭素性物質が負極中で配向して、鱗片状炭素性物質のベーサル面が負極膜厚方向に、エッジ面が負極の膜厚方向と垂直方向に向く傾向があるが、アスペクト比を上記数値以下とすることによって、前記エッジ面が負極の膜厚方向に向くように鱗片状炭素性物質を配向させることができるようになる。鱗片状炭素性物質はそのエッジ面においてリチウムイオンの吸蔵放出を行うため、前記エッジ面を膜厚方向に向けてやればリチウムイオンの吸蔵放出を効率良く行うことができるようになる。また、アスペクト比を上記数値以下とすることにより負極の屈曲度を下げることができるため、鱗片状炭素性物質の利点である高容量を維持しつつも、リチウムの吸蔵放出をさらに効率よく行うことができるようになる。一方、アスペクト比の下限は、通常1.1以上、好ましくは、1.2以上、より好ましくは1.5以上である。鱗片状炭素性物質のアスペクト比を1.0とすることは工業上困難であるため、生産効率を考慮して上記数値以上とすることが好ましい。   The scaly carbonaceous material used in the present invention preferably has an aspect ratio in a predetermined range. Here, the upper limit of the aspect ratio is usually 6.0 or less, preferably 3.0 or less, more preferably 2.9 or less, and particularly preferably 2.8 or less. When the aspect ratio is large, the scaly carbonaceous material is oriented in the negative electrode, and the basal surface of the scaly carbonaceous material tends to be in the negative electrode film thickness direction and the edge surface is in the direction perpendicular to the negative electrode film thickness direction. However, by setting the aspect ratio to be equal to or less than the above numerical value, the scaly carbonaceous material can be oriented so that the edge surface faces the film thickness direction of the negative electrode. Since the scaly carbonaceous material occludes and releases lithium ions at its edge surface, it becomes possible to efficiently occlude and release lithium ions when the edge surface is oriented in the film thickness direction. In addition, since the bend degree of the negative electrode can be lowered by setting the aspect ratio to be equal to or less than the above value, lithium can be more efficiently inserted and released while maintaining the high capacity that is an advantage of the scaly carbonaceous material. Will be able to. On the other hand, the lower limit of the aspect ratio is usually 1.1 or more, preferably 1.2 or more, more preferably 1.5 or more. Since it is industrially difficult to set the aspect ratio of the scaly carbonaceous material to 1.0, it is preferable to set the aspect ratio or more in consideration of production efficiency.

アスペクト比を制御する方法としては、例えば球形化処理を行う方法を挙げることができる。球形化処理の詳細については後述する。
鱗片状炭素性物質の平均粒径は、通常1μm以上、好ましくは5μm以上であり、また通常45μm以下、好ましくは35μm以下、さらに好ましくは25μm以下である。平均粒径が小さすぎると不可逆容量が増え電池容量が低下してしまうことがあり、一方大きすぎると活物質層の膜厚が制限され均一な活物質層を基材の上に形成させることが難しくなる。
As a method for controlling the aspect ratio, for example, a method of performing spheroidization processing can be cited. Details of the spheroidization process will be described later.
The average particle size of the scaly carbonaceous material is usually 1 μm or more, preferably 5 μm or more, and is usually 45 μm or less, preferably 35 μm or less, more preferably 25 μm or less. If the average particle size is too small, the irreversible capacity may increase and the battery capacity may decrease. On the other hand, if the average particle size is too large, the film thickness of the active material layer is limited and a uniform active material layer can be formed on the substrate. It becomes difficult.

このような鱗片状炭素性物質としては、コークスや、黒鉛系の炭素質物等各種の炭素質物を例示できるが、容量が大きい点で、黒鉛系炭素質物材料が好ましい。
黒鉛系炭素質物材料(以下、黒鉛材料と略称することがある)としては、アセチレンブラック、ケッチェンブラック等の導電性カーボンブラックの黒鉛化品、人造黒鉛、天然黒鉛等の黒鉛粉末及びその精製品、気相成長炭素繊維等の炭素繊維が挙げられる。このような黒鉛材料ならどれでもよいが、好ましくは天然黒鉛等からなる鱗片状の黒鉛である。また下記(I)〜(IV)に示す様な粒径と比表面積との所定の関係、特定数値域のラマンR値、半値幅等を有する黒鉛材料がより好ましい。
(I)BET法(窒素ガス吸着)で測定された比表面積の値をY(m2/g)、粉体の粒径の値をX(μm)とした場合、1≦X≦45、0.1≦Y≦25、且つY≦axb、(但しa=52、b=−0.6)で表される領域内にある黒鉛材料が好ましい。尚、粒子の大きさの測定には、レーザー回折法、電気抵抗式法、CCD高感度カメラの写真イメージの処理による粒径直接評価法などが利用できる。また、比表面積の測定には、気体分子吸着によるBET法、有機分子吸着法、有機溶媒吸着法が利用できる。
(II)ラマンスペクトル分析におけるR値(=IB/IA)が、0.001以上0.2以下、特に0.15以下、さらには0.07以下である黒鉛材料が好ましい。
(III)上記ラマンスペクトル分析において、1570〜1620cm-1に存在するピークの半値幅である△v値の大きさが、14〜22cm-1である黒鉛材料が好ましい。
(IV)X線回折による(002)面の面間隔d002が3.38Å以下、特に3.36Å以下であるのが好ましい。また、c軸方向の結晶子の大きさ(Lc)が1000Å以下である黒鉛材料が好ましい。
Examples of such a scaly carbonaceous material include various carbonaceous materials such as coke and graphite-based carbonaceous materials, but graphite-based carbonaceous materials are preferable because of their large capacity.
Graphite-based carbonaceous materials (hereinafter sometimes abbreviated as graphite materials) include graphitized products of conductive carbon black such as acetylene black and ketjen black, graphite powder such as artificial graphite and natural graphite, and purified products thereof. And carbon fibers such as vapor-grown carbon fibers. Any graphite material may be used, but scale-like graphite made of natural graphite or the like is preferable. Further, a graphite material having a predetermined relationship between the particle size and specific surface area as shown in the following (I) to (IV), a Raman R value in a specific numerical range, a full width at half maximum, and the like is more preferable.
(I) When the specific surface area value measured by the BET method (nitrogen gas adsorption) is Y (m 2 / g) and the particle size value of the powder is X (μm), 1 ≦ X ≦ 45, 0 .. 1 ≦ Y ≦ 25 and Y ≦ ax b (where a = 52, b = −0.6) is preferred. For the measurement of the particle size, a laser diffraction method, an electric resistance method, a direct particle size evaluation method by processing a photographic image of a CCD high-sensitivity camera, or the like can be used. For the measurement of the specific surface area, a BET method based on gas molecule adsorption, an organic molecule adsorption method, or an organic solvent adsorption method can be used.
(II) A graphite material having an R value (= IB / IA) in a Raman spectrum analysis of 0.001 or more and 0.2 or less, particularly 0.15 or less, and further 0.07 or less is preferable.
(III) in the Raman spectrum analysis, it is the half width of peaks present in 1570~1620cm -1 △ v magnitude of value, preferably graphite material is 14~22cm -1.
(IV) plane spacing d 002 of the X-ray diffraction (002) plane is 3.38Å or less, and particularly preferably between 3.36Å or less. In addition, a graphite material having a crystallite size (Lc) in the c-axis direction of 1000 mm or less is preferable.

本発明で使用し得る黒鉛材料のより詳細な具体例としては、下記のものを挙げることができる。また、これらの高純度精製品でもよい。
(1)高結晶性の天然黒鉛や人造黒鉛。
(2)天然黒鉛、人造黒鉛、或いは膨張黒鉛の再熱処理品。
(3)下記(a)及び(b)のような、黒鉛化可能な有機物原料から黒鉛化を行うことにより生成した上記(1)及び(2)と同等の性能を持つ黒鉛。
Specific examples of the graphite material that can be used in the present invention include the following. These high purity purified products may also be used.
(1) High crystalline natural graphite or artificial graphite.
(2) Natural graphite, artificial graphite, or expanded graphite reheated product.
(3) A graphite having the same performance as the above (1) and (2) produced by graphitizing from a graphitizable organic raw material as in the following (a) and (b).

(a)コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂から選ばれる1 種以上の有機物を例えば2500℃以上3200℃以下の焼成温度で黒鉛化したもの。   (A) Coal tar pitch, coal heavy oil, atmospheric residue, petroleum heavy oil, aromatic hydrocarbon, nitrogen-containing cyclic compound, sulfur-containing cyclic compound, polyphenylene, polyvinyl chloride, polyvinyl alcohol, polyacrylonitrile , Polyvinyl butyral, natural polymer, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, one or more organic substances selected from phenolic imide resins, graphitized at a firing temperature of, for example, 2500 ° C. to 3200 ° C. .

(b)上記(a)の黒鉛化可能な有機物をリチウム、ベリリウム、ホウ素、マグネシウム、アルミニウム、珪素、カリウム、カルシウム、チタン、バナジウム、クロム、マンガン、銅、亜鉛、ニッケル、白金、パラジウム、コバルト、ルテニウム、錫、鉛、鉄、ゲルマニウム、ジルコニウム、モリブデン、銀、バリウム、タンタル、タングステン、レニウム、から選ばれる少なくとも一種以上の粉体、或いは薄膜などの触媒存在下で、400℃以上2500℃以下、より好ましくは1000℃以上2000℃以下で焼成することにより黒鉛化したもの。
(4)黒鉛材料の粒径測定及びラマン分光分析の結果が、高い負極容量や高速の充放電に対する耐レート特性を期待し得る所望の一定範囲内の数値を有しない黒鉛材料であるが、それらの材料を改めて2000℃以上3200℃以下の温度で再焼成処理することにより、焼成後の材料の持つ粒径測定とラマン分光分析から得られる数値を所望の一定範囲に収めることができる黒鉛。
(5)黒鉛材料のBET法(窒素ガス吸着)による比表面積測定、及びラマン分光分析の結果が、高い負極容量や高速の充放電に対する耐レート特性を期待し得る所望の一定範囲内の数値を有しない黒鉛材料であるが、それらの材料を改めて2000℃以上3200℃以下の温度で再焼成処理することにより、焼成後の材料の持つ比表面積測定とラマン分光分析から得られる数値を所望の一定範囲に収めることができる黒鉛。
(B) The graphitizable organic substance of the above (a) is lithium, beryllium, boron, magnesium, aluminum, silicon, potassium, calcium, titanium, vanadium, chromium, manganese, copper, zinc, nickel, platinum, palladium, cobalt, In the presence of at least one powder selected from ruthenium, tin, lead, iron, germanium, zirconium, molybdenum, silver, barium, tantalum, tungsten, rhenium, or a catalyst such as a thin film, 400 ° C to 2500 ° C, More preferably graphitized by firing at 1000 ° C. or more and 2000 ° C. or less.
(4) The graphite material particle size measurement and Raman spectroscopic analysis result in a graphite material that does not have a numerical value within a desired certain range that can be expected to have a high negative electrode capacity and a high rate charge / discharge resistance characteristic. Graphite that can keep the numerical value obtained from the particle size measurement and Raman spectroscopic analysis of the fired material within a desired constant range by re-firing the material at a temperature of 2000 ° C. or higher and 3200 ° C. or lower.
(5) The specific surface area measurement by the BET method (nitrogen gas adsorption) of the graphite material and the result of the Raman spectroscopic analysis are numerical values within a desired fixed range in which high negative electrode capacity and high rate resistance against charge / discharge can be expected. Although it is a graphite material that does not have, by re-firing these materials at a temperature of 2000 ° C. or more and 3200 ° C. or less, the numerical values obtained from the specific surface area measurement and Raman spectroscopic analysis of the fired material are set to a desired constant value. Graphite that can fit in the range.

本発明においては、前述したように、負極中での鱗片状炭素性物質の配向を制御して、鱗片状炭素性物質のエッジ面を負極膜厚方向に向けるようにし、かつ負極の屈曲度を向上させるために、鱗片状炭素性物質のアスペクト比を所定の範囲をにすることが好ましい。
このようなアスペクト比を持つ鱗片状炭素性物質は、例えば、アスペクト比の大きい鱗片状炭素性物質を球形化処理することにより得ることができる。球形化処理は、処理前の鱗片状炭素性物質の角を削り取ることによって行われる。角を削り取れば、鱗片状炭素性物質の形状がラグビーボール状に近づき、アスペクト比が小さくなる。さらに上記処理を進めれば、鱗片状炭素性物質の形状が球形に近づきアスペクト比をさらに小さくすることができる。
In the present invention, as described above, the orientation of the scaly carbonaceous material in the negative electrode is controlled so that the edge surface of the scaly carbonaceous material faces the negative electrode film thickness direction, and the bending degree of the negative electrode is increased. In order to improve, it is preferable that the aspect ratio of the scaly carbonaceous material is within a predetermined range.
A scaly carbonaceous material having such an aspect ratio can be obtained, for example, by spheroidizing a scaly carbonaceous material having a large aspect ratio. The spheronization treatment is performed by scraping off the corners of the scaly carbonaceous material before the treatment. If the corners are cut away, the shape of the scaly carbonaceous substance will approach that of a rugby ball, and the aspect ratio will decrease. If the above process is further advanced, the shape of the scaly carbonaceous substance approaches a sphere and the aspect ratio can be further reduced.

球形化処理は、通常、処理前の鱗片状炭素性物質を粉砕することによって行われる。
粉砕は、物質へ加わる力の種類、処理形態により分類され、力の種類としては、たたき割る力(衝撃力)、押しつぶす力(圧縮力)、すりつぶす力(摩砕力)、削りとる力(剪断力)の4つに大別され、処理形態としてはは、粒子内部に亀裂を発生、伝播させていく体積粉砕と粒子表面を削り取っていく表面粉砕の二つに大別される。体積粉砕は、衝撃力、圧縮力、剪断力により進行し、表面粉砕は、摩砕力、剪断力により進行する。粉砕とは、これら被粉砕物に加えられる力の種類、処理形態が、様々な比率で組合わされた処理のことである。本発明の球形化処理は、摩砕力、剪断力を利用した表面粉砕を中心として行われることが好ましい。
The spheronization treatment is usually performed by pulverizing the scaly carbonaceous material before the treatment.
Crushing is classified according to the type of force applied to the substance and the form of treatment. The types of force include crushing force (impact force), crushing force (compression force), crushing force (grinding force), and scraping force (shearing). The processing mode is roughly divided into two types: volume pulverization in which cracks are generated and propagated inside the particles, and surface pulverization in which the particle surface is scraped off. Volume pulverization proceeds by impact force, compression force, and shear force, and surface pulverization proceeds by grinding force and shear force. The pulverization is a process in which the types of forces applied to these objects to be crushed and the processing forms are combined at various ratios. The spheronization treatment of the present invention is preferably performed mainly on surface grinding using grinding force and shearing force.

鱗片状炭素性物質の角が取れて、粒子形状に丸みを導入するには、表面粉砕が行われることが重要であるが、この為には、処理を行う装置種類の選定とその装置の持つ粉砕能力の見極めが重要である。前者は、被粉砕物に与える粉砕力の種類により、装置種類を選び出すことであり、後者は装置機種毎に存在する粉砕力の限界(粉砕限界)を利用することである。尚、粉砕限界とは、粒子径の領域のことを指し、体積粉砕が進行する粒子径としては、最下限界領域のことである。すなわち、粒子径が小さくなり、衝突確率が低下し、粒子の自重も小さくなるため、衝突しても大きな応力を発生せず、体積粉砕が進行しなくなる粒子径領域のことである。この領域では、体積粉砕に代わり、表面粉砕が行われるようになる。   In order to remove the corners of the scaly carbonaceous material and introduce roundness into the particle shape, it is important that surface grinding is performed. For this purpose, the selection of the type of equipment to be treated and the equipment has It is important to determine the grinding ability. The former is to select the type of apparatus according to the type of crushing force applied to the object to be crushed, and the latter is to use the limit (crushing limit) of the crushing force existing for each apparatus model. The pulverization limit refers to the particle size region, and the particle size at which volume pulverization proceeds is the lowest limit region. That is, the particle diameter is reduced, the collision probability is lowered, and the weight of the particles is also reduced, so that a large stress is not generated even when the collision occurs and the volume pulverization does not proceed. In this region, surface grinding is performed instead of volume grinding.

表面粉砕を行うことができる装置種類としては、剪断力により粉砕が進行する装置が有効であることが、発明者らの検討で明らかとなっている。このような装置としては、例えば、ボールミルや振動ミル、媒体撹拌ミルなどの粉砕メディアを使用する装置を挙げることができる。これらの粉砕メディアが使用できる機種では、摩砕力と剪弾力中心の粉砕を行われていると考えられ、角を取るような粉砕を行うことができる。湿式粉砕も乾式粉砕と同様に好ましい。具体的な装置名を一例として挙げるとすれば、中央化工機(株)社製の振動ミルやボールミル、岡田精工(株)社製のメカノミル、(株)栗本鉄工所社製の乾式・湿式両用の媒体撹拌ミルなどが挙げられる。また、例えば、回転する容器と容器内部に取り付けられたテーパーの間を処理物が通過することで、回転する容器とテーパーとの速度差に起因する圧縮力と剪断力が処理物に加えられるようになっている装置も、表面粉砕を進行させる装置として好ましい。これらの装置は、元来、2種以上の粉体を複合化し、粉体の表面改質を行うための装置であるが、剪断力が強く加わる装置であるために、粉体の充填性の向上、すなわち粒子に丸みを帯びさせることができたものと考えられる。具体的な装置名を一例として挙げるとすれば、(株)徳寿工作所社製のシータ・コンポーザ、ホソカワミクロン(株)社製のメカノフュージョンシステムなどが挙げられる。   As a type of apparatus capable of performing surface pulverization, it has been clarified by the inventors that an apparatus in which pulverization proceeds by a shearing force is effective. Examples of such an apparatus include an apparatus that uses pulverized media such as a ball mill, a vibration mill, and a medium stirring mill. In models that can use these crushing media, it is considered that crushing is centered on the crushing force and the truncation force, and crushing that takes corners can be performed. Wet pulverization is preferred as well as dry pulverization. As an example, the name of the device is a vibration mill and ball mill manufactured by Chuo Kako Co., Ltd., a mechano mill manufactured by Okada Seiko Co., Ltd., and both dry and wet manufactured by Kurimoto Iron Works Co., Ltd. And a medium stirring mill. In addition, for example, when the processed material passes between the rotating container and the taper attached to the inside of the container, the compressive force and the shearing force due to the speed difference between the rotating container and the taper are applied to the processed material. The apparatus which is is also preferable as an apparatus which advances surface grinding | pulverization. These devices are originally devices for compounding two or more kinds of powders and performing surface modification of the powders. However, since these devices are strongly applied with shearing force, It is thought that the improvement, that is, the particles can be rounded. As specific examples of device names, theta composer manufactured by Tokuju Kogakusho Co., Ltd., mechano-fusion system manufactured by Hosokawa Micron Co., Ltd., and the like.

鱗片状炭素性物質として、鱗片状の黒鉛等の黒鉛系炭素質物が用いられる場合、その表面の少なくとも一部をアモルファスな炭素質(特にコークス)で被覆することが好ましい
(以下、このような表面の少なくとも一部がアモルファスなコークスで被覆された黒鉛系炭素質物を炭素被覆黒鉛系炭素質物と略称することがある)。炭素被覆黒鉛系炭素質物を負極に用いたリチウム2次電池は、被覆を行わない黒鉛系炭素質物を負極に用いたリチウム2次電池に比べ、レート特性とサイクル特性に優れる利点がある。この炭素被覆黒鉛系炭素質物は、黒鉛系炭素質物を炭素化可能な有機物で被覆し、その被覆体を焼成することで炭素化し、必要に応じて炭素化物を粉砕することにより生成し得るものであり、リチウムイオンを吸蔵、放出可能な性質を有する。
When a graphite-based carbonaceous material such as flaky graphite is used as the flaky carbonaceous material, it is preferable to coat at least a part of its surface with amorphous carbonaceous material (especially coke) (hereinafter, such a surface). A graphite-based carbonaceous material in which at least a part of the carbonaceous material is coated with amorphous coke may be abbreviated as a carbon-coated graphite-based carbonaceous material). A lithium secondary battery using a carbon-coated graphite-based carbonaceous material as a negative electrode has an advantage of excellent rate characteristics and cycle characteristics as compared with a lithium secondary battery using a graphite-based carbonaceous material without coating as a negative electrode. This carbon-coated graphite-based carbonaceous material can be produced by coating a graphite-based carbonaceous material with an organic material that can be carbonized, carbonizing the coated body by firing, and grinding the carbonized material as necessary. Yes, it has the property of occluding and releasing lithium ions.

この炭素被覆黒鉛系炭素質物は、通常以下の(a)から(c)特性を有する炭素質物の粒子である。
(a)X線回折から求められる(002)面の面間隔d002の値が、3.35Å以上3
.39Å以下の値を持つこと。
(b)ラマンスペクトル分析から求められるR値が0.15以上1.0以下、さらに好ましくは0.2以上0.5以下であること、特に上記R値が被覆前の黒鉛系炭素質物のR値以上であること。
(なお、R値とは、波長5145Åのアルゴンイオンレーザー光を用いたラマンスペクトル分析において、1570〜1620cm-1の範囲に存在するピークの強度をIA、1350〜1370cm-1の範囲に存在するピークの強度をIBとしたとき、その比IB/IAを表す。以下、特記しない限りR値は同義を意味する。)
(c)窒素ガス吸着によるBET法を用いて測定した比表面積が13m2/g以下、よ
り好ましくは10m2/g以下、さらに好ましくは5m2/g以下であり、また0.1m2
/g以上であること。
This carbon-coated graphite-based carbonaceous material is usually a carbonaceous particle having the following characteristics (a) to (c).
(A) The value of the (002) plane distance d 002 obtained from X-ray diffraction is 3.35 mm or more and 3
. Have a value of 39mm or less.
(B) R value calculated | required from a Raman spectrum analysis is 0.15-1.0, More preferably, it is 0.2-0.5, especially said R value is R of graphite-type carbonaceous material before coating | cover. Be greater than or equal to the value.
(The peak and R value, which is present in the Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145 Å, the intensity of a peak existing in the range of 1570~1620cm -1 IA, in the range of 1350 -1 When the strength of IB is IB, the ratio IB / IA is expressed.Hereinafter, the R value means the same unless otherwise specified.)
(C) The specific surface area measured using the BET method by nitrogen gas adsorption is 13 m 2 / g or less, more preferably 10 m 2 / g or less, further preferably 5 m 2 / g or less, and 0.1 m 2
/ G or more.

炭素被覆黒鉛系炭素質物の被膜を形成するために用いられる有機物としては、液相で炭素化が進行する有機物や固相で炭素化が進行する各種の有機物を例示できる。液相で炭素化が進行する有機物としては、軟ピッチから硬ピッチまでを含むコールタールピッチや乾留液化油などの石炭系重質油の外、常圧残油、減圧残油等の直流系重質油、原油、ナフサなどの熱分解時に副生するエチレンタール等分解系重質油等の石油系重質油が挙げられる。さらにアセナフチレン、デカシクレン、アントラセンなどの芳香族炭化水素、フェナジンやアクリジンなどの窒素含有環状化合物、チオフェンなどの硫黄含有環状化合物、アダマンタンなどの脂環族炭化水素、ビフェニルやテルフェニルなどのポリフェニルなどが挙げられる。また、固相で炭素化が進行する有機物としては、セルロースや糖類などの天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂(フラン樹脂)、フェノール−ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂などが挙げられる。これらの有機物は無論複数種を併用することができる。   Examples of the organic substance used for forming a carbon-coated graphite-based carbonaceous material film include organic substances that progress in carbonization in the liquid phase and various organic substances that progress in carbonization in the solid phase. Organic substances that undergo carbonization in the liquid phase include coal-based heavy oils such as coal tar pitch and dry distillation liquefied oil including soft pitch to hard pitch, and direct-current heavy oil such as atmospheric residual oil and vacuum residual oil. Petroleum heavy oils such as cracked heavy oils such as ethylene tar, which are by-produced during thermal cracking of crude oil, crude oil, naphtha and the like. In addition, aromatic hydrocarbons such as acenaphthylene, decacyclene and anthracene, nitrogen-containing cyclic compounds such as phenazine and acridine, sulfur-containing cyclic compounds such as thiophene, alicyclic hydrocarbons such as adamantane, polyphenyls such as biphenyl and terphenyl, etc. Can be mentioned. In addition, organic substances that undergo carbonization in the solid phase include natural polymers such as cellulose and saccharides, thermoplastic resins such as polyphenylene sulfide and polyphenylene oxide, furfuryl alcohol resin (furan resin), phenol-formaldehyde resin, and imide resin. And thermosetting resins. Of course, a plurality of these organic substances can be used in combination.

炭素被覆黒鉛系炭素質物を得るには、液相で炭素化が進む有機物を用いるのが有利である。
なお、被膜がコークスであることは、例えば、(a)TEM写真により、又は(b)被覆後のX線回折のピークから被覆前の黒鉛系炭素物質のX線回折ピークを差し引くことにより、又は(c)シモン試薬(クロム酸銀−硫酸)で黒鉛系炭素物質を溶解した後残った被膜を公知の方法(TEM、X線回折、ラマン分光分析等)で測定することにより、容易に確認することができる。
In order to obtain a carbon-coated graphite-based carbonaceous material, it is advantageous to use an organic material that is carbonized in a liquid phase.
Note that the coating is coke, for example, by (a) a TEM photograph, or (b) subtracting the X-ray diffraction peak of the graphite-based carbon material before coating from the X-ray diffraction peak after coating, or (C) It is easily confirmed by measuring the film remaining after dissolving the graphite-based carbon material with a Simon reagent (silver chromate-sulfuric acid) by a known method (TEM, X-ray diffraction, Raman spectroscopic analysis, etc.). be able to.

炭素被覆黒鉛系炭素質物は、上記の有機物及び黒鉛材料を混合し、通常700℃以上、好ましくは900℃以上、より好ましくは1000℃以上、特に好ましくは1100℃以上、一方、通常2800℃以下、好ましくは1500℃以下で焼成することによって得ることができる。上記温度範囲は、炭素被覆黒鉛系炭素質物に所望する性能に応じて適宜選択すればよいが、焼成温度が低すぎると、前記有機物の焼成が不十分で炭素被覆黒鉛系炭素質物の導電性が不十分となる場合がある。一方、焼成温度が高すぎると炭素被覆黒鉛系炭素質物の表面処理効果が不十分となる場合がある。   Carbon-coated graphite-based carbonaceous material is a mixture of the above organic substance and graphite material, usually 700 ° C. or higher, preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, particularly preferably 1100 ° C. or higher, while usually 2800 ° C. or lower. Preferably it can obtain by baking at 1500 degrees C or less. The temperature range may be appropriately selected according to the performance desired for the carbon-coated graphite-based carbonaceous material, but if the firing temperature is too low, the organic material is not sufficiently fired and the conductivity of the carbon-coated graphite-based carbonaceous material is low. It may be insufficient. On the other hand, if the firing temperature is too high, the surface treatment effect of the carbon-coated graphite-based carbonaceous material may be insufficient.

炭素被覆黒鉛系炭素質物は、通常1〜100μm、さらには5〜50μmの平均粒径をもつ粒子を得られることがある。これらの粒子は必要に応じさらに粉砕処理に供することにより、所望する粒径を有する炭素被覆黒鉛系炭素質物を得ることができる。
炭素被覆黒鉛系炭素質物の組成は、前記黒鉛系炭素質物と前記有機物との合計を100重量%とした場合に、有機物の割合を通常50重量%以下、好ましくは25重量%以下、より好ましくは10重量%以下、特に好ましくは8重量%以下、一方、通常1重量%以上、好ましくは2重量%以上、より好ましくは5重量%以上とする。有機物の焼成物組成が多すぎると、低電位化、急速充放電特性の改善が少ない傾向にある。また、有機物の焼成物組成が多すぎると、更に性能を改善するために焼成後に実施することが好ましい酸またはアルカリによる処理の効果があまり顕著でない場合がある。一方、有機物の焼成物組成が少なすぎると所望の効果が得られない場合がある。なお、上記範囲は原料仕込み比ではなく、最終的生成物での組成である。そのため、仕込み時には、最終段階での組成比を考慮して原料の配合量を決定する必要がある。こうして調製した炭素被覆黒鉛系炭素質物を負極に用いたリチウムイオン2次電池は被覆しない黒鉛負極使用時に比べ、優れたレート特性とサイクル特性を示す。
The carbon-coated graphite-based carbonaceous material may sometimes obtain particles having an average particle diameter of usually 1 to 100 μm, and further 5 to 50 μm. These particles are further subjected to a pulverization treatment as necessary, whereby a carbon-coated graphite-based carbonaceous material having a desired particle size can be obtained.
The composition of the carbon-coated graphite-based carbonaceous material is such that when the total of the graphite-based carbonaceous material and the organic material is 100% by weight, the ratio of the organic material is usually 50% by weight or less, preferably 25% by weight or less, more preferably It is 10% by weight or less, particularly preferably 8% by weight or less, on the other hand, usually 1% by weight or more, preferably 2% by weight or more, more preferably 5% by weight or more. When there are too many organic baked material compositions, there exists a tendency for potential reduction and rapid charge / discharge characteristics to be less improved. Moreover, when there are too many composition of baking products of organic substance, in order to improve a performance further, the effect of the process by an acid or an alkali preferable to implement after baking may not be so remarkable. On the other hand, if the composition of the organic baked product is too small, the desired effect may not be obtained. The above range is not the raw material charge ratio but the composition of the final product. Therefore, at the time of preparation, it is necessary to determine the blending amount of the raw material in consideration of the composition ratio in the final stage. The lithium ion secondary battery using the carbon-coated graphite-based carbonaceous material thus prepared for the negative electrode exhibits excellent rate characteristics and cycle characteristics as compared with the case of using the graphite negative electrode without coating.

鱗片状炭素性物質と共に負極中に含有される球状物質は、形状異方性をほとんど有さないものであり、そのアスペクト比(最長径と最短径との比)は、通常1.5以下、好ましくは1.45以下、より好ましくは1.4以下、一方、通常1.0以上、好ましくは1.1以上、より好ましくは1.2以上である。尚、アスペクト比は1より小さくなることはない。また、球状粒子の最長径と最短径とはSEMにて測定することができる。アスペクト比が上記範囲内の球状物質を鱗片状炭素性物質とともに用いると、負極の屈曲度を小さくすることができるため、負極中でのリチウムイオンの吸蔵放出が効率よく行われるようになる。このような球状物質を構成する材料としては、例えば炭素性物質、アルミナ、酸化チタン、アクリル系樹脂等が挙げられ、好ましくは炭素性物質、特に黒鉛である。つまり、球状物質としては、好ましくは球状炭素性物質が用いられ、特に好ましくは球状の黒鉛が用いられる。炭素性物質は、それ自体にもリチウムがインターカレートされるので活物質として機能し、その結果、電池容量をより向上させることができる。ここで、球状の黒鉛の具体例としてはメソカ−ボンマイクロビーズ、グラッシーカーボン等が挙げられ、好ましくはメソカーボンマイクロビーズである。   The spherical substance contained in the negative electrode together with the flaky carbonaceous substance has little shape anisotropy, and its aspect ratio (ratio of longest diameter to shortest diameter) is usually 1.5 or less, Preferably it is 1.45 or less, More preferably, it is 1.4 or less, On the other hand, it is 1.0 or more normally, Preferably it is 1.1 or more, More preferably, it is 1.2 or more. Note that the aspect ratio does not become smaller than 1. Further, the longest diameter and the shortest diameter of the spherical particles can be measured by SEM. When a spherical substance having an aspect ratio within the above range is used together with a scaly carbonaceous substance, the degree of bending of the negative electrode can be reduced, so that lithium ions are efficiently absorbed and released in the negative electrode. Examples of the material constituting such a spherical substance include carbonaceous substances, alumina, titanium oxide, acrylic resins, and the like, preferably carbonaceous substances, particularly graphite. That is, as the spherical substance, a spherical carbonaceous substance is preferably used, and spherical graphite is particularly preferably used. The carbonaceous material itself functions as an active material because lithium is intercalated, and as a result, the battery capacity can be further improved. Here, specific examples of the spherical graphite include mesocarbon microbeads and glassy carbon, and the mesocarbon microbeads are preferable.

メソカーボンマイクロビーズ(MCMB)は、ピッチの炭素化過程で生じるメソフェーズ小球体を高温で熱処理し黒鉛化して得ることができる球状粒子であり、これは石油学会誌第6巻第5号(1973年)に開示されている。さらに、MCMBは、その黒鉛化度が重要な因子であり、炭素の物性パラメータで表すと、002面の面間隔(d002)が3.
35〜3.42Å、特に3.36〜3.40Åのものがよい。また、そのBET法による比表面積は0.7〜5m2/gのものが好ましい。メソカーボンマイクロビーズは、例え
ば、コールタールやコールタールピッチ等の石炭系重質油を、300〜500℃程度の低温で熱処理してメソフェーズ小球体を得、これをさらに2000〜3000℃程度の高温で熱処理することによって得ることができる。
Mesocarbon microbeads (MCMB) are spherical particles that can be obtained by heat-treating mesophase spherules produced during pitch carbonization at high temperatures and graphitizing them. ). Further, the degree of graphitization of MCMB is an important factor. When expressed in terms of carbon physical property parameters, the plane spacing (d 002 ) of the 002 plane is 3.
It is preferably 35 to 3.42 mm, particularly 3.36 to 3.40 mm. Moreover, the specific surface area by the BET method has a preferable thing of 0.7-5 m < 2 > / g. Mesocarbon microbeads, for example, heat-treat heavy coal oil such as coal tar and coal tar pitch at a low temperature of about 300 to 500 ° C. to obtain mesophase microspheres, which are further heated to a high temperature of about 2000 to 3000 ° C. Can be obtained by heat treatment.

球状物質の平均粒径は、通常0.5μm以上、好ましくは3μm以上であり、また通常30μm以下、好ましくは10μm以下である。平均粒径が小さすぎると塗膜強度を向上させる効果が小さく、大きすぎると膜厚が均一な塗膜を形成させることが難しいだけでなくこの場合も塗膜強度を向上させる効果が小さい傾向にある。
鱗片状炭素性物質の平均粒径に対する球状物質の平均粒径の比は、通常1未満とするが、その中でも、好ましくは2/3以下、さらに好ましくは2/5以下であり、また好ましくは1/5以上、さらに好ましくは1/4以上である。この比が小さすぎると塗膜強度や接着性の改善効果が小さくなる傾向にあり、また大きすぎると電池容量が低下する傾向にある。
The average particle diameter of the spherical material is usually 0.5 μm or more, preferably 3 μm or more, and usually 30 μm or less, preferably 10 μm or less. If the average particle size is too small, the effect of improving the coating film strength is small, and if too large, it is difficult not only to form a coating film with a uniform film thickness, but also in this case, the effect of improving the coating film strength tends to be small. is there.
The ratio of the average particle diameter of the spherical substance to the average particle diameter of the scaly carbonaceous substance is usually less than 1, but among them, it is preferably 2/3 or less, more preferably 2/5 or less, and preferably It is 1/5 or more, more preferably 1/4 or more. If this ratio is too small, the effect of improving the coating strength and adhesiveness tends to be small, and if it is too large, the battery capacity tends to decrease.

鱗片状炭素性物質に対する球状物質の重量比は、通常100%以下、好ましくは70%以下、さらに好ましくは50%以下、最も好ましくは40%以下であり、通常1%以上、好ましくは5%以上、さらに好ましくは10%以上、最も好ましくは15%以上である。この重量比が小さすぎると塗膜強度や接着性を向上させる効果が小さくなる傾向にあり、また大きすぎると電池容量が低下する傾向にある。   The weight ratio of the spherical substance to the scaly carbonaceous substance is usually 100% or less, preferably 70% or less, more preferably 50% or less, most preferably 40% or less, usually 1% or more, preferably 5% or more. More preferably, it is 10% or more, and most preferably 15% or more. If this weight ratio is too small, the effect of improving the coating strength and adhesiveness tends to be small, and if it is too large, the battery capacity tends to decrease.

負極は、通常、上記鱗片状炭素性物質と球状物質とを含む活物質層を集電体上に形成してなる。また、上記活物質層は、通常鱗片状炭素性物質と球状物質とバインダーとを含有しており、さらに鱗片状炭素性物質と球状物質とが互いに分散して存在してなる。このような負極は、鱗片状炭素性物質と球状物質とをバインダーとともに該バインダーを溶解しうる溶剤を用いて分散塗料化し、その塗料を集電体上に塗布、乾燥することにより製造することができる。   The negative electrode is usually formed by forming an active material layer containing the scaly carbonaceous material and the spherical material on a current collector. The active material layer usually contains a scaly carbonaceous material, a spherical material, and a binder, and further, the scaly carbonaceous material and the spherical material are dispersed in each other. Such a negative electrode can be produced by converting a scaly carbonaceous substance and a spherical substance into a dispersion paint using a solvent capable of dissolving the binder together with a binder, and applying and drying the paint on a current collector. it can.

負極中の鱗片状炭素性物質の割合は、通常10重量%以上、好ましくは30重量%以上、さらに好ましくは50重量%以上であり、通常89.9重量%以下、好ましくは80重量%以下である。多すぎると電極の機械的強度が劣る傾向にあり、少なすぎると容量等電池性能が劣る傾向にある。
負極活物質層に使用するバインダーとしては、電解液等に対して安定である必要があり、耐候性、耐薬品性、耐熱性、難燃性等の観点から各種の材料が使用される。具体的には、シリケート、ガラスのような無機化合物や、ポリエチレン、ポリプロピレン、ポリ−1,1−ジメチルエチレンなどのアルカン系ポリマー;ポリブタジエン、ポリイソプレンなどの不飽和系ポリマー;ポリスチレン、ポリメチルスチレン、ポリビニルピリジン、ポリ−N−ビニルピロリドンなどのポリマー鎖中に環構造を有するポリマーが挙げられる。
The ratio of the flaky carbonaceous material in the negative electrode is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, and usually 89.9% by weight or less, preferably 80% by weight or less. is there. If the amount is too large, the mechanical strength of the electrode tends to be inferior. If the amount is too small, the battery performance such as capacity tends to be inferior.
The binder used for the negative electrode active material layer needs to be stable with respect to an electrolytic solution and the like, and various materials are used from the viewpoint of weather resistance, chemical resistance, heat resistance, flame retardancy, and the like. Specifically, inorganic compounds such as silicate and glass, alkane polymers such as polyethylene, polypropylene and poly-1,1-dimethylethylene; unsaturated polymers such as polybutadiene and polyisoprene; polystyrene, polymethylstyrene, Examples thereof include polymers having a ring structure in a polymer chain such as polyvinyl pyridine and poly-N-vinyl pyrrolidone.

他の具体例としては、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミドなどのアクリル誘導体系ポリマー;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂;ポリアクリロニトリル、ポリビニリデンシアニドなどのCN基含有ポリマー;ポリ酢酸ビニル、ポリビニルアルコールなどのポリビニルアルコール系ポリマー;ポリ塩化ビニル、ポリ塩化ビニリデンなどのハロゲン含有ポリマー;ポリアニリンなどの導電性ポリマーなどが使用できる。   Other specific examples include acrylic derivative polymers such as polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyacrylic acid, polymethacrylic acid, and polyacrylamide; Fluorine resins such as vinyl chloride, polyvinylidene fluoride and polytetrafluoroethylene; CN group-containing polymers such as polyacrylonitrile and polyvinylidene cyanide; Polyvinyl alcohol polymers such as polyvinyl acetate and polyvinyl alcohol; Halogen-containing polymers such as vinylidene; conductive polymers such as polyaniline can be used.

また上記のポリマーなどの混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体などであっても使用できる。これらの樹脂の重量平均分子量は、通常10,000〜3,000,000、好ましくは100,000〜1,000,000程度である。低すぎると塗膜の強度が低下する傾向にある。一方高すぎると粘度が高くなり電極の形成が困難になることがある。好ましいバインダー樹脂としては、フッ素系樹脂、CN基含有ポリマーが挙げられ、より好ましくはポリフッ化ビニリデンである。   Further, a mixture such as the above-mentioned polymer, a modified product, a derivative, a random copolymer, an alternating copolymer, a graft copolymer, a block copolymer, and the like can be used. The weight average molecular weight of these resins is usually about 10,000 to 3,000,000, preferably about 100,000 to 1,000,000. If it is too low, the strength of the coating film tends to decrease. On the other hand, if it is too high, the viscosity increases and it may be difficult to form an electrode. Preferable binder resins include fluorine resins and CN group-containing polymers, and more preferably polyvinylidene fluoride.

バインダーの使用量は、鱗片状炭素性物質100重量部に対して通常0.1重量部以上、好ましくは1重量部以上であり、また通常30重量部以下、好ましくは20重量部以下である。バインダーの量が少なすぎると活物質層の強度が低下する傾向にあり、バインダーの量が多すぎると電池容量が低下する傾向にある。
活物質層中には、必要に応じて、導電性材料、補強材など各種の機能を発現する添加剤、粉体、充填材などを含有させてもよい。
The usage-amount of a binder is 0.1 weight part or more normally with respect to 100 weight part of scaly carbonaceous materials, Preferably it is 1 weight part or more, and is 30 weight part or less normally, Preferably it is 20 weight part or less. If the amount of the binder is too small, the strength of the active material layer tends to decrease, and if the amount of the binder is too large, the battery capacity tends to decrease.
If necessary, the active material layer may contain additives, powders, fillers, and the like that exhibit various functions such as a conductive material and a reinforcing material.

活物質層を形成する際に使用する溶剤としては、例えばN−メチルピロリドンや、ジメチルホルムアミドを挙げることができ、好ましくはN−メチルピロリドンである。塗料中の溶剤濃度は、少なくとも10重量%より大きくするが、通常20重量%以上、好ましくは30重量%以上、さらに好ましくは35重量%以上である。また、上限としては、通常90重量%以下、好ましくは80重量%以下である。溶剤濃度が低すぎると塗布が困難になることがあり、高すぎると塗布膜厚を上げることが困難になると共に塗料の安定性が悪化することがある。   Examples of the solvent used when forming the active material layer include N-methylpyrrolidone and dimethylformamide, and N-methylpyrrolidone is preferable. The solvent concentration in the coating is at least 10% by weight, but is usually 20% by weight or more, preferably 30% by weight or more, and more preferably 35% by weight or more. Moreover, as an upper limit, it is 90 weight% or less normally, Preferably it is 80 weight% or less. If the solvent concentration is too low, coating may be difficult. If the solvent concentration is too high, it may be difficult to increase the coating thickness and the stability of the coating may be deteriorated.

分散塗料化には通常用いられる分散機が使用でき、プラネタリーミキサー、ボールミル、サンドミル、二軸混練機などが使用できる。
集電体上に塗料を塗布する塗布装置に関しては特に限定されず、スライドコーティングやエクストルージョン型のダイコーティング、リバースロール、グラビアコーター、ナイフコーター、キスコーター、マイクログラビアコーター、ロッドコーター、ブレードコーターなどが挙げられるが、ダイコーティングが好ましく、塗料粘度および塗布膜厚等を考慮するとエクストルージョン型のダイコーティングが最も好ましい。
For dispersion coating, a commonly used disperser can be used, and a planetary mixer, a ball mill, a sand mill, a biaxial kneader, or the like can be used.
There are no particular restrictions on the coating device for applying the paint on the current collector, such as slide coating, extrusion type die coating, reverse roll, gravure coater, knife coater, kiss coater, micro gravure coater, rod coater, blade coater, etc. Although die coating is preferable, an extrusion type die coating is most preferable in consideration of paint viscosity, coating film thickness, and the like.

上記塗料を集電体上に塗布した後、塗膜を例えば120℃程度の温度で10分間程度の時間乾燥させることよって活物質層が形成される。
活物質層の厚さは、通常10μm以上、好ましくは20μm以上であり、通常200μm以下、好ましくは150μm以下である。薄すぎると電池の容量が小さくなりすぎることがある。一方、あまりに厚すぎるとレート特性が低下しすぎることがある。
After the coating material is applied on the current collector, the active material layer is formed by drying the coating film at a temperature of about 120 ° C. for about 10 minutes, for example.
The thickness of the active material layer is usually 10 μm or more, preferably 20 μm or more, and is usually 200 μm or less, preferably 150 μm or less. If it is too thin, the battery capacity may be too small. On the other hand, if it is too thick, the rate characteristics may be deteriorated too much.

負極に使用される集電体としては、電気化学的に溶出等の問題が生じず、電池の集電体として機能しうる各種のものを使用でき、通常は銅、ニッケル、ステンレス等の金属や合金が用いられる。好ましくは、銅を使用する。集電体の厚さは、通常0.1μm以上、好ましくは1μm以上であり、また通常100μm以下、好ましくは30μm以下、さらに好ましくは20μm以下である。薄すぎると機械的強度が弱くなる傾向にあり、生産上問題になる。厚すぎると電池全体としての容量が低下する。二次電池の重量を低減させる、すなわち重量エネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの基材を使用することもできる。この場合、その開口率を変更することで重量も自在に変更可能となる。また、このような穴あきタイプの基材の両面に接触層を形成した場合、この穴を通しての塗膜のリベット効果により塗膜の剥離がさらに起こりにくくなる傾向にあるが、開口率があまりに高くなった場合には、塗膜と基材との接触面積が小さくなるため、かえって接着強度は低くなることがある。また、活物質層との接着性を向上させるため、集電体の表面を予め粗面化処理することができる。表面の粗面化方法としては、ブラスト処理や粗面ロールにより圧延するなどの方法、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤ−ブラシなどで集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法などが挙げられる。   As the current collector used for the negative electrode, various materials that can function as a battery current collector can be used without causing problems such as electrochemical elution, and usually metals such as copper, nickel, stainless steel, etc. An alloy is used. Preferably, copper is used. The thickness of the current collector is usually 0.1 μm or more, preferably 1 μm or more, and is usually 100 μm or less, preferably 30 μm or less, more preferably 20 μm or less. If it is too thin, the mechanical strength tends to be weak, which causes a problem in production. If it is too thick, the capacity of the battery as a whole decreases. In order to reduce the weight of the secondary battery, that is, to improve the weight energy density, a perforated type base material such as expanded metal or punching metal can be used. In this case, the weight can be freely changed by changing the aperture ratio. In addition, when contact layers are formed on both sides of such a perforated type substrate, the rivet effect of the coating film through this hole tends to make the coating film more difficult to peel off, but the aperture ratio is too high. In such a case, the contact area between the coating film and the base material becomes small, so that the adhesive strength may be lowered. Moreover, in order to improve adhesiveness with an active material layer, the surface of a collector can be previously roughened. Current roughening methods include a method of rolling with a blasting process or a rough roll, a polishing cloth with a fixed abrasive particle, a grinding wheel, emery buff, a wire brush with a steel wire, etc. Examples thereof include a mechanical polishing method for polishing the surface, an electrolytic polishing method, and a chemical polishing method.

集電体と活物質層との間にアンダーコートプライマー層を形成することもできる。プライマー層を設けることによって、集電体に対する負極の接着性を向上させることができる。その結果、電池内部抵抗の低減、充放電サイクル試験過程における集電体からの塗膜脱離による急速な容量低下を防ぐことができる。アンダーコートプライマー層は、例えば、導電性材料とバインダーと溶剤を含むアンダーコートプライマー材料塗料を集電体上に塗布した後、これを乾燥することによって形成することができる。アンダーコートプライマー層に使用する導電性材料としては、カーボンブラック、グラファイト等の炭素材料、金属粉体、導電性の有機共役系樹脂等を挙げることができる。アンダーコートプライマー層に使用するバインダーや溶剤は、前記電極材料の塗料に使用するバインダーや溶剤と同様のものを使用することができる。アンダーコートプライマー層の厚さは、通常0.05μm以上、好ましくは0.1μm以上であり、通常10μm以下、好ましくは1μm以下である。薄すぎると均一性が確保しにくくなり、あまりに厚すぎると電池の体積容量が低下しすぎることがある。   An undercoat primer layer may be formed between the current collector and the active material layer. By providing the primer layer, the adhesion of the negative electrode to the current collector can be improved. As a result, battery internal resistance can be reduced, and rapid capacity reduction due to coating film detachment from the current collector in the charge / discharge cycle test process can be prevented. The undercoat primer layer can be formed, for example, by applying an undercoat primer material paint containing a conductive material, a binder, and a solvent on a current collector, and then drying it. Examples of the conductive material used for the undercoat primer layer include carbon materials such as carbon black and graphite, metal powders, and conductive organic conjugated resins. As the binder and solvent used for the undercoat primer layer, the same binders and solvents used for the coating material of the electrode material can be used. The thickness of the undercoat primer layer is usually 0.05 μm or more, preferably 0.1 μm or more, and usually 10 μm or less, preferably 1 μm or less. If it is too thin, it will be difficult to ensure uniformity, and if it is too thick, the volume capacity of the battery may be too low.

リチウム二次電池要素は、正極と負極と電解質を有する。
リチウム二次電池に使用される電解質は、通常支持電解質であるリチウム塩を非水系溶媒に溶解してなる電解液を有する。
非水系溶媒としては特に限定されないが、比較的高誘電率の溶媒が好適に用いられる。具体的にはエチレンカーボネート、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの非環状カーボネート類、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のグライム類、γ−ブチルラクトン等のラクトン類、スルフォラン等の硫黄化合物、アセトニトリル等のニトリル類等を挙げることができる。中でも、沸点が150℃以上、特に200℃以上の高沸点溶媒を使用するのが好ましい。このような高沸点溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等を挙げることができる。中でも高沸点溶媒としてプロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトンを使用するのが好ましい。
The lithium secondary battery element has a positive electrode, a negative electrode, and an electrolyte.
An electrolyte used for a lithium secondary battery usually has an electrolytic solution obtained by dissolving a lithium salt, which is a supporting electrolyte, in a non-aqueous solvent.
The non-aqueous solvent is not particularly limited, but a relatively high dielectric constant solvent is preferably used. Specifically, cyclic carbonates such as ethylene carbonate and propylene carbonate, acyclic carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, glymes such as tetrahydrofuran, 2-methyltetrahydrofuran and dimethoxyethane, γ-butyllactone, etc. Lactones, sulfur compounds such as sulfolane, nitriles such as acetonitrile, and the like. Among them, it is preferable to use a high boiling point solvent having a boiling point of 150 ° C. or higher, particularly 200 ° C. or higher. Examples of such a high boiling point solvent include propylene carbonate, ethylene carbonate, butylene carbonate, and γ-butyrolactone. Among them, it is preferable to use propylene carbonate, ethylene carbonate, or γ-butyrolactone as a high boiling point solvent.

以上の非水系溶媒は、複数種を併用することができる。前記高沸点溶媒を使用する場合、使用する非水系溶媒に対する前記高沸点溶媒の割合は、好ましくは60体積%以上、さらに好ましくは70体積%以上、さらに好ましくは80体積%以上、最も好ましくは90体積%以上とする。また、複数の溶媒を併用する場合の非水系溶媒全体としての沸点を200℃以上とするのが好ましい。高沸点溶媒を使用することによって、リチウム二次電池要素を形状可変性ケースに収納した場合においても、高温下等での電池の形状変化(変形)を抑制することができる。なお、「沸点X℃以上」とは、圧力1atmのもとで室温からX℃まで加熱しても蒸気圧が1atmを越えないことを意味する。即ち、圧力1atmのもとで室温から200℃まで加熱した場合、常に蒸気圧が1atm以下であることを意味する。   The above non-aqueous solvent can use multiple types together. When the high boiling point solvent is used, the ratio of the high boiling point solvent to the non-aqueous solvent used is preferably 60% by volume or more, more preferably 70% by volume or more, more preferably 80% by volume or more, and most preferably 90%. Volume% or more. Moreover, it is preferable that the boiling point as the whole non-aqueous solvent when using several solvent together shall be 200 degreeC or more. By using the high boiling point solvent, even when the lithium secondary battery element is housed in the shape-variable case, the shape change (deformation) of the battery at a high temperature or the like can be suppressed. “Boiling point X ° C. or higher” means that the vapor pressure does not exceed 1 atm even when heated from room temperature to X ° C. under a pressure of 1 atm. That is, when heated from room temperature to 200 ° C. under a pressure of 1 atm, it means that the vapor pressure is always 1 atm or less.

なお、非水系溶媒は、粘度が1mPa・s以上であることが好ましい。
電解質に使用する支持電解質であるリチウム塩としては、LiPF6、LiAsF6、LiSbF6、LiBF4、LiClO4、LiI、LiBr、LiCl、LiAlCl、L
iHF2、LiSCN、LiSO3CF2等を挙げることができる。これらのうちでは特に
LiPF6及びLiClO4が好適である。これら支持電解質の電解液における含有量は、通常0.5〜2.5mol/lである。
The non-aqueous solvent preferably has a viscosity of 1 mPa · s or more.
The lithium salt is a supporting electrolyte used in the electrolyte, LiPF 6, LiAsF 6, LiSbF 6, LiBF 4, LiClO 4, LiI, LiBr, LiCl, LiAlCl, L
Examples include iHF 2 , LiSCN, LiSO 3 CF 2 and the like. Of these, LiPF 6 and LiClO 4 are particularly preferred. The content of these supporting electrolytes in the electrolytic solution is usually 0.5 to 2.5 mol / l.

電解質は、正極と負極との間に電解質層として存在するが、電解質層の電解質は、非流動性を有するものが好ましい。その結果、電池要素を形状可変性を有するケースに収納した場合においても、電解液の液漏れ等が有効に防止できる。このような非流動性電解質としては、具体的には、完全固体型の電解質の外、ポリマーにより前記電解液を保持した、いわゆるポリマー電解質が挙げられる。ポリマー電解質は、通常上記非水電解液をポリマーによって保持することによってゲル状を呈する。ポリマーの電解液に対する濃度は、使用するポリマーの分子量にもよるが、通常0.1〜30重量%である。濃度が低すぎるとゲルを形成しにくくなり、電解液の保持性が低下して流動、液漏れの問題が生じることがある。また濃度が高すぎると粘度が高くなりすぎて工程上困難を生じるとともに、電解液の割合が低下してイオン伝導度が低下しレート特性などの電池特性が低下する傾向にある。電解質を保持するポリマーとしては、アルキレンオキシドユニットを有するアルキレンオキシド系高分子や、ポリフッ化ビニリデンやフッ化ビニリデン−ヘキサフルオロプロピレン共重合体のようなフッ素系高分子等、上記機能を有する各種のポリマーを挙げることができる。   The electrolyte exists as an electrolyte layer between the positive electrode and the negative electrode, and the electrolyte of the electrolyte layer preferably has non-fluidity. As a result, even when the battery element is housed in a case having shape variability, the leakage of the electrolyte can be effectively prevented. Specific examples of such a non-flowable electrolyte include a so-called polymer electrolyte in which the electrolyte solution is held by a polymer in addition to a completely solid electrolyte. The polymer electrolyte usually exhibits a gel state by holding the non-aqueous electrolyte with a polymer. The concentration of the polymer with respect to the electrolytic solution is usually 0.1 to 30% by weight, although it depends on the molecular weight of the polymer used. If the concentration is too low, it is difficult to form a gel, and the retention of the electrolytic solution is lowered, which may cause problems of flow and liquid leakage. On the other hand, when the concentration is too high, the viscosity becomes too high, resulting in difficulty in the process, and the ratio of the electrolytic solution is lowered, the ionic conductivity is lowered, and the battery characteristics such as the rate characteristics tend to be lowered. Examples of the polymer that holds the electrolyte include various polymers having the above functions, such as an alkylene oxide polymer having an alkylene oxide unit, and a fluorine polymer such as polyvinylidene fluoride and a vinylidene fluoride-hexafluoropropylene copolymer. Can be mentioned.

非流動性電解質を形成する方法としては、あらかじめポリマーを電解液に溶解させた電解質塗料として用いる方法、また電解液に重合性モノマーを含有させた電解質塗料を架橋反応させて非流動性電解質とする方法など必要に応じた材料・製法を採用し、電解質層を形成することができる。
本発明における非流動性電解質の形成を、電解液に重合性モノマーを含有させた塗料を架橋反応させて非流動化電解質とする方法で行う場合には、紫外線硬化や熱硬化などの重合処理を施すことによって高分子を形成するモノマーを重合性モノマーとして電解液に添加することにより塗料を調製する。
As a method of forming a non-fluidic electrolyte, a method of using it as an electrolyte coating in which a polymer is previously dissolved in an electrolytic solution, or a crosslinking reaction of an electrolytic coating containing a polymerizable monomer in the electrolytic solution to obtain a non-fluidic electrolyte. The electrolyte layer can be formed by adopting materials and manufacturing methods as required, such as methods.
In the case of forming the non-fluidic electrolyte in the present invention by a method in which a coating containing a polymerizable monomer in the electrolytic solution is subjected to a cross-linking reaction to obtain a non-fluidized electrolyte, a polymerization treatment such as ultraviolet curing or thermosetting is performed. A paint is prepared by adding a monomer that forms a polymer as a polymerizable monomer to the electrolyte.

重合性モノマーとしては、例えばアクリロイル基、メタクリロイル基、ビニル基、アリル基等の不飽和二重結合を有するものが挙げられる。具体的には、例えば、アクリル酸、アクリル酸メチル、アクリル酸エチル、エトキシエチルアクリレート、メトキシエチルアクリレート、エトキシエトキシエチルアクリレート、ポリエチレングリコールモノアクリレート、エトキシエチルメタクリレート、メトキシエチルメタクリレート、エトキシエトキシエチルメタクリレート、ポリエチレングリコールモノメタクリレート、N、N−ジエチルアミノエチルアクリレート、N、N−ジメチルアミノエチルアクリレート、グリシジルアクリレート、アリルアクリレート等が挙げられる。   Examples of the polymerizable monomer include those having an unsaturated double bond such as an acryloyl group, a methacryloyl group, a vinyl group, and an allyl group. Specifically, for example, acrylic acid, methyl acrylate, ethyl acrylate, ethoxyethyl acrylate, methoxyethyl acrylate, ethoxyethoxyethyl acrylate, polyethylene glycol monoacrylate, ethoxyethyl methacrylate, methoxyethyl methacrylate, ethoxyethoxyethyl methacrylate, polyethylene Examples include glycol monomethacrylate, N, N-diethylaminoethyl acrylate, N, N-dimethylaminoethyl acrylate, glycidyl acrylate, and allyl acrylate.

他の使用可能な具体例としては、アクリロニトリル、N−ビニルピロリドン、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリアルキレングリコールジアクリレート、ポリアルキレングリコールジメタクリレート等が挙げられ、さらにトリメチロールプロパンアルコキシレートトリアクリレート、ペンタエリスリトールアルコキシレートトリアクリレートなどの3官能モノマー、ペンタエリスリトールアルコキシレートテトラアクリレート、ジトリメチロールプロパンアルコキシレートテトラアクリレートなどの4官能以上のモノマー等も使用できる。これらの中から反応性、極性、安全性などから好ましいものを単独、または組み合わせて用いれば良い。これらの中で特に好ましくはエチレノキシド基を複数含有するジアクリレート、トリアクリレートである。これらのモノマーを熱、紫外線、電子線等によって重合させることにより、電解質を非流動性電解質とすることができる。電解液中における重合性モノマーの含有量は特に制限されないが、好ましくは塗料中に1重量%以上含有することが好ましい。含有量が低いと高分子の形成効率が低下し、電解液を非流動化しにくくなる。他方、あまりに多すぎると未反応モノマーの残留や電解質塗料としての操作性が悪くなるので、通常30重量%以下とする。   Other usable examples include acrylonitrile, N-vinylpyrrolidone, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene. Examples include glycol dimethacrylate, polyethylene glycol dimethacrylate, polyalkylene glycol diacrylate, and polyalkylene glycol dimethacrylate. Trifunctional monomers such as trimethylolpropane alkoxylate triacrylate and pentaerythritol alkoxylate triacrylate, pentaerythritol alkoxylate Tetraacrylate Ditrimethylolpropane alkoxylate monomers having four or more functional such tetraacrylate or the like can be also used. Of these, those preferable from the viewpoint of reactivity, polarity, safety, etc. may be used alone or in combination. Of these, diacrylates and triacrylates containing a plurality of ethylenoxide groups are particularly preferred. By polymerizing these monomers with heat, ultraviolet rays, electron beams or the like, the electrolyte can be made into a non-flowable electrolyte. The content of the polymerizable monomer in the electrolytic solution is not particularly limited, but is preferably 1% by weight or more in the paint. When the content is low, the formation efficiency of the polymer is lowered, and it is difficult to make the electrolyte non-fluid. On the other hand, if it is too much, residual unreacted monomer and operability as an electrolyte coating are deteriorated.

非流動性電解質を、あらかじめポリマーを含有した電解質塗料を用いて生成する方法においては、ポリマーとして、高温で電解液に溶解し、常温でゲル状電解質を形成する高分子を使用するのが好ましい。この様な特性を持ち、電池材料として安定なものであればどのような高分子でも使用できるが、例えば、ポリビニルピリジン、ポリ−N−ビニルピロリドン等の環を有するポリマー;ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミドなどのアクリル誘導体系ポリマー;ポリフッ化ビニル、ポリフッ化ビニリデン等のフッ素系樹脂;ポリアクリロニトリル、ポリビニリデンシアニド等のCN基含有ポリマー;ポリ酢酸ビニル、ポリビニルアルコール等のポリビニルアルコール系ポリマー;ポリ塩化ビニル、ポリ塩化ビニリデン等のハロゲン含有ポリマー等が挙げられる。これらの中、好ましくはポリメタクリル酸メチル、ポリアクリロニトリル、ポリエチレノキシド、あるいはそれらの変性体である。   In a method for producing a non-fluid electrolyte using an electrolyte coating containing a polymer in advance, it is preferable to use a polymer that dissolves in an electrolyte at a high temperature and forms a gel electrolyte at room temperature. Any polymer can be used as long as it has such characteristics and is stable as a battery material. For example, polymers having a ring such as polyvinyl pyridine and poly-N-vinyl pyrrolidone; polymethyl methacrylate, poly Acrylic derivative polymers such as ethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyacrylic acid, polymethacrylic acid, and polyacrylamide; fluorinated resins such as polyvinyl fluoride and polyvinylidene fluoride; CN group-containing polymers such as acrylonitrile and polyvinylidene cyanide; polyvinyl alcohol polymers such as polyvinyl acetate and polyvinyl alcohol; halogen-containing polymers such as polyvinyl chloride and polyvinylidene chloride. Among these, polymethyl methacrylate, polyacrylonitrile, polyethylene oxide, or modified products thereof are preferable.

また、上記のポリマー等の混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体等であっても使用できる。後述するようにリチウム電池に使用される電解液、電解質が極性を有するものであるから、ポリマー(高分子)も有る程度の極性を有する方が好ましい。更に、これらのポリマーの重量平均分子量は、好ましくは10,000〜5,000,000の範囲である。分子量が低いとゲルを形成しにくくなり、他方、あまり分子量が高いと粘度が高くなりすぎて取り扱いが難しくなる。   Moreover, it can be used even if it is a mixture, such as said polymer, a modified body, a derivative, a random copolymer, an alternating copolymer, a graft copolymer, a block copolymer, etc. As will be described later, since the electrolyte and electrolyte used in the lithium battery have polarity, it is preferable that the polymer (polymer) has a certain degree of polarity. Furthermore, the weight average molecular weight of these polymers is preferably in the range of 10,000 to 5,000,000. If the molecular weight is low, it is difficult to form a gel. On the other hand, if the molecular weight is too high, the viscosity becomes too high and handling becomes difficult.

高温で電解液に溶解し、常温でゲル状電解質を形成するポリマーを使用した非流動化電解質の形成法では、ポリマーを電解液に加温して溶解する。加温温度としては50〜200℃、好ましくは、100〜160℃である。あまりにも低温で溶解するようであると、非流動化電解質の安定性が低下する。溶解温度が高すぎると、電解液成分、ポリマー等の分解を引き起こすことがあり得る。非流動化の条件としては、ポリマー溶解電解液を室温で冷却することが好ましいが、強制冷却してもよい。   In the method of forming a non-fluidized electrolyte using a polymer that dissolves in an electrolytic solution at a high temperature and forms a gel electrolyte at a normal temperature, the polymer is heated and dissolved in the electrolytic solution. As heating temperature, it is 50-200 degreeC, Preferably, it is 100-160 degreeC. If it seems to dissolve at too low a temperature, the stability of the non-fluidized electrolyte is reduced. If the melting temperature is too high, decomposition of the electrolyte component, polymer, etc. may be caused. As the non-fluidization condition, it is preferable to cool the polymer-dissolved electrolyte at room temperature, but it may be forcedly cooled.

電解質中には、必要に応じて、電池の性能向上のために各種の添加剤を添加することができる。
電解質層は、多孔質フィルムのような支持体を併用するのが好ましい。多孔質フィルムとしては、高分子樹脂からなるフィルムや、粉体とバインダーからなる薄膜が好ましく使用でき、より好ましくはポリエチレン、ポリプロピレン等からなる多孔質膜である。
Various additives can be added to the electrolyte as needed to improve battery performance.
The electrolyte layer is preferably used in combination with a support such as a porous film. As the porous film, a film made of a polymer resin or a thin film made of a powder and a binder can be preferably used, and more preferably a porous film made of polyethylene, polypropylene or the like.

リチウム二次電池の正極に使用される活物質としては、リチウムと遷移金属との複合酸化物が挙げられ、具体的には、LiNiO2、LiNiCoO2等のリチウムニッケル複合酸化物、LiCoO2等のリチウムコバルト複合酸化物、LiMn24等のリチウムマン
ガン複合酸化物が挙げられる。これら複合酸化物の遷移金属サイトの一部は他の元素で置換されていてもよい。遷移金属の一部を他の元素で置換することにより、結晶構造の安定性を向上させることができる。この際の該遷移金属サイトの一部を置換する他元素(以下、置換元素と表記する)としては、Al、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr等が挙げられ、好ましくはAl、Cr、Fe、Co、Li、Ni、Mg、Ga、更に好ましくはAlである。なお、遷移金属サイトは2種以上の他元素で置換されていてもよい。置換元素による置換割合は通常ベースとなる遷移金属元素の2.5モル%以上、好ましくはベースとなる遷移金属元素の5モル%以上であり、通常ベースとなる遷移金属元素の30モル%以下、好ましくはベースとなる遷移金属元素の20モル%以下である。置換割合が少なすぎると結晶構造の安定化が十分図れない場合があり、多すぎると電池にした場合の容量が低下してしまう場合がある。リチウム遷移金属複合酸化物のうち、より好ましくはリチウムコバルト複合酸化物、リチウムニッケル複合酸化物であり、特に好ましくはLiCoO2である。正極活物質の粒径は、レート特性、サイクル特性等の電池特性が優れる点で通常1〜30μm、好ましくは1〜10μm程度である。正極は、通常正極活物質とバインダーとを有する活物質層を集電体上に形成してなる。正極に使用されるバインダーの種類や活物質層の形成方法は負極の場合と同様である。
Examples of the active material used for the positive electrode of the lithium secondary battery include a composite oxide of lithium and a transition metal. Specifically, lithium nickel composite oxides such as LiNiO 2 and LiNiCoO 2 , LiCoO 2 and the like Examples thereof include lithium cobalt composite oxides and lithium manganese composite oxides such as LiMn 2 O 4 . Some of the transition metal sites of these composite oxides may be substituted with other elements. By substituting a part of the transition metal with another element, the stability of the crystal structure can be improved. As other elements for substituting a part of the transition metal site at this time (hereinafter referred to as substitution elements), Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg , Ga, Zr, etc., preferably Al, Cr, Fe, Co, Li, Ni, Mg, Ga, and more preferably Al. The transition metal site may be substituted with two or more other elements. The substitution ratio by the substitution element is usually 2.5 mol% or more of the base transition metal element, preferably 5 mol% or more of the base transition metal element, and usually 30 mol% or less of the base transition metal element, Preferably it is 20 mol% or less of the transition metal element used as a base. If the substitution ratio is too small, the crystal structure may not be sufficiently stabilized. If the substitution ratio is too large, the capacity of the battery may be reduced. Of the lithium transition metal composite oxides, lithium cobalt composite oxides and lithium nickel composite oxides are more preferable, and LiCoO 2 is particularly preferable. The particle size of the positive electrode active material is usually about 1 to 30 μm, preferably about 1 to 10 μm, in terms of excellent battery characteristics such as rate characteristics and cycle characteristics. The positive electrode is usually formed by forming an active material layer having a positive electrode active material and a binder on a current collector. The kind of binder used for the positive electrode and the method for forming the active material layer are the same as those for the negative electrode.

正極、負極、及び電解質を有するリチウム二次電池要素はケースに収納される。リチウム二次電池要素としては、例えば、正極と負極とを電解質層を介して積層した積層体を巻回した形態、正極と負極と電解質層を介して平板状に積層した形態、又は前記平板状に積層したリチウム二次電池要素を複数個用意してさらに積層した形態を挙げることができる。   A lithium secondary battery element having a positive electrode, a negative electrode, and an electrolyte is housed in a case. Examples of the lithium secondary battery element include a form in which a laminate in which a positive electrode and a negative electrode are laminated via an electrolyte layer is wound, a form in which a positive electrode, a negative electrode, and an electrolyte layer are laminated in a flat plate shape, or the flat plate shape A plurality of lithium secondary battery elements stacked on each other may be prepared and further stacked.

電池要素を収納するケースは、通常、金属缶や形状可変性を有するケースを挙げることができる。本発明の効果は、基本的には収納するケースに依存せず発揮されるが、本発明の効果が特に顕著に発揮されるのは、形状可変性ケースを用いた場合である。つまり、鱗片状炭素性物質を用いた活物質層は機械的強度が弱い。従って、強度の弱い形状可変性ケースを用いた場合に外力によって活物質層が破壊されやすい問題が顕著となり、球状物質を負極に含有させる本発明の効果が顕著となる。また、鱗片状炭素性物質を用いた活物質層は集電体との接着性も悪い。従って、電池要素を押さえつける力が弱い形状可変性ケースを用いた場合に活物質層が集電体から剥がれる問題が顕著となり、球状物質を負極に含有させる本発明の効果が顕著となる。電池要素は、好ましくは、形状可変性を有するケースに電池要素を密着して収納する。さらに好ましくは、減圧下で封入して、大気圧によって電池要素を押圧する。   Examples of the case for storing the battery element include a metal can and a case having shape variability. The effects of the present invention are basically exhibited without depending on the case to be stored, but the effects of the present invention are particularly remarkable when the shape-variable case is used. That is, the active material layer using the scaly carbonaceous material has low mechanical strength. Therefore, when the shape-variable case having low strength is used, the problem that the active material layer is easily broken by an external force becomes remarkable, and the effect of the present invention in which the negative electrode contains a spherical material becomes remarkable. Moreover, the active material layer using a scaly carbonaceous material has poor adhesion to the current collector. Therefore, when the shape-variable case having a weak force for pressing the battery element is used, the problem that the active material layer is peeled off from the current collector becomes remarkable, and the effect of the present invention in which a spherical material is contained in the negative electrode becomes remarkable. The battery element is preferably housed in close contact with a case having shape variability. More preferably, sealing is performed under reduced pressure, and the battery element is pressed by atmospheric pressure.

形状可変性を有するケースを構成するケース部材としては、可撓性プラスチック、高分子フィルム、金属フィルム、ゴム、薄い金属板、ガスバリア層の両面に樹脂層を設けてなるラミネートフィルム等が挙げられ、好ましくはガスバリア層の両面に樹脂層を設けてなるラミネートフィルムである。ラミネートフィルムのバリア層としては、金属層が好ましく用いられる。ラミネートフィルムとしては、通常、金属層と高分子フィルムのラミネート素材からなるフィルムが好適に使用できる。   Examples of case members constituting the case having shape variability include flexible plastics, polymer films, metal films, rubber, thin metal plates, and laminated films in which resin layers are provided on both sides of a gas barrier layer. Preferably, it is a laminate film in which resin layers are provided on both sides of the gas barrier layer. A metal layer is preferably used as the barrier layer of the laminate film. As the laminate film, usually, a film made of a laminate material of a metal layer and a polymer film can be suitably used.

ラミネートフィルムを使用する際の金属層の材料としては、アルミニウム、鉄、銅、ニッケル、チタン、モリブデン、金等の金属単体やステンレスやハステロイ等の合金、酸化ケイ素や酸化アルミニウム等の金属酸化物を使用することができる。好ましくは、軽量で加工性に優れるアルミニウムである。樹脂層に使用する樹脂としては、熱可塑性プラスチック、熱可塑性エラストマー類、熱硬化性樹脂、プラスチックアロイ等各種の合成樹脂を使うことができる。これらの樹脂にはフィラー等の充填材が混合されているものも含んでいる。具体的には、好ましくはポリエチレン、ポリプロピレン、変性ポリオレフィン、アイオノマー、非晶性ポリオレフィン、ポリエチレンテレフタレート、ポリアミド、エチレン−酢酸ビニル共重合体、ABS樹脂、ポリカーボネート樹脂等耐薬品性や機械的強度に優れた樹脂が望ましい。樹脂層は、好ましくは金属層の両面に形成される。   As the material of the metal layer when using a laminate film, a single metal such as aluminum, iron, copper, nickel, titanium, molybdenum and gold, an alloy such as stainless steel and hastelloy, and a metal oxide such as silicon oxide and aluminum oxide are used. Can be used. Preferably, aluminum is lightweight and excellent in workability. As the resin used for the resin layer, various synthetic resins such as thermoplastics, thermoplastic elastomers, thermosetting resins, plastic alloys, and the like can be used. These resins include those in which fillers such as fillers are mixed. Specifically, polyethylene, polypropylene, modified polyolefin, ionomer, amorphous polyolefin, polyethylene terephthalate, polyamide, ethylene-vinyl acetate copolymer, ABS resin, polycarbonate resin, etc. are excellent in chemical resistance and mechanical strength. Resin is desirable. The resin layer is preferably formed on both surfaces of the metal layer.

形状可変性を有するケースの部材厚さは、通常0.01μm以上、好ましくは0.02μm以上、さらに好ましくは0.05μm以上であり、通常5mm以下、好ましくは1mm以下、さらに好ましくは0.5mm以下、最も好ましくは0.3mm以下とする。薄いほど電池がより小型・軽量化でき、また本発明の効果も大きいが、あまりに薄いと、十分な剛性の付与ができなくなったり密閉性が低下する可能性がある。   The member thickness of the case having shape variability is usually 0.01 μm or more, preferably 0.02 μm or more, more preferably 0.05 μm or more, and usually 5 mm or less, preferably 1 mm or less, more preferably 0.5 mm. Hereinafter, it is most preferably set to 0.3 mm or less. The thinner the battery, the smaller and lighter the battery can be and the greater the effect of the present invention. However, if the battery is too thin, sufficient rigidity may not be imparted or the sealing performance may be reduced.

形状可変性を有するケースを用いた場合のリチウム二次電池要素の収納方法は任意であるが、好ましいのは、リチウム二次電池要素をケースに減圧封入することである。このような収納方法としては、例えば、フィルム状のケース部材の両端を貼り合わせて筒状とし、内部にリチウム二次電池要素を収納した後、減圧下で筒の上下をさらに貼り合わせる方法を例示することができる。また、2片のフィルム状のケース部材の間にリチウム二次電池要素を収納した後、減圧下で周縁部を貼り合わせる方法も採用することができる。   The method of housing the lithium secondary battery element when using a case having shape changeability is arbitrary, but it is preferable to enclose the lithium secondary battery element in a case under reduced pressure. Examples of such a storage method include a method in which both ends of a film-like case member are bonded to form a cylinder, and after the lithium secondary battery element is stored inside, the upper and lower sides of the cylinder are further bonded under reduced pressure. can do. Moreover, after accommodating a lithium secondary battery element between two pieces of film-like case members, the method of bonding a peripheral part under reduced pressure is also employable.

形状可変性を有するケースは、金属缶の様な重量、剛性がなく、柔軟性、屈曲性、可撓性等を有するため、電池を収納後、曲げたりできる自由性があるとともに軽量化が図れるという利点を持つ。むろん電池の機器への装着等の利便を図るため、ケースに電池を封入した後、必要ならば複数のケースを、剛性を持つ外装ケースに収納することも可能である。   The case with shape changeability does not have the same weight and rigidity as metal cans, and has flexibility, flexibility, flexibility, etc., so it can be bent after storing the battery and can be reduced in weight. Has the advantage. Of course, for the convenience of mounting the battery on the device, etc., it is possible to enclose the battery in a case and then store a plurality of cases in a rigid outer case if necessary.

本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
実施例1[鱗片状炭素性物質の製造]
内容積20リットルのステンレスタンク中で、ホソカワミクロン社製のメカノフュージョンシステムによって球形化処理を行った天然黒鉛粉末(平均粒径22〜23μm、BET法を用いて測定した比表面積4.7m2/g)3.0kgを、ナフサ分解時に得られるエチレンヘビーエンドタール(EHE;三菱化学(株)社製)1.0kgと混合した。得られたスラリー状の混合物を回分式加熱炉で不活性雰囲気下にて700℃に保ち、1時間熱処理することにより脱揮した。次に、1300℃まで温度を上昇させ2時間保持し焼成した。焼成物を粉砕し、振動式篩いにより粒径を20〜25μmに整え、鱗片状の炭素被覆黒鉛系炭素質物を得た。
Examples The present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
Example 1 [Production of scale-like carbonaceous material]
Natural graphite powder spheroidized by mechano-fusion system manufactured by Hosokawa Micron Co., Ltd. in a stainless steel tank with an internal volume of 20 liters (average particle size 22-23 μm, specific surface area measured by BET method 4.7 m 2 / g ) 3.0 kg was mixed with 1.0 kg of ethylene heavy end tar (EHE; manufactured by Mitsubishi Chemical Corporation) obtained during naphtha decomposition. The obtained slurry-like mixture was devolatilized by heat treatment for 1 hour while keeping it at 700 ° C. in an inert atmosphere in a batch heating furnace. Next, the temperature was raised to 1300 ° C., held for 2 hours, and fired. The fired product was pulverized and adjusted to a particle size of 20 to 25 μm using a vibrating sieve to obtain a scale-like carbon-coated graphite-based carbonaceous material.

得られた炭素被覆黒鉛系炭素質物のBET法で測定した比表面積は3.1m2/gであ
った。また、得られた炭素被覆黒鉛系炭素質物と被覆前の黒鉛系炭素物質に対し、波長5145Åのアルゴンイオンレーザー光を用いたラマンスペクトル分析を行いR値を求めたところ、炭素被覆黒鉛系炭素質物は0.21、被覆前の黒鉛系炭素物質は0.11であった。
The specific surface area of the obtained carbon-coated graphite-based carbonaceous material measured by the BET method was 3.1 m 2 / g. Further, when the obtained carbon-coated graphite-based carbonaceous material and the graphite-based carbon material before coating were subjected to Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145 mm, the R value was obtained. Was 0.21, and the graphite-based carbon material before coating was 0.11.

なお、ラマンスペクトル測定は、日本分光NR−1800を用い、波長5145Åのアルゴンイオンレーザー光を30mWの強度で用いた。
[形状異方性の確認]
粉末のSEM画像を1000倍にて撮影しランダムに100個の粒子を抽出して粒子の最長径と最短径をノギスで測定し最長径/最短径値の平均を形状異方性として測定した。その結果、上記炭素被覆黒鉛系炭素質物の最長径/最短径比は1.6であった。
[平均粒径の測定]
平均粒径は粒子を水溶媒中に分散させホリバ製マイクロトラックを用いて測定した。その結果、上記炭素被覆黒鉛系炭素質物の平均粒径D50は20.0μmであった。
[負極の製造]
上記炭素被覆黒鉛系炭素質物100重量部に対して、球状物質としてメソカーボンマイクロビーズ(MCMB6−28、大阪ガス化学社製;最長径/最短径=1.1、平均粒径D50=6.1μm)20重量部、ポリフッ化ビニリデン(バインダー)10重量部、N−メチル−2−ピロリドン(溶剤)100重量部を調合し、混練機により2時間混練し負極用分散塗料とした。得られた負極用分散塗料を、20μm厚の銅集電体基材上にエクストルージョン型のダイコーティングによって乾燥後膜厚が50μmになるよう塗布し、120℃にて10分間乾燥し、負活物質がバインダーによって集電体上に結着された膜を作成した。
For the Raman spectrum measurement, JASCO NR-1800 was used, and an argon ion laser beam having a wavelength of 5145 mm was used at an intensity of 30 mW.
[Confirmation of shape anisotropy]
An SEM image of the powder was taken at 1000 times, 100 particles were randomly extracted, the longest diameter and the shortest diameter of the particles were measured with calipers, and the average of the longest diameter / shortest diameter value was measured as shape anisotropy. As a result, the longest diameter / shortest diameter ratio of the carbon-coated graphite-based carbonaceous material was 1.6.
[Measurement of average particle size]
The average particle size was measured using a Horiba microtrack in which the particles were dispersed in an aqueous solvent. As a result, the average particle diameter D50 of the carbon-coated graphite-based carbonaceous material was 20.0 μm.
[Manufacture of negative electrode]
Mesocarbon microbeads (MCMB6-28, manufactured by Osaka Gas Chemical Co., Ltd .; longest diameter / shortest diameter = 1.1, average particle diameter D50 = 6.1 μm) as a spherical substance with respect to 100 parts by weight of the carbon-coated graphite-based carbonaceous material. ) 20 parts by weight, 10 parts by weight of polyvinylidene fluoride (binder) and 100 parts by weight of N-methyl-2-pyrrolidone (solvent) were prepared and kneaded for 2 hours with a kneader to obtain a dispersion paint for negative electrode. The obtained dispersion paint for negative electrode was applied to a 20 μm thick copper current collector substrate by an extrusion type die coating so that the film thickness after drying was 50 μm, dried at 120 ° C. for 10 minutes, A film was created in which the material was bound onto the current collector by a binder.

ついで、ロールプレス(カレンダー)をもちいて、線圧100kgf/cmの条件で圧密することによって負極とした。
[正極の製造]
コバルト酸リチウム90重量部、アセチレンブラック5重量部、ポリフッ化ビニリデン5重量部及びN−メチル−2−ピロリドン80重量部を混練機により2時間混練して得た正極用分散塗料を、20μm厚のアルミニウム集電体に、エクストルージョン型のダイコ
ーティングによって、乾燥後の膜厚が60μmとなるよう塗布、乾燥し、活物質がバインダーによって集電体上に結着された膜を作成した。ついで、ロールプレス(カレンダー)をもちいて、線圧100kgf/cmの条件で圧密することによって正極とした。
[リチウム二次電池の製造]
テトラエチレングルコールジアクリレート14重量部、ポリエチレンオキシドトリアクリレート7重量部、LiPF621重量部、重合開始剤1重量部、添加剤(酸無水物)1
4重量部、プロピレンカーボネート120重量部及びエチレンカーボネート120重量部を混合攪拌溶解し、電解質塗料とした。
Next, a negative electrode was obtained by consolidation using a roll press (calendar) under a linear pressure of 100 kgf / cm.
[Production of positive electrode]
A dispersion paint for positive electrode obtained by kneading 90 parts by weight of lithium cobaltate, 5 parts by weight of acetylene black, 5 parts by weight of polyvinylidene fluoride and 80 parts by weight of N-methyl-2-pyrrolidone with a kneader for 2 hours is obtained with a thickness of 20 μm. The aluminum current collector was applied and dried by extrusion-type die coating so that the film thickness after drying was 60 μm, and a film in which the active material was bound on the current collector by a binder was created. Next, a positive electrode was obtained by consolidation using a roll press (calendar) under a linear pressure of 100 kgf / cm.
[Manufacture of lithium secondary batteries]
14 parts by weight of tetraethylene glycol diacrylate, 7 parts by weight of polyethylene oxide triacrylate, 21 parts by weight of LiPF 6 , 1 part by weight of a polymerization initiator, 1 additive (acid anhydride)
4 parts by weight, 120 parts by weight of propylene carbonate and 120 parts by weight of ethylene carbonate were mixed and dissolved by stirring to obtain an electrolyte coating.

上記の正極ならびに負極に上記電解質塗料を塗布し、別に電解質塗料に浸した電極よりやや面積の広いポリエチレン製多孔質フィルムを両極間に挟んで積層し、それを90℃にて10分加熱することにより電解質を非流動化して、正極、負極及び非流動性電解質を有する平板状のリチウム二次電池要素を得た。得られた電池要素に電流を取り出すタブを接続した。アルミニウム層の両面に合成樹脂層を形成してなる、形状可変性を有する薄型ラミネートフィルムを2枚用意し、これらの間に前記電池要素を配置した状態でケース部材の周縁部を真空シールして平板状のリチウム二次電池とした。
比較例1
球状物質を入れずにその分だけ鱗片状の炭素被覆黒鉛系炭素質物の使用量を増やしたこと以外は実施例1と同様にしてリチウム二次電池を得た。
試験例
実施例1及び比較例1で得た負極及びリチウム二次電池を下記のような方法で評価した。
Apply the above electrolyte paint to the above positive electrode and negative electrode, laminate a polyethylene porous film having a slightly larger area than the electrode soaked in the electrolyte paint, and heat it at 90 ° C. for 10 minutes. The electrolyte was defluidized to obtain a flat lithium secondary battery element having a positive electrode, a negative electrode, and a non-fluidic electrolyte. A tab for taking out current was connected to the obtained battery element. Two thin laminate films having shape variability formed by forming a synthetic resin layer on both surfaces of the aluminum layer are prepared, and the peripheral portion of the case member is vacuum-sealed with the battery element disposed therebetween. A flat lithium secondary battery was obtained.
Comparative Example 1
A lithium secondary battery was obtained in the same manner as in Example 1 except that the amount of the scaly carbon-coated graphite-based carbonaceous material was increased by that amount without adding the spherical substance.
Test Example The negative electrode and lithium secondary battery obtained in Example 1 and Comparative Example 1 were evaluated by the following methods.

まず、接着強度試験として、得られた負極に対して接着テープによる剥離試験を行なった。負極活物質層が集電体から剥がれずに残った面積を測定し、全接着面積に対する割合(%)が65%以上の場合を○、65以下のものを×とした。
次に、得られたリチウム二次電池に対してサイクル試験を行なった。得られた電池に対して、100サイクル充放電を行なった後の容量を測定し、1サイクル目の容量に対する比で表した。なお、この際、充電の際は、1Cにて4.2Vまで定電流充電を行なった後、C/25になるまで低電圧充電を行なった。放電の際は、1Cにて3.0Vまで定電流放電を行なった。
First, as an adhesive strength test, a peel test using an adhesive tape was performed on the obtained negative electrode. The area where the negative electrode active material layer remained without being peeled off from the current collector was measured.
Next, a cycle test was performed on the obtained lithium secondary battery. The capacity | capacitance after charging / discharging 100 cycles was measured with respect to the obtained battery, and it represented with the ratio with respect to the capacity | capacitance of the 1st cycle. In this case, at the time of charging, constant current charging was performed up to 4.2 V at 1 C, and then low voltage charging was performed until C / 25. At the time of discharge, constant current discharge was performed to 3.0V at 1C.

さらに、100サイクル後の電池を分解し、負極における活物質層と集電体との接着性を目視観察した。結果を表−1に示す。   Furthermore, the battery after 100 cycles was disassembled, and the adhesion between the active material layer and the current collector in the negative electrode was visually observed. The results are shown in Table-1.

Figure 2008171809
Figure 2008171809

表−1より、形状可変性を有するケースに電池要素を収納したリチウム二次電池においては、負極活物質層と集電体の接着力が弱く、また充放電の繰り返しによって特性が低下したり、活物質層が実際に集電体から剥がれる現象が起こりやすいのに対し、球状物質を添加することによってこれらの問題を大きく改善できることが分かる。   From Table 1, in the lithium secondary battery in which the battery element is housed in a case having shape variability, the adhesive force between the negative electrode active material layer and the current collector is weak, and the characteristics deteriorate due to repeated charge and discharge, The phenomenon that the active material layer actually peels off from the current collector tends to occur, but it can be seen that these problems can be greatly improved by adding a spherical material.

Claims (17)

正極と負極と電解質とを有するリチウム二次電池要素をケースに収納してなるリチウム二次電池において、前記負極が、アスペクト比が1.1〜2.9の鱗片状炭素性物質と球状物質とを含有することを特徴とするリチウム二次電池。   A lithium secondary battery in which a lithium secondary battery element having a positive electrode, a negative electrode, and an electrolyte is housed in a case, wherein the negative electrode includes a flaky carbonaceous material and a spherical material having an aspect ratio of 1.1 to 2.9. A lithium secondary battery comprising: 正極と負極と電解質とを有するリチウム二次電池要素を形状可変性を有するケースに収納してなるリチウム二次電池において、前記負極が、鱗片状炭素性物質と球状物質とを含有することを特徴とするリチウム二次電池。   In a lithium secondary battery in which a lithium secondary battery element having a positive electrode, a negative electrode, and an electrolyte is housed in a case having shape changeability, the negative electrode contains a scaly carbonaceous substance and a spherical substance. Lithium secondary battery. 鱗片状炭素性物質のアスペクト比が1.1〜6.0、球状物質のアスペクト比が1.0〜1.5である請求項2に記載のリチウム二次電池。   The lithium secondary battery according to claim 2, wherein the scale-like carbonaceous material has an aspect ratio of 1.1 to 6.0, and the spherical material has an aspect ratio of 1.0 to 1.5. 鱗片状炭素性物質のアスペクト比が1.1〜2.9である請求項2又は3に記載のリチウム二次電池。   The lithium secondary battery according to claim 2 or 3, wherein the scale-like carbonaceous material has an aspect ratio of 1.1 to 2.9. 球状物質の平均粒径が、鱗片状炭素性物質の平均粒径の2/3以下である請求項1乃至4のいずれかに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 4, wherein an average particle diameter of the spherical substance is 2/3 or less of an average particle diameter of the scaly carbonaceous substance. 球状物質が、球状炭素性物質である請求項1乃至5のいずれか1つに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 5, wherein the spherical substance is a spherical carbonaceous substance. 鱗片状炭素性物質が、表面の少なくとも一部がアモルファスなコークスで被覆された黒鉛系炭素質物である請求項1乃至6のいずれか1つに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 6, wherein the scaly carbonaceous material is a graphite-based carbonaceous material in which at least a part of the surface is coated with amorphous coke. 鱗片状炭素性物質に対する球状物質の重量比が、10〜70%である請求項1乃至7のいずれか1つに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 7, wherein a weight ratio of the spherical substance to the scaly carbonaceous substance is 10 to 70%. 鱗片状炭素性物質が鱗片状の黒鉛であり、球状物質が球状の黒鉛である請求項1乃至8のいずれか1つに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 8, wherein the scaly carbonaceous material is scaly graphite and the spherical material is spherical graphite. 球状の黒鉛が、メソカーボンマイクロビーズである請求項9に記載のリチウム二次電池。   The lithium secondary battery according to claim 9, wherein the spherical graphite is mesocarbon microbeads. 鱗片状の黒鉛の表面の少なくとも一部にアモルファスなコークスが被覆してなる請求項9又は10に記載のリチウム二次電池。   The lithium secondary battery according to claim 9 or 10, wherein amorphous coke is coated on at least part of the surface of the scaly graphite. 正極と負極との間に非流動性の電解質を有する請求項1乃至11のいずれか1つに記載のリチウム二次電池。   The lithium secondary battery according to claim 1, further comprising a non-fluidic electrolyte between the positive electrode and the negative electrode. 形状可変性を有するケースが、ガスバリア層の両面に樹脂層を設けてなるラミネートフィルムからなる請求項2乃至12のいずれか1つに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 2 to 12, wherein the case having shape variability is made of a laminate film in which resin layers are provided on both surfaces of the gas barrier layer. リチウム二次電池要素がケースに減圧封入されてなる請求項2乃至13のいずれか1つに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 2 to 13, wherein the lithium secondary battery element is sealed in a case under reduced pressure. 電解質がリチウム塩を非水系溶媒に溶解してなる電解液を含み、前記非水系溶媒の60体積%以上が沸点150℃以上の高沸点溶媒である請求項1乃至14のいずれか1つに記載のリチウム二次電池。   15. The electrolyte according to claim 1, wherein the electrolyte includes an electrolytic solution obtained by dissolving a lithium salt in a non-aqueous solvent, and 60% by volume or more of the non-aqueous solvent is a high-boiling solvent having a boiling point of 150 ° C. or higher. Lithium secondary battery. 高沸点溶媒が、プロピレンカーボネート、エチレンカーボネート及びγ−ブチロラクトンからなる群から選ばれる少なくとも1種を含む請求項15に記載のリチウム二次電池。   The lithium secondary battery according to claim 15, wherein the high boiling point solvent contains at least one selected from the group consisting of propylene carbonate, ethylene carbonate, and γ-butyrolactone. アスペクト比が1.1〜2.9の鱗片状炭素性物質と球状物質とを含有することを特徴とするリチウム二次電池用負極。   A negative electrode for a lithium secondary battery, comprising a flaky carbonaceous material having an aspect ratio of 1.1 to 2.9 and a spherical material.
JP2007326879A 2000-09-26 2007-12-19 Lithium secondary battery and negative electrode Expired - Lifetime JP5430063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326879A JP5430063B2 (en) 2000-09-26 2007-12-19 Lithium secondary battery and negative electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000292466 2000-09-26
JP2000292466 2000-09-26
JP2007326879A JP5430063B2 (en) 2000-09-26 2007-12-19 Lithium secondary battery and negative electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001291377A Division JP2002175810A (en) 2000-09-26 2001-09-25 Lithium secondary battery and anode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011141062A Division JP2011210736A (en) 2000-09-26 2011-06-24 Lithium secondary battery and negative electrode

Publications (2)

Publication Number Publication Date
JP2008171809A true JP2008171809A (en) 2008-07-24
JP5430063B2 JP5430063B2 (en) 2014-02-26

Family

ID=39699676

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2007326879A Expired - Lifetime JP5430063B2 (en) 2000-09-26 2007-12-19 Lithium secondary battery and negative electrode
JP2011141062A Pending JP2011210736A (en) 2000-09-26 2011-06-24 Lithium secondary battery and negative electrode
JP2013130881A Pending JP2013214525A (en) 2000-09-26 2013-06-21 Lithium secondary battery and negative electrode
JP2013262705A Pending JP2014060176A (en) 2000-09-26 2013-12-19 Lithium secondary battery and negative electrode

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2011141062A Pending JP2011210736A (en) 2000-09-26 2011-06-24 Lithium secondary battery and negative electrode
JP2013130881A Pending JP2013214525A (en) 2000-09-26 2013-06-21 Lithium secondary battery and negative electrode
JP2013262705A Pending JP2014060176A (en) 2000-09-26 2013-12-19 Lithium secondary battery and negative electrode

Country Status (1)

Country Link
JP (4) JP5430063B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192326A (en) * 2009-02-19 2010-09-02 Sony Corp Nonaqueous electrolytic solution secondary battery
WO2012005301A1 (en) * 2010-07-06 2012-01-12 株式会社Gsユアサ Electrode body for energy storage element, and energy storage element
JP2012084519A (en) * 2010-09-16 2012-04-26 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery and negative electrode using the same, and nonaqueous electrolyte secondary battery
JP2013008526A (en) * 2011-06-23 2013-01-10 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2549569A1 (en) * 2010-03-18 2013-01-23 NEC Energy Devices, Ltd. Lithium ion secondary battery
KR20140121445A (en) 2012-03-02 2014-10-15 제이에프이 케미칼 가부시키가이샤 Nagative electrode material for lithium ion secondary batteries, nagative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675985B1 (en) * 2014-01-13 2016-11-14 주식회사 엘지화학 Battery Cell Comprising Electrode Coated with Inactive Particles
WO2015105304A1 (en) * 2014-01-13 2015-07-16 주식회사 엘지화학 Battery cell having improved battery safety by using inert particles
KR101590997B1 (en) * 2014-01-13 2016-02-02 주식회사 엘지화학 Battery Cell Comprising Electrode Assembly Coated with Inactive Particles
KR101675988B1 (en) * 2014-04-10 2016-11-14 주식회사 엘지화학 Battery Cell Comprising Electrode Including Inactive Particles
KR20170054865A (en) 2015-11-10 2017-05-18 삼성에스디아이 주식회사 Rechargeable lithium battery
JP2019016484A (en) * 2017-07-05 2019-01-31 日立造船株式会社 Negative electrode for all solid-state battery and all solid-state battery including the same
JP7271598B2 (en) * 2021-04-15 2023-05-11 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147862A (en) * 1995-11-22 1997-06-06 Hitachi Maxell Ltd Organic electrolyte secondary battery
JPH11199211A (en) * 1998-01-20 1999-07-27 Hitachi Chem Co Ltd Graphite particle, its production, lithium secondary battery and negative pole thereof
JPH11263612A (en) * 1998-03-18 1999-09-28 Kansai Coke & Chem Co Ltd Modified particle of scalelike natural graphite, its production, and secondary cell
JP2000138061A (en) * 1998-08-27 2000-05-16 Nec Corp Nonaqueous electrolyte secondary battery, and its manufacture and carbon material composition
JP2000226206A (en) * 1999-02-04 2000-08-15 Kansai Coke & Chem Co Ltd Graphite particle composition and production of coated body using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3945928B2 (en) * 1998-11-27 2007-07-18 三菱化学株式会社 Method for producing carbon material for negative electrode of lithium ion secondary battery
JP2002175810A (en) * 2000-09-26 2002-06-21 Mitsubishi Chemicals Corp Lithium secondary battery and anode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147862A (en) * 1995-11-22 1997-06-06 Hitachi Maxell Ltd Organic electrolyte secondary battery
JPH11199211A (en) * 1998-01-20 1999-07-27 Hitachi Chem Co Ltd Graphite particle, its production, lithium secondary battery and negative pole thereof
JPH11263612A (en) * 1998-03-18 1999-09-28 Kansai Coke & Chem Co Ltd Modified particle of scalelike natural graphite, its production, and secondary cell
JP2000138061A (en) * 1998-08-27 2000-05-16 Nec Corp Nonaqueous electrolyte secondary battery, and its manufacture and carbon material composition
JP2000226206A (en) * 1999-02-04 2000-08-15 Kansai Coke & Chem Co Ltd Graphite particle composition and production of coated body using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192326A (en) * 2009-02-19 2010-09-02 Sony Corp Nonaqueous electrolytic solution secondary battery
US8512900B2 (en) 2009-02-19 2013-08-20 Sony Corporation Nonaqueous electrolytic solution secondary battery
EP2549569A1 (en) * 2010-03-18 2013-01-23 NEC Energy Devices, Ltd. Lithium ion secondary battery
EP2549569A4 (en) * 2010-03-18 2014-08-06 Nec Energy Devices Ltd Lithium ion secondary battery
WO2012005301A1 (en) * 2010-07-06 2012-01-12 株式会社Gsユアサ Electrode body for energy storage element, and energy storage element
US8932765B2 (en) 2010-07-06 2015-01-13 Gs Yuasa International Ltd. Electrode assembly for electric storage device and electric storage device
JP5975347B2 (en) * 2010-07-06 2016-08-23 株式会社Gsユアサ ELECTRODE BODY FOR STORAGE ELEMENT AND STORAGE ELEMENT
JP2012084519A (en) * 2010-09-16 2012-04-26 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery and negative electrode using the same, and nonaqueous electrolyte secondary battery
JP2015164143A (en) * 2010-09-16 2015-09-10 三菱化学株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and negative electrode using the same, and nonaqueous electrolyte secondary battery
JP2013008526A (en) * 2011-06-23 2013-01-10 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20140121445A (en) 2012-03-02 2014-10-15 제이에프이 케미칼 가부시키가이샤 Nagative electrode material for lithium ion secondary batteries, nagative electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR101633206B1 (en) * 2012-03-02 2016-06-23 제이에프이 케미칼 가부시키가이샤 Nagative electrode material for lithium ion secondary batteries, nagative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2014060176A (en) 2014-04-03
JP2011210736A (en) 2011-10-20
JP5430063B2 (en) 2014-02-26
JP2013214525A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP5430063B2 (en) Lithium secondary battery and negative electrode
JP2002175810A (en) Lithium secondary battery and anode
JP4136344B2 (en) Lithium secondary battery and manufacturing method thereof
CN107078288B (en) Graphite particle for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
EP2208247B1 (en) Core-shell type anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR101606647B1 (en) Carbon-silicon composite and manufacturing mehtod of the same
EP2056380B1 (en) Negative electrode active material for lithium ion secondary battery, process for producing the same, and negative electrode for lithium ion secondary battery and lithium ion secondary battery both employing the same.
CN106450161B (en) Negative electrode for secondary battery and method for producing same
JP7480284B2 (en) Spheroidized carbon-based negative electrode active material, its manufacturing method, negative electrode including the same, and lithium secondary battery
JP3844931B2 (en) Negative electrode and secondary battery
JP2007115671A (en) Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it
JP2004281055A (en) Binder resin composition for battery, mix slurry, electrode and battery using resin containing carboxyl group
JPH10284080A (en) Lithium ion secondary battery
CN114424368A (en) Negative electrode active material, method of preparing negative electrode active material, negative electrode including the same, and lithium secondary battery including the same
JP2003077542A (en) Lithium secondary battery and its manufacturing method
JP3500245B2 (en) Gel-like solid electrolyte secondary battery
JP3878383B2 (en) Manufacturing method of negative electrode
JP3640856B2 (en) Lithium ion secondary battery
JP2004111272A (en) Lithium polymer battery and its manufacturing method
JP3236400B2 (en) Non-aqueous secondary battery
JP2004063423A (en) Coating liquid used for manufacturing of electrode as well as electrode and battery manufactured by using the liquid
JPH07134988A (en) Nonaqueous electrolyte secondary battery
CN114585589A (en) Artificial graphite, method for producing artificial graphite, negative electrode comprising artificial graphite, and lithium secondary battery
JP2000260428A (en) Lithium secondary battery using nonaqueous cabon- coated negative electrode
JP2013152849A (en) Lithium-ion secondary battery subjected to aging treatment and method for manufacturing the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350