Nothing Special   »   [go: up one dir, main page]

JP2008159757A - Cooling structure of heat generating substance, and manufacturing method of same cooling structure - Google Patents

Cooling structure of heat generating substance, and manufacturing method of same cooling structure Download PDF

Info

Publication number
JP2008159757A
JP2008159757A JP2006345708A JP2006345708A JP2008159757A JP 2008159757 A JP2008159757 A JP 2008159757A JP 2006345708 A JP2006345708 A JP 2006345708A JP 2006345708 A JP2006345708 A JP 2006345708A JP 2008159757 A JP2008159757 A JP 2008159757A
Authority
JP
Japan
Prior art keywords
tube
cooling structure
peripheral surface
outer tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006345708A
Other languages
Japanese (ja)
Inventor
Naoe Sasaki
直栄 佐々木
Takahiko Mizuta
貴彦 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2006345708A priority Critical patent/JP2008159757A/en
Publication of JP2008159757A publication Critical patent/JP2008159757A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling structure of a heat generating substance which is compact and exhibits a high cooling performance, and provide a method capable of advantageously manufacturing the cooling structure. <P>SOLUTION: In the cooling structure 2 of a heat generating substance, a plurality of inner tubes 6 having a small diameter are inserted into an outer tube 4 having a large diameter to closely contact them with each other; the outer peripheral surface of each inner tube 6 is brough into close contact with the inner peripheral surface of the outer tube 4 and/or the outer peripheral surface of each other inner tube 6 is brough into close contact with the inner peripheral surface of the outer tube 4. Further, at least one flat plane 8 for attaching thereto a heat generating substance 10 is disposed on the outer peripheral surface of the outer tube 4 and a cooling liquid is forced to flow through the inside of each inner tube 6 and the entire clearance between each inner tube 6 and the outer tube 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気・電子部品等の発熱体を冷却するための冷却構造体と、それを有利に製造する方法に関するものである。   The present invention relates to a cooling structure for cooling a heating element such as an electric / electronic component and a method for advantageously manufacturing the same.

従来から、電子部品等にて構成される発熱体の冷却構造体として、冷却能力に優れた水冷式(液冷式)のヒートシンクや冷却装置の各種のものが提案されて来ており、例えば、特開2002−170915号公報(特許文献1)においては、平坦な底部を有する鍋型のケーシングの開口を、ベースプレートで閉塞し、内部に扁平な流路を形成すると共に、その流路内に、波形のインナーフィンを配置し、そのインナーフィンの波の谷部又は頂部を押えるように、復パス用の仕切板を配置してなる構造の水冷ヒートシンクが、明らかにされており、また、特開2005−123260号公報(特許文献2)には、かかる引用文献1に開示のヒートシンクの改良技術として、扁平チューブ内にインナーフィンを密着するように挿入して構成した水冷式ヒートシンクが明らかにされ、そこでは、インナーフィンとして、冷却水の撹拌効果を狙ったアルミニウム製のオフセットフィンも、明らかにされている。   Conventionally, various types of water-cooled (liquid-cooled) heat sinks and cooling devices with excellent cooling capabilities have been proposed as cooling structures for heating elements composed of electronic components, for example, In JP 2002-170915 A (Patent Document 1), the opening of a pan-shaped casing having a flat bottom is closed with a base plate to form a flat flow path inside, and in the flow path, A water-cooled heat sink having a structure in which a corrugated inner fin is arranged and a partition plate for a return pass is arranged so as to press the valley or top of the wave of the inner fin is disclosed. In 2005-123260 (patent document 2), as an improvement technique of the heat sink disclosed in the cited document 1, water constructed by inserting an inner fin into a flat tube so as to be in close contact with the heat sink is disclosed. It revealed the expression sink, where the as an inner fin, an offset fin made aimed at stirring effect of the cooling water aluminum is also disclosed.

さらに、特開2006−202800号公報(特許文献3)にあっては、半導体素子の冷却装置に係る従来からのものの一つとして、押出により成形された、所謂扁平多穴チューブからなる冷却構造体が、その図5に示されており、そして、特許文献3の発明では、冷媒の流れに乱れを生じさせ、それを促進すること等により、冷却性能を向上させる目的から、そのような扁平多穴チューブの仕切壁に、凹凸を設けたり、仕切壁を切り起したりしてなる構造とすることが、提案されている。   Furthermore, in Japanese Patent Laid-Open No. 2006-202800 (Patent Document 3), as one of conventional devices related to a cooling device for a semiconductor element, a cooling structure comprising a so-called flat multi-hole tube formed by extrusion. However, in the invention of Patent Document 3, in order to improve the cooling performance by causing disturbance in the flow of the refrigerant and promoting it, such flattened It has been proposed that the partition wall of the hole tube has a structure in which irregularities are provided or the partition wall is cut and raised.

ところで、この種の冷却装置においては、一般に、その設置に際して、スペースに制約を受けることとなるところから、出来るだけコンパクト化することが望まれており、また発熱体からの発熱量が、益々増大して来ているところから、更なる高冷却性能化が求められているのであるが、これまでに提案されている発熱体の冷却構造にあっては、そのようなコンパクト化・高冷却性能化の要請に対して、充分に応え得るものではなく、各種の問題点を内在しているのである。   By the way, in this kind of cooling device, it is generally desired to make it as compact as possible because space is limited during installation, and the amount of heat generated from the heating element is increasing more and more. Therefore, there is a need for further higher cooling performance. However, in the cooling structure of a heating element that has been proposed so far, such compactness and higher cooling performance are achieved. It is not possible to fully respond to this request, and various problems are inherent.

例えば、特許文献1に明らかにされている如き構成の水冷式ヒートシンクにあっては、流路用空間を形成するために、鍋型のケーシングとベースプレートとを組み合わせて、ロウ付けを行うものであるところから、必然的に、それらパーツ間の接合部のシール性についての信頼性が問題となることに加えて、特許文献1や特許文献2においては、内部空間に波形のインナーフィンを配置して、ロウ付け等によって固定することとしているところから、そのようなインナーフィンとケーシングとの間の密着性が充分でなく、それらの間の伝熱特性の向上にも限界があったのであり、更に、特許文献3の如く、扁平多穴チューブの仕切壁に凹凸を設けたり、仕切壁を切り起こしたりする場合において、その作業は容易でなく、それが製品コストを上昇せしめる要因ともなっている。   For example, in a water-cooled heat sink having a configuration disclosed in Patent Document 1, brazing is performed by combining a pan-shaped casing and a base plate in order to form a flow path space. Therefore, inevitably, in addition to the problem of reliability of the sealing performance of the joint between these parts, in Patent Document 1 and Patent Document 2, corrugated inner fins are arranged in the internal space. Since it is supposed to be fixed by brazing or the like, the adhesion between the inner fin and the casing is not sufficient, and there is a limit in improving the heat transfer characteristics between them. As in Patent Document 3, when unevenness is provided on the partition wall of a flat multi-hole tube or when the partition wall is cut and raised, the operation is not easy, which reduces the product cost. It has also become factors that allowed to rise.

かかる状況下、特許文献3の図5に従来技術として明らかにされている扁平多穴チューブからなる冷却構造体は、比較的簡単な構造であり、しかも、ロウ付け等の接合部もない一体成形品であるところから、シールの信頼性からしても、好ましいものではあるが、そこでは、冷却器をコンパクト化する際に、冷却性能面に限界がある問題を、内在しているのである。即ち、冷却器のコンパクト化のためには、限られた断面内に、出来るだけ大きな冷却液流路を確保しつつ、冷却液とチューブの伝熱面も、充分に確保することが必要となるものであるところ、そのような要請に充分に応え得ないのである。因みに、扁平多穴チューブを用いた冷却器においては、チューブの内壁を出来るだけ細く(薄く)して、その数を増やすことによって、冷却性能の向上が図られるのであるが、押出加工にて、中空のチューブの小さな断面形状の中に、薄い内壁を多数形成させることは、容易ではないのである。   Under such circumstances, the cooling structure composed of a flat multi-hole tube, which is clarified as the prior art in FIG. 5 of Patent Document 3, is a relatively simple structure and has no joint part such as brazing. From the point of view of the product, it is preferable from the viewpoint of the reliability of the seal. However, there is a problem that the cooling performance is limited when the cooler is made compact. That is, in order to make the cooler compact, it is necessary to secure a sufficiently large coolant flow path in a limited cross section and also sufficiently secure the heat transfer surface of the coolant and the tube. However, it is not possible to fully meet such demands. By the way, in the cooler using a flat multi-hole tube, the inner wall of the tube is made as thin (thin) as possible, and the cooling performance is improved by increasing the number, but in the extrusion process, It is not easy to form many thin inner walls in a small cross-sectional shape of a hollow tube.

しかも、チューブの材質が、押出加工性の良好なアルミニウム若しくはアルミニウム合金である場合において、ポートホール押出にて中空材の押出加工は可能ではあるものの、上記したような、小断面で、複雑な断面形状の押出加工は、極めて困難となって来るのであり、更にチューブ材質として、熱伝導性の良好な銅若しくは銅合金を用いる場合にあっては、前記せるような中空のチューブを押出によって成形加工することは、殆ど不可能であったのである。   Moreover, when the tube material is aluminum or aluminum alloy with good extrudability, the hollow material can be extruded by porthole extrusion, but the small cross section and the complicated cross section as described above. Extrusion of the shape becomes extremely difficult, and when using copper or copper alloy with good thermal conductivity as the tube material, the hollow tube as described above is formed by extrusion It was almost impossible to do.

特開2002−170915号公報JP 2002-170915 A 特開2005−123260号公報JP-A-2005-123260 特開2006−202800号公報JP 2006-202800 A

ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、コンパクトで、高冷却性能を発揮する発熱体の冷却構造体を提供することにあり、また、他の課題とするところは、そのような優れた性能を有する発熱体の冷却構造体を有利に製造し得る方法を提供することにある。   Here, the present invention has been made in the background of such circumstances, and the problem to be solved is to provide a cooling structure for a heating element that is compact and exhibits high cooling performance. Another object is to provide a method capable of advantageously producing a cooling structure for a heating element having such excellent performance.

そして、本発明にあっては、そのような課題を解決するために、太径の外管内に細径の内管の複数本が内挿されて、密接配置せしめられてなる構造の発熱体の冷却構造体にして、該内管の外周面が、該外管の内周面に、及び/又は該外管の内周面に密接した内管の外周面に、密接されていると共に、該外管の外周面には、前記発熱体が取り付けられる少なくとも一つの平坦面が設けられてなり、且つ該内管内及びそれら内管と外管との間の間隙全体に冷却液が流通せしめられるように構成したことを特徴とする発熱体の冷却構造体を、その要旨とするものである。   In the present invention, in order to solve such a problem, a heating element having a structure in which a plurality of thin inner pipes are inserted into a thick outer pipe and closely arranged. In the cooling structure, the outer peripheral surface of the inner tube is in close contact with the inner peripheral surface of the outer tube and / or the outer peripheral surface of the inner tube in close contact with the inner peripheral surface of the outer tube, and An outer peripheral surface of the outer tube is provided with at least one flat surface to which the heating element is attached, and the coolant is allowed to flow through the inner tube and the entire gap between the inner tube and the outer tube. The gist of the cooling structure for the heating element, characterized in that it is configured as described above.

なお、かかる本発明に従う発熱体の冷却構造体の望ましい態様によれば、前記外管及び前記内管は、それぞれ、銅又は銅合金にて構成されており、更に他の望ましい態様によれば、前記内管は、前記外管よりも薄肉の管体にて構成されている。   According to a desirable aspect of the cooling structure for a heating element according to the present invention, the outer tube and the inner tube are each composed of copper or a copper alloy, and according to another desirable aspect, The inner tube is formed of a thin tube body than the outer tube.

また、そのような本発明に従う発熱体の冷却構造体を製造すべく、本発明にあっては、前記外管内に、前記複数本の内管を挿入せしめた後、該外管の管壁外面に外力を加えて、該外管を圧縮変形させることにより、該内管の外周面が、該外管の内周面に、及び/又は該外管の内周面に密接した内管の外周面に、密接せしめられるようにする工程を含むことを特徴とする発熱体の冷却構造体の製造方法が、好適に採用されることとなる。   In order to manufacture such a cooling structure for a heating element according to the present invention, in the present invention, after inserting the plurality of inner tubes into the outer tube, the outer surface of the outer wall of the outer tube The outer tube is compressed and deformed by applying an external force to the inner tube so that the outer surface of the inner tube is in close contact with the inner surface of the outer tube and / or the inner surface of the outer tube. A method of manufacturing a cooling structure for a heating element, which includes a step of bringing the surface into close contact with the surface, is preferably employed.

従って、かくの如き本発明に係る発熱体の冷却構造体にあっては、その外管の外周面に設けた平坦面に、所定の発熱体を取り付ける一方、外管内及び外管と内管との間の間隙全体に冷却液を流通させて冷却を行うことにより、発熱体を取り付けた外管内には、内管が密接するように内挿配置されているところから、高熱密度の発熱体の熱が、外管の管壁全体へ熱伝導により広がると共に、外管の管壁から内管の管壁へ伝熱せしめられるようになるのであり、その結果、外管の内表面のみならず、内管の内外表面も、また、冷却液への伝熱面となるのであり、以て、冷却液への伝熱面積が効果的に増加せしめられ得て、高い冷却能力を発揮することが可能となるのである。   Therefore, in the cooling structure for a heating element according to the present invention as described above, a predetermined heating element is attached to a flat surface provided on the outer peripheral surface of the outer pipe, while the outer pipe and the outer pipe and the inner pipe are attached. In the outer pipe to which the heating element is attached, the inner pipe is in close contact with the inner pipe so that the cooling liquid is circulated through the entire gap between them. The heat spreads to the entire tube wall of the outer tube by heat conduction, and heat is transferred from the tube wall of the outer tube to the tube wall of the inner tube. As a result, not only the inner surface of the outer tube, The inner and outer surfaces of the inner pipe also serve as heat transfer surfaces to the coolant, so the heat transfer area to the coolant can be effectively increased and high cooling capacity can be demonstrated. It becomes.

しかも、そのような本発明に従う発熱体の冷却構造体にあっては、太径の外管内に細径の内管の複数本が内挿されて、密接配置せしめられてなる一体構造を有し、ロウ付け接合部やOリング装着部を存在せしめる必要がないところから、そのコンパクト化が有利に実現され得ることとなるのであり、また、構造上においても、太径の外管内に細径の内管の複数本を内挿せしめて構成されるものであるところから、押出加工の如き特別な操作を採用することなく、小さな断面形状の中に、伝熱面となる内壁を多数形成することが、容易に可能となる。   Moreover, such a cooling structure for a heating element according to the present invention has an integrated structure in which a plurality of thin inner pipes are inserted into a thick outer pipe and closely arranged. In addition, since it is not necessary to have a brazed joint or an O-ring mounting portion, the compactness can be advantageously realized. Also, in terms of structure, a small diameter is provided within a large diameter outer tube. Since it is constructed by inserting a plurality of inner pipes, it is possible to form a large number of inner walls to be heat transfer surfaces in a small cross-sectional shape without adopting a special operation such as extrusion. Easy to do.

特に、本発明に従う発熱体の冷却構造体の製造方法によれば、外管内に複数本の内管を挿入せしめた後、かかる外管の外壁面に外力を加えて、該外管を圧縮変形させるだけで、外管と内管とを相互に密接せしめてなる構造が容易に実現され得ることとなるのであり、これによって、ロウ付け等の作業が全く必要でなく、単純な圧縮変形のみで、目的とする冷却構造体を構成する管体を容易に形成することが出来る特徴を発揮する。   In particular, according to the method for manufacturing a cooling structure for a heating element according to the present invention, after inserting a plurality of inner tubes into the outer tube, an external force is applied to the outer wall surface of the outer tube to compress and deform the outer tube. Therefore, a structure in which the outer tube and the inner tube are brought into close contact with each other can be easily realized, so that no work such as brazing is required, and only simple compression deformation is required. The characteristic feature is that the tube constituting the target cooling structure can be easily formed.

以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1には、本発明に従う発熱体の冷却構造体の一実施形態が、軸直角方向の断面となる横断面図において、示されている。そこにおいて、冷却構造体2は、太径で厚肉の矩形扁平形状を呈する外管4と、この外管4内に収容された、細径で薄肉の楕円形状を呈する3本の内管6とから構成されており、且つそれら3本の内管6は、その外周面を、相互に、また外管4の内周面にそれぞれ密接させて、内挿配置されている。また、扁平な略矩形形状とされた外管4の上下の外周面が、平坦面8,8とされ、それぞれ発熱体取付面とされている。そして、内管6の内部(管内)及び内管6と外管4との間の間隙の全てが、冷却液の流通路とされているのである。   First, FIG. 1 shows an embodiment of a cooling structure for a heating element according to the present invention in a cross-sectional view that is a cross section perpendicular to the axis. The cooling structure 2 includes an outer tube 4 having a large diameter and a thick rectangular flat shape, and three inner tubes 6 which are housed in the outer tube 4 and have a small diameter and a thin elliptical shape. These three inner pipes 6 are inserted and arranged with their outer peripheral surfaces in close contact with each other and with the inner peripheral surface of the outer pipe 4. Moreover, the upper and lower outer peripheral surfaces of the outer tube 4 having a flat and substantially rectangular shape are flat surfaces 8 and 8, respectively, which are heating element mounting surfaces. All of the inside of the inner tube 6 (inside the tube) and the gap between the inner tube 6 and the outer tube 4 serve as a coolant flow path.

そして、かかる冷却構造体2は、図2(a)又は(b)に示されるように、その外管4の外周面に設けられた上下の平坦面8,8に対して、その一方に、或いはその両方に冷却されるべき発熱体10が取り付けられて、用いられるようになっている。   And, as shown in FIG. 2 (a) or (b), the cooling structure 2 has, on one of the upper and lower flat surfaces 8, 8 provided on the outer peripheral surface of the outer tube 4, Alternatively, the heating element 10 to be cooled is attached to both of them and used.

従って、かくの如き構成の冷却構造体2にあっては、発熱体10が取り付けられてなる外管4の内周面に密接するように、複数本(ここでは、3本)の内管6が、内挿配置されているところから、端部より導入された冷却液は、内管6の管内と共に、内管6と外管4との間の間隙内を流通せしめられることとなるのであって、これにより、外管4の平坦面8に取り付けられた発熱体10の高熱密度の熱が、熱伝導により、外管4の管壁全体へ広がると共に、外管4の管壁から内管6の管壁へ伝熱せしめられることとなるのである。そして、このため、外管4の内表面のみならず、内管6の内外表面も、また、冷却液への伝熱面となることとなるのであり、以て、冷却液への伝熱面積が効果的に増加せしめられ得て、高い冷却能力を発揮することが出来るのである。   Therefore, in the cooling structure 2 having such a configuration, a plurality of (here, three) inner tubes 6 are in close contact with the inner peripheral surface of the outer tube 4 to which the heating element 10 is attached. However, since the cooling liquid introduced from the end portion is circulated in the gap between the inner pipe 6 and the outer pipe 4 together with the inside of the inner pipe 6 from the place where the insertion is arranged. Thereby, the heat of the high heat density of the heating element 10 attached to the flat surface 8 of the outer tube 4 spreads to the entire tube wall of the outer tube 4 by heat conduction, and from the tube wall of the outer tube 4 to the inner tube. Therefore, heat is transferred to the 6 tube walls. For this reason, not only the inner surface of the outer tube 4 but also the inner and outer surfaces of the inner tube 6 become heat transfer surfaces to the cooling liquid, and thus the heat transfer area to the cooling liquid. Can be effectively increased, and a high cooling capacity can be exhibited.

なお、この冷却構造体2を構成する、発熱体10からの熱の伝熱体としても機能する外管4及び内管6は、ここでは、熱伝導性の良好な銅又は銅合金からなる材質を用いて構成されており、これによって、冷却構造体2の冷却能力が、更に向上せしめられている。   The outer tube 4 and the inner tube 6 that also function as a heat transfer body of heat from the heating element 10 constituting the cooling structure 2 are here made of copper or copper alloy having good thermal conductivity. As a result, the cooling capacity of the cooling structure 2 is further improved.

このように、本発明に従う発熱体冷却構造体2にあっては、外管4から内管6へ発熱体10の熱を伝熱するために、外管4の内周面と、内管6の外周面、更には外管4の内周面に密接した内管6の外周面とが、熱的に接触している必要があるのであるが、そのような熱的接触を容易に得るためには、外管4内に内管6を挿入せしめた後、かかる外管4の外壁面に外力を加えて、外管4を圧縮変形させるような工程が、有利に採用されることとなる。このような工程を採用して、目的とする冷却構造体2を製作することにより、ロウ付け等の作業が必要でなく、単純な圧縮変形のみで、冷却構造体2を構成する管体を形成することが出来るからである。なお、その際、外管4へ外力を加え、圧縮変形をさせる手段としては、特に限定されるものではなく、例えば、縮径ダイスによる抽伸加工やプレス加工等の公知の手段を適宜に採用することが可能である。また、そのような外管4の圧縮変形によって、内管6にも変形作用が加わり、図1や図2に示される如く、内管6が楕円形状に変形して、内管6と外管4との間の密接性も有利に高められ得ることとなる。   Thus, in the heating element cooling structure 2 according to the present invention, in order to transfer the heat of the heating element 10 from the outer tube 4 to the inner tube 6, the inner peripheral surface of the outer tube 4 and the inner tube 6. The outer peripheral surface of the inner tube 6 and the outer peripheral surface of the inner tube 6 that is in close contact with the inner peripheral surface of the outer tube 4 need to be in thermal contact with each other in order to easily obtain such thermal contact. In this case, after the inner tube 6 is inserted into the outer tube 4, a process of compressing and deforming the outer tube 4 by applying an external force to the outer wall surface of the outer tube 4 is advantageously employed. . By adopting such a process, the desired cooling structure 2 is manufactured, so that a work such as brazing is not required, and a tube constituting the cooling structure 2 is formed only by simple compression deformation. Because you can. In this case, the means for applying an external force to the outer tube 4 and compressing and deforming it is not particularly limited. For example, a known means such as drawing or pressing with a diameter reducing die is appropriately employed. It is possible. Further, due to the compression deformation of the outer tube 4, the inner tube 6 is also deformed, and as shown in FIGS. 1 and 2, the inner tube 6 is deformed into an elliptical shape, and the inner tube 6 and the outer tube are deformed. The closeness between the four can also be advantageously increased.

ここで、かかる冷却構造体2を与える外管4としては、少なくとも一つの平坦な外周面(8)を予め形成した管体や、扁平形状に成形されてなる管体を用いることが可能であるが、単純円形断面形状の管体を用い、上述せるように、外壁面への外力を加えることで、内管6との密接と同時に、外表面に平坦面8を形成するようにすることも、可能である。また、内管6としては、単純円形断面形状の管体を用いるようにすれば、コスト的にも有利となるのである。そして、単純円形断面の管体を内管6として用いた場合にあっても、上述せる如き製造方法において、外管4の外壁面に外力を加えて圧縮変形させることにより、図1に示される如く、楕円形状を呈するものとなるのである。   Here, as the outer tube 4 for providing the cooling structure 2, it is possible to use a tube in which at least one flat outer peripheral surface (8) is formed in advance, or a tube formed in a flat shape. However, by using a tube having a simple circular cross-sectional shape and applying an external force to the outer wall surface as described above, the flat surface 8 may be formed on the outer surface simultaneously with the inner tube 6. Is possible. Further, as the inner tube 6, it is advantageous in terms of cost if a tube having a simple circular cross section is used. Even in the case where a tube having a simple circular cross section is used as the inner tube 6, in the manufacturing method as described above, an external force is applied to the outer wall surface of the outer tube 4 to compress and deform it, as shown in FIG. Thus, it becomes an elliptical shape.

また、前述の如く、外管4の外壁面に外力を加えて、それを圧縮変形させる際に、外管4と内管6との密着性を高めるために、内管6を外管4よりも優先的に変形させるようにするのが望ましく、そのために使用される内管6は、図1にも示される如く、外管4よりも管壁厚さが薄くされた薄肉の管体とされ、以て、得られる冷却構造体2における外管4と内管6との間の密着性が向上せしめられているのである。   Further, as described above, when an external force is applied to the outer wall surface of the outer tube 4 to compress and deform it, the inner tube 6 is connected to the outer tube 4 from the outer tube 4 in order to improve the adhesion between the outer tube 4 and the inner tube 6. The inner tube 6 used for this purpose is preferably a thin-walled tube whose wall thickness is thinner than that of the outer tube 4, as shown in FIG. Thus, the adhesion between the outer tube 4 and the inner tube 6 in the obtained cooling structure 2 is improved.

なお、図1に示される冷却構造体2の構造は、本発明の代表的な実施形態の一つに過ぎないものであって、それは、あくまでも、例示に止まり、本発明が、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものでないことが、理解されるべきである。   It should be noted that the structure of the cooling structure 2 shown in FIG. 1 is only one of the typical embodiments of the present invention, and is merely an example, and the present invention is not limited to such implementation. It should be understood that the present invention is not construed as being limited in any way by the specific description of the form.

例えば、外管4内に内挿されて、密接配置される内管6の本数は、例示の3本に限られるものではなく、用いられる外管4や内管6の太さ等に応じて適宜の本数が選定され、またその配列形態にあっても、一列のみならず、複数段の配列形態も適宜に採用され得るところである。そして、図3に示される実施形態においては、13本の内管6が、上下2段に交互に積み重ねられてなる形態において、外管4内に密接配置せしめられているのである。なお、ここでは、各内管6は、何れも、外管4の内周面に密接せしめられてなる構造とされている。   For example, the number of the inner pipes 6 that are inserted into the outer pipe 4 and closely arranged is not limited to the three illustrated, but depends on the thickness of the outer pipe 4 and the inner pipe 6 that are used. An appropriate number is selected, and even in the arrangement form, not only one line but also a multi-stage arrangement form can be adopted as appropriate. In the embodiment shown in FIG. 3, the 13 inner pipes 6 are closely arranged in the outer pipe 4 in a form in which the inner pipes 6 are alternately stacked in two upper and lower stages. Here, each inner tube 6 has a structure in which the inner tube 6 is in close contact with the inner peripheral surface of the outer tube 4.

また、図4は、外管4内に7本の内管6を2段に内挿して、密接配置せしめてなる例を示しており、そこでは、外管4の外周面の発熱体10を取り付けるための平坦面8は、一箇所に設けられているのみであり、その他の面は湾曲面形状とされている。なお、ここでも、7本の内管6のうち6本は、何れも、外管4の内周面に直接に密接され、また下段中央の内管6の1本が隣接する内管6,6を介して外管4の内周面に密接せしめられるようになっているのである。   FIG. 4 shows an example in which seven inner pipes 6 are inserted in two stages in the outer pipe 4 and are arranged closely, in which the heating element 10 on the outer peripheral surface of the outer pipe 4 is disposed. The flat surface 8 to be attached is provided only at one place, and the other surfaces are curved. In this case as well, six of the seven inner pipes 6 are all in direct contact with the inner peripheral surface of the outer pipe 4, and one of the inner pipes 6 at the lower center is adjacent to the inner pipe 6. 6 is brought into close contact with the inner peripheral surface of the outer tube 4.

さらに、図5に示される例においては、矩形の断面形状の外管4内に、12本の内管6が3段に積み重ねられて内挿され、密接配置されているが、このような配列形態においては、2段目の内側2本の内管6は、直接、外管4の内周面には接しておらず、外管4に接する内管6を介して、発熱体10からの伝熱が行われるようになっている。   Further, in the example shown in FIG. 5, twelve inner pipes 6 are stacked in three stages and are closely arranged in the outer pipe 4 having a rectangular cross-sectional shape. In the form, the two inner pipes 6 on the inner side of the second stage are not directly in contact with the inner peripheral surface of the outer pipe 4 but from the heating element 10 via the inner pipe 6 in contact with the outer pipe 4. Heat transfer is performed.

加えて、冷却構造体2における内管6の配設形態にあっても、図6(a)に示される如く、内管6が軸方向(冷却液流通方向)に連続した一本の管体として用いられる形態の他に、図6(b)に示される如く、外管4の軸方向の途中で、内管6が分断され、それら分断された内管6が、軸方向に所定の距離を隔てて配列されてなる形態も、有利に採用されるところである。このように、内管6が途中で分断された形態において配列されると、その分断部において、冷却液が乱流となって、撹拌効果が生じ、伝熱促進されることとなるところから、本発明においては、有利に採用されるところである。また、そのような分断部は、図6(c)に示される如く、管軸方向において分断された形態の内管6,6が、その一部(連結部7)において繋がっているものであっても、同等の効果を発揮させることが可能であることに加えて、その分断された形態の内管6,6同士の相互の距離を固定維持し得るところから、有利に採用される一つの形態でもある。   In addition, even in the arrangement form of the inner tube 6 in the cooling structure 2, as shown in FIG. 6A, the inner tube 6 is a single tube body that is continuous in the axial direction (coolant flow direction). 6B, as shown in FIG. 6B, the inner tube 6 is divided in the middle of the outer tube 4 in the axial direction, and the divided inner tube 6 is separated by a predetermined distance in the axial direction. A configuration in which they are arranged apart from each other is also advantageously employed. Thus, when the inner pipes 6 are arranged in the form divided in the middle, the cooling liquid becomes turbulent flow in the divided part, a stirring effect is produced, and heat transfer is promoted. The present invention is advantageously employed. Further, as shown in FIG. 6 (c), such a divided portion is one in which inner pipes 6 and 6 in a form divided in the tube axis direction are connected at a part thereof (connecting portion 7). However, in addition to being able to exert the same effect, the distance between the separated inner pipes 6 and 6 can be fixed and maintained. It is also a form.

その他、一々列挙はしないが、本発明が、当業者の知識に基いて種々なる変更、修正、改良等を加えた態様において実施され得るものであり、また、そのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることは、言うまでもないところである。   In addition, although not enumerated one by one, the present invention can be carried out in an embodiment to which various changes, modifications, improvements, etc. are added based on the knowledge of those skilled in the art. It goes without saying that any one of them falls within the scope of the present invention without departing from the spirit of the invention.

以下に、本発明の代表的な実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。   Hereinafter, representative examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited by the description of such examples. It goes without saying.

−実施例1−
図1に示される如く、外管4内に3本の内管6を内挿配置してなる構造の冷却構造体2を製造した。即ち、それぞれの材質がりん脱酸銅からなる、肉厚が2mmの外管4と、肉厚が1mmの内管6とを用い、外管4内に3本の内管6を挿入した後、プレス加工して、図1に示される如き矩形扁平形状に成形して、それら外管4と内管6とを密着させると共に、熱源(発熱体10)を設置する平坦面8を同時に形成した。なお、矩形扁平形状に成形された外管4の、図1における左右方向の幅は50mm、上下方向の厚さは15mmとなるようにした。
Example 1
As shown in FIG. 1, a cooling structure 2 having a structure in which three inner pipes 6 are inserted and arranged in an outer pipe 4 was manufactured. That is, after inserting the three inner tubes 6 into the outer tube 4 using the outer tube 4 having a thickness of 2 mm and the inner tube 6 having a thickness of 1 mm, each made of phosphorous deoxidized copper. 1 and formed into a rectangular flat shape as shown in FIG. 1, the outer tube 4 and the inner tube 6 were brought into close contact with each other, and the flat surface 8 on which the heat source (heating element 10) was installed was formed at the same time. . Note that the outer tube 4 formed in a rectangular flat shape has a width in the left-right direction in FIG. 1 of 50 mm and a thickness in the up-down direction of 15 mm.

このようにして得られる冷却構造体2の断面における冷却液流路断面積は、約390mm2 であり、冷却構造体2の占める断面スペース:750mm2 (50mm×15mm)に対して50%以上の割合で確保されている。また、伝熱面の面積は、冷却構造体2の長さ:100mm当り約33000mm2 (330mm2 /mm)となる。そしてこれにより、コンパクトで且つ良好な冷却性能が得られるのである。 The coolant flow path cross-sectional area in the cross section of the cooling structure 2 thus obtained is about 390 mm 2 , and the cross-sectional space occupied by the cooling structure 2 is 50% or more with respect to 750 mm 2 (50 mm × 15 mm). Secured in proportion. The area of the heat transfer surfaces, the length of the cooling structure 2: a 100mm per about 33000mm 2 (330mm 2 / mm) . As a result, a compact and good cooling performance can be obtained.

−比較例1−
実施例1の冷却構造体2との比較のために、同じ断面積(50mm×15mm;占める断面スペースが同じ)において、図8(a)に示される如き3穴構造の押出チューブ20を、アルミニウム合金の押出加工にて形成し、壁厚が2mmの内壁22の二つによって、互いに平行に延びる3つの流路24が設けられてなる構造とした。なお、このような押出チューブ20は、銅又は銅合金にて押出加工することが出来ないため、ここでは、アルミニウム合金を用いて製造されている。
-Comparative Example 1-
For comparison with the cooling structure 2 of the first embodiment, an extruded tube 20 having a three-hole structure as shown in FIG. 8 (a) in the same cross-sectional area (50 mm × 15 mm; the same cross-sectional space is occupied) is made of aluminum. It was formed by extrusion of an alloy, and a structure in which three flow paths 24 extending in parallel to each other were provided by two inner walls 22 having a wall thickness of 2 mm. In addition, since such an extruded tube 20 cannot be extruded with copper or a copper alloy, it is manufactured here using an aluminum alloy.

かくして得られた図8(a)に示される押出チューブ20の、断面における冷却液流路断面積は約450mm2 であり、冷却器の占める断面スペースに対して750mm2 (50mm×15mm)に対して約60%である。そして、伝熱面の面積は、冷却器長さ:100mm当り約15000mm2 (150mm2 /mm)となる。 The thus obtained extruded tube 20 shown in FIG. 8A has a cross-sectional area of the coolant flow path of about 450 mm 2 , and 750 mm 2 (50 mm × 15 mm) with respect to the cross-sectional space occupied by the cooler. About 60%. Then, the area of the heat transfer surface is cooler Length: a 100mm per about 15000mm 2 (150mm 2 / mm) .

従って、この比較例1の押出チューブ20は、実施例1の冷却構造体2に比べて、流路断面積が大きいが、伝熱面の面積が著しく小さくなるために、発熱体からの熱を充分に伝熱することが困難であり、冷却性能が劣るものであることが認められる。   Therefore, the extruded tube 20 of Comparative Example 1 has a larger flow path cross-sectional area than the cooling structure 2 of Example 1, but the area of the heat transfer surface is significantly reduced. It is recognized that it is difficult to transfer heat sufficiently and the cooling performance is poor.

−比較例2−
比較例1の押出チューブ20と同様な断面積を有する、図8(b)に示される如き7穴構造のアルミニウム合金製押出チューブ26を、押出加工により得た。なお、7つの流路28を仕切る6本の内壁30の壁厚は、1.7mmであった。
-Comparative Example 2-
A 7-hole aluminum alloy extruded tube 26 having a cross-sectional area similar to that of the extruded tube 20 of Comparative Example 1 as shown in FIG. 8B was obtained by extrusion. The wall thickness of the six inner walls 30 partitioning the seven flow paths 28 was 1.7 mm.

この得られた押出チューブ26の断面における冷却液流路断面積は、約390mm2 であり、実施例1の冷却構造体2と同等であるが、伝熱面の面積は、冷却器長さ:100mm当り22000mm2 (220mm2 /mm)であり、実施例1の冷却構造体2の2/3程度となり、冷却能力が劣るものとなることが認められる。 The cross-sectional area of the coolant flow path in the cross section of the obtained extruded tube 26 is about 390 mm 2, which is equivalent to the cooling structure 2 of Example 1, but the area of the heat transfer surface is the length of the cooler: a 100mm per 22000mm 2 (220mm 2 / mm) , becomes approximately 2/3 of the cooling structure 2 of example 1, it is found to be that the cooling capacity is poor.

−実施例2−
図4に示される断面形状を有する、外管4内に13本の内管6を2段に内挿、配列してなる冷却構造体2を、実施例1と同様にして製作した。なお、外管4及び内管6の材質としては、りん脱酸銅が用いられ、また外管の肉厚:2mm、内管の肉厚:0.8mmであった。
-Example 2-
A cooling structure 2 having the cross-sectional shape shown in FIG. 4 and having 13 inner tubes 6 inserted and arranged in two stages in the outer tube 4 was produced in the same manner as in Example 1. The outer tube 4 and the inner tube 6 were made of phosphorous deoxidized copper. The outer tube had a thickness of 2 mm and the inner tube had a thickness of 0.8 mm.

かくして得られた冷却構造体2の断面における冷却液流路断面積は約320mm2 であり、冷却器の占める断面スペース:750mm2 (50mm×15mm)に対して、40%以上の割合で、確保されている。また、伝熱面の面積は冷却器長さ:100mm当り約56000mm2 (560mm2 /mm)であり、実施例1の冷却器と比較して、流路断面積は減少するものの、伝熱面の面積が大きく、約1.5倍の冷却性能を有していることが明らかとなった。 The coolant flow passage cross-sectional area in the cross section of the cooling structure 2 thus obtained is about 320 mm 2 , and is secured at a ratio of 40% or more with respect to the cross-sectional space occupied by the cooler: 750 mm 2 (50 mm × 15 mm). Has been. Further, the heat transfer surface area is cooler Length: a per 100mm about 56000mm 2 (560mm 2 / mm) , as compared to the cooler of the first embodiment, although the flow path cross-sectional area is reduced, heat transfer surfaces It was revealed that the cooling area was about 1.5 times larger.

本発明に従う発熱体の冷却構造体の一例を示す断面説明図である。It is sectional explanatory drawing which shows an example of the cooling structure of the heat generating body according to this invention. 図1に示される発熱体の冷却構造体に対する発熱体の取付け例を示す断面説明図であって、(a)は一つの発熱体を取り付けた例、(b)は二つの発熱体を取り付けた例をそれぞれ示している。It is sectional explanatory drawing which shows the example of attachment of the heat generating body with respect to the cooling structure of the heat generating body shown by FIG. 1, (a) is the example which attached one heat generating body, (b) attached two heat generating bodies. Each example is shown. 本発明に従う発熱体の冷却構造体の異なる例を示す断面説明図である。It is sectional explanatory drawing which shows the example from which the cooling structure of the heat generating body according to this invention differs. 本発明に従う発熱体の冷却構造体の更に異なる例を示す断面説明図である。It is sectional explanatory drawing which shows the further different example of the cooling structure of the heat generating body according to this invention. 本発明に従う発熱体の冷却構造体の別の一例を示す断面説明図である。It is sectional explanatory drawing which shows another example of the cooling structure of the heat generating body according to this invention. 図1に示される発熱体の冷却構造体における内管の異なる配設例を示す斜視説明図であって、(a)は、連続した一本の内管を配列した例を示し、(b)は、管軸方向において分断された内管を配列せしめた例を示し、(c)は、一本の内管の中間部分が分断される一方、一部において接続されている形態を示す一本の内管についての斜視説明図である。It is a perspective explanatory view which shows the example of different arrangement | positioning of the inner pipe | tube in the cooling structure of the heat generating body shown by FIG. 1, (a) shows the example which arranged the continuous one inner pipe | tube, (b) FIG. 2 shows an example in which inner pipes divided in the tube axis direction are arranged, and FIG. 1C shows a state in which an intermediate portion of one inner pipe is divided and a part of the inner pipes is connected. It is a perspective explanatory view about an inner pipe. 比較例1及び2において用いられた、従来の一体型冷却構造体を与える押出チューブの異なる例を示す断面説明図であって、(a)はその3穴タイプのもの、(b)はその7穴タイプのものをそれぞれ示している。It is sectional explanatory drawing which shows the example from which the extrusion tube which gives the conventional integrated cooling structure used in the comparative examples 1 and 2 differs, Comprising: (a) is the thing of the 3 hole type, (b) is the 7 Each hole type is shown.

符号の説明Explanation of symbols

2 冷却構造体 4 外管
6 内管 7 連結部
8 平坦面 10 発熱体
12 ヘッダー
2 Cooling structure 4 Outer pipe 6 Inner pipe 7 Connecting part 8 Flat surface 10 Heating element 12 Header

Claims (4)

太径の外管内に細径の内管の複数本が内挿されて、密接配置せしめられてなる構造の発熱体の冷却構造体にして、該内管の外周面が、該外管の内周面に、及び/又は該外管の内周面に密接した内管の外周面に、密接されていると共に、該外管の外周面には、前記発熱体が取り付けられる少なくとも一つの平坦面が設けられてなり、且つ該内管内及びそれら内管と外管との間の間隙全体に冷却液が流通せしめられるように構成したことを特徴とする発熱体の冷却構造体。   A cooling structure of a heating element having a structure in which a plurality of thin inner pipes are inserted into a thick outer pipe and arranged closely, and the outer peripheral surface of the inner pipe is the inner pipe of the outer pipe. At least one flat surface that is in close contact with the peripheral surface and / or the outer peripheral surface of the inner tube that is in close contact with the inner peripheral surface of the outer tube, and to which the heating element is attached to the outer peripheral surface of the outer tube And a cooling structure for a heating element, characterized in that a cooling liquid is circulated in the inner pipe and the entire gap between the inner pipe and the outer pipe. 前記外管及び前記内管が、それぞれ、銅又は銅合金にて構成されていることを特徴とする請求項1に記載の発熱体の冷却構造体。   The cooling structure for a heating element according to claim 1, wherein each of the outer tube and the inner tube is made of copper or a copper alloy. 前記内管が、前記外管よりも薄肉の管体にて構成されていることを特徴とする請求項1又は請求項2に記載の発熱体の冷却構造体。   The cooling structure for a heating element according to claim 1 or 2, wherein the inner tube is configured by a tube body that is thinner than the outer tube. 請求項1乃至請求項3のうちの何れか一つに記載の発熱体の冷却構造体を製造する方法にして、
前記外管内に、前記複数本の内管を挿入せしめた後、該外管の管壁外面に外力を加えて、該外管を圧縮変形させることにより、該内管の外周面が、該外管の内周面に、及び/又は該外管の内周面に密接した内管の外周面に、密接せしめられるようにする工程を含むことを特徴とする発熱体の冷却構造体の製造方法。
A method for manufacturing a cooling structure for a heating element according to any one of claims 1 to 3,
After the plurality of inner pipes are inserted into the outer pipe, an outer force is applied to the outer wall surface of the outer pipe to compress and deform the outer pipe, so that the outer peripheral surface of the inner pipe becomes the outer pipe. A method of manufacturing a cooling structure for a heating element, comprising the step of being brought into close contact with an inner peripheral surface of a tube and / or an outer peripheral surface of an inner tube in close contact with the inner peripheral surface of the outer tube .
JP2006345708A 2006-12-22 2006-12-22 Cooling structure of heat generating substance, and manufacturing method of same cooling structure Pending JP2008159757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345708A JP2008159757A (en) 2006-12-22 2006-12-22 Cooling structure of heat generating substance, and manufacturing method of same cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345708A JP2008159757A (en) 2006-12-22 2006-12-22 Cooling structure of heat generating substance, and manufacturing method of same cooling structure

Publications (1)

Publication Number Publication Date
JP2008159757A true JP2008159757A (en) 2008-07-10

Family

ID=39660364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345708A Pending JP2008159757A (en) 2006-12-22 2006-12-22 Cooling structure of heat generating substance, and manufacturing method of same cooling structure

Country Status (1)

Country Link
JP (1) JP2008159757A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112263A (en) * 2009-11-25 2011-06-09 Daikin Industries Ltd Refrigerating device
JP2012174856A (en) * 2011-02-21 2012-09-10 Hitachi Cable Ltd Heat sink and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098140A (en) * 1996-09-24 1998-04-14 Hitachi Ltd Multiple-chip type semiconductor device
JP2006287180A (en) * 2005-03-08 2006-10-19 Seiko Epson Corp Micro channel structure and its manufacturing method, light source equipment, and projector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098140A (en) * 1996-09-24 1998-04-14 Hitachi Ltd Multiple-chip type semiconductor device
JP2006287180A (en) * 2005-03-08 2006-10-19 Seiko Epson Corp Micro channel structure and its manufacturing method, light source equipment, and projector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112263A (en) * 2009-11-25 2011-06-09 Daikin Industries Ltd Refrigerating device
JP2012174856A (en) * 2011-02-21 2012-09-10 Hitachi Cable Ltd Heat sink and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US8472193B2 (en) Semiconductor device
EP1276362B1 (en) Flattened tube cold plate for liquid cooling electrical components
EP2289098B1 (en) Liquid cooler and method of its manufacture
KR20120065575A (en) Thinned flat plate heat pipe fabricated by extrusion
JP4265509B2 (en) Stacked cooler
CN100456461C (en) Heat sink of heat pipe
US20100147496A1 (en) Heat dissipation device with heat pipe
JP2013254787A (en) Heat exchanger and manufacturing method of the same
JP2008221951A (en) Cooling system of electronic parts for automobile
JP2008159757A (en) Cooling structure of heat generating substance, and manufacturing method of same cooling structure
JP2010123882A (en) Cold plate
JP5212125B2 (en) Power device heat sink
JP4128935B2 (en) Water-cooled heat sink
KR100971356B1 (en) Cooler for automobile oil and manufacturing method thereof
JP2010010195A (en) Cooling device for electronic component for automobile
WO2023067894A1 (en) Cooling device and method for manufacturing cooling device
JP7113914B2 (en) Heatsinks, heatsink assemblies, electronics, and methods of making heatsinks
JP2005203732A (en) Cooler
JP2001251079A (en) Method for producing heat sink using heat pipe and method for producing heat pipe
JP4984955B2 (en) Power element mounting unit, power element mounting unit manufacturing method, and power module
JP6764765B2 (en) Heat transfer member
JPH0983164A (en) Heat sink and its manufacture
JP2009289855A (en) Cooling structure of heating element
JP2013219125A (en) Heat exchanger
CN110461130B (en) Mosaic type heat dissipation structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20100921

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20110705

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129