JP2008156782A - Paper consisting of polyarylene sulfide oxide - Google Patents
Paper consisting of polyarylene sulfide oxide Download PDFInfo
- Publication number
- JP2008156782A JP2008156782A JP2006347296A JP2006347296A JP2008156782A JP 2008156782 A JP2008156782 A JP 2008156782A JP 2006347296 A JP2006347296 A JP 2006347296A JP 2006347296 A JP2006347296 A JP 2006347296A JP 2008156782 A JP2008156782 A JP 2008156782A
- Authority
- JP
- Japan
- Prior art keywords
- paper
- ppso
- strength
- dielectric breakdown
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Paper (AREA)
- Organic Insulating Materials (AREA)
Abstract
Description
本発明は耐熱性、耐薬品性に優れ、かつ高い絶縁破壊の強さを有するポリアリーレンスルフィド酸化物(PPSO)からなる紙に関する。本発明のPPSOの紙は各種ケーブルや電線の被覆、プリント回路基板、モーターや変圧器などで使われる電気絶縁紙として利用することができる。 The present invention relates to a paper made of polyarylene sulfide oxide (PPSO) having excellent heat resistance and chemical resistance and having high dielectric breakdown strength. The PPSO paper of the present invention can be used as an electrical insulating paper used in various cable and wire coatings, printed circuit boards, motors and transformers.
ポリアリーレンスルフィド(PPS)を酸化して得られるPPSOはPPSと比較して耐熱性、耐薬品性、特に耐酸性に優れ、さらには熱溶融しないという優れた特性を有しており、このPPSOを繊維、布帛、紙など様々な形態で利用する検討が行なわれている。 PPSO obtained by oxidizing polyarylene sulfide (PPS) has excellent heat resistance, chemical resistance, especially acid resistance, and also has excellent characteristics that it does not melt by heat, compared to PPS. Studies are being made on utilization in various forms such as fiber, fabric, and paper.
特にPPSOの紙に関する検討としては、特許文献1で提案されているように、PPSを酸化処理してPPSOとした後にさらにPPSOのアリール基にスルホン酸基を導入することで白度が高く、柔軟性および耐水性に富み、耐薬品性が高くイオン交換能を有し各種イオン交換紙として有用なシートが得られているが、PPSOからなる紙を電気絶縁紙として用いることに関してはなんら示されていない。 As a study on PPSO paper in particular, as proposed in Patent Document 1, the PPS is oxidized to PPSO, and then a sulfonic acid group is further introduced into the PPSO aryl group, resulting in high whiteness and flexibility. Sheets that are rich in water resistance and chemical resistance, have high chemical resistance and have ion exchange ability and are useful as various ion exchange papers have been obtained, but there is no indication about the use of paper made of PPSO as electrical insulating paper. Absent.
また、特許文献2においてはPPSO繊維を叩解して得られるPPSOパルプを使って紙が得られているが、叩解によって得られる繊維の径が太いために紙にした際に繊維間の空隙が多数形成されるため絶縁破壊の強さは0.8kV/mm程度であり、高い絶縁破壊の強さを持つ紙は得られていない。 Further, in Patent Document 2, paper is obtained using PPSO pulp obtained by beating PPSO fibers, but since the diameter of the fibers obtained by beating is thick, there are many voids between the fibers when the paper is used. Since it is formed, the breakdown strength is about 0.8 kV / mm, and a paper having a high breakdown strength has not been obtained.
同様に、特許文献3では通常繊度のPPS繊維からなるPPSの紙を酸化処理してPPSOの紙を得ているが、繊維間の空隙が大きいために得られる紙の絶縁破壊の強さとしては6.4kV/mm程度が限界であった。 Similarly, in Patent Document 3, PPS paper composed of PPS fibers of normal fineness is oxidized to obtain PPSO paper. However, the strength of the dielectric breakdown of the paper obtained due to the large gap between the fibers is as follows. The limit was about 6.4 kV / mm.
一方、特許文献4ではPPSのナノファイバーでできた紙を酸化処理することでPPSOの紙を得ることを提案しているが、該方法では紙の状態で酸化処理するため、処理工程において紙を構成する1本1本のPPS繊維の収縮が起こり、紙が不均一に収縮することで繊維間に空隙が形成され、その結果得られるPPSOの紙としては絶縁破壊の強さが低いものしか得られていなかった。 On the other hand, Patent Document 4 proposes to obtain PPSO paper by oxidizing paper made of PPS nanofibers. However, in this method, since paper is oxidized in the state of paper, the paper is treated in the processing step. Each PPS fiber constituting the shrinkage occurs, and the paper shrinks non-uniformly to form voids between the fibers. As a result, only PPSO paper with low dielectric breakdown strength is obtained. It was not done.
このように、PPSOからなる紙は耐熱性、耐薬品性に優れ、熱溶融しないという優れた特性を有するものの、従来技術においては絶縁破壊の強さが低い紙しか得られなかったため、多数重ねたとしても電気絶縁材料として実用的に用いることができなかった。一方で、各種電子機器の高性能化に伴う高出力化と小型化の要求の中、機器中の絶縁層の耐熱性と共にコンパクト化が大きな課題となっており電気絶縁紙の絶縁破壊の強さの向上による薄葉化が求められている。
本発明の課題は、上記従来技術の問題点であった絶縁破壊の強さが改善された優れた絶縁性を持つPPSOの紙を提供し、各種電気絶縁材料としても利用可能な耐熱性、耐薬品性に優れ、不融性であるPPSOの紙を提供することにある。 An object of the present invention is to provide PPSO paper having excellent insulating properties with improved strength of dielectric breakdown, which has been a problem of the above-mentioned prior art, and can be used as various electrical insulating materials. The object is to provide PPSO paper that is excellent in chemical properties and infusible.
前記した本発明の課題は、ポリアリーレンスルフィド酸化物で構成される絶縁破壊の強さが10kV/mm以上かつ密度0.50g/cm3以上の紙、によって達成できる。 The above-described object of the present invention can be achieved by a paper having a dielectric breakdown strength of 10 kV / mm or more and a density of 0.50 g / cm 3 or more composed of polyarylene sulfide oxide.
本発明のPPSOの紙は優れた耐熱性、耐薬品性、不融性に加えて絶縁破壊の強さの値が高く、かつそのバラツキが少なく絶縁性に優れるため、各種ケーブルや電線の被覆、プリント回路基板、モーターや変圧器などで使われる電気絶縁紙として利用することができる。また高い電気絶縁性を有することから電気絶縁紙が使用されている各種機器類の絶縁層のコンパクト化を可能にし、その性能向上に寄与する。 The PPSO paper of the present invention has high insulation breakdown strength in addition to excellent heat resistance, chemical resistance and infusibility, and has little variation and excellent insulation. It can be used as electrical insulating paper used in printed circuit boards, motors and transformers. In addition, since it has high electrical insulation properties, it is possible to make the insulation layers of various devices that use electrical insulation paper more compact and contribute to improving its performance.
以下、本発明のPPSOの紙について詳細に説明する。 Hereinafter, the PPSO paper of the present invention will be described in detail.
本発明におけるPPSOとは、
下記一般式(1)
PPSO in the present invention is
The following general formula (1)
(R’’は、水素、ハロゲン、原子価の許容される範囲で任意の官能基により置換された脂肪族置換基、芳香族置換基で置換された脂肪族置換基のいずれかを表し、分子間のR’’同士が互いに連結して架橋構造を形成していてもよい。またR’’はPPSOからなるポリマー鎖でもよい。R’’’はPPSOからなるポリマー鎖を示し、mは0〜3のいずれかの整数を表す。また、Xは0、1、2のいずれかを表す。)で示される繰り返し単位からなるポリマー、または、主要構造単位としての上記繰り返し単位と、上記繰り返し単位1モル当たり1.0モル以下、好ましくは0.3モル以下の一般式(2)〜(8) (R ″ represents hydrogen, halogen, an aliphatic substituent substituted with any functional group within an allowable range of valence, or an aliphatic substituent substituted with an aromatic substituent; R ″ may be linked to each other to form a crosslinked structure. R ″ may be a polymer chain composed of PPSO. R ′ ″ represents a polymer chain composed of PPSO, and m is 0. Represents an integer of 1 to 3. X represents 0, 1, or 2), or the above repeating unit as a main structural unit, and the above repeating unit 1.0 mol or less per mol, preferably 0.3 mol or less of general formulas (2) to (8)
(R’’は、水素、ハロゲン、原子価の許容される範囲で任意の官能基により置換された脂肪族置換基、芳香族置換基で置換された脂肪族置換基のいずれかを表し、R’’’’は、原子価の許容される範囲で任意の官能基により置換された脂肪族置換基を表し、分子間のRまたはR’同士が互いに連結して架橋構造を形成していてもよい。また、R’’、R’’’’はPPSOからなるポリマー鎖でもよい。R’’’はPPSOからなるポリマー鎖を示し、mは0〜3のいずれかの整数を表し、nは0〜2のいずれかの整数を表す。また、Xは0、1、2のいずれかを表す。)で示される繰り返し単位とからなる共重合体からなる固体物品である。また、一般式(1)で示される繰り返し単位のうち、Xが0、1、2である構造単位中に占める、Xが1または2である構造単位の比率は、0.5以上0.9以下が好ましく、さらに好ましくは0.7以上0.9以下である。 (R ″ represents any one of hydrogen, halogen, an aliphatic substituent substituted with an arbitrary functional group within an allowable range of valence, and an aliphatic substituent substituted with an aromatic substituent; `` '' Represents an aliphatic substituent substituted with an arbitrary functional group within an allowable range of valence, and R or R ′ between molecules may be linked to each other to form a crosslinked structure. R ″ and R ″ ″ may be a polymer chain composed of PPSO. R ′ ″ represents a polymer chain composed of PPSO, m represents an integer of 0 to 3, and n represents Represents an integer of 0 to 2, and X represents 0, 1, or 2). Moreover, among the repeating units represented by the general formula (1), the ratio of the structural units in which X is 1 or 2 in the structural units in which X is 0, 1, or 2 is 0.5 or more and 0.9. Or less, more preferably 0.7 or more and 0.9 or less.
また、本発明のPPSOは示差走査熱量計(DSC)の測定において融解ピークが実質的に認められない。実質的に融解ピークが観察されないとは、具体的には、15J/g以下、好ましくは10J/g以下、より好ましくは5J/g以下、特に好ましくは1J/g以下の融解熱量を有するPPSOを意味し、この範囲において耐熱性、耐薬品性に関して特に優れた特性を有する。これは、紙の状態で高温下でも十分な強度を保持するだけでなく、融解によるピンホールの発生に伴う絶縁破壊を防ぐ上で重要な要素になる。 Further, the PPSO of the present invention has substantially no melting peak in the differential scanning calorimeter (DSC) measurement. Specifically, the fact that the melting peak is not substantially observed means that PPSO having a heat of fusion of 15 J / g or less, preferably 10 J / g or less, more preferably 5 J / g or less, particularly preferably 1 J / g or less. In this range, it has particularly excellent characteristics regarding heat resistance and chemical resistance. This is an important factor not only for maintaining sufficient strength even at high temperatures in the paper state, but also for preventing dielectric breakdown associated with pinholes caused by melting.
ここで、DSC測定条件は、窒素雰囲気下、窒素流量20mL/分において、示差走査熱量計(パーキンエルマー社製DSC)を用い、サンプル量5mg〜10mgの範囲内で、温度プログラムを30℃〜500℃(30℃から10℃/分昇温で340℃まで昇温)と設定し、測定した時の融解熱量である。 Here, the DSC measurement conditions were as follows: a nitrogen flow rate of 20 mL / min and a differential scanning calorimeter (DSC manufactured by PerkinElmer Co., Ltd.), a sample amount of 5 mg to 10 mg, and a temperature program of 30 ° C. to 500 ° C. This is the heat of fusion when measured at a temperature of 30 ° C. (temperature increased from 30 ° C. to 340 ° C. at a temperature increase of 10 ° C./min).
本発明でいう絶縁破壊の強さとは実施例F.項に記載する方法により求められる値である。10kV/mm以上とすることで変電器やモーターなどの高電圧下で使用される絶縁紙の用途へも展開が可能となる。絶縁性の信頼の観点から、絶縁破壊の強さは好ましくは20kV/mm以上、より好ましくは30kV/mm以上、最も好ましくは40kV/mm以上である。なお、絶縁破壊の強さには特に上限値はないが、現時点で到達可能である上限値としては100kV/mm程度である。 The strength of dielectric breakdown as used in the present invention is the same as that in Example F.1. It is a value obtained by the method described in the item. By setting it to 10 kV / mm or more, it becomes possible to develop the application of insulating paper used under high voltage such as a transformer or a motor. From the viewpoint of insulating reliability, the strength of dielectric breakdown is preferably 20 kV / mm or more, more preferably 30 kV / mm or more, and most preferably 40 kV / mm or more. There is no particular upper limit on the strength of dielectric breakdown, but the upper limit that can be reached at the present time is about 100 kV / mm.
本発明でいう密度とは実施例E.項に記載する方法により求められる値であり、本発明の紙の密度は0.50g/cm3以上である。密度を0.50g/cm3以上とすることで紙の紙面方向および厚み方向における繊維間の空隙が潰れ、繊維間の摩擦が大きくなることで紙の強度が向上し、取り扱い性が向上する。また絶縁破壊の強さのバラツキが低減される。強度向上および絶縁破壊の強さのバラツキ低減、および樹脂含浸を可能とする目的で紙の密度は好ましくは0.70g/cm3以上1.4g/cm3以下、より好ましくは0.80g/cm3以上、1.3g/cm3以下である。なお、
上述のような絶縁破壊の強さに優れ、密度が高い紙を得る上で重要な技術は予め酸化処理したPPSOを抄紙して、プレス前の通気度が1.0cc/cm2/sec以下である緻密なPPSOの紙を得た後に高温、高圧下でプレスを行なうことである。通気度が1.0cc/cm2/sec以下の紙を用いることで繊維間のわずかな空隙をプレスによる圧着でつぶすことが可能となり絶縁破壊の強さが向上する。また、高温高圧下でのプレスにより紙の紙面方向および厚み方向に存在する空隙が潰れるため高密度化が達成される。
The density referred to in the present invention means that of Example E.I. And the density of the paper of the present invention is 0.50 g / cm 3 or more. By setting the density to 0.50 g / cm 3 or more, voids between the fibers in the paper surface direction and the thickness direction of the paper are crushed, and friction between the fibers is increased, whereby the strength of the paper is improved and the handleability is improved. In addition, variations in the strength of dielectric breakdown are reduced. The density of the paper is preferably 0.70 g / cm 3 or more and 1.4 g / cm 3 or less, more preferably 0.80 g / cm for the purpose of improving strength, reducing variation in the strength of dielectric breakdown, and enabling resin impregnation. 3 or more and 1.3 g / cm 3 or less. In addition,
An important technique for obtaining a paper having an excellent dielectric breakdown strength and a high density as described above is to make a pre-oxidized PPSO, and the air permeability before pressing is 1.0 cc / cm 2 / sec or less. The pressing is performed at a high temperature and a high pressure after obtaining a dense PPSO paper. By using paper having an air permeability of 1.0 cc / cm 2 / sec or less, a slight gap between fibers can be crushed by pressing with a press, and the strength of dielectric breakdown is improved. Moreover, since the voids existing in the paper surface direction and the thickness direction of the paper are crushed by pressing under high temperature and high pressure, high density is achieved.
なお、PPSOはその優れた耐熱性、不融性のため加熱により変形しにくく、通常の抄紙工程におけるプレス温度、圧力下では紙の密度向上効果が十分得られない。このためPPSOの紙の密度向上のためには高温かつ特に高圧下でのプレスが必要となる。変形を容易にし、紙の厚みを薄くする目的でプレス温度としては200℃以上が好ましく、より好ましくは250℃以上である。同様の目的からプレス圧力は平板プレスでは10MPa以上が好ましく、より好ましくは20MPa以上、最も好ましくは50MPa以上である。またカレンダープレスにおいては、プレス圧力は1kN/cm以上が好ましく、より好ましくは10kN/cm以上である。平板プレスの際のプレス時間としては紙面全体に熱を伝え変形を可能とし、紙の熱劣化を避けるため平板プレスの場合は1分間以上30分未満、より好ましくは3分以上10分未満である。カレンダープレスの際のプレス回数としては同様の理由から2回以上10回未満が好ましい。なお、本発明でいう通気度とは実施例C.項に記載する方法により求められる値である。 PPSO is not easily deformed by heating because of its excellent heat resistance and infusibility, and the effect of improving the density of paper cannot be sufficiently obtained under the press temperature and pressure in the normal paper making process. Therefore, in order to improve the density of PPSO paper, it is necessary to press at a high temperature and particularly under a high pressure. For the purpose of facilitating deformation and reducing the thickness of the paper, the press temperature is preferably 200 ° C. or higher, more preferably 250 ° C. or higher. For the same purpose, the pressing pressure in a flat plate press is preferably 10 MPa or more, more preferably 20 MPa or more, and most preferably 50 MPa or more. In the calendar press, the press pressure is preferably 1 kN / cm or more, more preferably 10 kN / cm or more. The press time for the flat plate press is such that heat is transferred to the entire paper surface to enable deformation, and in order to avoid thermal deterioration of the paper, in the case of the flat plate press, it is 1 minute to less than 30 minutes, more preferably 3 minutes to less than 10 minutes. . The number of presses in the calendar press is preferably 2 times or more and less than 10 times for the same reason. Incidentally, the air permeability referred to in the present invention refers to Example C.I. It is a value obtained by the method described in the item.
本発明における紙とは、繊維状、粉状、フィブリル状のPPSOのいずれか、または組み合わせを使用し、公知の抄紙技術によりシート状に形成したものを指す。組み合わせについては、抄紙でできる紙の通気度が1.0cc/cm2/sec以下であればどのような組み合わせ、混率でも構わない。絶縁破壊の強さ向上の目的と紙からの脱落防止の観点から、用いる繊維は直径5nm以上15μm以下が好ましく、より好ましくは10nm以上10μm以下、最も好ましくは50nm以上5μm以下が好ましい。同様の理由により粉は直径10nm以上5μm以下が好ましく、より好ましくは100nm以上1μm以下である。 The paper in the present invention refers to a sheet formed by a known papermaking technique using any one or a combination of fibrous, powdery, and fibrillar PPSO. As for the combination, any combination and mixing ratio may be used as long as the air permeability of paper made by papermaking is 1.0 cc / cm 2 / sec or less. From the viewpoint of improving the strength of dielectric breakdown and preventing the paper from falling off, the fiber used preferably has a diameter of 5 nm to 15 μm, more preferably 10 nm to 10 μm, and most preferably 50 nm to 5 μm. For the same reason, the powder preferably has a diameter of 10 nm to 5 μm, more preferably 100 nm to 1 μm.
なお、上記フィブリル状のPPSOとは、直径1μm以下、アスペクト比が3:1以上にひげ状に伸びた部分を有する繊維状、粉状、膜状のPPSOまたは、厚み1μm以下で1mm2以下のサイズを持つ膜状のPPSOである。 The fibrillar PPSO is a fibrous, powdery or membranous PPSO having a diameter of 1 μm or less and an aspect ratio of 3: 1 or more and a whisker-shaped portion, or a thickness of 1 μm or less and 1 mm 2 or less. It is a film-like PPSO having a size.
繊維状、粉状のPPSOは繊維状、粉状のPPSを公知の酸化処理法で酸化することで得られる。また、フィブリル状のPPSOを得る方法としては、たとえば公知の技術(特開2006−257618号公報)で得られるPPSナノファイバーからなるトウを酸化して得られるPPSOナノファイバーを数mmの長さにカットしたものを水中で叩解することで、ある部分ではナノファイバーが束状に集合し、ある部分では先分かれした繊維が得られる。 Fibrous and powdery PPSO can be obtained by oxidizing fibrous and powdery PPS by a known oxidation treatment method. Further, as a method for obtaining fibrillar PPSO, for example, a PPSO nanofiber obtained by oxidizing a tow made of PPS nanofiber obtained by a known technique (Japanese Patent Laid-Open No. 2006-257618) has a length of several mm. By beating the cut material in water, nanofibers are gathered in a bundle at a certain portion, and a pre-divided fiber is obtained at a certain portion.
本発明における紙は、より高い絶縁破壊の強さを得る目的で好ましくはフィブリル状のPPSOを10重量%以上、より好ましくは50重量%以上、最も好ましくは75重量%以上含む。このようなフィブリル状のPPSOを多く含むことで、通常の繊維や粉と比較して繊維間隙を効率的に埋めることが可能であり、低目付でも均一に目の詰まった緻密な紙が得られ、絶縁破壊の強さの向上につながる。また、フィブリル状のPPSOは表面積が大きいために粉の保持性が良く抄紙の収率が向上し、さらに繊維間の結合を高めるために紙の強度が向上する。 The paper in the present invention preferably contains 10% by weight or more, more preferably 50% by weight or more, and most preferably 75% by weight or more of fibrillar PPSO for the purpose of obtaining higher dielectric breakdown strength. By containing a large amount of such fibril-like PPSO, it is possible to efficiently fill the fiber gaps compared to normal fibers and powders, and a dense paper that is uniformly clogged even with a low basis weight can be obtained. , Leading to an improvement in the strength of dielectric breakdown. In addition, fibrillar PPSO has a large surface area, so that powder retention is good, and the yield of papermaking is improved. Further, the strength of paper is improved in order to increase the bond between fibers.
本発明の紙の厚みとしては用途に合わせて5μm〜1mmの範囲で選択可能である。なお、本発明でいう厚みとは実施例D.項に記載する方法により求められる値である。 The thickness of the paper of the present invention can be selected in the range of 5 μm to 1 mm according to the application. In addition, the thickness as used in the field of this invention is Example D.2. It is a value obtained by the method described in the item.
本発明の紙の坪量としては用途に合わせて10〜900g/m2の範囲で選択可能である。なお、本発明でいう坪量とは実施例E.項に記載する方法により求められる値である。 The basis weight of the paper of the present invention can be selected in the range of 10 to 900 g / m 2 according to the application. In addition, the basis weight as used in the field of this invention is Example E.E. It is a value obtained by the method described in the item.
本発明の紙の通気度はより高い絶縁破壊の強さを得る目的で0.10cc/cm2/sec以下であることが好ましい。より好ましくは0.05cc/cm2/sec以下であることが好ましい。 The air permeability of the paper of the present invention is preferably 0.10 cc / cm 2 / sec or less for the purpose of obtaining higher dielectric breakdown strength. More preferably, it is 0.05 cc / cm 2 / sec or less.
本発明の紙の引張強度は取り扱い性の観点から10N/15mm以上であることが好ましい。より好ましく20N/15mm以上、最も好ましくは50N/15mm以上である。なお、本発明でいう引張強度とは実施例H.項に記載する方法により求められる値である。 The tensile strength of the paper of the present invention is preferably 10 N / 15 mm or more from the viewpoint of handleability. More preferably, it is 20 N / 15 mm or more, and most preferably 50 N / 15 mm or more. In addition, the tensile strength as used in the field of this invention is Example H.2. It is a value obtained by the method described in the item.
以下、実施例により本発明をより具体的に説明する。なお実施例中の各特性値は次の方法で求めた。
A.融点
サンプル10mgを示差走査熱量計(パーキンエルマー社製DSC)で窒素下、昇温速度10℃/minで昇温し、観察される主吸熱ピークがあらわれる温度を測定することにより行った。
B.粘度
東洋精機社製キャピログラフ1Bを用い、ズリ速度1000sec−1での見かけ粘度を測定した。
C.通気度
JIS−L−1906(2000年改正)フラジール型法に準じて、1サンプルにつき10cm角にカットした紙片8枚を使い23℃、相対湿度50%下でテクステスト社製の通気性試験機FX3300で試験圧力125Paで試験片を通過する空気量(cc/cm2/sec)の測定を有効数字2桁で行い、得られた8つの値の平均値を有効数字2桁で求め、通気度(cc/cm2/sec)として得た。なお、平均値が0.05(cc/cm2/sec)未満となる場合、通気度の値は0.05(cc/cm2/sec)未満とした。
D.厚み
JIS−L−1906(2000年改正)の試験法に準じて荷重10kPaで、23℃、相対湿度50%下で10cm角の紙片各1枚について紙面の角4点と中央部1点の計5箇所の厚みを0.001(mm)のオーダーまで測定した。5箇所で測定した結果の平均の値を求め、0.1μmのオーダーを四捨五入した値を厚みL(μm)とした。同一のサンプルに関して10cm角の紙片8枚から得られる厚みL(μm)の8つの値をさらに平均したものを求め、0.1μmのオーダーを四捨五入した値を平均厚みLmean(μm)とした。
E.坪量、密度
1サンプルにつき10cm角にカットした紙片8枚の合計重量(g)を23℃、相対湿度50%で測定し、紙面の面積である0.08m2で除して、有効数字3桁で坪量(g/m2)を算出した。また、この坪量の値を上記D.項で測定した平均厚みLmeanをcm単位にした値で除して有効数字2桁で密度(g/cm3)を算出した。
F. 絶縁破壊の強さ
1サンプルにつき10cm角にカットした紙片8枚のうち任意の5枚を使用し、JIS−K−6911(2006年改正)の試験方法に準じて、電極として上部φ5mm球状電極、下部φ10mm円板電極を使用して23℃、相対湿度50%の大気中にて、電圧上昇速度0.25kV/secにて測定を行い、絶縁破壊電圧の値を0.1kVのオーダーまで得た。得られた絶縁破壊電圧の値を各々の紙の厚みLの値をmm単位にした値で割って得られた5つの値I(kV/mm)を平均した値Imeanを有効数字2桁で求め、絶縁破壊の強さ(kV/mm)とした。
G.形態観察
抄紙に使ったPPSOと基準目盛りを走査型電子顕微鏡(ニコンESEM−2700)で150倍、400倍、3千倍、1万倍に拡大してPPSOの全体的な形状を把握し、粉状であれば粒径、繊維状であれば直径、フィブリル状物であればひげ状に伸びた部分の直径とアスペクト比を確認した。
H.引張強度
23℃、相対湿度50%の雰囲気下でオリエンテック社製テンシロンUCT−100を用いて、試料幅15mm、初期長20mm、引張速度20mm/minで最大点荷重の値を測定し、5回の測定の平均値を有効数字2桁で求め、引張強度(N/15mm)とした。
[参考例1]
(PPSの合成)
攪拌機付きオートクレーブに硫化ナトリウム9水塩25モル、酢酸ナトリウム2.5モルおよびN−メチル−2−ピロリドン(以下NMPと略す)を仕込み、窒素を通じながら徐々に205℃まで昇温し、水を留出した。次に反応容器を180℃に冷却後、1,4−ジクロロベンゼン25.3モルならびにNMPを加えて、窒素下に密閉し、270℃まで昇温後、270℃で2.5時間反応した。冷却後、反応生成物を温水で5回洗浄し、次に100℃に加熱されNMP中に投入して、約1時間攪拌し続けたのち、濾過し、さらに熱湯で数回洗浄した。これを90℃に加熱されたpH4の酢酸水溶液25リットル中に投入し、約1時間攪拌し続けたのち、濾過し、濾液のpHが7になるまで約90℃のイオン交換水で洗浄後、80℃で24時間減圧乾燥してPPS樹脂を得た。該PPS樹脂は融点282℃、温度320℃での粘度200Pa・sであった。
[参考例2]
(フィブリル状PPSOの作成)
参考例1で得られたPPS樹脂を融点が252℃、温度320℃での溶融粘度100Pa・sのポリエチレンテレフタレートを40:60(重量比)の割合で300℃の2軸混練機で混練しアロイポリマーを得た。このアロイポリマーを既存の単成分紡糸機を用い320℃の温度で紡糸を行った。このとき、吐出量35g/分、チムニーは温度25℃、風速25m/分、収束剤として一般的な油剤を塗布し、紡糸速度1000m/分で引き取り、350.7dtex36フィラメントのPPSアロイ未延伸糸を得た。さらにこの未延伸糸を第1ホットローラー温度が90℃、第2ホットローラー温度が150℃のローラー間で3.5倍で延伸して100dtex36フィラメントのPPSアロイ延伸糸を得た。この延伸糸は強度3.8cN/dtex、伸度40%であった。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each characteristic value in an Example was calculated | required with the following method.
A. The melting point of the sample was 10 mg with a differential scanning calorimeter (DSC manufactured by Perkin Elmer Co., Ltd.) under nitrogen at a heating rate of 10 ° C./min, and the temperature at which the observed main endothermic peak appeared was measured.
B. Viscosity Using the Toyo Seiki Capillograph 1B, the apparent viscosity at a shear rate of 1000 sec −1 was measured.
C. Air permeability According to JIS-L-1906 (revised in 2000) Frazier type method, using 8 pieces of paper cut into 10cm square per sample at 23 ° C and 50% relative humidity, manufactured by Textest Co., Ltd. Measure the amount of air (cc / cm 2 / sec) passing through the test piece at a test pressure of 125 Pa with FX3300 using two significant digits, and obtain the average value of the eight values obtained using two significant digits. (Cc / cm 2 / sec). When the average value was less than 0.05 (cc / cm 2 / sec), the value of air permeability was set to less than 0.05 (cc / cm 2 / sec).
D. Thickness In accordance with the test method of JIS-L-1906 (revised in 2000), a total of four corners and one central part for each 10 cm square piece of paper with a load of 10 kPa, 23 ° C. and 50% relative humidity. The thickness at five locations was measured to the order of 0.001 (mm). The average value of the results measured at five locations was determined, and the value obtained by rounding off the order of 0.1 μm was defined as the thickness L (μm). A value obtained by further averaging eight values of thickness L (μm) obtained from eight pieces of 10 cm square paper for the same sample was obtained, and a value obtained by rounding off the order of 0.1 μm was defined as average thickness L mean (μm).
E. Basis weight, density The total weight (g) of 8 pieces of paper cut into 10 cm square per sample was measured at 23 ° C. and 50% relative humidity, and divided by 0.08 m 2 , which is the area of the paper. The basis weight (g / m 2 ) was calculated with a digit. In addition, the basis weight value is set to D. The average thickness L mean measured in the section was divided by the value in cm, and the density (g / cm 3 ) was calculated with two significant figures.
F. Strength of dielectric breakdown Using any 5 pieces of 8 pieces of paper cut to 10 cm square per sample, according to the test method of JIS-K-6911 (2006 revision), an upper φ5 mm spherical electrode as an electrode, Measurement was performed at a voltage increase rate of 0.25 kV / sec in an atmosphere of 23 ° C. and 50% relative humidity using a lower φ10 mm disk electrode, and a dielectric breakdown voltage value was obtained to the order of 0.1 kV. . The value I mean obtained by dividing the value of the obtained breakdown voltage by the value obtained by dividing the value of the thickness L of each paper in the unit of mm and the average value I mean (kV / mm) by two significant digits The dielectric breakdown strength (kV / mm) was obtained.
G. Morphological observation The PPSO used for papermaking and the reference scale are magnified 150, 400, 3000, and 10,000 times with a scanning electron microscope (Nikon ESEM-2700) to understand the overall shape of PPSO, and The diameter and aspect ratio of the portion extending in a whisker-like shape were confirmed.
H. Using the Tensilon UCT-100 manufactured by Orientec Co., Ltd. in an atmosphere with a tensile strength of 23 ° C. and a relative humidity of 50%, the maximum point load value was measured at a sample width of 15 mm, an initial length of 20 mm, and a tensile speed of 20 mm / min. The average value of these measurements was obtained with two significant digits and was taken as the tensile strength (N / 15 mm).
[Reference Example 1]
(Synthesis of PPS)
An autoclave equipped with a stirrer was charged with 25 mol of sodium sulfide 9-hydrate, 2.5 mol of sodium acetate and N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). I put it out. Next, the reaction vessel was cooled to 180 ° C., 25.3 mol of 1,4-dichlorobenzene and NMP were added, sealed under nitrogen, heated to 270 ° C., and reacted at 270 ° C. for 2.5 hours. After cooling, the reaction product was washed 5 times with warm water, then heated to 100 ° C. and poured into NMP, stirred for about 1 hour, filtered, and washed several times with hot water. This was put into 25 liters of an acetic acid aqueous solution of pH 4 heated to 90 ° C., and stirred for about 1 hour, filtered, washed with ion-exchanged water of about 90 ° C. until the pH of the filtrate reached 7, PPS resin was obtained by drying under reduced pressure at 80 ° C. for 24 hours. The PPS resin had a melting point of 282 ° C. and a viscosity at a temperature of 320 ° C. of 200 Pa · s.
[Reference Example 2]
(Create fibrillar PPSO)
The PPS resin obtained in Reference Example 1 is kneaded with a polyethylene terephthalate having a melting point of 252 ° C. and a temperature of 320 ° C. and a melt viscosity of 100 Pa · s at a ratio of 40:60 (weight ratio) in a 300 ° C. biaxial kneader. A polymer was obtained. This alloy polymer was spun at a temperature of 320 ° C. using an existing single component spinning machine. At this time, the discharge amount is 35 g / min, the chimney has a temperature of 25 ° C., the wind speed is 25 m / min, a general oil agent is applied as a converging agent, and is taken up at a spinning speed of 1000 m / min, and 350.7 dtex 36 filament PPS alloy undrawn yarn Obtained. Further, this undrawn yarn was drawn 3.5 times between rollers having a first hot roller temperature of 90 ° C. and a second hot roller temperature of 150 ° C. to obtain a PPS alloy drawn yarn of 100 dtex 36 filaments. This drawn yarn had a strength of 3.8 cN / dtex and an elongation of 40%.
この延伸糸をカセ状で、温度98℃、濃度10%の水酸化ナトリウム水溶液に3時間浸してポリエチレンテレフタレートを溶出除去しPPSの極細繊維集合体を得た。 The drawn yarn was shaped like a cake and immersed in an aqueous solution of sodium hydroxide having a temperature of 98 ° C. and a concentration of 10% for 3 hours to elute and remove polyethylene terephthalate to obtain a PPS ultrafine fiber assembly.
この極細繊維集合体185gを、あらかじめ混合し60℃に保った99.0%酢酸1732g(キシダ化学製)、35%過酸化水素水577g(キシダ化学製)、95%硫酸144g (和光純薬工業製)の混合溶液に浸漬させて60℃、2時間酸化反応処理したところ、重量は24.3%増加し、PPSの酸化物であるPPSOの極細繊維集合体230gを得た。 99.0% acetic acid 1732 g (manufactured by Kishida Chemical), 577 g of 35% hydrogen peroxide (manufactured by Kishida Chemical), 144 g of 95% sulfuric acid (Wako Pure Chemical Industries) The mixture was dipped in a mixed solution and manufactured at 60 ° C. for 2 hours. The weight increased by 24.3%, and 230 g of PPSO ultrafine fiber aggregate, which is an oxide of PPS, was obtained.
この極細繊維集合体を2mmの長さにカットしたもの30gを、熊谷理機工業製の試験用ナイアガラビーター(No.2505)を使用して、水20L中で5分間叩解した後、熊谷理機工業製の自動式PFIミル(No.2511−B)を使用して叩解荷重9kg、叩解間隙0.2mm、ロール回転回数9000回の条件で叩解を行った。得られた叩解繊維は水を多量含んでおり、乾燥重量の測定から繊維濃度は10wt%であった。 30 g of this ultrafine fiber assembly cut to a length of 2 mm was beaten in 20 L of water for 5 minutes using a test Niagara beater (No. 2505) manufactured by Kumagai Riki Kogyo. Using an automatic PFI mill (No. 2511-B) manufactured by Kogyo, beating was performed under the conditions of a beating load of 9 kg, a beating gap of 0.2 mm, and a roll rotation number of 9000 times. The obtained beating fiber contained a large amount of water, and the fiber concentration was 10 wt% from the measurement of dry weight.
得られた叩解繊維の形態を走査型電子顕微鏡で確認したところ、極細繊維が集合してフィブリル状となっており、極細繊維が分岐して直径が数10〜数100nmでアスペクト比が1:10以上のひげ状に伸びている部分が多数存在し、フィブリル状のPPSOが得られていた。このようにして得られたフィブリル状PPSOをDSCで測定したところ、実質的に融点を持たず耐熱性良好であった。
[参考例3]
(繊維状PPSOの作成)
参考例1で得られたPPS樹脂のみを使って公知の紡糸機を用い、参考例2と同様な条件で吐出量を変更し溶融紡糸して1dtexのPPS延伸糸を得た。このPPS延伸糸を5mm長にカットして参考例2と同様に酸化反応させ、繊維状のPPSOを得た。得られた繊維をDSCで測定したところ、実質的に融点を持たず耐熱性良好であった。
[参考例4]
(粉状PPSOの作成)
参考例1で得られたPPS樹脂3.8gにNMP330gを加えて、窒素下に密閉し、270℃まで昇温後、270℃で10分間溶解した。その後400rpmで攪拌しながら10℃/分で急速冷却し、180℃到達時点で水98gを投入し、引き続き60℃まで冷却した。冷却後には非常に細かい粒子が分散した液体が得られた。この分散液を遠心分離して粒子を沈殿させ、沈殿を70℃の温水中で30分間攪拌して洗浄し、また遠心分離により沈殿する洗浄操作を5回繰り返した。洗浄後の沈殿を乾燥させたところ、粉状のPPSが得られた。この粉状PPSを参考例2と同様に酸化反応させて粉状のPPSOを得た。このサンプルの形状を走査型電子顕微鏡で観察したところ、直径数100nmの球状に近い微粒子であった。得られた粉状のPPSOをDSCで測定したところ、実質的に融点を持たず耐熱性良好であった。
When the form of the obtained beating fiber was confirmed with a scanning electron microscope, the ultrafine fibers were aggregated into a fibril shape, the ultrafine fibers were branched, the diameter was several tens to several hundred nm, and the aspect ratio was 1:10. Many portions extending in the above-mentioned beard shape existed, and fibrillar PPSO was obtained. The fibrillar PPSO thus obtained was measured by DSC and found to have substantially no melting point and good heat resistance.
[Reference Example 3]
(Creation of fibrous PPSO)
Using a known spinning machine using only the PPS resin obtained in Reference Example 1, the discharge amount was changed under the same conditions as in Reference Example 2, and melt spinning was performed to obtain a 1 dtex PPS drawn yarn. The drawn PPS yarn was cut to a length of 5 mm and subjected to an oxidation reaction in the same manner as in Reference Example 2 to obtain fibrous PPSO. When the obtained fiber was measured by DSC, it had substantially no melting point and good heat resistance.
[Reference Example 4]
(Making powdery PPSO)
NMP 330 g was added to 3.8 g of the PPS resin obtained in Reference Example 1, sealed under nitrogen, heated to 270 ° C., and dissolved at 270 ° C. for 10 minutes. Thereafter, the mixture was rapidly cooled at 10 ° C./min while stirring at 400 rpm, and 98 g of water was added when the temperature reached 180 ° C., followed by cooling to 60 ° C. After cooling, a liquid in which very fine particles were dispersed was obtained. The dispersion was centrifuged to precipitate particles, and the precipitate was washed by stirring in warm water at 70 ° C. for 30 minutes, and the washing operation for precipitation by centrifugation was repeated 5 times. When the precipitate after washing was dried, powdery PPS was obtained. This powdery PPS was oxidized in the same manner as in Reference Example 2 to obtain powdery PPSO. When the shape of this sample was observed with a scanning electron microscope, it was a nearly spherical particle having a diameter of several hundred nm. When the obtained powdery PPSO was measured by DSC, it had substantially no melting point and good heat resistance.
実施例1
参考例2で作成した含水状態の叩解繊維155gと第一工業製薬製のカチオン系分散剤(シャロールDC−303P:分子量30、000)123gを1リットルの水と共にブレンダー(オスター社「オスターブレンダーOB−1」)にて撹拌速度10300rpmで30分間撹拌して分散液を得た。
Example 1
A blender (Oster "Oster Blender OB-" of Oster Co., Ltd.) and 155 g of the hydrous beating fiber prepared in Reference Example 2 and 123 g of a cationic dispersant manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. 1)) and stirred at a stirring speed of 10300 rpm for 30 minutes to obtain a dispersion.
得られた分散液を熊谷理機工業製の実験用抄紙機(25cm角のシート形成可能な角形シートマシン)の容器に入れ、水を追加し20リットルの調製溶液とした後に150メッシュの金属製の網上に抄紙を行なった。得られた紙を25cm角のアドバンテック(株)製濾紙#2(5μm)上に転写し、これをドラム式乾燥機で乾燥後、濾紙からシートを剥離し、フィブリル状PPSO100重量%からなる紙を得た。この紙の通気度を測定した結果を表1に示す。 The obtained dispersion was put into a container of a laboratory paper machine (square sheet machine capable of forming a 25 cm square sheet) manufactured by Kumagai Riki Kogyo, and water was added to make a 20 liter preparation solution, followed by 150 mesh metal Paper was made on the net. The obtained paper was transferred onto a 25 cm square Advantech Co., Ltd. filter paper # 2 (5 μm), dried with a drum dryer, the sheet was peeled off from the filter paper, and a paper comprising 100% by weight of fibrillar PPSO was obtained. Obtained. The results of measuring the air permeability of this paper are shown in Table 1.
この紙を同様の手順で2枚作成し、各々の紙片から10cm角の紙を4枚切り出して温度200℃、圧力60MPa、処理時間3分で平板プレスを行なった。得られた紙の平均厚み、坪量、密度、通気度、絶縁破壊の強さImean、引張強度の値を表1に示す。紙の密度は高く、絶縁破壊の強さと引張強度に優れていた。また、平均する前の個々の絶縁破壊の強さの値Iのバラツキは小さく、10kV/mm未満の低い値はなかった。 Two sheets of this paper were prepared in the same procedure, and four pieces of 10 cm square paper were cut out from each piece of paper and subjected to flat plate pressing at a temperature of 200 ° C., a pressure of 60 MPa, and a processing time of 3 minutes. Table 1 shows the average thickness, basis weight, density, air permeability, dielectric breakdown strength I mean , and tensile strength of the obtained paper. The density of the paper was high and the insulation breakdown strength and tensile strength were excellent. Moreover, the dispersion of the value I of the breakdown strength before averaging was small, and there was no low value of less than 10 kV / mm.
実施例2
参考例2で作成した含水状態の叩解繊維77.5gと参考例3で作成した繊維状PPSO7.75gを使って実施例1と同様にして分散液を得て抄紙し、フィブリル状PPSO50重量%と繊維状PPSO50重量%からなる紙を得た。この紙の通気度の値を表1に示す。
Example 2
Using 77.5 g of the beating fiber in the moisture state prepared in Reference Example 2 and 7.75 g of the fibrous PPSO prepared in Reference Example 3, a dispersion was obtained in the same manner as in Example 1 to make paper, and 50% by weight of fibrillar PPSO was obtained. A paper consisting of 50% by weight of fibrous PPSO was obtained. The air permeability values of this paper are shown in Table 1.
この紙を同様の手順で2枚作成し、各々の紙片から10cm角の紙を4枚切り出して実施例1と同様にプレス処理を行って得られた紙の平均厚み、坪量、密度、通気度、絶縁破壊の強さImean、引張強度の値を表1に示す。紙の密度は高く、絶縁破壊の強さと引張強度に優れていた。また、平均する前の個々の絶縁破壊の強さの値Iのバラツキは小さく、10kV/mm未満の低い値はなかった。 Two sheets of this paper were prepared in the same procedure, and four sheets of 10 cm square were cut out from each piece of paper, and the average thickness, basis weight, density, and ventilation of the paper obtained by performing the press treatment in the same manner as in Example 1. Table 1 shows the values of strength, dielectric breakdown strength I mean , and tensile strength. The density of the paper was high and the insulation breakdown strength and tensile strength were excellent. Moreover, the dispersion of the value I of the breakdown strength before averaging was small, and there was no low value of less than 10 kV / mm.
実施例3
参考例2で作成した含水状態の叩解繊維15.5gと参考例3で作成した繊維状PPS14.0gを使って実施例1と同様にして分散液を得て抄紙し、フィブリル状PPSO10重量%と繊維状PPSO90重量%からなる紙を得た。この紙の通気度の値を表1に示す。
Example 3
Using 15.5 g of the beating fiber in the water-containing state prepared in Reference Example 2 and 14.0 g of the fibrous PPS prepared in Reference Example 3, a dispersion was obtained in the same manner as in Example 1 to make paper, and 10% by weight of fibrillar PPSO was obtained. A paper consisting of 90% by weight of fibrous PPSO was obtained. The air permeability values of this paper are shown in Table 1.
この紙を同様の手順で2枚作成し、各々の紙片から10cm角の紙を4枚切り出して得られた紙を鉄ロールとペーパーロールからなるカレンダー加工機に通した。カレンダー条件は、温度250℃、荷重は10cm幅のペーパーに対して29kNで圧力2.9kN/cm、ロール周速度2m/minであり、3回通した。得られた紙の平均厚み、坪量、密度、通気度、絶縁破壊の強さImean、引張強度の値を表1に示す。紙の密度は高く、絶縁破壊の強さと引張強度に優れていた。また、平均する前の個々の絶縁破壊の強さの値Iのバラツキは小さく、10kV/mm未満の低い値はなかった。 Two sheets of this paper were prepared in the same procedure, and four sheets of 10 cm square paper were cut out from each piece of paper, and the paper obtained was passed through a calendar processing machine composed of an iron roll and a paper roll. The calendar conditions were a temperature of 250 ° C., a load of 29 kN on a 10 cm wide paper, a pressure of 2.9 kN / cm, a roll peripheral speed of 2 m / min, and three passes. Table 1 shows the average thickness, basis weight, density, air permeability, dielectric breakdown strength I mean , and tensile strength of the obtained paper. The density of the paper was high and the insulation breakdown strength and tensile strength were excellent. Moreover, the dispersion of the value I of the breakdown strength before averaging was small, and there was no low value of less than 10 kV / mm.
実施例4
参考例2で作成した含水状態の叩解繊維77.5gと参考例3で作成した繊維状PPSO7.02g、参考例4で作成した粉状PPSO0.78gを使って実施例1と同様にして分散液を得て抄紙し、フィブリル状PPSO50重量%、繊維状PPSO45重量%、粉状PPSO5重量%からなる紙を得た。この紙の通気度の値を表1に示す。
Example 4
A dispersion liquid was prepared in the same manner as in Example 1 using 77.5 g of the beating fiber containing water prepared in Reference Example 2, 7.02 g of fibrous PPSO prepared in Reference Example 3, and 0.78 g of powdered PPSO prepared in Reference Example 4. A paper made of 50% by weight of fibrillar PPSO, 45% by weight of fibrous PPSO, and 5% by weight of powdered PPSO was obtained. The air permeability values of this paper are shown in Table 1.
この紙を同様の手順で2枚作成し、各々の紙片から10cm角の紙を4枚切り出して実施例3と同様にして温度250℃、荷重210kNで圧力21kN/cm、ロール周速度2m/minでプレス処理を行って得られた紙の平均厚み、坪量、密度、通気度、絶縁破壊の強さImean、引張強度の値を表1に示す。紙の密度は高く、絶縁破壊の強さと引張強度に優れていた。また、平均する前の個々の絶縁破壊の強さの値Iのバラツキは小さく、10kV/mm未満の低い値はなかった。 Two sheets of this paper were prepared in the same procedure, and four 10 cm square sheets were cut out from each piece of paper, and in the same manner as in Example 3, the pressure was 21 kN / cm at a temperature of 250 ° C., a load of 210 kN, and the roll peripheral speed was 2 m / min. Table 1 shows values of the average thickness, basis weight, density, air permeability, dielectric breakdown strength I mean , and tensile strength of the paper obtained by performing the press treatment. The density of the paper was high and the insulation breakdown strength and tensile strength were excellent. Moreover, the dispersion of the value I of the breakdown strength before averaging was small, and there was no low value of less than 10 kV / mm.
比較例1
実施例3で得られた繊維状PPSO15.5gを使って実施例1と同様にして分散液を得て抄紙し、繊維状PPSO100重量%からなる紙を得た。この紙の通気度は表1に示すとおり、実施例1〜4に比べて非常に大きかった。
Comparative Example 1
Using 15.5 g of the fibrous PPSO obtained in Example 3, a dispersion was obtained in the same manner as in Example 1 to make paper, and a paper composed of 100% by weight of fibrous PPSO was obtained. As shown in Table 1, the air permeability of this paper was very large compared with Examples 1-4.
この紙を同様の手順で2枚作成し、各々の紙片から10cm角の紙を4枚切り出して実施例1と同様にプレス処理を行って得られた紙の平均厚み、坪量、密度、通気度、絶縁破壊の強さImean、引張強度の値を表1に示す。紙の密度は低く、引張強度に優れているものの、絶縁破壊の強さの値は低く絶縁紙として実用に耐えないものであった。なお、絶縁破壊の強さの値が低い理由としては、プレス前後で紙の通気度の値が大きく、プレス後の紙の密度が低いことから、繊維間の空隙が大きすぎるため、プレス後も繊維間の空隙が残存しており、絶縁性が低下したものと推測される。 Two sheets of this paper were prepared in the same procedure, and four sheets of 10 cm square were cut out from each piece of paper, and the average thickness, basis weight, density, and ventilation of the paper obtained by performing the press treatment in the same manner as in Example 1. Table 1 shows the values of strength, dielectric breakdown strength I mean , and tensile strength. Although the density of the paper was low and the tensile strength was excellent, the value of the strength of dielectric breakdown was low and the paper could not withstand practical use as an insulating paper. The reason why the dielectric breakdown strength value is low is that the value of the air permeability of the paper is large before and after the press, and the density of the paper after the press is low. It is presumed that the gaps between the fibers remained and the insulating properties were lowered.
比較例2
参考例1で得られたPPS樹脂と融点が252℃、温度320℃での溶融粘度100Pa・sのポリエチレンテレフタレートを30:70の割合で300℃の2軸混練機で混練しアロイポリマーを得た。このアロイポリマーを既存の単成分紡糸機を用い320℃の温度で紡糸を行った。このとき、吐出量35g/分、チムニーは温度25℃、風速25m/分、収束剤として一般的な油剤を塗布し、紡糸速度1000m/分で引き取り、350.7dtex36フィラメントのPPSアロイ未延伸糸を得た。さらにこの未延伸糸を第1ホットローラー温度が90℃、第2ホットローラー温度が150℃のローラー間で3.5倍で延伸して100dtex36フィラメントのPPSアロイ延伸糸を得た。この延伸糸を5mm長さにカットした後、温度98℃、濃度10%の水酸化ナトリウム水溶液に3時間浸しポリエチレンテレフタレートを溶出除去しPPSのナノファイバーを得た。
Comparative Example 2
An alloy polymer was obtained by kneading the PPS resin obtained in Reference Example 1 with polyethylene terephthalate having a melting point of 252 ° C. and a temperature of 320 ° C. and a melt viscosity of 100 Pa · s in a 30 ° C. biaxial kneader at 300 ° C. . This alloy polymer was spun at a temperature of 320 ° C. using an existing single component spinning machine. At this time, the discharge amount is 35 g / min, the chimney has a temperature of 25 ° C., the wind speed is 25 m / min, a general oil agent is applied as a converging agent, and is taken up at a spinning speed of 1000 m / min, and 350.7 dtex 36 filament PPS alloy undrawn yarn Obtained. Further, this undrawn yarn was drawn 3.5 times between rollers having a first hot roller temperature of 90 ° C. and a second hot roller temperature of 150 ° C. to obtain a PPS alloy drawn yarn of 100 dtex 36 filaments. The drawn yarn was cut to a length of 5 mm, and then immersed in an aqueous solution of sodium hydroxide having a temperature of 98 ° C. and a concentration of 10% for 3 hours to elute and remove the polyethylene terephthalate to obtain PPS nanofibers.
このナノファイバーを酢酸800mL (関東化学社製)、過ホウ酸ナトリウム4水和物 46.16g (0.30mol;三菱ガス化学社製) を反応容器に投入し、60℃で攪拌・溶解させた。次に、ポリフェニレンスルフィドナノファイバー4gをその反応溶液に浸漬させて60℃、10時間酸化反応処理したところ、重量は24.3%増加し、5gのPPSナノファイバーの酸化物である、PPSOナノファイバーを得た。このように得られたPPSOナノファイバーは実質的に融点を持たず耐熱性良好な繊維であった。 800 mL of acetic acid (manufactured by Kanto Chemical Co., Inc.) and 46.16 g of sodium perborate tetrahydrate (0.30 mol; manufactured by Mitsubishi Gas Chemical Co., Inc.) were charged into the reaction vessel, and the nanofiber was stirred and dissolved at 60 ° C. . Next, 4 g of polyphenylene sulfide nanofibers were immersed in the reaction solution and subjected to an oxidation reaction treatment at 60 ° C. for 10 hours. The weight increased by 24.3%, and PPSO nanofibers, which are oxides of 5 g of PPS nanofibers. Got. The PPSO nanofibers thus obtained were fibers having substantially no melting point and good heat resistance.
同様な方法でPPSOナノファイバー20gを製造し、50リットルのナイアガラビーターを用いて水を20リットルとして分散を試みたところ、15分程度でナノファイバーは分散してパルプ状物を得ることができた。 20 g of PPSO nanofibers were produced in the same manner, and dispersion was attempted with 20 liters of water using a 50 liter Niagara beater. The nanofibers were dispersed in about 15 minutes and a pulp-like product could be obtained. .
この分散液4リットルを、大きさ25cm×25cmで高さ40cmの熊谷理機工業製の手漉き抄紙機に投入し、さらに水を追加するとともに、ポリビニルアルコールの糊剤を若干量添加して、さらに攪拌した。手漉き抄紙機の水を抜き、金網上に残った紙を濾紙に転写して、濾紙ごとジャポー製乾燥機に温度125℃、速度0.5m/minにて投入し、乾燥処理をした。 4 liters of this dispersion was put into a handmade paper machine manufactured by Kumagai Riki Kogyo Co., Ltd. having a size of 25 cm × 25 cm and a height of 40 cm, water was added, and a small amount of polyvinyl alcohol paste was added. Stir. Water from the handmade paper machine was drained, the paper remaining on the wire mesh was transferred to filter paper, and the filter paper was put into a Japau dryer at a temperature of 125 ° C. and a speed of 0.5 m / min for drying treatment.
この紙を同様の手順で2枚作成し、得られた紙を鉄ロールとペーパーロールからなるカレンダー加工機に通した。カレンダー条件は、温度100℃、荷重は25cm幅のペーパーに対して1kNで圧力0.04kN/cm、荷重は、ロール周速度2m/minであり、3回通しとした。上記の様にして、実施例1〜4と厚み同等のPPSOナノファイバーの紙を得た。プレス後の各々の紙片から10cm角の紙を4枚切り出して実施例1と同様にプレス処理を行って得られた紙の平均厚み、坪量、密度、通気度、絶縁破壊の強さImean、引張強度の値を表1に示す。 Two sheets of this paper were prepared in the same procedure, and the obtained paper was passed through a calendar processing machine composed of an iron roll and a paper roll. The calendar conditions were a temperature of 100 ° C., a load of 1 kN and a pressure of 0.04 kN / cm with respect to a 25 cm wide paper, and the load was a roll peripheral speed of 2 m / min, and was repeated three times. As described above, PPSO nanofiber paper having the same thickness as in Examples 1 to 4 was obtained. The average thickness, basis weight, density, air permeability, and dielectric strength I mean of the paper obtained by cutting four pieces of 10 cm square paper from each piece of paper after pressing and performing the press treatment in the same manner as in Example 1. Table 1 shows the values of tensile strength.
表1に示すとおり、この紙の引張強度は低く実用に耐えないものであった。また、絶縁破壊の強さImeanは10kV/mm以上であるものの平均する前の個々の値Iのバラツキが大きく、サンプルによっては10kV/mm未満と低い部分があるため絶縁紙として実用に耐えないものであった。紙の密度が実施例1〜4と比べて低いことからも熱プレスが不十分であり、紙の緻密性が低いために引張強度が低く、また絶縁破壊の強さにバラツキが生じたと推測される。 As shown in Table 1, this paper had a low tensile strength and could not withstand practical use. In addition, although the dielectric breakdown strength I mean is 10 kV / mm or more, there is a large variation in individual values I before averaging, and depending on the sample, there is a portion as low as less than 10 kV / mm, so it cannot be used as an insulating paper. It was a thing. Since the density of the paper is low compared to Examples 1 to 4, it is presumed that the hot press is insufficient, the tensile strength is low due to the low density of the paper, and the dielectric breakdown strength varies. The
比較例3
比較例2と同様にして、得たPPSOナノファイバーの分散液15.5リットルを使用して抄紙し、PPSOナノファイバーからなる紙を得た。
Comparative Example 3
In the same manner as in Comparative Example 2, paper was made using 15.5 liters of the obtained dispersion of PPSO nanofibers to obtain paper made of PPSO nanofibers.
この紙を同様の手順で2枚作成し、比較例2と同様にカレンダープレス加工を行い、実施例1と坪量が同等の紙を得た。プレス後に各々の紙片から10cm角の紙を4枚切り出して測定した紙の平均厚み、坪量、密度、通気度、絶縁破壊の強さImean、引張強度の値を表1に示す。 Two sheets of this paper were prepared in the same procedure, and calender pressing was performed in the same manner as in Comparative Example 2 to obtain a paper having a basis weight equivalent to that of Example 1. Table 1 shows the average thickness, basis weight, density, air permeability, dielectric breakdown strength I mean , and tensile strength values of four 10 cm square paper cut out from each piece of paper after pressing.
表1に示すとおり、この紙の引張強度は低く実用に耐えないものであった。また、絶縁破壊の強さImeanは10kV/mm以上であるものの平均する前の個々の値Iのバラツキが大きく、サンプルによっては10kV/mm未満と低い部分があるため絶縁紙として実用に耐えないものであった。紙の密度が実施例1〜4と比べて低いことからも熱プレスが不十分であり、紙の緻密性が低いために引張強度が低く、また絶縁破壊の強さにバラツキが生じたと推測される。 As shown in Table 1, this paper had a low tensile strength and could not withstand practical use. In addition, although the dielectric breakdown strength I mean is 10 kV / mm or more, there is a large variation in individual values I before averaging, and depending on the sample, there is a portion as low as less than 10 kV / mm, so it cannot be used as an insulating paper. It was a thing. Since the density of the paper is low compared to Examples 1 to 4, it is presumed that the hot press is insufficient, the tensile strength is low due to the low density of the paper, and the dielectric breakdown strength varies. The
本発明のPPSOの紙は優れた耐熱性、耐薬品性、不融性に加えて絶縁性に優れるため、各種ケーブルや電線の被覆、プリント回路基板、モーターや変圧器などで使われる電気絶縁紙として利用することができる。また高い電気絶縁性を有することから電気絶縁紙が使用されている各種機器類の絶縁層のコンパクト化を可能にし、その性能向上に寄与する。 The PPSO paper of the present invention has excellent heat resistance, chemical resistance, and infusibility, as well as excellent insulation, so that it is used in various cable and wire coatings, printed circuit boards, motors, transformers, etc. Can be used as In addition, since it has high electrical insulation properties, it is possible to make the insulation layers of various devices that use electrical insulation paper more compact and contribute to improving its performance.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006347296A JP2008156782A (en) | 2006-12-25 | 2006-12-25 | Paper consisting of polyarylene sulfide oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006347296A JP2008156782A (en) | 2006-12-25 | 2006-12-25 | Paper consisting of polyarylene sulfide oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008156782A true JP2008156782A (en) | 2008-07-10 |
Family
ID=39658010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006347296A Pending JP2008156782A (en) | 2006-12-25 | 2006-12-25 | Paper consisting of polyarylene sulfide oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008156782A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63152499A (en) * | 1986-12-10 | 1988-06-24 | 東レ株式会社 | Special paper like sheet |
JPH02264064A (en) * | 1989-04-04 | 1990-10-26 | Toray Ind Inc | Production of wrinkle-free sheetlike material |
JPH03891A (en) * | 1989-05-26 | 1991-01-07 | Toray Ind Inc | Paperlike material comprising polyphenylene sulfide fiber and production thereof |
JPH0397994A (en) * | 1989-09-05 | 1991-04-23 | Teijin Ltd | Heat resistant paper |
JPH08209583A (en) * | 1994-06-07 | 1996-08-13 | Kuraray Co Ltd | Paper made from aromatic polyester and its production |
JP2006225807A (en) * | 2005-02-18 | 2006-08-31 | Toray Ind Inc | Pulp, method for producing the same, paper and electric insulation material |
-
2006
- 2006-12-25 JP JP2006347296A patent/JP2008156782A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63152499A (en) * | 1986-12-10 | 1988-06-24 | 東レ株式会社 | Special paper like sheet |
JPH02264064A (en) * | 1989-04-04 | 1990-10-26 | Toray Ind Inc | Production of wrinkle-free sheetlike material |
JPH03891A (en) * | 1989-05-26 | 1991-01-07 | Toray Ind Inc | Paperlike material comprising polyphenylene sulfide fiber and production thereof |
JPH0397994A (en) * | 1989-09-05 | 1991-04-23 | Teijin Ltd | Heat resistant paper |
JPH08209583A (en) * | 1994-06-07 | 1996-08-13 | Kuraray Co Ltd | Paper made from aromatic polyester and its production |
JP2006225807A (en) * | 2005-02-18 | 2006-08-31 | Toray Ind Inc | Pulp, method for producing the same, paper and electric insulation material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008542557A (en) | Conductive aramid paper | |
CN103582731A (en) | Conductive aramid paper and method for producing same | |
JP5144767B2 (en) | Paper containing flocs derived from diaminodiphenyl sulfone | |
JP2023518231A (en) | Paper containing airgel powder and aramid polymer fibrils | |
CN104894922B (en) | Fibrous paper comprising m POD fibrids and preparation method thereof | |
JP2005299069A (en) | Synthetic paper and method for producing the same | |
JP4342065B2 (en) | FIBRILLATE AND MANUFACTURING METHOD THEREOF | |
JP4677919B2 (en) | Tow and short fiber bundles and pulp and liquid dispersions and papers composed of polyphenylene sulfide nanofibers | |
WO2016103966A1 (en) | Insulating paper | |
JP2009133033A (en) | Synthetic fiber paper, electrical insulating paper and method for producing synthetic fiber paper | |
WO2016190163A1 (en) | Aramid paper sheet and method for producing same | |
JP2008156782A (en) | Paper consisting of polyarylene sulfide oxide | |
JP2009174090A (en) | Paper comprising polyphenylene sulfide and method for producing the same | |
JP6405583B2 (en) | Insulating paper | |
WO2016188351A1 (en) | Fibre paper comprising pod and preparation method therefor | |
JP4701870B2 (en) | paper | |
JP4665579B2 (en) | Tow and short fiber bundles and pulp and liquid dispersions and paper comprising polymer alloy fibers containing polyphenylene sulfide | |
CN105986506B (en) | It can be used for paper wood, the preparation method and the usage of electrical apparatus insulation | |
JP3380267B2 (en) | Method of manufacturing heat-resistant thin paper | |
JP4710344B2 (en) | Electrical insulation material | |
JP2009079317A (en) | Paper consisting of oxidized polyarylene sulfide, and method for producing the same | |
TW201320107A (en) | Aramid-polyolefin laminate | |
JP2009114601A (en) | Polyarylene sulfide oxide paper and method for producing the same | |
JP2009084713A (en) | Polyphenylene sulfide paper, polyphenylene sulfide oxide paper, and method for producing them | |
JPS5911685B2 (en) | Method for producing pulp-like material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110913 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111018 |