JP2008146621A - Device and method for analyzing quality improvement condition of product, computer program, and computer readable recording medium - Google Patents
Device and method for analyzing quality improvement condition of product, computer program, and computer readable recording medium Download PDFInfo
- Publication number
- JP2008146621A JP2008146621A JP2007176558A JP2007176558A JP2008146621A JP 2008146621 A JP2008146621 A JP 2008146621A JP 2007176558 A JP2007176558 A JP 2007176558A JP 2007176558 A JP2007176558 A JP 2007176558A JP 2008146621 A JP2008146621 A JP 2008146621A
- Authority
- JP
- Japan
- Prior art keywords
- quality
- data
- combination
- mesh
- factors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006872 improvement Effects 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims description 121
- 238000004590 computer program Methods 0.000 title claims description 7
- 238000004364 calculation method Methods 0.000 claims description 92
- 238000009826 distribution Methods 0.000 claims description 87
- 238000004458 analytical method Methods 0.000 claims description 62
- 230000008569 process Effects 0.000 claims description 60
- 238000000605 extraction Methods 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 230000001186 cumulative effect Effects 0.000 claims description 11
- 238000010187 selection method Methods 0.000 claims description 10
- 238000011156 evaluation Methods 0.000 claims description 9
- 238000012854 evaluation process Methods 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 25
- 238000003860 storage Methods 0.000 description 16
- 230000007547 defect Effects 0.000 description 12
- 238000005315 distribution function Methods 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 238000003908 quality control method Methods 0.000 description 7
- 238000013441 quality evaluation Methods 0.000 description 7
- 238000011112 process operation Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000010219 correlation analysis Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000005246 galvanizing Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- General Factory Administration (AREA)
- Coating With Molten Metal (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、製品の品質改善条件解析装置、解析方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体に関する。特に、操業結果として品質が決まる製造プロセス全般において、品質不合の発生と関連の高い操業因子の組合せ、及び操業条件を特定し、更には現在の操業条件から品質を予測し、望ましい品質を得るための操業条件をオペレータや品質管理を行うエンジニアにガイダンスする為に用いて好適な技術に関する。 The present invention relates to a product quality improvement condition analysis apparatus, an analysis method, a computer program, and a computer-readable recording medium. In particular, in order to obtain the desired quality by specifying the combination of operating factors and operating conditions that are highly related to the occurrence of quality mismatches and operating conditions in the entire manufacturing process where the quality is determined as the operating result, and further predicting the quality from the current operating conditions. The present invention relates to a technique suitable for use in guiding the operating conditions to an operator and an engineer who performs quality control.
従来、操業結果として品質が決まるプロセスにおいて、操業条件が品質に与える影響を解析する操業分析手法としては、単一の操業因子と品質との相関係数を用いて評価する相関解析法や、複数の操業因子を入力とし品質を出力とする重回帰モデルを作成して評価する方法が知られている。 Conventionally, in the process where the quality is determined as the operation result, as the operation analysis method for analyzing the influence of the operation condition on the quality, a correlation analysis method that evaluates using a correlation coefficient between a single operation factor and quality, There is known a method of creating and evaluating a multiple regression model in which the operating factors of the above are input and the quality is output.
また、特許文献1に開示された手法では、鉄鋼プロセスにおける、鋳片のカーボン量等の物性値、鋳造巾等の操業値、及び冷却ゾーンの温度値等を操業因子とし、鋼板の表面欠陥を品質データとして多層神経回路網(multi layer neural network)を用いた品質予測装置で上記品質データと操業データの関連を学習させ品質制御診断を行っている。 Further, in the technique disclosed in Patent Document 1, in the steel process, the physical property value such as the carbon amount of the slab, the operation value such as the casting width, the temperature value of the cooling zone and the like are the operation factors, and the surface defects of the steel sheet are determined. A quality prediction apparatus using a multi-layer neural network as quality data learns the relationship between the quality data and the operation data and performs quality control diagnosis.
また、特許文献2に開示された手法では、製造プロセスの複数の操業因子の各パラメータが取り得る範囲を分割し、各操業パラメータの分割の組合せからなる分割領域における品質データの発生頻度の確率分布を導出した上で、所定の累積確率となる品質データ値を算出することで、相関解析や重回帰モデルでは捉えられない操業データと品質データの関連を解析できるようにしている。更に、上記の解析によって得られた操業パラメータと品質の関係から、製品の操業条件が決まった場合に、得られる品質を予測可能としている。
Further, in the technique disclosed in
上記の相関係数や重回帰モデルを用いた方法では、分析対象である操業及び品質データは全ての操業範囲において単一の線形モデルで表現できるとの前提条件に基づいて、相関係数や回帰モデルを導出して分析を行う。そのために、各々異なる特性を有する複数の品質不合要因が存在するプロセスから得られる、操業及び品質データを解析する場合には、両者の関係を正しく捉えることができないという問題があった。 In the method using the above correlation coefficient and multiple regression model, the correlation coefficient and regression are based on the precondition that the operation and quality data to be analyzed can be expressed by a single linear model in the entire operation range. A model is derived and analyzed. Therefore, when analyzing operation and quality data obtained from a process in which a plurality of quality mismatch factors having different characteristics exist, there is a problem that the relationship between the two cannot be correctly grasped.
また、特許文献1に開示された手法では,多層神経回路網を用いて操業因子と品質の関係性を学習したモデルを作成し、品質制御診断に応用している。しかし、多層神経回路網は、その制御診断がどのような論理に基づいて成されたかを人間が読み取ることが極めて難しく、制御診断結果の合理性をオペレータが判断できないという問題があった。 In the method disclosed in Patent Document 1, a model in which the relationship between operation factors and quality is learned using a multilayer neural network is created and applied to quality control diagnosis. However, the multilayer neural network has a problem that it is extremely difficult for humans to read what logic the control diagnosis is made based on, and the operator cannot judge the rationality of the control diagnosis result.
更に、現実の製造プロセスにおいて、品質に影響を及ぼす操業因子のデータが全て採取できるケースは稀であり、要因解析や品質制御に用いるデータは、互いに殆ど同一の操業条件であるにも係わらず、品質が大きく異なるデータを数多く含むようなバラツキの大きいデータである場合が大半である。上記の相関係数や重回帰モデルを用いた方法は、この
ようなバラツキの大きなデータに適用した場合、殆ど品質に関連のある操業条件を見出すことができない問題があった。また、特許文献1に開示された手法では、バラツキの大きなデータの操業因子と品質の関係性を多層神経回路網で学習する際に、バラツキの影響で学習が収束せず、十分な精度を有する制御モデルが得られないという問題があった。
Furthermore, in the actual manufacturing process, it is rare that all the data of operating factors affecting quality can be collected, and the data used for factor analysis and quality control are almost the same operating conditions. In most cases, the data has a large variation including a lot of data having greatly different quality. When the method using the correlation coefficient or the multiple regression model is applied to data having such a large variation, there is a problem in that it is difficult to find operation conditions related to quality. Further, in the method disclosed in Patent Document 1, when learning the relation between the operation factor and the quality of the data with large variation with the multilayer neural network, the learning does not converge due to the variation and has sufficient accuracy. There was a problem that a control model could not be obtained.
特許文献2に開示された手法は、上記のバラツキが大きなデータに対しても、相関解析や重回帰分析では見出すことが出来ない操業と品質の関連を見出すことを可能とするもので、複数の操業条件の組合せに対して、操業条件を複数の領域に分割し、各分割領域における品質データの発生頻度の確率密度を導出して、所定の累積確率となる品質指標を求めることで、操業条件と品質の関連を解析する手法である。すなわち、同一の操業条件下での品質バラツキを確率密度として捉え、操業条件の変化によって品質の確率密度が変化するとした考え方に基づいている為、バラツキの大きいデータからも、操業と品質の関連を見出すことが可能となっている。
The technique disclosed in
しかしながら、現実の製造プロセスにおいては、品質不合の原因となっている可能性がある操業因子は200〜300個以上に至る場合もあり、操業因子の組合せの数が膨大になることから、特許文献2に開示された手法で、各操業条件の組合せと品質の関連を個々に解析し、その中から品質改善に有効な操業条件を見出すには多大な時間を要するといった実用上の問題があった。 However, in an actual manufacturing process, there may be 200 to 300 or more operating factors that may cause quality mismatch, and the number of combinations of operating factors becomes enormous. With the method disclosed in 2, there is a practical problem that it takes a lot of time to analyze the relationship between the combination of each operation condition and the quality individually, and to find the operation condition effective for quality improvement from among them. .
本発明は、上記のような点に鑑みてなされたものであり、全ての操業因子の組合せに対して、操業の変化に対する品質の確率密度の変化が相対的に大きく、品質改善に有効な操業因子の組合せを自動的に抽出し、かつ所定の品質レベルを満たす操業条件の組合せも自動的にガイダンス可能とするものである。これにより、品質不合の発生に対し、操業条件の変更といった対策アクションを迅速に実行可能とする製品の品質改善条件解析装置及び解析方法を提供することを目的とする。 The present invention has been made in view of the above points, and for all combinations of operation factors, the change in the probability density of the quality with respect to the change in operation is relatively large, and the operation is effective for quality improvement. A combination of factors is automatically extracted, and a combination of operation conditions satisfying a predetermined quality level can be automatically guided. Accordingly, it is an object of the present invention to provide a product quality improvement condition analysis apparatus and analysis method capable of quickly executing a countermeasure action such as a change in operation conditions in response to occurrence of quality mismatch.
本発明の製品の品質改善条件解析装置は、製品の品質データとその製造プロセスにおける複数の操業因子の操業データとの関連を解析し、該製品の品質不合と関連の高い、操業因子を特定し、かつ品質を改善する操業条件をガイダンスする製品の品質改善条件解析装置であり、製品の品質データと、製造プロセスにおける複数個の操業因子の操業データとからなる解析データを入力するデータ入力手段と、前記データ入力手段で入力した複数個の操業因子の操業データより、予め指定された個数分の互いに異なる操業因子の全ての組合せを作成する操業因子組合せ作成手段と、前記操業因子組合せ作成手段で作成した全ての組合せの中から1つの組合せを選択する操業因子選択手段と、前記操業因子選択手段で選択した1つの組合せについて、該組合せを構成する複数の操業因子それぞれに対し、操業データの値の大小に基づいて操業条件を複数の範囲に分割し、これを複数の操業因子間で組み合せた操業条件メッシュを作成する操業条件メッシュ作成手段と、前記操業条件メッシュ作成手段で作成した各操業条件メッシュに属する品質データを抽出し、前記各操業条件メッシュにおける品質データの確率分布を算出する品質データ確率分布算出手段と、前記品質データ確率分布算出手段で算出した確率分布に基づき、前記各操業条件メッシュにおける製品品質の良否を示す品質指標を算出する品質指標算出手段と、前記品質指標算出手段で算出した各操業条件メッシュにおける品質指標に基づき、操業条件の違いによる品質指標の差異を数値化した品質影響度を計算する品質影響度算出手段と、前記操業因子選択手段、前記操業条件メッシュ作成手段、前記品質データ確率分布算出手段、前記品質指標算出手段及び前記品質影響度算出手段の処理を前記操業因子組合せ作成手段で作成した操業因子の組合せの全てについて順次行わせる操業組合せ評価手段と、前記操業因子組合せ作成手段で作成した全ての操業因子の組合せにおける品質影響度に基づき、前記品質影響度が大きな操業因子の組合せを品質改善に有効な操業条件の組合せとして選択する有効操業因子選択手段と、前記有効操業因子選択手段で選択した操業因子の組合せに対し、前記品質指標算出手段で算出した各操業条件メッシュにおける品質指標と、予め設定された目標品質指標とを比較して、目標品質指標を達成する操業条件メッシュ、並びに該操業条件メッシュに対応する操業条件の範囲を抽出する品質改善操業条件抽出手段と、前記品質改善操業条件抽出手段で算出した操業因子の組合せと操業条件の範囲を出力する品質改善ガイダンス出力手段とを備えることを特徴とする。 The product quality improvement condition analysis device of the present invention analyzes the relationship between the product quality data and the operation data of a plurality of operation factors in the manufacturing process, and identifies the operation factor that is highly related to the quality mismatch of the product. And a product quality improvement condition analysis device for guiding operation conditions for improving quality, a data input means for inputting analysis data composed of product quality data and operation data of a plurality of operation factors in the manufacturing process; From the operation data of a plurality of operation factors input by the data input means, an operation factor combination creation means for creating all combinations of mutually different operation factors for a predetermined number, and the operation factor combination creation means Operation factor selection means for selecting one combination from all created combinations, and one combination selected by the operation factor selection means For each of a plurality of operating factors constituting the combination, the operating conditions are divided into a plurality of ranges based on the value of the operation data, and an operating condition mesh is created by combining the operating conditions between the operating factors. A quality data probability distribution calculating means for extracting quality data belonging to each operating condition mesh created by the operating condition mesh creating means and calculating a probability distribution of quality data in each operating condition mesh; and the quality Based on the probability distribution calculated by the data probability distribution calculating means, the quality index calculating means for calculating the quality index indicating the quality of the product quality in each operation condition mesh, and the quality in each operation condition mesh calculated by the quality index calculation means Based on the index, the quality impact is calculated by calculating the quality impact by quantifying the difference in the quality index due to the difference in operating conditions Calculation unit, operation factor selection unit, operation condition mesh creation unit, quality data probability distribution calculation unit, quality index calculation unit, and operation of the quality influence degree calculation unit created by the operation factor combination creation unit Based on the quality influence level of the operation combination evaluation means that sequentially performs all of the factor combinations and all the operation factor combinations created by the operation factor combination creation means, the combination of the operation factors having the large quality influence degree is improved in quality. Effective operating factor selection means to select as a combination of effective operating conditions, and for the combination of operating factors selected by the effective operating factor selection means, the quality index in each operating condition mesh calculated by the quality index calculation means, An operation condition mesh that achieves the target quality index by comparing with a preset target quality index, and the operation condition Quality improvement operation condition extraction means for extracting a range of operation conditions corresponding to the mesh, and a quality improvement guidance output means for outputting a combination of operation factors calculated by the quality improvement operation condition extraction means and the range of operation conditions It is characterized by that.
本発明の製品の品質改善条件解析方法は、製品の品質データと、製造プロセスにおける複数個の操業因子の操業データとからなる解析データを入力するデータ入力工程と、前記データ入力工程で入力した複数個の操業因子の操業データより、予め指定された個数分の互いに異なる操業因子の全ての組合せを作成する操業因子組合せ作成工程と、前記操業因子組合せ作成工程で作成した全ての組合せの中から1つの組合せを選択する操業因子選択工程と、前記操業因子選択工程で選択した1つの組合せについて、該組合せを構成する複数の操業因子それぞれに対し、操業データの値の大小に基づいて操業条件を複数の範囲に分割し、これを複数の操業因子間で組み合せた操業条件メッシュを作成する操業条件メッシュ作成工程と、前記操業条件メッシュ作成工程で作成した各操業条件メッシュに属する品質データを抽出し、前記各操業条件メッシュにおける品質データの確率分布を算出する品質データ確率分布算出工程と、前記品質データ確率分布算出工程で算出した確率分布に基づき、前記各操業条件メッシュにおける製品品質の良否を示す品質指標を算出する品質指標算出工程と、前記品質指標算出工程で算出した各操業条件メッシュにおける品質指標に基づき、操業条件の違いによる品質指標の差異を数値化した品質影響度を計算する品質影響度算出工程と、前記操業因子選択工程、前記操業条件メッシュ作成工程、前記品質データ確率分布算出工程、前記品質指標算出工程及び前記品質影響度算出工程を前記操業因子組合せ作成工程で作成した操業因子の組合せの全てについて順次行わせる操業組合せ評価工程と、前記操業因子組合せ作成工程で作成した全ての操業因子の組合せにおける品質影響度に基づき、前記品質影響度が大きな操業因子の組合せを品質改善に有効な操業条件の組合せとして選択する有効操業因子選択工程と、前記有効操業因子選択工程で選択した操業因子の組合せに対し、前記品質指標算出工程で算出した各操業条件メッシュにおける品質指標と、予め設定された目標品質指標とを比較して、目標品質指標を達成する操業条件メッシュ、並びに該操業条件メッシュに対応する操業条件の範囲を抽出する品質改善操業条件抽出工程と、前記品質改善操業条件抽出工程で算出した操業因子の組合せと操業条件の範囲を出力する品質改善ガイダンス出力工程とを有することを特徴とする。 The product quality improvement condition analysis method of the present invention includes a data input step of inputting analysis data composed of product quality data and operation data of a plurality of operation factors in the manufacturing process, and a plurality of data input in the data input step From the operation data of the individual operation factors, an operation factor combination creation step for creating all combinations of the operation factors different from each other in a predetermined number, and one of all combinations created in the operation factor combination creation step. An operation factor selection step for selecting one combination and a plurality of operation conditions for one combination selected in the operation factor selection step based on the value of the operation data for each of the plurality of operation factors constituting the combination. The operation condition mesh creating step of creating an operation condition mesh that is divided into a range of the above and combining them among a plurality of operation factors, and the operation condition The quality data belonging to each operation condition mesh created in the cache creation step is extracted, and the quality data probability distribution calculation step for calculating the probability distribution of the quality data in each operation condition mesh and the quality data probability distribution calculation step are calculated. Based on the probability distribution, the quality index calculation step for calculating the quality index indicating the quality of the product quality in each operation condition mesh, and the difference in the operation condition based on the quality index in each operation condition mesh calculated in the quality index calculation step A quality influence calculation step for calculating a quality influence degree obtained by quantifying the difference in quality index, and the operation factor selection step, the operation condition mesh creation step, the quality data probability distribution calculation step, the quality indicator calculation step, and the The quality impact calculation process is performed for all the combinations of operation factors created in the operation factor combination creation process. Based on the quality influence in the combination of operation factors evaluated step by step and the combination of all the operation factors created in the operation factor combination creation step, the combination of the operation factors having a large quality influence degree is the effective operating condition for quality improvement. The effective operation factor selection step selected as a combination, the quality index in each operation condition mesh calculated in the quality index calculation step for the combination of the operation factors selected in the effective operation factor selection step, and a preset target quality Compared with the index, the operation condition mesh that achieves the target quality index, and the quality improvement operation condition extraction step that extracts the range of the operation condition corresponding to the operation condition mesh, and the quality improvement operation condition extraction step were calculated It has a quality improvement guidance output step for outputting a combination of operation factors and a range of operation conditions.
本発明のコンピュータプログラムは、製品の品質データと、製造プロセスにおける複数個の操業因子の操業データとからなる解析データを入力するデータ入力手順と、前記データ入力手順で入力した複数個の操業因子の操業データより、予め指定された個数分の互いに異なる操業因子の全ての組合せを作成する操業因子組合せ作成手順と、前記操業因子組合せ作成手順で作成した全ての組合せの中から1つの組合せを選択する操業因子選択手順と、前記操業因子選択手順で選択した1つの組合せについて、該組合せを構成する複数の操業因子それぞれに対し、操業データの値の大小に基づいて操業条件を複数の範囲に分割し、これを複数の操業因子間で組み合せた操業条件メッシュを作成する操業条件メッシュ作成手順と、前記操業条件メッシュ作成手順で作成した各操業条件メッシュに属する品質データを抽出し、前記各操業条件メッシュにおける品質データの確率分布を算出する品質データ確率分布算出手順と、前記品質データ確率分布算出手順で算出した確率分布に基づき、前記各操業条件メッシュにおける製品品質の良否を示す品質指標を算出する品質指標算出手順と、前記品質指標算出手順で算出した各操業条件メッシュにおける品質指標に基づき、操業条件の違いによる品質指標の差異を数値化した品質影響度を計算する品質影響度算出手順と、前記操業因子選択手順、前記操業条件メッシュ作成手順、前記品質データ確率分布算出手順、前記品質指標算出手順及び前記品質影響度算出手順を前記操業因子組
合せ作成手順で作成した操業因子の組合せの全てについて順次行わせる操業組合せ評価手順と、前記操業因子組合せ作成手順で作成した全ての操業因子の組合せにおける品質影響度に基づき、前記品質影響度が大きな操業因子の組合せを品質改善に有効な操業条件の組合せとして選択する有効操業因子選択手順と、前記有効操業因子選択手順で選択した操業因子の組合せに対し、前記品質指標算出手順で算出した各操業条件メッシュにおける品質指標と、予め設定された目標品質指標とを比較して、目標品質指標を達成する操業条件メッシュ、並びに該操業条件メッシュに対応する操業条件の範囲を抽出する品質改善操業条件抽出手順と、前記品質改善操業条件抽出手順で算出した操業因子の組合せと操業条件の範囲を出力する品質改善ガイダンス出力手順とをコンピュータに実行させる。
The computer program of the present invention includes a data input procedure for inputting analysis data comprising product quality data and operation data of a plurality of operation factors in a manufacturing process, and a plurality of operation factors input in the data input procedure. From the operation data, select one combination from the operation factor combination creation procedure for creating all combinations of different operation factors for the number specified in advance and all combinations created in the operation factor combination creation procedure. For the operating factor selection procedure and one combination selected in the operating factor selection procedure, the operating conditions are divided into a plurality of ranges based on the magnitude of the value of the operation data for each of the plurality of operating factors constituting the combination. , An operating condition mesh creating procedure for creating an operating condition mesh combining the operating factors, and the operating condition message. The quality data belonging to each operation condition mesh created in the menu creation procedure is extracted, and the quality data probability distribution calculation procedure for calculating the probability distribution of the quality data in each operation condition mesh and the quality data probability distribution calculation procedure are calculated. Based on the probability distribution, the quality index calculation procedure for calculating the quality index indicating the quality of the product quality in each operation condition mesh, and the difference in the operation condition based on the quality index in each operation condition mesh calculated in the quality index calculation procedure The quality impact calculation procedure for calculating the quality impact level by quantifying the difference in quality index, and the operation factor selection procedure, the operation condition mesh creation procedure, the quality data probability distribution calculation procedure, the quality index calculation procedure, and the The quality impact calculation procedure is performed in order for all the combinations of operating factors created in the operating factor combination creating procedure. The combination of operation conditions that are effective in improving the quality of the combination of operation factors with a large quality influence based on the evaluation of the operation combination to be performed and the quality influence on the combinations of all the operation factors created in the operation factor combination creation procedure. For the combination of the operating factor selected in the effective operating factor selection procedure and the operating factor selected in the effective operating factor selection procedure, the quality index in each operating condition mesh calculated in the quality index calculating procedure, and a preset target quality index And the operation condition mesh that achieves the target quality index, the quality improvement operation condition extraction procedure that extracts the range of the operation condition corresponding to the operation condition mesh, and the operation calculated by the quality improvement operation condition extraction procedure A computer executes a quality improvement guidance output procedure for outputting a combination of factors and a range of operating conditions.
本発明のコンピュータ読み取り可能な記録媒体は、上記本発明のコンピュータプログラムを記録したものである。 The computer-readable recording medium of the present invention records the computer program of the present invention.
本発明によれば、製品の品質不合が発生した際に、数百項目に及ぶ操業因子の組合せの中から品質不合と関連の高い操業因子を迅速に特定し、かつ所定の品質レベルを達成するための操業条件を得ることができる。従って解析結果を利用して、操業範囲を変更する等の対策アクションを早急に実行することで、品質の改善、歩留の向上、更には顧客への製品のデリバリ遅れ回避といった効果を得ることができる。 According to the present invention, when a product quality mismatch occurs, an operation factor highly related to the quality mismatch is quickly identified from a combination of several hundred operating factors, and a predetermined quality level is achieved. Operating conditions can be obtained. Therefore, it is possible to obtain the effects of improving the quality, improving the yield, and avoiding the delivery delay of the product to the customer by quickly executing the countermeasure action such as changing the operation range using the analysis result. it can.
(第1の実施形態)
以下に、図面を参照して、本発明としての製品の品質改善条件解析装置、解析方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体について説明する。図1は、本実施形態に係る製品の品質改善条件解析装置1の構成を示すブロック図である。
(First embodiment)
A product quality improvement condition analysis apparatus, analysis method, computer program, and computer-readable recording medium according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of a product quality improvement condition analysis apparatus 1 according to the present embodiment.
同図の100はデータ入力手段としてのデータ入力部であり、このデータ入力部100は、キーボード、データシートを読み込むOCR、又は工場内のLAN等から製造プロセスの操業データと当該操業に対応した品質データを入力する。このデータ入力部100は、コンピュータのCPU或いはMPU、RAM、ROM等で構成され、例えば、RAM等のメモリに操業データと品質データを入力する。
100 in the figure is a data input unit as a data input means. This
上記操業データは、例えば鉄鋼プロセスでは連続鋳造工程の湯面変動量や熱延工程の加熱炉温度等であり、連続値として与えられる。複数p個の操業因子x1,x2,…,xpがN個の製品について与えられた場合、入力する操業データはN行p列の行列となる。 For example, in the steel process, the operation data is a fluctuation amount of the molten metal surface in a continuous casting process, a heating furnace temperature in a hot rolling process, and the like, and is given as a continuous value. When a plurality of p operation factors x1, x2,..., Xp are given for N products, the input operation data is a matrix of N rows and p columns.
また、上記品質データは、例えば鉄鋼プロセスにて製造される鋼板コイル1本当りの表面欠陥個数等であり、連続値として与えられる。操業データに対応してNケースの品質データが与えられた場合、入力する品質データはN次元のベクトルとなる。 The quality data is, for example, the number of surface defects per steel plate coil manufactured by a steel process, and is given as a continuous value. When N cases of quality data are given corresponding to the operation data, the input quality data is an N-dimensional vector.
データ入力部100は、入力したNケースの品質データと操業データを紐付けして解析データを作成し、操業因子の名称等、必要な情報と共にコンピュータのRAMやROM、或いは磁気記憶装置等の記憶装置にファイルの形態で保存する。
The
101は、操業因子組合せ作成手段としての操業因子組合せ作成部であり、予め設定された組み合せたい操業因子の個数rに対応する全ての操業因子の組合せリストを作成する。この操業因子組合せ作成部101は、コンピュータのCPU或いはMPU、RAM、ROM等で構成されるもので、RAMやROMに記録されたプログラムが動作することで実施される。例えば、操業因子の個数をp=100項目とし、操業因子の組合せ個数をr=2とした場合を考えると、評価すべき組合せは、相異なる100個から互いに異なる2個を取り出す4950通りの組合せとなる。
操業因子組合せ作成部101は、前記データ入力部100で作成された操業因子の名称情報を読み出し、これら4950通りの操業因子の組合せリストを作成して、この組合せリストを以降の処理で利用可能となるようにコンピュータのRAMやROM、或いは磁気記憶装置等の記憶装置にファイルの形態で保存する。
The operation factor
102は、操業組合せ評価手段としての操業組合せ評価部である。この操業組合せ評価部102は、操業因子選択部103、操業条件メッシュ作成部104、品質データ確率分布算出部105、品質指標算出部106、品質影響度算出部107からなっている。この操業組合せ評価部102は操業因子組合せリストの全ての行に対してそれぞれ所定の処理を実行させることで、操業因子組合せリストの各行に後述する品質影響度を追加したリストを作成し、以降の処理で利用可能となるようコンピュータのRAMやROM、或いは磁気記憶装置等の記憶装置にファイルの形態で保存する。
103は、操業因子選択手段としての操業因子選択部である。この操業因子選択部103は、前記操業因子組合せ作成部101で作成された操業因子組合せリストの先頭から順次1つの組合せを選択して読み出し、リストの各行に記載された操業因子の操業データと品質データを前記データ入力部100で作成された解析データから取り出す。
Reference numeral 103 denotes an operation factor selection unit as operation factor selection means. The operation factor selection unit 103 selects and reads one combination sequentially from the top of the operation factor combination list created by the operation factor
104は、操業条件メッシュ作成手段としての操業条件メッシュ作成部である。この操業条件メッシュ作成部104は、前記操業因子選択部103でリストに基づいて選択された組合せを構成する複数個の操業データを用い、各操業因子を基底とする操業因子空間において操業条件を複数個の範囲に領域分割する処理を行う。
具体的な分割の手段としては、例えば各操業因子のデータから最大値及び最小値を算出し、この間を予め設定された操業条件分割個数mで等分割するよう分割点を決定する方法がある。しかしながら、実際の操業データは、生産量の多い製品の製造条件等、特定の範囲に偏っている場合が大半であり、単純に操業範囲を等分割した場合には、メッシュあたりのデータが著しく偏り、品質の確率分布が評価できないメッシュが多数発生する場合がある。 As a specific dividing means, for example, there is a method in which the maximum value and the minimum value are calculated from the data of each operating factor, and the dividing point is determined so as to equally divide the interval between them by the preset operating condition dividing number m. However, the actual operation data is mostly biased to a specific range, such as the manufacturing conditions of products with a large production volume. If the operation range is simply divided equally, the data per mesh is significantly biased. In some cases, a large number of meshes whose quality probability distributions cannot be evaluated are generated.
この問題を解決するためには、操業条件を分割した各分割に存在するデータの個数がほぼ等しくなるように分割点を決定することが有効である。具体的には、例えば全データ個数Nを操業条件分割個数mで除した値を求めて、各操業条件を分割した1分割に入るべきデータ個数を算出し、ついで各操業データをソートした配列データを作成して、前記1分割に入るべきデータ個数の整数倍に対応する配列のインデックスの操業データを求めて分割点とする方法がある。図2に、二次元の操業因子空間を例として各操業因子の操業条件を複数の範囲(領域)に等分割した場合(a)とデータの個数が等しくなるよう不等分割した場合(b)について作成した操業条件メッシュを示す。 In order to solve this problem, it is effective to determine the division points so that the number of data existing in each division obtained by dividing the operation condition is substantially equal. Specifically, for example, a value obtained by dividing the total number of data N by the operating condition division number m is obtained, the number of data to be included in one division obtained by dividing each operating condition is calculated, and then the operation data is sorted. And the operation data of the array index corresponding to an integer multiple of the number of data to be included in one division is obtained and used as a division point. FIG. 2 shows a case where the operating conditions of each operating factor are equally divided into a plurality of ranges (regions) (a) and an unequal division so that the number of data is equal (b). The operation condition mesh created for is shown.
このように、操業条件メッシュ作成部104は、操業データの値の大小に基づいて操業条件を複数の範囲に分割し、これを複数の操業因子間で組み合せた操業条件メッシュを作成する。また、操業条件メッシュ作成部104は、決定された各操業因子の分割点情報に基づいて、操業条件メッシュを作成し、複数個の操業条件メッシュに通し番号を付与して分割点の情報と共にコンピュータのRAMやROM、或いは磁気記憶装置等の記憶装置にファイルの形態で保存する。
As described above, the operation condition
105は、品質データ確率分布算出手段としての品質データ確率分布算出部である。この品質データ確率分布算出部105は、前記操業条件メッシュ作成部104で作成された操業条件メッシュの情報を読み出し、通し番号を付与された操業条件メッシュのそれぞれについて、対応する品質データを抽出し選択する。次に選択された品質データを用いて、度数分布に基づく品質データの確率分布を算出する処理を行う。
具体的には、例えば、予め品質の発生頻度を度数分布で分析し、これを近似するに適した所定の確率密度関数を設定して、前記の選択された品質データを用いて確率密度関数のパラメータを決定する方法がある。品質の発生頻度を近似するに適した確率密度関数としては、式(1)で表される指数分布関数がある。 Specifically, for example, the frequency of occurrence of quality is analyzed in advance with a frequency distribution, a predetermined probability density function suitable for approximating this is set, and the probability density function is calculated using the selected quality data. There are ways to determine the parameters. As a probability density function suitable for approximating the occurrence frequency of quality, there is an exponential distribution function represented by the equation (1).
ここで、yは品質データ、eは自然対数の底、λが指数分布関数のパラメータである。例えば、鉄鋼製品である薄鋼板コイルの表面疵個数を品質データとした場合、疵個数が0であるコイルの発生頻度が最も高いのが一般的であり、このような発生頻度に対しては指数分布関数が適している。また、品質の発生頻度を近似するに適した他の確率密度関数としては、式(2)で表される正規分布関数がある。 Here, y is quality data, e is the base of natural logarithm, and λ is a parameter of the exponential distribution function. For example, when the number of surface defects of a thin steel sheet coil, which is a steel product, is used as quality data, the frequency of occurrence of a coil having a number of defects of 0 is generally the highest. A distribution function is suitable. Another probability density function suitable for approximating the occurrence frequency of quality is a normal distribution function represented by Expression (2).
ここでμは平均、σは標準偏差であり、この2つが品質データで決定されるパラメータとなる。更に、品質の発生頻度を近似するに適した他の確率密度関数としては、式(3)で表される対数正規分布関数がある。 Here, μ is an average, σ is a standard deviation, and these two are parameters determined by quality data. Furthermore, as another probability density function suitable for approximating the frequency of occurrence of quality, there is a lognormal distribution function represented by Expression (3).
ここで、lnは自然対数であり、μ´は対数平均、σ´は対数標準偏差である。この場合は、μ´及びσ´が品質データで決定すべきパラメータである。実際の解析に際して、どの確率密度関数を用いるべきかは、予め全ての品質データを用いて品質の発生頻度の度数分布を作成して、その度数分布に最も近い分布形態の確率密度関数を選択すれば良い。また、本発明の解析に用いられる確率密度関数は、上記の関数に限定されるものではなく、ポアソン分布や二項分布等、確率統計理論の分野で提案された確率密度関数を使用する場合であってもよい。 Here, ln is a natural logarithm, μ ′ is a logarithmic average, and σ ′ is a logarithmic standard deviation. In this case, μ ′ and σ ′ are parameters to be determined by the quality data. To determine which probability density function should be used in actual analysis, create a frequency distribution of quality occurrence frequency in advance using all quality data, and select the probability density function of the distribution form closest to the frequency distribution. It ’s fine. In addition, the probability density function used in the analysis of the present invention is not limited to the above function, and is a case where a probability density function proposed in the field of probability statistical theory such as Poisson distribution or binomial distribution is used. There may be.
図3に、二次元の操業因子空間を例として、操業条件メッシュの各メッシュにおける品質の度数分布を近似する確率密度分布が指数分布の場合を説明する図を示す。図3では、操業条件メッシュのうち、1部分のメッシュを抜き出し、横軸に表面欠陥数等の品質データ値、縦軸にその度数を表示した度数分布が示されている。この度数分布に近似する確率密度分布として指数分布を選択し、この指数分布関数を破線で表示している。 FIG. 3 is a diagram illustrating a case where the probability density distribution approximating the frequency distribution of quality in each mesh of the operation condition mesh is an exponential distribution, taking a two-dimensional operation factor space as an example. FIG. 3 shows a frequency distribution in which one part of a mesh is extracted from the operating condition mesh, the horizontal axis indicates quality data values such as the number of surface defects, and the vertical axis indicates the frequency. An exponential distribution is selected as a probability density distribution that approximates the frequency distribution, and this exponential distribution function is indicated by a broken line.
また、品質データ確率分布算出部105は、設定した確率密度関数と、各操業条件メッシュの品質データを用いて、各操業条件メッシュの確率密度関数のパラメータを算出し、操業条件メッシュの通し番号と対応させてコンピュータのRAMやROM、或いは磁気記憶装置等の記憶装置にファイルの形態で保存する。
Further, the quality data probability
106は、品質指標算出手段としての品質指標算出部である。この品質指標算出部106は、前記品質データ確率分布算出部105までの処理で作成された各操業条件メッシュの通し番号と確率密度関数のパラメータを読み出し、予め設定された品質評価確率値と等しい累積確率となる品質データ値(品質指標)を算出する。
図4は、確率密度分布に指数分布を用いた場合を例に、品質指標算出部106で行う品質指標を導出する演算の原理を模式的に説明する図である。評価したい操業条件メッシュに対応する確率密度関数のパラメータλを読み出し、品質yに対する確率密度f(y)の分布を求める。
FIG. 4 is a diagram schematically illustrating the principle of the calculation for deriving the quality index performed by the quality
このとき品質yを0からY0の範囲で積分したものを確率統計論の分野では累積確率と定義している。この累積確率は、品質が0からY0の範囲を取り得る確率に相当するもので、Y0が無限大の場合、すなわち品質が取り得る全ての値を含む場合の累積確率は100%となる。この累積確率が、予め設定された品質評価確率値α(例えば80%)に等しくなるようにして求めた品質指標Y0は、この操業条件メッシュにおいて確率αで発生し得る最も悪い品質指標を意味する。なお、確率統計理論より、式(1)の指数分布関数を仮定した場合、累積確率がαとなる品質指標Y0は、式(4)を用いて算出されることが証明されている。 At this time, the quality y integrated in the range of 0 to Y0 is defined as cumulative probability in the field of probability statistics. This cumulative probability corresponds to the probability that the quality can be in the range from 0 to Y0. When Y0 is infinite, that is, when all values that the quality can take are included, the cumulative probability is 100%. The quality index Y0 obtained so that this cumulative probability becomes equal to a preset quality evaluation probability value α (for example, 80%) means the worst quality index that can be generated with the probability α in this operating condition mesh. . Note that it is proved from the probability statistical theory that, when the exponential distribution function of Expression (1) is assumed, the quality index Y0 with the cumulative probability α is calculated using Expression (4).
従って、品質指標算出部106は、各操業条件メッシュに対して、式(4)に基づいて確率αに相当し、製品品質の良否を表示する品質指標Y0を算出し、操業条件メッシュの通し番号と対応させた形式で、コンピュータのRAMやROM、或いは磁気記憶装置等の記憶装置にファイルの形態で保存する。
Therefore, the quality
なお、正規分布関数や対数正規分布関数、並びに他の確率密度関数を使用した場合も、式(4)の代わりに使用された確率密度関数に対応する品質指標Y0の計算式を用いて同様に処理を行う。図5には、二次元の操業因子空間を例として操業条件メッシュにおける品質指標の分布を説明する図を示す。図5は、操業条件メッシュの各メッシュごとに品質指標Y0を算出し、品質指標Y0の高低を色の濃淡に対応させて図に表示させたものである。 In the case where the normal distribution function, the log normal distribution function, and other probability density functions are used, the calculation formula of the quality index Y0 corresponding to the probability density function used in place of the expression (4) is similarly used. Process. FIG. 5 is a diagram illustrating the distribution of quality indices in the operation condition mesh using a two-dimensional operation factor space as an example. FIG. 5 shows the quality index Y0 calculated for each mesh of the operation condition mesh, and the level of the quality index Y0 is displayed corresponding to the shade of the color.
107は、品質影響度算出手段としての品質影響度算出部である。この品質影響度算出部107は、品質指標算出部106までの処理で得られたある操業因子の組合せにおける操業条件メッシュと品質指標の算出結果を読み出し、品質指標の最大値と最小値を求めて、その差分をこの操業因子の組合せにおける影響度として、操業因子組合せリストの該当する行に情報を追加する処理を行う。
ここで、操業条件メッシュにおける品質指標の差分量は、この操業因子の組合せにおいて操業条件を種々変更した場合に、品質の発生頻度が、どの程度変化するかを反映した指標である。すなわち、影響度が大きい操業因子の組合せは、操業条件を変化させることで、品質の発生頻度が良い方向にも悪い方向にも変化しており、品質改善に有効な操業因子の組合せである。一方、影響度が小さい操業因子の組合せは、操業条件を変化させても、品質の発生頻度は相対的に変化しない。このように、品質影響度算出部107は、各操業条件メッシュにおける品質指標に基づき、操業条件の違いによる品質指標の差異を数値化した品質影響度を計算する。
Here, the difference amount of the quality index in the operation condition mesh is an index that reflects how much the quality occurrence frequency changes when the operation condition is variously changed in the combination of the operation factors. That is, a combination of operation factors having a large influence degree is a combination of operation factors effective in quality improvement because the frequency of occurrence of quality is changed in both a good direction and a bad direction by changing operation conditions. On the other hand, in the combination of operation factors having a small influence degree, the occurrence frequency of quality does not change relatively even if the operation conditions are changed. As described above, the quality
108は、有効操業因子選択手段としての有効操業因子選択部である。この有効操業因子選択部108は、前記品質影響度算出部107で算出した品質影響度が追加されたリストを読み出し、品質影響度が大きい操業因子の組合せが上位となるようソートする処理を行う。次に予め設定された操業因子の選択基準指標に基づいて、影響が大きい順に操業因子の組合せをリストから選択する。
具体的な操業因子の選択基準として、例えば影響度、すなわち品質評価確率がαの下での品質指標の目標品質指標からの差が予め設定された基準以上の操業因子の組合せを、全て選択する方法がある。或いは、例えば選択する操業因子の組合せの個数qを予め設定しておき、影響度の大きい順に操業因子の組合せをqセット選択する方法がある。 As the selection criteria for specific operation factors, for example, all the combinations of operation factors that are equal to or higher than a preset criterion in which the difference from the target quality index of the quality index under the influence degree, that is, the quality evaluation probability is α, are selected. There is a way. Alternatively, for example, there is a method in which the number q of combinations of operation factors to be selected is set in advance, and q sets of combinations of operation factors are selected in descending order of influence.
このように、有効操業因子選択部108は、品質影響度が大きな操業因子の組合せを品質改善に有効な操業条件の組合せとして選択する。操業因子選択基準をクリアした操業因子の組合せと、各組合せにおける操業条件メッシュの分割位置と品質指標の情報を、以降の処理で利用可能となるようコンピュータのRAMやROM、或いは磁気記憶装置等の記憶装置にファイルの形態で保存する。
As described above, the effective operation
109は、品質改善条件抽出手段としての品質改善条件抽出部である。この品質改善条件抽出部109は、前記有効操業因子選択部108で作成された操業因子選択基準をクリアした操業因子の組合せと、操業条件メッシュ、及び品質指標を順次読み出し、予め設定された目標品質指標と各操業条件メッシュにおける品質指標を比較して、目標品質指標を達成している操業条件メッシュを特定する。予め設定された目標品質指標と各操業条件メッシュにおける品質指標を比較する方法として両者の差分を算出して比較する。
また、品質改善条件抽出部109は、この操業条件メッシュの分割位置情報を抽出して、目標品質指標を実現する為の操業条件の範囲としてコンピュータのRAMやROM、或いは磁気記憶装置等の記憶装置にファイルの形態で保存する。
Further, the quality improvement
110は、品質ガイダンス出力手段としての品質ガイダンス出力部である。この品質ガイダンス出力部110は、前記品質改善条件抽出部109で作成された目標品質指標を実現する為の操業因子の組合せと操業条件の範囲をオペレータや品質管理業務の担当者に提示する処理を行う。具体的には、情報を表示するための表示装置(CRTディスプレイ等)に表示したり、電子メールにて情報を発信したりするなどの出力処理を行う。この提示された情報に基づいて、オペレータ及び担当者は、提示された品質改善の為の操業条件から有効と判断されるものを選択し、対策アクションを迅速にとることができる。また、品質ガイダンス出力部110は、図5に示したような二次元の操業因子空間における品質指標の分布を表示装置に表示するようにしてもよい。
次に図6に示す処理フローチャートを用いて、本実施形態の製品の品質改善条件の解析方法を説明する。 Next, a product quality improvement condition analysis method according to the present embodiment will be described with reference to a process flowchart shown in FIG.
まず、S201のデータ入力工程に進む。このデータ入力工程は、本実施形態の製品の品質改善条件解析装置においては、図1のデータ入力部100で行われる。ここでは、製造プロセスの操業データと当該操業に対応した品質データを入力し、両者を紐付けして解析データを作成する処理を行う。
First, the process proceeds to the data input process of S201. This data input process is performed by the
次に、S202の操業因子組合せ作成工程に進む。この操業因子組合せ作成工程は、本実施形態の製品の品質改善条件解析装置においては、図1の操業因子組合せ作成部101で行われる。データ入力工程で入力された解析データを用い、予め設定された組み合せたい操業因子の個数rに対応する全ての操業因子の組合せリストを作成する処理を行う。
Next, it progresses to the operation factor combination preparation process of S202. This operation factor combination creation step is performed by the operation factor
次に、S203の操業因子選択工程に進む。この操業因子選択工程は、本実施形態の製品の品質改善条件解析装置においては、図1の操業因子選択部103で行われる。操業因子の組合せリストから1つの組合せを選択する。 Next, it progresses to the operation factor selection process of S203. This operation factor selection step is performed by the operation factor selection unit 103 in FIG. 1 in the product quality improvement condition analysis apparatus of the present embodiment. Select one combination from the list of operating factor combinations.
次に、S204の操業条件メッシュ作成工程に進む。この操業条件メッシュ作成工程は本実施形態の製品の品質改善条件解析装置においては、図1の操業条件メッシュ作成部104で行われる。ここでは、前記操業因子選択工程S203でリストに基づいて選択された複数個の操業データを用い、各操業因子を基底とする操業因子空間において操業条件を複数個の範囲に領域分割する処理を行う。
Next, it progresses to the operation condition mesh preparation process of S204. This operation condition mesh creation step is performed by the operation condition
次に、S205の品質データ確率分布算出工程に進む。この品質データ確率分布算出工程は、本実施形態の製品の品質改善条件解析装置においては、図1の品質データ確率分布算出部105で行われる。前記操業条件メッシュ作成工程S204で作成された操業条件メッシュの情報を読み出し、操業条件メッシュのそれぞれについて、対応する品質データを選択する。
Next, the process proceeds to the quality data probability distribution calculation step of S205. This quality data probability distribution calculation step is performed by the quality data probability
さらに、選択された品質データを用いて、確率分布を算出する処理を行う。具体的には、例えば、予め品質の発生頻度を近似するに適した所定の確率密度関数を設定し、前記の選択された品質データを用いて確率密度関数のパラメータを決定する。 Further, a process for calculating a probability distribution is performed using the selected quality data. Specifically, for example, a predetermined probability density function suitable for approximating the occurrence frequency of quality is set in advance, and parameters of the probability density function are determined using the selected quality data.
次に、S206の品質指標算出工程に進む。この品質指標算出工程は、本実施形態の製品の品質改善条件解析装置においては、図1の品質指標算出部106で行われる。前記品質データ確率分布算出工程S205までの処理で作成された各操業条件メッシュの通し番号と確率密度関数のパラメータを読み出し、予め設定された品質評価確率値と等しい累積確率となる品質データ値(品質指標)を算出する処理を行う。
Next, the process proceeds to a quality index calculation step in S206. This quality index calculation step is performed by the quality
次に、S207の品質影響度算出工程に進む。この品質影響度算出工程は、本実施形態の製品の品質改善条件解析装置においては、図1の品質影響度算出部107で行われる。品質指標算出工程S206までの処理で得られた、ある操業因子の組合せにおける操業条件メッシュと品質指標の算出結果を用い、品質指標の最大値と最小値を求めて、その差分をこの操業因子の組合せにおける影響度として算出する処理を行う。
Next, the process proceeds to the quality influence degree calculation step of S207. This quality influence degree calculation step is performed by the quality influence
次に、全ての操業因子の組合せについてS203からS207までの処理を完了したかを判定する処理を行い、未だ完了していなければ操業因子選択工程S203以降の処理を再度実行する。ここで、S203以降の処理を再度実行する工程を操業組合せ評価工程と称する。全ての操業因子の組合せについて処理を完了している場合は、有効操業因子選択工程S208の処理に進む。 Next, processing for determining whether or not the processing from S203 to S207 has been completed for all combinations of operating factors is performed. If not completed yet, the processing after the operating factor selection step S203 is executed again. Here, the process of executing the processing after S203 again is referred to as an operation combination evaluation process. If the process has been completed for all combinations of operation factors, the process proceeds to the effective operation factor selection step S208.
次に、S208の有効操業因子選択工程に進む。この有効操業因子選択工程は、本実施形態の製品の品質改善条件解析装置においては、図1の有効操業因子選択部108で行われる。全ての操業因子組合せに対し、品質影響度が大きい操業因子の組合せが上位となるようソートする。次に予め設定された操業因子の選択基準指標に基づいて、影響が大きい順に操業因子の組合せをリストから選択する処理を行う。
Next, the process proceeds to the effective operation factor selection step of S208. This effective operation factor selection step is performed by the effective operation
次に、S209の品質改善条件抽出工程に進む。この品質改善条件抽出工程は、本実施形態の製品の品質改善条件解析装置においては、図1の品質改善条件抽出部109で行われる。操業因子選択基準をクリアした操業因子の組合せと、操業条件メッシュ、及び品質指標の情報を用い、予め設定された目標品質指標と各操業条件メッシュにおける品質指標を比較して、目標品質指標を達成している操業条件メッシュを特定する。次に、この操業条件メッシュに対応する操業因子の操業条件の分割位置情報を抽出して、目標品質指標を実現する為の操業条件の範囲として算出する処理を行う。
Next, it progresses to the quality improvement condition extraction process of S209. This quality improvement condition extraction step is performed by the quality improvement
次に、S210の品質改善ガイダンス出力工程に進む。この品質改善ガイダンス出力工程は、本実施形態の製品の品質改善条件解析装置においては、図1の品質改善ガイダンス出力部110で行われる。
Next, it progresses to the quality improvement guidance output process of S210. This quality improvement guidance output step is performed by the quality improvement
以上に述べた本発明の実施形態においては、操業条件を複数の範囲に分割し、これを複数の操業因子間で組み合せて作成した各操業条件メッシュにおける品質データの確率密度に基づいて品質指標を算出することで、バラツキの大きなデータからも品質と操業の関連を評価することを可能としている。 In the embodiment of the present invention described above, the operation condition is divided into a plurality of ranges, and the quality index is calculated based on the probability density of the quality data in each operation condition mesh created by combining the operation conditions among a plurality of operation factors. By calculating, it is possible to evaluate the relationship between quality and operation even from data with large variations.
また、全ての操業因子の組合せに対して、各操業条件メッシュの品質指標から最大値と最小値を選択し、その差分で算出される影響度が大きな操業因子の組合せを選択して提示することで、品質改善に相対的に効果の大きい操業因子の組合せを得ることが出来る。 In addition, for all combinations of operating factors, select the maximum and minimum values from the quality index of each operating condition mesh, and select and present the combination of operating factors that have a large influence calculated from the difference. Thus, it is possible to obtain a combination of operation factors that are relatively effective for quality improvement.
更に、所定の目標品質指標と品質改善に相対的に効果の大きい操業因子の組合せにおける操業条件メッシュの品質指標を比較することで、目標品質を達成する操業条件メッシュと、そのメッシュに対応する操業条件を自動的に探索して、ガイダンスすることを可能としている。 In addition, the operating condition mesh that achieves the target quality by comparing the quality index of the operating condition mesh in the combination of the predetermined target quality index and the operating factor that is relatively effective for quality improvement, and the operation corresponding to that mesh It is possible to automatically search for conditions and provide guidance.
(第2の実施形態)
第2の実施形態では、上述した第1の実施形態の具体例、応用例として、品質データ確率分布算出部105における確率分布相関解析の結果を品質の予測モデルとして使用するようにした例を説明する。図7に示すように、第2の実施形態に係る製品の品質改善条件解析装置1は、予測対象の操業データ(オンラインデータ)を入力するオンラインデータ入力部120と、品質データ確率分布算出部105で算出した各操業条件メッシュにおける品質データの確率分布を予測モデルとし、オンラインデータ入力部120で入力した予測対象の操業データに対して、所定の確率で発生すると予測される品質指標を算出する予測部121とを更に備える。なお、上述した第1の実施形態で既に説明した構成要素には同一の符号を付し、その詳細な説明は省略する。
(Second Embodiment)
In the second embodiment, an example in which the result of probability distribution correlation analysis in the quality data probability
品質データ確率分布算出部105では、操業条件メッシュそれぞれにおける品質データの確率分布が算出される。従って、下記の表1に示すように、操業条件メッシュの通し番号(メッシュNo.)ごとに、各操業条件の範囲及びそれに対応する確率密度関数のパラメータの形式で解析結果をテキストファイル等として保存して、予測モデルとして使用することができる。
The quality data probability
予測部121における予測モデルを用いた計算手順として、まずオンラインデータ入力部120から入力された操業条件(例えば現在の操業条件)と表1の解析結果とを比較し、該当するメッシュNo.を検索する。次に、該当するメッシュNo.に対応する確率密度関数のパラメータを取り出す。ここでは、指数分布関数を用いているとし、パラメータはλである。この操業条件メッシュでは、品質指標は式(1)で表される指数分布関数に従うので、ある品質評価確率値(例えば80%)で発生する品質指標の最大値を計算する。そして、この計算結果を、入力された操業条件に対する確率αでの品質指標(予測評点値)として出力する。
As a calculation procedure using the prediction model in the
計算例を示す。図8は、予測モデルにおける3つの入力変数(操業因子)を変化させた場合の予測結果である。ここでは、操業因子u1を65→80→125と変化させ(図8(a)を参照)、操業因子u2を2000→2500→3000と変化させ(図8(b)を参照)、操業因子u3を50一定(図8(c)を参照)としている(各操業因子はノイズ成分を含んでいる)。なお、ここでは鉄鋼プロセスを想定しており、予測評点値は所定の不具合の数である。各図の横軸は鋼板コイル番号である。図8(d)に示すように、操業条件の変化に伴って対応する操業条件メッシュが変化し、確率密度関数から推定される確率95%での予測評点値が変化していることがわかる。 An example of calculation is shown. FIG. 8 shows a prediction result when three input variables (operation factors) in the prediction model are changed. Here, the operation factor u1 is changed from 65 to 80 to 125 (see FIG. 8A), the operation factor u2 is changed from 2000 to 2500 to 3000 (see FIG. 8B), and the operation factor u3 is changed. Is constant (see FIG. 8C) (each operating factor includes a noise component). Here, the steel process is assumed, and the predicted score value is the number of predetermined defects. The horizontal axis of each figure is a steel plate coil number. As shown in FIG. 8D, it can be seen that the corresponding operation condition mesh changes with the change of the operation condition, and the predicted score value at the probability of 95% estimated from the probability density function changes.
次に、品質データ確率分布算出部105における確率分布相関解析の結果(表1)を応用して、目標としたい品質指標を実現する操業条件を探索する例を説明する。その計算手順として、まず目標としたい品質指標Y0と確率αを決定する(例えば、確率95%で予測評点値が「1」以下となる操業条件を探索する)。次に、表1のメッシュNo.に対し、確率密度関数を用いて確率αとなる品質指標Yiを計算する。そして、目標としたい品質指標Y0と各操業条件メッシュの確率αでの品質指標Yiとを比較し、目標値以下となっている操業条件メッシュを検索する。その結果得られた操業条件メッシュに対応する操業条件を、改善操業案として提示する。このとき、隣接してまとめることができる操業条件メッシュはまとめて提示してもよい。表2に、確率95%で予測評点値1以下となる操業条件を探索した結果を示す。
Next, an example will be described in which an operation condition for realizing a quality index desired to be a target is searched by applying a result (Table 1) of probability distribution correlation analysis in the quality data probability
次に、品質ガイダンス出力部110における処理の例を説明する。ある2つの操業因子と品質との関係が、ガイダンスとしてオペレータに提示する価値があると判断される場合、予測モデルとして設定するボタン(不図示)を押下すると、図9に示すようにガイダンス表示が行われる。
Next, an example of processing in the quality
図9に示すように、ガイダンス表示においては、二次元の操業因子空間における品質指標の分布が表示され、品質指標の高低がカラーグラデーション化されている。 As shown in FIG. 9, in the guidance display, the distribution of the quality index in the two-dimensional operation factor space is displayed, and the quality index is color gradation.
また、予測部121で現在の操業条件に対する品質指標が予測され、ガイダンス表示上にマークが表示される。
In addition, the
ここで、図9(a)に示すガイダンス表示は、自工程操業(自工程操業1、2)の組合せによる品質予測とリカバリ操業ガイダンスである。自工程での現在の操業条件の組合せから品質を予測するものである。オペレータは、現在の操業条件が品質の視点から良いのか、品質を良くするにはどの方向(図中矢印で示す改善操業方向)に操業条件を変更すればよいのかを知ることができる。 Here, the guidance display shown in FIG. 9A is quality prediction and recovery operation guidance by a combination of the own process operations (own process operations 1 and 2). The quality is predicted from the combination of the current operating conditions in the own process. The operator can know whether the current operating conditions are good from the viewpoint of quality or which direction (the improved operating direction indicated by the arrow in the figure) should be changed to improve the quality.
図9(b)に示すガイダンス表示は、上工程操業と自工程操業の組合せによる品質予測とリカバリ操業ガイダンスである。実績として確定した上工程での操業条件と、自工程での現在の操業条件との組合せから品質を予測するものである。上工程での実績は変更できないが、オペレータは、品質をリカバリする自工程の操業変更方向(図中矢印で示すリカバリ操業方向)を見出すことができる。 The guidance display shown in FIG. 9B is quality prediction and recovery operation guidance by a combination of the upper process operation and the own process operation. The quality is predicted from a combination of the operating conditions in the upper process determined as the actual results and the current operating conditions in the own process. Although the performance in the upper process cannot be changed, the operator can find the operation change direction (recovery operation direction indicated by an arrow in the figure) of the own process for recovering the quality.
図9(c)に示すガイダンス表示は、上工程操業(上工程操業1、2)の組合せによる品質予測ガイダンスである。実績として確定した上工程での操業条件の組合せから品質を予測するものである。すなわち、上工程での操業実績に基づいて予測される品質をフィードフォワード情報としてガイダンス表示する。リカバリアクションは難しいため、重点検査対象等の流出防止のアラートを出力するようにしてもよい。また、上工程に対してこの情報を提示し、操業標準変更等の対策を促す等、フィードバックで品質改善を図る。 The guidance display shown in FIG. 9C is quality prediction guidance based on a combination of upper process operations (upper process operations 1 and 2). The quality is predicted from the combination of the operating conditions in the upper process determined as the actual results. In other words, the quality predicted based on the operation results in the upper process is displayed as guidance as feedforward information. Since the recovery action is difficult, an alert for prevention of outflow of the priority inspection target or the like may be output. In addition, this information will be presented to the upper process, and measures will be taken to improve quality through feedback, such as prompting measures such as changing the operating standard.
なお、いずれのガイダンス表示においても、操業の変更が間に合わなかった等の事情で、品質が悪いと予測されるコイルに対しては、重点検査対象とする等の流出防止アクションをとるようアラートを出す等してもよい。 In any of the guidance displays, an alert is issued to take an outflow prevention action, such as a priority inspection target, for coils that are predicted to be of poor quality due to circumstances such as a change in operation not in time. May be equal.
次に、鉄鋼製品である薄板の自動車用鋼板の表面疵の発生個数を品質とし、製造工程である連続鋳造工程、熱延工程、冷延工程、溶融亜鉛メッキ工程における操業因子200項目に関する操業データを用いて、製品の品質改善条件解析装置に適用した例について説明する。なお、本実施例による品質改善条件解析方法は、コンピュータ上のプログラムにより実現する。 Next, the quality of the number of surface flaws on thin steel sheets for automobiles, which are steel products, and the operation data on 200 operating factors in the continuous casting process, hot rolling process, cold rolling process, and hot dip galvanizing process. The example applied to the product quality improvement condition analysis apparatus will be described. The quality improvement condition analysis method according to the present embodiment is realized by a program on a computer.
解析に用いるデータは、データベースサーバのデータベース112に保存されている操業データと、溶融亜鉛メッキ工程にて自動疵検査装置で測定された表面疵の個数データを利用する。このデータベース112は、各製造工程にて測定された操業及び品質データを、コイル単位、若しくは長さ単位に加工した上で、更に検索に使用するためのコイル番号、各工程での製造日時、製造仕様を区別するための鋼種コードを付与された形式で保存している。
The data used for the analysis uses the operation data stored in the
溶融亜鉛メッキ工程で品質上問題となるレベルの表面疵が発生した時点で、オペレータ若しくは品質管理業務の担当者が、解析の対象としたい鋼種コードと製造日時の範囲を、本製品の品質改善条件解析装置に入力することで、前記データ入力部100が、指定条件に合致する操業及び品質データをデータベースサーバからLANを介して入手したり、プロセスコンピュータ111がデータ入力部100の指示を受けて指定条件に合致する操業及び品質データを送信したりする。
When surface flaws that cause quality problems occur in the hot dip galvanizing process, the operator or the person in charge of quality control operations can specify the steel type code to be analyzed and the range of production date and time for the quality improvement conditions for this product. By inputting the data into the analysis device, the
解析に当っては、操業因子の組合せの個数は、1〜10個の範囲で選択でき、操業条件の分割数は、3〜20の範囲で設定可能とする。更に、事前に自動車用溶融亜鉛メッキ鋼板の種々の表面疵について、発生個数の頻度を分析し、確率密度関数は、式(1)の指数分布、式(2)の正規分布、式(3)の対数正規分布のいずれかを選択して解析できる。品質評価確率値αは、種々の解析結果を踏まえて確率80%を標準値と設定し、但し解析者が10%〜99%の範囲で任意に変更できる。 In the analysis, the number of combinations of operation factors can be selected within a range of 1 to 10, and the number of divisions of operation conditions can be set within a range of 3 to 20. Furthermore, the frequency of the number of occurrences was analyzed in advance for various surface defects of hot-dip galvanized steel sheets for automobiles, and the probability density function was the exponential distribution of equation (1), normal distribution of equation (2), You can select and analyze one of the lognormal distributions. As for the quality evaluation probability value α, a probability of 80% is set as a standard value based on various analysis results, but the analyst can arbitrarily change it within a range of 10% to 99%.
操業因子の選択については、影響度がある一定の閾値を超えた操業因子の組合せすべてを提示する場合と、選択する操業因子の組合せの個数を指定する場合のいずれかを選択できる。更に、目標品質指標については、コイル一本あたりの表面疵の総個数、若しくは単位面積当たりの疵個数密度のいずれかを選択し、具体的な目標品質指標は0又は正の数値を任意で設定できるものとした。 Regarding the selection of operation factors, either the case of presenting all combinations of operation factors that have a certain degree of influence exceeding a certain threshold value or the case of designating the number of combinations of operation factors to be selected can be selected. Furthermore, for the target quality index, select either the total number of surface defects per coil or the number density of defects per unit area, and the specific target quality index can be set to 0 or a positive numerical value. It was supposed to be possible.
上記の製品の品質改善条件解析装置によって、連続鋳造工程、熱延工程、冷延工程、溶融亜鉛メッキ工程の操業オペレータ、及び品質管理業務の担当者に、表面疵の発生に関連の高い操業因子と、品質を改善する操業条件を提示するシステムを実現し、運用を行った結果、表面疵の発生率低減、製品歩留まりの向上、製品手入れの省力化、品質トラブルによる納期遅れの回避等の効果を得ることができる。 The above-mentioned product quality improvement condition analysis device enables the operation factors highly related to the occurrence of surface flaws to the operators of continuous casting process, hot rolling process, cold rolling process, hot dip galvanizing process, and the person in charge of quality control work. As a result of implementing and operating a system that presents operating conditions that improve quality, the effects of reducing surface defects, improving product yield, saving product maintenance, avoiding delays in delivery due to quality problems, etc. Can be obtained.
なお、今回の実施例では、コンピュータ上のプログラムとして本発明を実現したが、演算装置、メモリ等を組み合せたハードウェアによって構成されるものであってもよい。また、本発明の解析装置は、複数の機器から構成されるものであっても、一つの機器から構成されるものであってもよい。 In the present embodiment, the present invention is realized as a program on a computer. However, the present invention may be configured by hardware combining an arithmetic device, a memory, and the like. In addition, the analysis device of the present invention may be composed of a plurality of devices or a single device.
さらに、上述した実施例は、コンピュータのCPU或いはMPU、RAM、ROM等で構成されるものであり、RAMやROMに記録されたプログラムが動作することで実施される。従って、前記実施形態の機能を実現するためのソフトウェアのプログラムコードをコンピュータに供給するための手段、例えばかかるプログラムコードを格納した記憶媒体は本発明の範疇に含まれる。 Further, the above-described embodiment is configured by a CPU or MPU of a computer, a RAM, a ROM, and the like, and is implemented by operating a program recorded in the RAM or ROM. Therefore, means for supplying software program codes for realizing the functions of the above-described embodiments to the computer, for example, storage media storing such program codes are included in the scope of the present invention.
100 データ入力部
101 操業因子組合せ作成部
102 操業組合せ評価部
103 操業因子選択部
104 操業条件メッシュ作成部
105 品質データ確率分布算出部
106 品質指標算出部
107 品質影響度算出部
108 有効操業因子選択部
109 品質改善条件抽出部
110 品質改善ガイダンス出力部
111 プロセスコンピュータ
112 データベース
120 オンラインデータ入力部
121 予測部
DESCRIPTION OF
Claims (14)
前記データ入力手段で入力した複数個の操業因子の操業データより、予め指定された個数分の互いに異なる操業因子の全ての組合せを作成する操業因子組合せ作成手段と、
前記操業因子組合せ作成手段で作成した全ての組合せの中から1つの組合せを選択する操業因子選択手段と、
前記操業因子選択手段で選択した1つの組合せについて、該組合せを構成する複数の操業因子それぞれに対し、操業データの値の大小に基づいて操業条件を複数の範囲に分割し、これを複数の操業因子間で組み合せた操業条件メッシュを作成する操業条件メッシュ作成手段と、
前記操業条件メッシュ作成手段で作成した各操業条件メッシュに属する品質データを抽出し、前記各操業条件メッシュにおける品質データの確率分布を算出する品質データ確率分布算出手段と、
前記品質データ確率分布算出手段で算出した確率分布に基づき、前記各操業条件メッシュにおける製品品質の良否を示す品質指標を算出する品質指標算出手段と、
前記品質指標算出手段で算出した各操業条件メッシュにおける品質指標に基づき、操業条件の違いによる品質指標の差異を数値化した品質影響度を計算する品質影響度算出手段と、
前記操業因子選択手段、前記操業条件メッシュ作成手段、前記品質データ確率分布算出手段、前記品質指標算出手段及び前記品質影響度算出手段の処理を前記操業因子組合せ作成手段で作成した操業因子の組合せの全てについて順次行わせる操業組合せ評価手段と、
前記操業因子組合せ作成手段で作成した全ての操業因子の組合せにおける品質影響度に基づき、前記品質影響度が大きな操業因子の組合せを品質改善に有効な操業条件の組合せとして選択する有効操業因子選択手段と、
前記有効操業因子選択手段で選択した操業因子の組合せに対し、前記品質指標算出手段で算出した各操業条件メッシュにおける品質指標と、予め設定された目標品質指標とを比較して、目標品質指標を達成する操業条件メッシュ、並びに該操業条件メッシュに対応する操業条件の範囲を抽出する品質改善操業条件抽出手段と、
前記品質改善操業条件抽出手段で算出した操業因子の組合せと操業条件の範囲を出力する品質改善ガイダンス出力手段とを備えることを特徴とする製品の品質改善条件解析装置。 A data input means for inputting analysis data comprising product quality data and operation data of a plurality of operation factors in the manufacturing process;
From the operation data of a plurality of operation factors input by the data input means, operation factor combination creation means for creating all combinations of mutually different operation factors for a predetermined number,
An operation factor selection means for selecting one combination from all the combinations created by the operation factor combination creation means;
For one combination selected by the operation factor selection means, for each of a plurality of operation factors constituting the combination, the operation condition is divided into a plurality of ranges based on the magnitude of the value of the operation data, and this is divided into a plurality of operations. An operating condition mesh creating means for creating an operating condition mesh combined between factors;
Quality data probability distribution calculating means for extracting quality data belonging to each operating condition mesh created by the operating condition mesh creating means, and calculating a probability distribution of quality data in each operating condition mesh;
Based on the probability distribution calculated by the quality data probability distribution calculating means, quality index calculating means for calculating a quality index indicating the quality of the product quality in each operation condition mesh;
Based on the quality index in each operating condition mesh calculated by the quality index calculating means, a quality influence degree calculating means for calculating a quality influence degree by quantifying the difference in the quality index due to the difference in the operating condition;
The operation factor selection means, the operation condition mesh creation means, the quality data probability distribution calculation means, the quality index calculation means, and the quality influence calculation means process of the combination of the operation factors created by the operation factor combination creation means. Operation combination evaluation means to be performed sequentially for all,
Effective operating factor selection means for selecting a combination of operating factors having a large quality influence level as a combination of operating conditions effective for quality improvement based on the quality influence level in all the operating factor combinations created by the operating factor combination creating means When,
For the combination of operation factors selected by the effective operation factor selection means, the quality index in each operation condition mesh calculated by the quality index calculation means is compared with a preset target quality index, and the target quality index is determined. Quality improvement operation condition extraction means for extracting the operation condition mesh to be achieved and the range of operation conditions corresponding to the operation condition mesh;
A quality improvement condition analysis apparatus for a product, comprising quality improvement guidance output means for outputting a combination of operation factors calculated by the quality improvement operation condition extraction means and a range of operation conditions.
前記品質指標算出手段は、前記近似処理で得た確率密度関数に基づいて、所定の累積確率となる品質データ値を算出し、前記操業条件メッシュにおける品質指標とすることを特徴とする請求項1に記載の製品の品質改善条件解析装置。 The quality data probability distribution calculating means approximates the frequency distribution of the quality data in the operation condition mesh using a predetermined probability density function,
2. The quality index calculating means calculates a quality data value having a predetermined cumulative probability based on a probability density function obtained by the approximation process, and uses the quality data value as the quality index in the operation condition mesh. Product quality improvement condition analysis device described in 1.
前記品質データ確率分布算出手段で算出した前記各操業条件メッシュにおける品質データの確率分布を予測モデルとし、前記データ入力手段で入力した予測対象の操業データに対して、所定の確率で発生すると予測される品質指標を算出する予測手段とを備えたことを特徴とする請求項1〜4のいずれか1項に記載の製品の品質改善条件解析装置。 A data input means for inputting operation data to be predicted;
The probability distribution of the quality data in each operation condition mesh calculated by the quality data probability distribution calculation means is used as a prediction model, and the prediction target operation data input by the data input means is predicted to occur with a predetermined probability. 5. The product quality improvement condition analysis apparatus according to claim 1, further comprising: a predicting unit that calculates a quality index.
前記データ入力工程で入力した複数個の操業因子の操業データより、予め指定された個数分の互いに異なる操業因子の全ての組合せを作成する操業因子組合せ作成工程と、
前記操業因子組合せ作成工程で作成した全ての組合せの中から1つの組合せを選択する操業因子選択工程と、
前記操業因子選択工程で選択した1つの組合せについて、該組合せを構成する複数の操業因子それぞれに対し、操業データの値の大小に基づいて操業条件を複数の範囲に分割し、これを複数の操業因子間で組み合せた操業条件メッシュを作成する操業条件メッシュ作成工程と、
前記操業条件メッシュ作成工程で作成した各操業条件メッシュに属する品質データを抽出し、前記各操業条件メッシュにおける品質データの確率分布を算出する品質データ確率分布算出工程と、
前記品質データ確率分布算出工程で算出した確率分布に基づき、前記各操業条件メッシュにおける製品品質の良否を示す品質指標を算出する品質指標算出工程と、
前記品質指標算出工程で算出した各操業条件メッシュにおける品質指標に基づき、操業条件の違いによる品質指標の差異を数値化した品質影響度を計算する品質影響度算出工程と、
前記操業因子選択工程、前記操業条件メッシュ作成工程、前記品質データ確率分布算出工程、前記品質指標算出工程及び前記品質影響度算出工程を前記操業因子組合せ作成工程で作成した操業因子の組合せの全てについて順次行わせる操業組合せ評価工程と、
前記操業因子組合せ作成工程で作成した全ての操業因子の組合せにおける品質影響度に基づき、前記品質影響度が大きな操業因子の組合せを品質改善に有効な操業条件の組合せとして選択する有効操業因子選択工程と、
前記有効操業因子選択工程で選択した操業因子の組合せに対し、前記品質指標算出工程で算出した各操業条件メッシュにおける品質指標と、予め設定された目標品質指標とを比較して、目標品質指標を達成する操業条件メッシュ、並びに該操業条件メッシュに対応する操業条件の範囲を抽出する品質改善操業条件抽出工程と、
前記品質改善操業条件抽出工程で算出した操業因子の組合せと操業条件の範囲を出力する品質改善ガイダンス出力工程とを有することを特徴とする製品の品質改善条件解析方法。 A data input process for inputting analysis data comprising product quality data and operation data of a plurality of operation factors in the manufacturing process;
From the operation data of a plurality of operation factors input in the data input step, an operation factor combination creation step of creating all combinations of mutually different operation factors for a predetermined number,
An operation factor selection step of selecting one combination from all the combinations created in the operation factor combination creation step;
For one combination selected in the operation factor selection step, for each of a plurality of operation factors constituting the combination, the operation condition is divided into a plurality of ranges based on the value of the operation data, and this is divided into a plurality of operations. An operation condition mesh creation process for creating an operation condition mesh combined between factors,
Quality data probability distribution calculation step for extracting quality data belonging to each operation condition mesh created in the operation condition mesh creation step, and calculating a probability distribution of quality data in each operation condition mesh,
Based on the probability distribution calculated in the quality data probability distribution calculating step, a quality index calculating step for calculating a quality index indicating the quality of product quality in each operation condition mesh;
Based on the quality index in each operation condition mesh calculated in the quality index calculation step, a quality influence degree calculation step for calculating a quality influence degree by quantifying the difference in the quality index due to the difference in the operation condition,
The operation factor selection step, the operation condition mesh creation step, the quality data probability distribution calculation step, the quality index calculation step, and the quality influence calculation step for all the combinations of operation factors created in the operation factor combination creation step Operation combination evaluation process to be performed sequentially,
Effective operation factor selection step of selecting a combination of operation factors having a large quality influence degree as a combination of operation conditions effective for quality improvement based on the quality influence degree in all the operation factor combinations created in the operation factor combination creation step. When,
For the combination of operation factors selected in the effective operation factor selection step, the quality index in each operation condition mesh calculated in the quality indicator calculation step is compared with a preset target quality indicator, and the target quality indicator is determined. A quality improvement operation condition extraction step for extracting an operation condition mesh to be achieved and a range of operation conditions corresponding to the operation condition mesh;
A quality improvement condition analysis method for a product, comprising: a quality improvement guidance output step for outputting a combination of operation factors calculated in the quality improvement operation condition extraction step and a range of operation conditions.
前記品質指標算出工程は、前記近似処理で得た確率密度関数に基づいて、所定の累積確率となる品質データ値を算出し、前記操業条件メッシュにおける品質指標とすることを特徴とする請求項7に記載の製品の品質改善条件解析方法。 The quality data probability distribution calculating step approximates the frequency distribution of the quality data in the operation condition mesh using a predetermined probability density function,
8. The quality index calculating step calculates a quality data value having a predetermined cumulative probability based on a probability density function obtained by the approximation process, and sets the quality data value as the quality index in the operation condition mesh. The quality improvement condition analysis method for products described in 1.
前記品質データ確率分布算出工程で算出した前記各操業条件メッシュにおける品質データの確率分布を予測モデルとし、前記データ入力工程で入力した予測対象の操業データに対して、所定の確率で発生すると予測される品質指標を算出する予測工程とを有することを特徴とする請求項7〜10のいずれか1項に記載の製品の品質改善条件解析方法。 A data input process for inputting operation data to be predicted;
The probability distribution of the quality data in each operation condition mesh calculated in the quality data probability distribution calculation step is assumed to be a prediction model, and the prediction target operation data input in the data input step is predicted to occur with a predetermined probability. 11. The product quality improvement condition analysis method according to claim 7, further comprising: a prediction step of calculating a quality index.
前記データ入力手順で入力した複数個の操業因子の操業データより、予め指定された個数分の互いに異なる操業因子の全ての組合せを作成する操業因子組合せ作成手順と、
前記操業因子組合せ作成手順で作成した全ての組合せの中から1つの組合せを選択する操業因子選択手順と、
前記操業因子選択手順で選択した1つの組合せについて、該組合せを構成する複数の操業因子それぞれに対し、操業データの値の大小に基づいて操業条件を複数の範囲に分割し、これを複数の操業因子間で組み合せた操業条件メッシュを作成する操業条件メッシュ作成手順と、
前記操業条件メッシュ作成手順で作成した各操業条件メッシュに属する品質データを抽出し、前記各操業条件メッシュにおける品質データの確率分布を算出する品質データ確率分布算出手順と、
前記品質データ確率分布算出手順で算出した確率分布に基づき、前記各操業条件メッシュにおける製品品質の良否を示す品質指標を算出する品質指標算出手順と、
前記品質指標算出手順で算出した各操業条件メッシュにおける品質指標に基づき、操業条件の違いによる品質指標の差異を数値化した品質影響度を計算する品質影響度算出手順と、
前記操業因子選択手順、前記操業条件メッシュ作成手順、前記品質データ確率分布算出手順、前記品質指標算出手順及び前記品質影響度算出手順を前記操業因子組合せ作成手順で作成した操業因子の組合せの全てについて順次行わせる操業組合せ評価手順と、
前記操業因子組合せ作成手順で作成した全ての操業因子の組合せにおける品質影響度に基づき、前記品質影響度が大きな操業因子の組合せを品質改善に有効な操業条件の組合せとして選択する有効操業因子選択手順と、
前記有効操業因子選択手順で選択した操業因子の組合せに対し、前記品質指標算出手順で算出した各操業条件メッシュにおける品質指標と、予め設定された目標品質指標とを比較して、目標品質指標を達成する操業条件メッシュ、並びに該操業条件メッシュに対応する操業条件の範囲を抽出する品質改善操業条件抽出手順と、
前記品質改善操業条件抽出手順で算出した操業因子の組合せと操業条件の範囲を出力する品質改善ガイダンス出力手順とをコンピュータに実行させるためのコンピュータプログラム。 A data input procedure for inputting analysis data comprising product quality data and operation data of a plurality of operation factors in the manufacturing process;
From the operation data of a plurality of operation factors input in the data input procedure, an operation factor combination creation procedure for creating all combinations of mutually different operation factors for the number specified in advance,
An operation factor selection procedure for selecting one combination from all combinations created in the operation factor combination creation procedure;
For one combination selected in the operation factor selection procedure, for each of a plurality of operation factors constituting the combination, the operation condition is divided into a plurality of ranges based on the value of the operation data, and this is divided into a plurality of operations. An operation condition mesh creation procedure for creating an operation condition mesh combined between factors,
Quality data probability distribution calculation procedure for extracting quality data belonging to each operation condition mesh created in the operation condition mesh creation procedure and calculating a probability distribution of quality data in each operation condition mesh;
Based on the probability distribution calculated in the quality data probability distribution calculation procedure, a quality index calculation procedure for calculating a quality index indicating the quality of product quality in each operation condition mesh;
Based on the quality index in each operation condition mesh calculated in the quality index calculation procedure, a quality impact calculation procedure for calculating a quality impact degree by quantifying a difference in quality index due to a difference in operation conditions;
The operation factor selection procedure, the operation condition mesh creation procedure, the quality data probability distribution calculation procedure, the quality index calculation procedure, and the quality influence calculation procedure for all combinations of operation factors created in the operation factor combination creation procedure The operation combination evaluation procedure to be performed sequentially,
Effective operation factor selection procedure for selecting a combination of operation factors having a large quality influence level as a combination of operation conditions effective for quality improvement based on the quality influence level in all the operation factor combinations created in the operation factor combination creation procedure. When,
For the combination of operation factors selected in the effective operation factor selection procedure, the quality index in each operation condition mesh calculated in the quality index calculation procedure is compared with a preset target quality index, and the target quality index is determined. A quality improvement operation condition extraction procedure for extracting an operation condition mesh to be achieved and a range of operation conditions corresponding to the operation condition mesh;
A computer program for causing a computer to execute a quality improvement guidance output procedure for outputting a combination of operation factors calculated in the quality improvement operation condition extraction procedure and a range of operation conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007176558A JP4855353B2 (en) | 2006-11-14 | 2007-07-04 | Product quality improvement condition analysis apparatus, analysis method, computer program, and computer-readable recording medium |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006308147 | 2006-11-14 | ||
JP2006308147 | 2006-11-14 | ||
JP2007176558A JP4855353B2 (en) | 2006-11-14 | 2007-07-04 | Product quality improvement condition analysis apparatus, analysis method, computer program, and computer-readable recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008146621A true JP2008146621A (en) | 2008-06-26 |
JP4855353B2 JP4855353B2 (en) | 2012-01-18 |
Family
ID=39606675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007176558A Expired - Fee Related JP4855353B2 (en) | 2006-11-14 | 2007-07-04 | Product quality improvement condition analysis apparatus, analysis method, computer program, and computer-readable recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4855353B2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010033536A (en) * | 2007-12-20 | 2010-02-12 | Nippon Steel Corp | Method, device for predicting product material value, method, program for determining handling condition, and computer readable recording medium |
JP2010218251A (en) * | 2009-03-17 | 2010-09-30 | Kobe Steel Ltd | Manufacturing condition determination system of metal strip |
JP2011145764A (en) * | 2010-01-12 | 2011-07-28 | Nippon Steel Corp | Operation analysis device, operation analysis method, computer program and computer-readable storage medium |
JP2013029916A (en) * | 2011-07-27 | 2013-02-07 | Toshiba Mitsubishi-Electric Industrial System Corp | Product defect factor analysis device |
JP2013140548A (en) * | 2012-01-06 | 2013-07-18 | Nippon Steel & Sumitomo Metal | Operation state evaluation device, operation state evaluation method, computer program, and computer-readable storage medium |
JP2017146899A (en) * | 2016-02-19 | 2017-08-24 | 株式会社日立製作所 | Yield prediction device and yield prediction method |
JP2018005588A (en) * | 2016-07-04 | 2018-01-11 | 株式会社日立製作所 | Failure cause search system and failure factor search method |
JP6312955B1 (en) * | 2017-07-19 | 2018-04-18 | 三菱電機株式会社 | Quality analysis apparatus and quality analysis method |
WO2019013225A1 (en) * | 2017-07-14 | 2019-01-17 | パナソニックIpマネジメント株式会社 | Display device, manufacturing system, and display method |
JP2019028932A (en) * | 2017-08-03 | 2019-02-21 | 株式会社日立製作所 | Defect factor extraction system and its method |
WO2019102614A1 (en) * | 2017-11-27 | 2019-05-31 | 東芝三菱電機産業システム株式会社 | Steel plant maintenance assistance device |
JP2019087061A (en) * | 2017-11-08 | 2019-06-06 | 三菱ケミカルエンジニアリング株式会社 | Production process analyzing method |
CN110948810A (en) * | 2018-09-27 | 2020-04-03 | 株式会社捷太格特 | Molding condition determination support device and injection molding machine |
JP2020106496A (en) * | 2018-12-28 | 2020-07-09 | 日本製鉄株式会社 | Quality prediction device, quality prediction method and program |
JP2020126454A (en) * | 2019-02-05 | 2020-08-20 | 株式会社日立製作所 | Analysis system |
JP2020140328A (en) * | 2019-02-27 | 2020-09-03 | 株式会社東芝 | Event occurrence probability analyzer and event occurrence probability analysis method |
JP2020190956A (en) * | 2019-05-22 | 2020-11-26 | 株式会社東芝 | Manufacturing condition output device, quality management system and program |
JP2021071834A (en) * | 2019-10-30 | 2021-05-06 | 太平洋セメント株式会社 | Support device for processing management, support method, support program and system |
CN113994286A (en) * | 2019-06-24 | 2022-01-28 | 纳米电子成像有限公司 | Predictive process control of a manufacturing process |
WO2023152794A1 (en) * | 2022-02-08 | 2023-08-17 | 日本電気株式会社 | Rule generation device, determination device, rule generation method, determination method, and program |
US12111922B2 (en) | 2020-02-28 | 2024-10-08 | Nanotronics Imaging, Inc. | Method, systems and apparatus for intelligently emulating factory control systems and simulating response data |
US12111923B2 (en) | 2019-10-08 | 2024-10-08 | Nanotronics Imaging, Inc. | Dynamic monitoring and securing of factory processes, equipment and automated systems |
CN113994286B (en) * | 2019-06-24 | 2024-11-08 | 纳米电子成像有限公司 | Predictive process control of a manufacturing process |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02183334A (en) * | 1989-01-10 | 1990-07-17 | Nippon Steel Corp | Quality diagnosis knowledge adjusting method |
JP2000057118A (en) * | 1998-07-27 | 2000-02-25 | Shinu Ko | Dynamic simulation system having learning function |
JP2002183250A (en) * | 2000-12-12 | 2002-06-28 | Nippon Steel Corp | Analyzer in manufacturing process, method of analysis in manufacturing process and computer-readable storage medium |
JP2003150234A (en) * | 2001-11-16 | 2003-05-23 | Nippon Steel Corp | Operation analyzing device and method for manufacturing process and computer readable storage medium |
JP2003328030A (en) * | 2002-03-08 | 2003-11-19 | Jfe Steel Kk | Apparatus for designing quality of steel product, and apparatus for aiding designing for optimum quality |
JP2004054420A (en) * | 2002-07-17 | 2004-02-19 | Nippon Steel Corp | Association analyzer for operation and quality in manufacturing process, association analyzing method and computer readable storage medium |
JP2006155557A (en) * | 2004-11-05 | 2006-06-15 | Nippon Steel Corp | Relation analysis device between operation and quality in manufacturing process, method, computer program and computer-readable recording medium |
JP2006318263A (en) * | 2005-05-13 | 2006-11-24 | Sharp Corp | Information analysis system, information analysis method and program |
JP2007058806A (en) * | 2005-08-26 | 2007-03-08 | Sumitomo Metal Ind Ltd | Production condition calculation method, quality adjustment method, steel production method, production condition calculation device, quality adjustment system, and computer program |
-
2007
- 2007-07-04 JP JP2007176558A patent/JP4855353B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02183334A (en) * | 1989-01-10 | 1990-07-17 | Nippon Steel Corp | Quality diagnosis knowledge adjusting method |
JP2000057118A (en) * | 1998-07-27 | 2000-02-25 | Shinu Ko | Dynamic simulation system having learning function |
JP2002183250A (en) * | 2000-12-12 | 2002-06-28 | Nippon Steel Corp | Analyzer in manufacturing process, method of analysis in manufacturing process and computer-readable storage medium |
JP2003150234A (en) * | 2001-11-16 | 2003-05-23 | Nippon Steel Corp | Operation analyzing device and method for manufacturing process and computer readable storage medium |
JP2003328030A (en) * | 2002-03-08 | 2003-11-19 | Jfe Steel Kk | Apparatus for designing quality of steel product, and apparatus for aiding designing for optimum quality |
JP2004054420A (en) * | 2002-07-17 | 2004-02-19 | Nippon Steel Corp | Association analyzer for operation and quality in manufacturing process, association analyzing method and computer readable storage medium |
JP2006155557A (en) * | 2004-11-05 | 2006-06-15 | Nippon Steel Corp | Relation analysis device between operation and quality in manufacturing process, method, computer program and computer-readable recording medium |
JP2006318263A (en) * | 2005-05-13 | 2006-11-24 | Sharp Corp | Information analysis system, information analysis method and program |
JP2007058806A (en) * | 2005-08-26 | 2007-03-08 | Sumitomo Metal Ind Ltd | Production condition calculation method, quality adjustment method, steel production method, production condition calculation device, quality adjustment system, and computer program |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010033536A (en) * | 2007-12-20 | 2010-02-12 | Nippon Steel Corp | Method, device for predicting product material value, method, program for determining handling condition, and computer readable recording medium |
JP2010218251A (en) * | 2009-03-17 | 2010-09-30 | Kobe Steel Ltd | Manufacturing condition determination system of metal strip |
JP2011145764A (en) * | 2010-01-12 | 2011-07-28 | Nippon Steel Corp | Operation analysis device, operation analysis method, computer program and computer-readable storage medium |
JP2013029916A (en) * | 2011-07-27 | 2013-02-07 | Toshiba Mitsubishi-Electric Industrial System Corp | Product defect factor analysis device |
JP2013140548A (en) * | 2012-01-06 | 2013-07-18 | Nippon Steel & Sumitomo Metal | Operation state evaluation device, operation state evaluation method, computer program, and computer-readable storage medium |
JP2017146899A (en) * | 2016-02-19 | 2017-08-24 | 株式会社日立製作所 | Yield prediction device and yield prediction method |
JP2018005588A (en) * | 2016-07-04 | 2018-01-11 | 株式会社日立製作所 | Failure cause search system and failure factor search method |
JP7133775B2 (en) | 2017-07-14 | 2022-09-09 | パナソニックIpマネジメント株式会社 | Display device, manufacturing system and display method |
JPWO2019013225A1 (en) * | 2017-07-14 | 2020-05-21 | パナソニックIpマネジメント株式会社 | Display device, manufacturing system, and display method |
WO2019013225A1 (en) * | 2017-07-14 | 2019-01-17 | パナソニックIpマネジメント株式会社 | Display device, manufacturing system, and display method |
TWI644222B (en) * | 2017-07-19 | 2018-12-11 | 日商三菱電機股份有限公司 | Quality analysis device and quality analysis method |
WO2019016892A1 (en) * | 2017-07-19 | 2019-01-24 | 三菱電機株式会社 | Quality analysis device and quality analysis method |
JP6312955B1 (en) * | 2017-07-19 | 2018-04-18 | 三菱電機株式会社 | Quality analysis apparatus and quality analysis method |
JP2019028932A (en) * | 2017-08-03 | 2019-02-21 | 株式会社日立製作所 | Defect factor extraction system and its method |
JP7019339B2 (en) | 2017-08-03 | 2022-02-15 | 株式会社日立製作所 | Defect cause extraction system and its method |
JP2019087061A (en) * | 2017-11-08 | 2019-06-06 | 三菱ケミカルエンジニアリング株式会社 | Production process analyzing method |
WO2019102614A1 (en) * | 2017-11-27 | 2019-05-31 | 東芝三菱電機産業システム株式会社 | Steel plant maintenance assistance device |
CN110869861B (en) * | 2017-11-27 | 2023-02-17 | 东芝三菱电机产业系统株式会社 | Maintenance support device for steel plant |
JPWO2019102614A1 (en) * | 2017-11-27 | 2020-04-02 | 東芝三菱電機産業システム株式会社 | Maintenance support equipment for steel plants |
CN110869861A (en) * | 2017-11-27 | 2020-03-06 | 东芝三菱电机产业系统株式会社 | Maintenance support device for steel plant |
JP7024800B2 (en) | 2017-11-27 | 2022-02-24 | 東芝三菱電機産業システム株式会社 | Steel plant maintenance support equipment |
CN110948810A (en) * | 2018-09-27 | 2020-04-03 | 株式会社捷太格特 | Molding condition determination support device and injection molding machine |
JP2020106496A (en) * | 2018-12-28 | 2020-07-09 | 日本製鉄株式会社 | Quality prediction device, quality prediction method and program |
JP2020126454A (en) * | 2019-02-05 | 2020-08-20 | 株式会社日立製作所 | Analysis system |
JP2020140328A (en) * | 2019-02-27 | 2020-09-03 | 株式会社東芝 | Event occurrence probability analyzer and event occurrence probability analysis method |
JP7204527B2 (en) | 2019-02-27 | 2023-01-16 | 株式会社東芝 | Accident probability analysis device and accident probability analysis method |
WO2020235194A1 (en) | 2019-05-22 | 2020-11-26 | 株式会社 東芝 | Manufacture condition output device, quality management system, and program |
JP2020190956A (en) * | 2019-05-22 | 2020-11-26 | 株式会社東芝 | Manufacturing condition output device, quality management system and program |
JP2022002111A (en) * | 2019-05-22 | 2022-01-06 | 株式会社東芝 | Manufacturing condition output device, quality management system, and program |
KR20230135177A (en) | 2019-05-22 | 2023-09-22 | 가부시끼가이샤 도시바 | Manufacture condition output device, quality management system, and program |
JP7297831B2 (en) | 2019-05-22 | 2023-06-26 | 株式会社東芝 | Manufacturing condition output device, quality control system and program |
KR20210047955A (en) | 2019-05-22 | 2021-04-30 | 가부시끼가이샤 도시바 | Manufacturing condition output devices, quality management systems and programs |
US11709483B2 (en) | 2019-06-24 | 2023-07-25 | Nanotronics Imaging, Inc. | Predictive process control for a manufacturing process |
US11669078B2 (en) | 2019-06-24 | 2023-06-06 | Nanotronics Imaging, Inc. | Predictive process control for a manufacturing process |
CN113994286A (en) * | 2019-06-24 | 2022-01-28 | 纳米电子成像有限公司 | Predictive process control of a manufacturing process |
JP2022537811A (en) * | 2019-06-24 | 2022-08-30 | ナノトロニクス イメージング インコーポレイテッド | Predictive process control for manufacturing processes |
JP7389510B2 (en) | 2019-06-24 | 2023-11-30 | ナノトロニクス イメージング インコーポレイテッド | Predictive process control for manufacturing processes |
CN113994286B (en) * | 2019-06-24 | 2024-11-08 | 纳米电子成像有限公司 | Predictive process control of a manufacturing process |
US12111923B2 (en) | 2019-10-08 | 2024-10-08 | Nanotronics Imaging, Inc. | Dynamic monitoring and securing of factory processes, equipment and automated systems |
JP2021071834A (en) * | 2019-10-30 | 2021-05-06 | 太平洋セメント株式会社 | Support device for processing management, support method, support program and system |
JP7518591B2 (en) | 2019-10-30 | 2024-07-18 | 太平洋セメント株式会社 | Process management support device, support method, support program, and system |
US12111922B2 (en) | 2020-02-28 | 2024-10-08 | Nanotronics Imaging, Inc. | Method, systems and apparatus for intelligently emulating factory control systems and simulating response data |
WO2023152794A1 (en) * | 2022-02-08 | 2023-08-17 | 日本電気株式会社 | Rule generation device, determination device, rule generation method, determination method, and program |
US12140926B2 (en) | 2023-07-17 | 2024-11-12 | Nanotronics Imaging, Inc. | Assembly error correction for assembly lines |
Also Published As
Publication number | Publication date |
---|---|
JP4855353B2 (en) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4855353B2 (en) | Product quality improvement condition analysis apparatus, analysis method, computer program, and computer-readable recording medium | |
JP5157874B2 (en) | Product material value prediction method, apparatus, operating condition determination method, program, and computer-readable recording medium | |
Lieber et al. | Quality prediction in interlinked manufacturing processes based on supervised & unsupervised machine learning | |
JP4739447B2 (en) | Failure factor analysis display method and failure factor analysis display device | |
JP5867349B2 (en) | Quality prediction apparatus, operation condition determination method, quality prediction method, computer program, and computer-readable storage medium | |
JP5604945B2 (en) | Quality prediction apparatus, quality prediction method, computer program, and computer-readable recording medium | |
JP2009282926A (en) | Time-series data analyzing system, method, and program | |
US20190265679A1 (en) | Work Improvement Support Device and Work Improvement Support Method | |
WO2018186090A1 (en) | Model variable candidate generation device and method | |
WO2017037881A1 (en) | Online prediction system and method | |
Siregar et al. | Forecasting of raw material needed for plastic products based in income data using ARIMA method | |
WO2020148918A1 (en) | Metal material design support method and design support device | |
JP5003362B2 (en) | Product quality control method and control device | |
JP4299508B2 (en) | Operation and quality related analysis device in manufacturing process, related analysis method, and computer-readable storage medium | |
Bidyuk et al. | An Approach to Identifying and Filling Data Gaps in Machine Learning Procedures | |
KR20230116870A (en) | Quality anomaly analysis method, metal material manufacturing method, and quality anomaly analysis device | |
CN108090241B (en) | Trend variable identification method and system of continuous process | |
KR100736033B1 (en) | Apparatus and method for growing automatically up business process | |
JP5488140B2 (en) | Quality prediction apparatus, quality prediction method, computer program, and computer-readable recording medium | |
KR101609292B1 (en) | Apparatus and method for managing a research and development project | |
JP5522060B2 (en) | Quality prediction apparatus, operation condition determination method, quality prediction method, computer program, and computer-readable storage medium | |
Kulakov et al. | Timing models in the reengineering of metallurgical production systems | |
CN114676868B (en) | Logistics cargo quantity prediction method, device, computer equipment and storage medium | |
JP2020071493A (en) | Result prediction device, result prediction method and program | |
US20210191933A1 (en) | Data analysis device and data analysis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111026 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4855353 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |