Nothing Special   »   [go: up one dir, main page]

JP2008144645A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2008144645A
JP2008144645A JP2006331712A JP2006331712A JP2008144645A JP 2008144645 A JP2008144645 A JP 2008144645A JP 2006331712 A JP2006331712 A JP 2006331712A JP 2006331712 A JP2006331712 A JP 2006331712A JP 2008144645 A JP2008144645 A JP 2008144645A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
engine
catalyst
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006331712A
Other languages
Japanese (ja)
Other versions
JP4872637B2 (en
Inventor
Hisaya Kawabata
久也 川端
Masahiko Shigetsu
雅彦 重津
Masaaki Akamine
真明 赤峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2006331712A priority Critical patent/JP4872637B2/en
Publication of JP2008144645A publication Critical patent/JP2008144645A/en
Application granted granted Critical
Publication of JP4872637B2 publication Critical patent/JP4872637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To always surely inhibit emission of unburned exhaust gas components during cold start of an engine by using activated oxygen component in a hybrid vehicle on which the engine is frequently started/stopped and cold start of the engine frequently occurs. <P>SOLUTION: The vehicle provided with two power sources of the engine 10 and a motor 20 is provided with an ozone supply passage 60 capable of supplying ozone to an upstream part of an exhaust gas conversion catalyst 40 in the exhaust gas passage 30, an air pump 61, and an ozone forming device 62. A second control unit 80 operates the ozone supply passage 60, the air pump 61 and the ozone forming device 62 when the engine is started, and raises temperature of the exhaust gas conversion catalyst 40 to second predetermined temperature higher than first predetermined temperature by using a heating heater 50 when stop conditions of the engine 10 are satisfied before temperature of the exhaust gas conversion catalyst 40 reaches the first predetermined temperature lower than catalyst activation temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排気ガス浄化装置、特に、内燃機関と電動機の2つの動力源を備えた車両における排気ガス浄化装置に関し、排気エミッションの向上を図る技術分野に属する。   The present invention relates to an exhaust gas purification device, and more particularly to an exhaust gas purification device in a vehicle equipped with two power sources, that is, an internal combustion engine and an electric motor, and belongs to a technical field for improving exhaust emission.

一般に、ガソリン等の化石燃料をエネルギ源とする車両においては、エンジン始動直後の数十秒間は、排気ガス温度が比較的低いために、エンジンの排気ガス通路に配設された排気ガス浄化触媒における白金(Pt)やパラジウム(Pd)等の触媒金属が活性化しておらず、未燃排気ガス成分である炭化水素(HC)及び一酸化炭素(CO)の浄化が困難であることが知られている。これを改善する方法の1つとして、従来、触媒をエキゾーストマニホルドの直下に配設した「直キャタ」と通称されるマニホルド触媒が広く採用されている。しかし、この方法では、未だ充分満足な浄化性能が得られない、という問題がある。   In general, in a vehicle using fossil fuel such as gasoline as an energy source, the exhaust gas temperature is relatively low for several tens of seconds immediately after the engine is started. Therefore, in the exhaust gas purification catalyst disposed in the exhaust gas passage of the engine. It is known that catalytic metals such as platinum (Pt) and palladium (Pd) are not activated and it is difficult to purify hydrocarbons (HC) and carbon monoxide (CO), which are unburned exhaust gas components. Yes. As one method for improving this, conventionally, a manifold catalyst commonly referred to as “straight catalyzer” in which the catalyst is disposed directly under the exhaust manifold has been widely adopted. However, this method still has a problem that a sufficiently satisfactory purification performance cannot be obtained.

そこで、ゼオライトをはじめとする炭化水素吸着材をマニホルド触媒材として用いることが行われている。すなわち、排気ガス温度が比較的低いときは、エンジンから排出された未燃炭化水素を炭化水素吸着材の細孔内に吸着させ、排気ガス温度が約200℃程度まで上昇したときには、炭化水素吸着材に吸着させていた未燃炭化水素を放出させて、約200℃程度である程度の触媒活性が得られる触媒金属と反応させるのである。しかし、この方法では、ゼオライトをはじめとするアルミノシリケート系の多孔質材は高温化でその結晶構造が崩れる、という性質があるので、マニホルド触媒材として用いたときには、時間の経過と共に浄化性能が次第に低下する、という問題がある。   Therefore, hydrocarbon adsorbents such as zeolite have been used as manifold catalyst materials. That is, when the exhaust gas temperature is relatively low, unburned hydrocarbons discharged from the engine are adsorbed in the pores of the hydrocarbon adsorbent, and when the exhaust gas temperature rises to about 200 ° C., the hydrocarbon adsorption Unburned hydrocarbons adsorbed on the material are released and reacted with a catalytic metal that provides a certain degree of catalytic activity at about 200 ° C. However, in this method, the aluminosilicate porous material such as zeolite has a property that its crystal structure is destroyed at a high temperature, so when used as a manifold catalyst material, the purification performance gradually increases over time. There is a problem of lowering.

そこで、ゼオライト等の炭化水素吸着材を用いずに、活性酸素成分により、未燃排気ガス成分を酸化浄化する方法が提案されている。例えば特許文献1には、空気に高電圧を作用させることにより、活性酸素成分であるオゾン(O)を発生させ、このオゾンを排気ガス通路の触媒よりも上流部に流し込んで、排気ガス中に含まれるHC成分の一部をCOに転化する技術が開示されている。ここで、一般に、オゾンは酸化力が強く、且つ、室温程度の比較的低い温度では生成してから分解するまでの寿命が長いので、排気ガス温度が比較的低い期間中(例えば約100℃前後)におけるHCやCOの未燃排気ガス成分の酸化浄化には有効な方法であると考えられる。 Therefore, a method for oxidizing and purifying an unburned exhaust gas component with an active oxygen component without using a hydrocarbon adsorbent such as zeolite has been proposed. For example, Patent Document 1 discloses that ozone (O 3 ), which is an active oxygen component, is generated by applying a high voltage to air, and this ozone is caused to flow upstream from the catalyst in the exhaust gas passage. Discloses a technique for converting a part of the HC component contained in CO into CO. Here, in general, ozone has a strong oxidizing power and has a long life from decomposition to decomposition at a relatively low temperature of about room temperature, so that the exhaust gas temperature is relatively low (for example, about 100 ° C.). This is considered to be an effective method for oxidizing and purifying unburned exhaust gas components such as HC and CO.

一方、エンジンとモータの2つの動力源を備えたハイブリッド車両(HEV)は、環境への負荷が少なく、且つ、燃費低減にも貢献し得る。ところが、ハイブリッド車両は、エンジンの始動・停止の頻度が高いから、エンジンの冷間始動の頻度が高くなり、その結果、排気ガス温度が比較的低い期間中におけるHCやCOの未燃排気ガス成分の排出を抑制することが重要な課題となる。そこで、例えば特許文献2には、ハイブリッド車両において、触媒を活性させるための触媒加熱ヒータを設け、モータでの走行開始時は、この触媒加熱ヒータで触媒を加熱し、触媒温度が設定温度以上となった段階でエンジンを始動する技術が開示されている。   On the other hand, a hybrid vehicle (HEV) equipped with two power sources of an engine and a motor has a low environmental load and can contribute to a reduction in fuel consumption. However, since the frequency of engine start / stop is high in the hybrid vehicle, the frequency of cold start of the engine is high, and as a result, the unburned exhaust gas components of HC and CO during a period where the exhaust gas temperature is relatively low. Suppressing emissions is an important issue. Therefore, for example, in Patent Document 2, a catalyst heater for activating the catalyst is provided in a hybrid vehicle, and at the start of running by the motor, the catalyst is heated by the catalyst heater so that the catalyst temperature is equal to or higher than a set temperature. A technique for starting the engine at a later stage is disclosed.

特開2005−207316(段落0046〜0050)JP-A-2005-207316 (paragraphs 0046 to 0050) 特開2005−146910(段落0003)JP 2005-146910 (paragraph 0003)

このような状況の下、本発明の発明者等は、エンジンの冷間始動が頻繁に起こるハイブリッド車両において、オゾン等の活性酸素成分を利用して、HCやCOの未燃排気ガス成分を酸化浄化する技術について、鋭意研究・検討を重ねていたところ、次のような知見を得た。すなわち、エンジンを冷間始動させると共に排気ガス浄化触媒よりも排気ガス通路の上流部に活性酸素成分を供給し、次に、エンジンを停止させると共に活性酸素成分の供給を停止し、再び、エンジンを冷間始動させると共に…、と繰り返し行って、エンジンの冷間始動時の排気ガス浄化性能を調べていた。その結果、触媒温度が触媒活性温度より低い約200℃前後の温度まで上昇する前にエンジンが停止したときは、触媒温度が前記温度を超えて上昇した後にエンジンが停止したときに比べて、次のエンジンの冷間始動時の排気ガス浄化性能が低くなるのであった。この理由は、必ずしも明らかではないが、排気ガス通路に過不足なく供給された活性酸素成分が排気ガス通路内でHCやCOの未燃排気ガス成分と100%の確率で接触し反応し消費されることがないので、残余の活性酸素成分が未だ充分に活性化しきっていない触媒に到達して、触媒の表面に未燃炭化水素から生成した「含酸素種」が形成され、謂わば、未燃炭化水素から生成した「含酸素種」により触媒が被毒された状態となり、この状態が次のエンジンの冷間始動時における触媒機能を何らかの形で阻害することが一因であろうと考えられる。   Under such circumstances, the inventors of the present invention oxidize unburned exhaust gas components such as HC and CO using active oxygen components such as ozone in a hybrid vehicle in which cold starting of the engine frequently occurs. As a result of intensive research and examination on purification technology, the following findings were obtained. That is, the engine is cold started and the active oxygen component is supplied to the upstream portion of the exhaust gas passage from the exhaust gas purification catalyst. Next, the engine is stopped and the supply of the active oxygen component is stopped. The engine was repeatedly started with a cold start, and the exhaust gas purification performance during the cold start of the engine was investigated. As a result, when the engine is stopped before the catalyst temperature rises to about 200 ° C., which is lower than the catalyst activation temperature, compared to when the engine is stopped after the catalyst temperature rises above the temperature, The exhaust gas purification performance at the time of cold start of the engine of this was low. The reason for this is not necessarily clear, but the active oxygen component supplied to the exhaust gas passage without excess or deficiency contacts and reacts with unburned exhaust gas components such as HC and CO in the exhaust gas passage with a probability of 100%. Therefore, the remaining active oxygen component reaches the catalyst that has not been fully activated, and an “oxygenated species” generated from unburned hydrocarbons is formed on the surface of the catalyst. It is thought that the catalyst is poisoned by the "oxygenated species" generated from the fuel hydrocarbons, and this state is thought to be partly due to the inhibition of the catalyst function during the cold start of the next engine. .

本発明は、エンジンの始動・停止が頻繁に起こり、したがってエンジンの冷間始動が頻繁に起こるハイブリッド車両における前記のような現状に鑑みてなされたもので、活性酸素成分を利用して、エンジンの冷間始動時の未燃排気ガス成分の排出を常に確実に抑制することを課題とする。   The present invention has been made in view of the above-described situation in a hybrid vehicle in which engine start / stop frequently occurs, and therefore engine cold start frequently occurs. It is an object to always and reliably suppress the discharge of unburned exhaust gas components during cold start.

前記課題を解決するため、請求項1に記載の発明は、内燃機関と電動機の2つの動力源を備えた車両における前記内燃機関の排気ガス浄化装置であって、前記内燃機関の排気ガス通路に配設された排気ガス浄化触媒と、この排気ガス浄化触媒よりも前記排気ガス通路の上流部に活性酸素成分を供給することが可能な活性酸素成分供給手段と、前記内燃機関が始動したときに前記活性酸素成分供給手段を作動させる活性酸素成分供給制御手段と、前記排気ガス浄化触媒の温度が触媒活性温度より低い第1の所定温度まで上昇する前に前記内燃機関の停止条件が成立したときは前記排気ガス浄化触媒の温度を前記第1の所定温度より高い第2の所定温度まで上昇させる触媒温度制御手段とを有することを特徴とする。   In order to solve the above-described problem, an invention according to claim 1 is an exhaust gas purification apparatus for an internal combustion engine in a vehicle having two power sources, that is, an internal combustion engine and an electric motor. An disposed exhaust gas purification catalyst, active oxygen component supply means capable of supplying an active oxygen component to an upstream portion of the exhaust gas passage from the exhaust gas purification catalyst, and when the internal combustion engine is started Active oxygen component supply control means for operating the active oxygen component supply means and when the stop condition of the internal combustion engine is established before the temperature of the exhaust gas purification catalyst rises to a first predetermined temperature lower than the catalyst activation temperature Comprises catalyst temperature control means for raising the temperature of the exhaust gas purification catalyst to a second predetermined temperature higher than the first predetermined temperature.

次に、請求項2に記載の発明は、請求項1に記載の排気ガス浄化装置であって、前記第1の所定温度は150〜250℃、前記第2の所定温度は450〜550℃であることを特徴とする。   Next, the invention according to claim 2 is the exhaust gas purifying apparatus according to claim 1, wherein the first predetermined temperature is 150 to 250 ° C, and the second predetermined temperature is 450 to 550 ° C. It is characterized by being.

次に、請求項3に記載の発明は、請求項1又は2に記載の排気ガス浄化装置であって、前記触媒温度制御手段は、内燃機関の継続運転、又は、車両が備蓄する電気エネルギを用いた加熱の少なくともいずれかにより、排気ガス浄化触媒の温度を第2の所定温度まで上昇させることを特徴とする。   Next, the invention according to claim 3 is the exhaust gas purifying apparatus according to claim 1 or 2, wherein the catalyst temperature control means is configured to continuously operate the internal combustion engine or to store electric energy stored in the vehicle. The temperature of the exhaust gas purification catalyst is raised to a second predetermined temperature by at least one of the heating used.

まず、請求項1に記載の発明によれば、内燃機関が始動したときに排気ガス浄化触媒よりも排気ガス通路の上流部に活性酸素成分を供給すると共に、前記排気ガス浄化触媒の温度が触媒活性温度より低い第1の所定温度まで上昇する前に内燃機関の停止条件が成立したときは排気ガス浄化触媒の温度を前記第1の所定温度より高い第2の所定温度まで上昇させるようにしたから、触媒の表面に形成され残存した未燃炭化水素から生成した「含酸素種」が高温により除去され、次のエンジンの冷間始動時における触媒機能が阻害されずに回復し、その結果、未燃排気ガス成分と未だ充分に活性化しきっていない触媒とが接触することによる浄化の効果が低下せずに、エンジンの冷間始動時の未燃排気ガス成分の排出を常に確実に抑制することが可能となる。   First, according to the first aspect of the present invention, when the internal combustion engine is started, the active oxygen component is supplied to the upstream portion of the exhaust gas passage with respect to the exhaust gas purification catalyst, and the temperature of the exhaust gas purification catalyst is controlled by the catalyst. When the internal combustion engine stop condition is satisfied before the temperature rises to the first predetermined temperature lower than the activation temperature, the temperature of the exhaust gas purification catalyst is raised to a second predetermined temperature higher than the first predetermined temperature. From the "oxygenated species" generated from the remaining unburned hydrocarbons formed on the surface of the catalyst is removed at a high temperature, and the catalytic function during the cold start of the next engine is restored without being disturbed. The purification effect due to the contact between the unburned exhaust gas component and the catalyst that has not been fully activated does not deteriorate, and the emission of the unburned exhaust gas component during the cold start of the engine is always reliably suppressed. Can The ability.

次に、請求項2に記載の発明によれば、前記請求項1の効果に加えて、前記第1の所定温度が150〜250℃、前記第2の所定温度が450〜550℃に限定される。   Next, according to the invention described in claim 2, in addition to the effect of claim 1, the first predetermined temperature is limited to 150 to 250 ° C and the second predetermined temperature is limited to 450 to 550 ° C. The

次に、請求項3に記載の発明によれば、前記請求項1又は2の効果に加えて、内燃機関の継続運転、及び/又は、車両が備蓄する電気エネルギ(例えば電動機駆動用電池)を用いた加熱により、排気ガス浄化触媒の温度を第2の所定温度まで確実に上昇させることが可能となる。以下、最良の実施形態及び実験例を通して本発明をさらに詳しく説明する。   Next, according to the third aspect of the invention, in addition to the effect of the first or second aspect, the continuous operation of the internal combustion engine and / or the electric energy stored in the vehicle (for example, a battery for driving the motor) is obtained. By the heating used, it becomes possible to reliably raise the temperature of the exhaust gas purification catalyst to the second predetermined temperature. Hereinafter, the present invention will be described in more detail through the best embodiment and experimental examples.

図1は、本実施形態に係る車両の要部構成と制御システムとを併せて示すブロック図である。この車両1は、所謂、シリーズ/パラレルタイプのハイブリッド車両であって、エンジン10とモータ20の2つの動力源を備えている。エンジン10及び/又はモータ20の駆動力は、変速機11及び差動装置12を経由して左右の駆動輪に伝達される。モータ20は、エンジン10により駆動されて発電を行うジェネレータ(発電機)としても機能する。モータ20とバッテリ22はインバータ21を介して電気的に接続され、モータ20が動力源として機能するときはバッテリ22からモータ20へ電力が供給され、モータ20がジェネレータとして機能するときはモータ20からバッテリ22へ電力が供給される。   FIG. 1 is a block diagram showing a configuration of a main part of a vehicle according to the present embodiment and a control system. This vehicle 1 is a so-called series / parallel type hybrid vehicle, and includes two power sources of an engine 10 and a motor 20. The driving force of the engine 10 and / or the motor 20 is transmitted to the left and right drive wheels via the transmission 11 and the differential device 12. The motor 20 also functions as a generator (generator) that is driven by the engine 10 to generate power. The motor 20 and the battery 22 are electrically connected via the inverter 21. When the motor 20 functions as a power source, electric power is supplied from the battery 22 to the motor 20, and when the motor 20 functions as a generator, the motor 20 Electric power is supplied to the battery 22.

エンジン10の排気ガス通路30に排気ガス浄化触媒40が配設されている。この排気ガス浄化触媒40よりも排気ガス通路30の上流部にオゾン供給通路60が合流している。オゾン供給通路60には上流側からエアポンプ61とオゾン生成装置(オゾナイザ)62とが配設されて、これら60〜62により、排気ガス浄化触媒40よりも排気ガス通路30の上流部に活性酸素成分としてのオゾンを供給することが可能な活性酸素成分供給手段が構成されている。ここで、オゾン生成装置62は、例えば、エアポンプ61で導入されたエアを無声放電させることによりオゾンを発生させるものである。   An exhaust gas purification catalyst 40 is disposed in the exhaust gas passage 30 of the engine 10. An ozone supply passage 60 joins upstream of the exhaust gas purification catalyst 40 in the exhaust gas passage 30. An air pump 61 and an ozone generator (ozonizer) 62 are disposed in the ozone supply passage 60 from the upstream side. By these 60 to 62, the active oxygen component is disposed upstream of the exhaust gas purification catalyst 40 in the upstream portion of the exhaust gas passage 30. An active oxygen component supply means capable of supplying ozone as a component is configured. Here, the ozone generator 62 generates ozone by silently discharging the air introduced by the air pump 61, for example.

この車両の第1コントロールユニット70は、排気ガス通路30内の排気ガスの温度を検出する排気ガス温度センサ31からの信号や、排気ガス浄化触媒40の温度を検出する触媒温度センサ41からの信号、あるいは図外のアクセルペダルの踏み込み量を検出するアクセル開度センサ71からの信号等を入力する他、例えばエンジン10の回転数やスロットル開度等に基いてエンジン10の運転状態を検出する手段として機能したり、その検出結果に応じてエンジン10を制御する手段として機能したり、インバータ21とバッテリ22間の電力の授受に基いてバッテリ22の蓄電量を検出する手段として機能したり、その検出結果に応じてモータ20を制御する手段として機能したり、あるいは排気ガス浄化触媒40の状態を調節する手段として機能する。   The first control unit 70 of this vehicle has a signal from the exhaust gas temperature sensor 31 that detects the temperature of the exhaust gas in the exhaust gas passage 30 and a signal from the catalyst temperature sensor 41 that detects the temperature of the exhaust gas purification catalyst 40. In addition to inputting a signal from an accelerator opening sensor 71 for detecting the amount of depression of an accelerator pedal (not shown), for example, means for detecting the operating state of the engine 10 based on, for example, the rotational speed of the engine 10 or the throttle opening Function as a means for controlling the engine 10 according to the detection result, function as a means for detecting the amount of electricity stored in the battery 22 based on power transfer between the inverter 21 and the battery 22, It functions as a means for controlling the motor 20 in accordance with the detection result, or adjusts the state of the exhaust gas purification catalyst 40. To function as.

また、この車両の第2コントロールユニット80は、前記第1コントロールユニット70からの触媒状態調節信号を受けて、前記エアポンプ61及び前記オゾン生成装置62に制御信号を出力する他、バッテリ22の電力を用いて加熱ヒータ50を作動させ、排気ガス浄化触媒40の温度を上昇させる。   Further, the second control unit 80 of the vehicle receives the catalyst state adjustment signal from the first control unit 70 and outputs a control signal to the air pump 61 and the ozone generator 62, and also uses the power of the battery 22. The heater 50 is operated to increase the temperature of the exhaust gas purification catalyst 40.

この車両においては、例えば、発進時及び低トルク走行時は、バッテリ22からモータ20へ電力が供給され、モータ20の駆動力で車両が走行する。中トルク走行時は、エンジン10が始動し、エンジン10の駆動力で車両が走行する。そして、高トルク走行時は、エンジン10の駆動力とモータ20の駆動力とで車両が走行する。バッテリ22の蓄電量が少なくなると、中トルク走行時に、要求トルク以上のトルクでエンジン10が駆動し、その余剰のトルクでジェネレータ20を駆動して発電した電力をバッテリ22に充電する。このように、この車両においては、発進時及び低トルク走行時はエンジン10が停止するから、エンジン10の始動・停止の頻度が高くなり、したがってエンジン10の冷間始動の頻度が高くなり、その結果、排気ガス温度が比較的低い期間中におけるHCやCOの未燃排気ガス成分の排出を抑制することが重要な課題となる。   In this vehicle, for example, when starting and during low torque traveling, electric power is supplied from the battery 22 to the motor 20, and the vehicle travels with the driving force of the motor 20. During medium torque travel, the engine 10 is started and the vehicle travels with the driving force of the engine 10. During high torque traveling, the vehicle travels with the driving force of the engine 10 and the driving force of the motor 20. When the amount of power stored in the battery 22 decreases, the engine 10 is driven with a torque that is equal to or greater than the required torque during medium torque travel, and the battery 20 is charged with the generated power by driving the generator 20 with the surplus torque. Thus, in this vehicle, since the engine 10 is stopped when starting and running at a low torque, the frequency of start / stop of the engine 10 is increased, and therefore the frequency of cold start of the engine 10 is increased. As a result, it becomes an important issue to suppress the emission of unburned exhaust gas components of HC and CO during a period in which the exhaust gas temperature is relatively low.

図2は、その課題を解決するために前記第1、第2コントロールユニット70,80が行う具体的制御動作の1例を示すフローチャートである。まず、エンジン10が始動すると(ステップS1)、排気ガス温度センサ31の検出温度に基いて排気ガス温度が所定温度以下であるか否かを判定する(ステップS2)。ここで、所定温度は、例えば200℃である。その結果、排気ガス温度が所定温度以上のときは、エンドとなるが、排気ガス温度が所定温度以下のときは、活性酸素成分供給手段60〜62を作動させて、排気ガス浄化触媒40よりも排気ガス通路30の上流部にオゾンを供給する(ステップS3)。これにより、エンジン10の冷間始動時に、オゾンを利用して、HCやCOの未燃排気ガス成分を酸化浄化することができる。   FIG. 2 is a flowchart showing an example of a specific control operation performed by the first and second control units 70 and 80 in order to solve the problem. First, when the engine 10 is started (step S1), it is determined whether or not the exhaust gas temperature is equal to or lower than a predetermined temperature based on the temperature detected by the exhaust gas temperature sensor 31 (step S2). Here, the predetermined temperature is 200 ° C., for example. As a result, when the exhaust gas temperature is equal to or higher than the predetermined temperature, the end is reached, but when the exhaust gas temperature is equal to or lower than the predetermined temperature, the active oxygen component supply means 60 to 62 are operated so Ozone is supplied to the upstream portion of the exhaust gas passage 30 (step S3). Thereby, when the engine 10 is cold started, unburned exhaust gas components such as HC and CO can be oxidized and purified using ozone.

次いで、エンジン10の停止条件が成立したか否かを判定する(ステップS4)。ここで、エンジン10の停止条件は、例えば、前述したように、中トルク走行や高トルク走行から低トルク走行に移行したことである。あるいは、一時停止中にアイドルストップ条件が満足されたことである。その結果、エンジン10の停止条件が成立していないときは、エンドとなるが、エンジン10の停止条件が成立しているときは、活性酸素成分供給手段60〜62を非作動として、排気ガス浄化触媒40よりも排気ガス通路30の上流部へのオゾンの供給を停止すると共に、エンジン10を停止する(ステップS5)。   Next, it is determined whether or not a stop condition for the engine 10 is satisfied (step S4). Here, the stop condition of the engine 10 is, for example, the transition from the medium torque traveling or the high torque traveling to the low torque traveling as described above. Alternatively, the idle stop condition is satisfied during the temporary stop. As a result, when the stop condition of the engine 10 is not satisfied, the end is reached, but when the stop condition of the engine 10 is satisfied, the active oxygen component supply means 60 to 62 are deactivated and the exhaust gas purification is performed. The supply of ozone to the upstream portion of the exhaust gas passage 30 from the catalyst 40 is stopped, and the engine 10 is stopped (step S5).

次いで、触媒温度センサ41の検出温度に基いて排気ガス浄化触媒40の温度tmpが第1の所定温度tmp1以下であるか否かを判定する(ステップS6)。ここで、第1の所定温度tmp1は、例えば150〜250℃である。この第1の所定温度tmp1は、排気ガス浄化触媒40の活性温度T(例えば、T50あるいはライトオフ温度と称され、排気ガス浄化率が50%となるときの温度)よりも低い温度である。その結果、触媒温度tmpが第1の所定温度tmp1以上のときは、エンドとなるが、触媒温度tmpが第1の所定温度tmp1以下のときは、加熱ヒータ50を作動させて、排気ガス浄化触媒40を加熱する(ステップS7)。これにより、排気ガス浄化触媒40の温度tmpが第1の所定温度tmp1まで上昇する前にエンジン10の停止条件が成立したときは、排気ガス浄化触媒40の温度tmpが強制的に上昇されることになる。   Next, based on the temperature detected by the catalyst temperature sensor 41, it is determined whether or not the temperature tmp of the exhaust gas purification catalyst 40 is equal to or lower than a first predetermined temperature tmp1 (step S6). Here, the first predetermined temperature tmp1 is, for example, 150 to 250 ° C. This first predetermined temperature tmp1 is a temperature lower than the activation temperature T of the exhaust gas purification catalyst 40 (for example, the temperature at which the exhaust gas purification rate is 50%, referred to as T50 or light-off temperature). As a result, when the catalyst temperature tmp is equal to or higher than the first predetermined temperature tmp1, the end is reached. 40 is heated (step S7). Thereby, when the stop condition of the engine 10 is satisfied before the temperature tmp of the exhaust gas purification catalyst 40 rises to the first predetermined temperature tmp1, the temperature tmp of the exhaust gas purification catalyst 40 is forcibly raised. become.

そして、排気ガス浄化触媒40の温度tmpが第2の所定温度tmp2以上であるか否かを判定する(ステップS8)。ここで、第2の所定温度tmp2は、第1の所定温度tmp1よりも高い温度であって、例えば450〜550℃である。その結果、触媒温度tmpが第2の所定温度tmp2以上のときは、エンドとなるが、触媒温度tmpが第2の所定温度tmp2以下のときは、排気ガス浄化触媒40の加熱を続行する。これにより、排気ガス浄化触媒40の温度tmpが第1の所定温度tmp1まで上昇する前にエンジン10の停止条件が成立したときは、排気ガス浄化触媒40の温度tmpが強制的に第1の所定温度tmp1よりも高い第2の所定温度tmp2まで上昇されることになる。   Then, it is determined whether or not the temperature tmp of the exhaust gas purification catalyst 40 is equal to or higher than a second predetermined temperature tmp2 (step S8). Here, the second predetermined temperature tmp2 is a temperature higher than the first predetermined temperature tmp1, and is 450 to 550 ° C., for example. As a result, when the catalyst temperature tmp is equal to or higher than the second predetermined temperature tmp2, the end is reached, but when the catalyst temperature tmp is equal to or lower than the second predetermined temperature tmp2, heating of the exhaust gas purification catalyst 40 is continued. Thus, when the stop condition of the engine 10 is satisfied before the temperature tmp of the exhaust gas purification catalyst 40 rises to the first predetermined temperature tmp1, the temperature tmp of the exhaust gas purification catalyst 40 is forcibly set to the first predetermined temperature tmp1. The temperature is raised to a second predetermined temperature tmp2 higher than the temperature tmp1.

以上のように、本実施形態では、エンジン10が始動したときに(ステップS1)、排気ガス浄化触媒40よりも排気ガス通路30の上流部にオゾンを供給すると共に(ステップS3)、排気ガス浄化触媒40の温度tmpが触媒活性温度Tより低い第1の所定温度tmp1まで上昇する前にエンジン10の停止条件が成立したときは(ステップS4でYES〜ステップS6でYES)、排気ガス浄化触媒40の温度tmpを第1の所定温度tmp1より高い第2の所定温度tmp2まで上昇させるようにしたから(ステップS7及びステップS8でYES)、未だ充分に活性化しきっていない触媒40に残余のオゾンが到達することで触媒40の表面に形成され残存した未燃炭化水素から生成した「含酸素種」が高温(第2の所定温度tmp2)により除去され、次のエンジン10の冷間始動時における触媒機能が阻害されずに回復し、その結果、未燃排気ガス成分と未だ充分に活性化しきっていない触媒40とが接触することによる浄化の効果が低下せずに、エンジン10の冷間始動時の未燃排気ガス成分の排出を常に確実に抑制することが可能となる。   As described above, in the present embodiment, when the engine 10 is started (step S1), ozone is supplied to the upstream portion of the exhaust gas passage 30 with respect to the exhaust gas purification catalyst 40 (step S3), and the exhaust gas purification is performed. When the stop condition of the engine 10 is satisfied before the temperature tmp of the catalyst 40 rises to the first predetermined temperature tmp1 lower than the catalyst activation temperature T (YES in step S4 to YES in step S6), the exhaust gas purification catalyst 40 Is increased to a second predetermined temperature tmp2 higher than the first predetermined temperature tmp1 (YES in steps S7 and S8), so that residual ozone is not yet fully activated in the catalyst 40. The “oxygenated species” generated from the remaining unburned hydrocarbons formed on the surface of the catalyst 40 by reaching the high temperature (second predetermined temperature tm 2), the catalyst function at the time of the cold start of the next engine 10 is restored without being disturbed, and as a result, the unburned exhaust gas component and the catalyst 40 which has not been fully activated come into contact with each other. Therefore, it is possible to always reliably suppress the discharge of unburned exhaust gas components when the engine 10 is cold-started.

なお、前記実施形態は、本発明の最良の実施形態ではあるが、特許請求の範囲を逸脱しない限り、種々の修正や変更を施してよいことはいうまでもない。例えば、前記実施形態では、車両が備蓄する電気エネルギ(バッテリ22)を用いたヒータ加熱により、排気ガス浄化触媒40の温度tmpを第2の所定温度tmp2まで上昇させるようにしたが、これに代えて又はこれと共に、エンジン10の停止条件成立後も(ステップS4)、エンジン1を継続運転することにより、排気ガス浄化触媒40の温度tmpを第2の所定温度tmp2まで上昇させるようにしてもよい。   The above embodiment is the best embodiment of the present invention, but it goes without saying that various modifications and changes may be made without departing from the scope of the claims. For example, in the above-described embodiment, the temperature tmp of the exhaust gas purification catalyst 40 is raised to the second predetermined temperature tmp2 by heating the heater using the electric energy (battery 22) stored in the vehicle. In addition to this, even after the stop condition of the engine 10 is established (step S4), the temperature tmp of the exhaust gas purification catalyst 40 may be raised to the second predetermined temperature tmp2 by continuously operating the engine 1. .

ガソリンエンジンに汎用される排気ガス浄化触媒に排気ガスの模擬ガスを流通させて排気ガス浄化性能試験を行った。模擬ガスの組成は、プロピレンを700ppmC、オゾン(O)を0.3vol%、酸素(O)を0.7vol%、残りを窒素とした。模擬ガスの流量は、10L/分、模擬ガスの温度は、70℃からスタートして(冷間始動)、10℃/分で昇温させた。オゾン生成装置のオゾン発生出力は、150Wとした。このとき、オゾン発生量は、エアの温度が70℃で、30cc/分であった。使用した触媒については、触媒貴金属の合計量が7.0g/Lで、その内訳としては、Pt:Pd:Rhが質量比で1:30:2であった。また、Pd担持用Alが100g/L、Rh担持用OSC材(セリアを含む酸素吸蔵材)が70g/L、Pt担持用Alが60g/Lであった。 Exhaust gas purification performance tests were conducted by passing simulated exhaust gas through an exhaust gas purification catalyst commonly used in gasoline engines. The composition of the simulated gas was 700 ppmC for propylene, 0.3 vol% for ozone (O 3 ), 0.7 vol% for oxygen (O 2 ), and the rest for nitrogen. The flow rate of the simulation gas was 10 L / min, and the temperature of the simulation gas was started from 70 ° C. (cold start), and the temperature was increased at 10 ° C./min. The ozone generation output of the ozone generator was 150 W. At this time, the amount of ozone generated was 30 cc / min when the air temperature was 70 ° C. Regarding the catalyst used, the total amount of the catalyst noble metal was 7.0 g / L, and the breakdown was Pt: Pd: Rh 1: 30: 2 by mass ratio. Further, Pd-supporting Al 2 O 3 was 100 g / L, Rh-supporting OSC material (oxygen storage material containing ceria) was 70 g / L, and Pt-supporting Al 2 O 3 was 60 g / L.

そして、実施例では、前記模擬ガスの浄化性能試験の前に、触媒を500℃まで加熱した。すなわち、排気ガス浄化触媒にストイキ(A/F=14.7)の排気ガスの模擬ガスを流通させた。その組成は、プロピレンを1400ppmC、COを0.6vol%、NOを1000ppm、COを13.9vol%、Hを0.2vol%、Oを0.6vol%、HOを10vol%、残りを窒素とした。模擬ガスの流量は、10L/分、模擬ガスの温度は、70℃からスタートして、10℃/分で昇温させた。模擬ガスの温度が200℃となるまでは、前記組成のストイキ排気ガスの模擬ガスに、さらに、オゾン(O)を0.3vol%、酸素(O)を0.7vol%供給した。触媒の温度が200〜500℃の間は、オゾン(O)0.3vol%及び酸素(O)0.7vol%の供給を停止し、前記組成のストイキ排気ガスの模擬ガスのみを触媒に流通させた。つまり、模擬ガスの温度により、触媒の温度を500℃まで上昇させた。 And in the Example, the catalyst was heated to 500 degreeC before the purification performance test of the said simulation gas. That is, an exhaust gas simulation gas of stoichiometric (A / F = 14.7) was circulated through the exhaust gas purification catalyst. Its composition, propylene 1400ppmC, 0.6vol% of CO, 1000 ppm of NO, the CO 2 13.9vol%, the H 2 0.2 vol%, the O 2 0.6vol%, 10vol% of H 2 O, The rest was nitrogen. The flow rate of the simulation gas was 10 L / min, and the temperature of the simulation gas was started at 70 ° C. and increased at 10 ° C./min. Until the temperature of the simulated gas reached 200 ° C., 0.3 vol% ozone (O 3 ) and 0.7 vol% oxygen (O 2 ) were further supplied to the stoichiometric exhaust gas having the above composition. When the temperature of the catalyst is 200 to 500 ° C., the supply of ozone (O 3 ) 0.3 vol% and oxygen (O 2 ) 0.7 vol% is stopped, and only the stoichiometric exhaust gas having the above composition is used as the catalyst. Circulated. That is, the temperature of the catalyst was raised to 500 ° C. by the temperature of the simulated gas.

一方、比較例では、前記模擬ガスの浄化性能試験の前に、触媒の加熱を行わなかった。つまり、模擬ガスの温度が200℃となるまで、前記組成のストイキ排気ガスの模擬ガスに、さらに、オゾン(O)を0.3vol%、酸素(O)を0.7vol%供給したものを触媒に流通させ、そこで模擬ガス及びオゾンの流通を停止した。さらに、参考例として、前記模擬ガスの浄化性能試験の前に触媒の加熱を行わず、且つ、模擬ガスの浄化性能試験中、オゾン(O)を供給せずに1.0vol%の酸素(O)のみ供給した。 On the other hand, in the comparative example, heating of the catalyst was not performed before the purification performance test of the simulated gas. That is, until the simulated gas temperature reaches 200 ° C., 0.3 vol% ozone (O 3 ) and 0.7 vol% oxygen (O 2 ) are further supplied to the stoichiometric exhaust gas having the above composition. Was passed through the catalyst, where the flow of simulated gas and ozone was stopped. Furthermore, as a reference example, the catalyst is not heated before the simulated gas purification performance test, and 1.0 vol% oxygen (without ozone (O 3 ) is supplied during the simulated gas purification performance test. Only O 2 ) was supplied.

結果を図3に示す。模擬ガスの浄化性能試験の前に触媒を500℃まで強制的に加熱した実施例は、そのような加熱を行わなかった比較例や参考例に比べて、プロピレンの排出濃度が早い段階から著しく低下し、冷間始動時の排気ガス浄化性能に優れていることが明らかであった。   The results are shown in FIG. In the example in which the catalyst was forcibly heated to 500 ° C. before the simulated gas purification performance test, the propylene emission concentration decreased significantly from the early stage compared to the comparative examples and reference examples in which such heating was not performed. It was clear that the exhaust gas purification performance at the cold start was excellent.

以上、具体例を挙げて詳しく説明したように、本発明は、エンジンの冷間始動が頻繁に起こるハイブリッド車両において、活性酸素成分を利用して、エンジンの冷間始動時の未燃排気ガス成分の排出を常に確実に抑制することができる技術であるから、エンジンの始動・停止が頻繁に起こるハイブリッド車両の排気エミッションの向上を図る技術分野において広範な産業上の利用可能性が期待される。   As described above in detail with reference to specific examples, the present invention uses an active oxygen component in a hybrid vehicle in which engine cold start frequently occurs, and uses an unburned exhaust gas component during engine cold start. Therefore, it is expected to have wide industrial applicability in the technical field of improving the exhaust emission of a hybrid vehicle in which the engine is frequently started and stopped.

本発明の最良の実施の形態に係る車両の要部構成及び制御システムを示すブロック図である。1 is a block diagram showing a configuration of a main part of a vehicle and a control system according to a best embodiment of the present invention. 前記車両の第1、第2コントロールユニットが行う具体的制御動作の1例を示すフローチャートである。It is a flowchart which shows an example of the concrete control operation | movement which the 1st, 2nd control unit of the said vehicle performs. 本発明の実施例、比較例及び参考例の排気ガス浄化性能試験の結果を示すグラフである。It is a graph which shows the result of the exhaust gas purification performance test of the Example of this invention, a comparative example, and a reference example.

符号の説明Explanation of symbols

1 排気ガス浄化装置
10 エンジン(内燃機関)
20 モータ(電動機)
22 バッテリ
30 排気ガス通路
31 排気ガス温度センサ
40 排気ガス浄化触媒
41 触媒温度センサ
50 加熱ヒータ
60 オゾン供給通路(活性酸素成分供給手段)
61 エアポンプ(活性酸素成分供給手段)
62 オゾン生成装置(活性酸素成分供給手段)
80 第2コントロールユニット(活性酸素成分供給制御手段、触媒温度制御手段)
1 Exhaust gas purification device 10 Engine (internal combustion engine)
20 Motor (electric motor)
22 battery 30 exhaust gas passage 31 exhaust gas temperature sensor 40 exhaust gas purification catalyst 41 catalyst temperature sensor 50 heater 60 ozone supply passage (active oxygen component supply means)
61 Air pump (active oxygen component supply means)
62 Ozone generator (active oxygen component supply means)
80 Second control unit (active oxygen component supply control means, catalyst temperature control means)

Claims (3)

内燃機関と電動機の2つの動力源を備えた車両における前記内燃機関の排気ガス浄化装置であって、
前記内燃機関の排気ガス通路に配設された排気ガス浄化触媒と、
この排気ガス浄化触媒よりも前記排気ガス通路の上流部に活性酸素成分を供給することが可能な活性酸素成分供給手段と、
前記内燃機関が始動したときに前記活性酸素成分供給手段を作動させる活性酸素成分供給制御手段と、
前記排気ガス浄化触媒の温度が触媒活性温度より低い第1の所定温度まで上昇する前に前記内燃機関の停止条件が成立したときは前記排気ガス浄化触媒の温度を前記第1の所定温度より高い第2の所定温度まで上昇させる触媒温度制御手段とを有することを特徴とする排気ガス浄化装置。
An exhaust gas purifying device for an internal combustion engine in a vehicle having two power sources of an internal combustion engine and an electric motor,
An exhaust gas purification catalyst disposed in an exhaust gas passage of the internal combustion engine;
Active oxygen component supply means capable of supplying an active oxygen component to an upstream portion of the exhaust gas passage from the exhaust gas purification catalyst;
Active oxygen component supply control means for operating the active oxygen component supply means when the internal combustion engine is started;
When the stop condition of the internal combustion engine is satisfied before the temperature of the exhaust gas purification catalyst rises to a first predetermined temperature lower than the catalyst activation temperature, the temperature of the exhaust gas purification catalyst is higher than the first predetermined temperature. An exhaust gas purification device comprising catalyst temperature control means for raising the temperature to a second predetermined temperature.
請求項1に記載の排気ガス浄化装置であって、
前記第1の所定温度は150〜250℃、前記第2の所定温度は450〜550℃であることを特徴とする排気ガス浄化装置。
The exhaust gas purification device according to claim 1,
The exhaust gas purifying apparatus according to claim 1, wherein the first predetermined temperature is 150 to 250 ° C, and the second predetermined temperature is 450 to 550 ° C.
請求項1又は2に記載の排気ガス浄化装置であって、
前記触媒温度制御手段は、内燃機関の継続運転、又は、車両が備蓄する電気エネルギを用いた加熱の少なくともいずれかにより、排気ガス浄化触媒の温度を第2の所定温度まで上昇させることを特徴とする排気ガス浄化装置。
The exhaust gas purification device according to claim 1 or 2,
The catalyst temperature control means raises the temperature of the exhaust gas purification catalyst to a second predetermined temperature by at least one of continuous operation of the internal combustion engine or heating using electric energy stored in the vehicle. Exhaust gas purifier.
JP2006331712A 2006-12-08 2006-12-08 Function recovery device and function recovery method for exhaust gas purification catalyst Expired - Fee Related JP4872637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331712A JP4872637B2 (en) 2006-12-08 2006-12-08 Function recovery device and function recovery method for exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331712A JP4872637B2 (en) 2006-12-08 2006-12-08 Function recovery device and function recovery method for exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2008144645A true JP2008144645A (en) 2008-06-26
JP4872637B2 JP4872637B2 (en) 2012-02-08

Family

ID=39605091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331712A Expired - Fee Related JP4872637B2 (en) 2006-12-08 2006-12-08 Function recovery device and function recovery method for exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4872637B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235110A (en) * 2013-06-04 2014-12-15 株式会社堀場製作所 Simulation gas supply device
WO2015034314A1 (en) * 2013-09-05 2015-03-12 두산인프라코어 주식회사 Exhaust gas post-processing apparatus and method for sulfur oxide removal
CN111120049A (en) * 2018-10-30 2020-05-08 丰田自动车株式会社 Exhaust gas purification system for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185343A (en) * 1992-12-16 1994-07-05 Ngk Insulators Ltd Exhaust emission control method and device
JP2000008837A (en) * 1998-06-29 2000-01-11 Mazda Motor Corp Exhaust emission control device for internal combustion engine
JP2001263047A (en) * 2000-03-16 2001-09-26 Nissan Motor Co Ltd NOx PURIFICATION DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185343A (en) * 1992-12-16 1994-07-05 Ngk Insulators Ltd Exhaust emission control method and device
JP2000008837A (en) * 1998-06-29 2000-01-11 Mazda Motor Corp Exhaust emission control device for internal combustion engine
JP2001263047A (en) * 2000-03-16 2001-09-26 Nissan Motor Co Ltd NOx PURIFICATION DEVICE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235110A (en) * 2013-06-04 2014-12-15 株式会社堀場製作所 Simulation gas supply device
WO2015034314A1 (en) * 2013-09-05 2015-03-12 두산인프라코어 주식회사 Exhaust gas post-processing apparatus and method for sulfur oxide removal
KR20160067834A (en) * 2013-09-05 2016-06-14 두산인프라코어 주식회사 Device and method of Exhaust After treatment device for elimination of sulfur
KR102181124B1 (en) 2013-09-05 2020-11-20 두산인프라코어 주식회사 Device and method of Exhaust After treatment device for elimination of sulfur
CN111120049A (en) * 2018-10-30 2020-05-08 丰田自动车株式会社 Exhaust gas purification system for internal combustion engine

Also Published As

Publication number Publication date
JP4872637B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
KR101114167B1 (en) Apparatus and method for regenerating catalyst for purifying exhaust gas
JP5130162B2 (en) Control device and control method for hybrid vehicle
JP2010058746A (en) Control device and control method of hybrid vehicle
US9599002B2 (en) Engine control method for maintaining performance of oxidation catalyst
JP2006242020A (en) Exhaust emission control device
JP2002266626A (en) Exhaust emission control device for internal combustion engine
KR20130040269A (en) Exhaust gas purifying filter, system of regenerating gasoline particulate filter and method thereof
CN117919937A (en) System and method for operating a passive NOx adsorber in an exhaust aftertreatment system
JP3642032B2 (en) Exhaust gas purification device for internal combustion engine
JP4872637B2 (en) Function recovery device and function recovery method for exhaust gas purification catalyst
JP5181972B2 (en) Engine exhaust gas purification device
JP4946725B2 (en) Exhaust gas purification method and exhaust gas purification device
JP4655873B2 (en) Control method for internal combustion engine
JP5453737B2 (en) Exhaust gas purification method and exhaust gas purification device
JP6091429B2 (en) How to operate an exhaust system
JP2006161768A (en) Exhaust emission control device
JP2020029841A (en) Exhaust emission control device and exhaust emission control method for internal combustion engine
KR100986071B1 (en) System for purifying exhaust gas of vehicle and control method thereof
JP2010005552A (en) Exhaust gas purifying apparatus of internal combustion engine
JP2010075835A (en) Exhaust gas treatment catalyst
JP4877142B2 (en) Exhaust gas purification device
KR20210154313A (en) Device for purifying exhaust gas and method of controlling the same
JP2010031737A (en) Air-fuel ratio control device and hybrid vehicle
JP4877134B2 (en) Exhaust gas purification device
JPH07102955A (en) Low-pollution automobile

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4872637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees