Nothing Special   »   [go: up one dir, main page]

JP2008144039A - Fluid-permeable fine porous material and its manufacturing method - Google Patents

Fluid-permeable fine porous material and its manufacturing method Download PDF

Info

Publication number
JP2008144039A
JP2008144039A JP2006333031A JP2006333031A JP2008144039A JP 2008144039 A JP2008144039 A JP 2008144039A JP 2006333031 A JP2006333031 A JP 2006333031A JP 2006333031 A JP2006333031 A JP 2006333031A JP 2008144039 A JP2008144039 A JP 2008144039A
Authority
JP
Japan
Prior art keywords
resin
opening
porous body
weight
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006333031A
Other languages
Japanese (ja)
Inventor
Takahiko Kondo
孝彦 近藤
Isao Yoshimura
功 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006333031A priority Critical patent/JP2008144039A/en
Publication of JP2008144039A publication Critical patent/JP2008144039A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid-permeable fine porous material having a novel substrate composition and structure and is suitable for a separator for a secondary battery etc., a filtering medium, a culture medium, a moisture-permeable material, etc. <P>SOLUTION: The fluid-permeable fine porous material made of a thermoplastic resin comprises 50-99 wt.% thermoplastic resin (A) used as a substrate and 1-50 wt.% in total of a pore-forming material (B) and an aperture-forming agent (C) which are mixed and dispersed therein. The porous material is formed by extending a fine porous material-forming precursor composition molded product so that boundaries between the thermoplastic resin (A) used as the substrate and the pore-forming material (B) and the aperture-forming agent (C) are at least partially separated to produce pores (P) and apertures (I). The porous material has a group of large pores (P) having an average pore diameter of 0.5-100 μm and a group of smaller apertures (I) having an average aperture diameter of 0.01-30 μm on at least part of a porous wall part of the pore (P) and has an air permeability of ≤1,000 (sec/100 cc×25 μm thickness) and a porosity of 30-90%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、そのまま、又はこれを基材に電解質、電気伝導性物体等を組み合わせ基材として使用される所の、リチウムイオン電池、リチウム金属電池、リチウムポリマー電池、ニッケル水素電池、に代表される各種の2次電池、その他2次電池、1次電池等に使用される電気化学的隔離膜(セパレータ)、電解コンデンサー、電気2重層コンデンサー等のセパレ−ター用に、又気体、液体中に存在する所定の形状・性質の物質を濾過除去するための濾材、血液中の特定の血球、又は血液中の特定の物質ないし同成分等を濾過、又は吸着除去する為の基材等に代表される精密・活性精密濾過膜、医療用に各種細胞類を培養する担体(更に培養後生分解され消滅する素材を含む)、医療用に各種細胞類を培養し特定の有効成分を有効に抽出する担体兼濾材、特定の物質を吸着する担体(更に培養後生分解され消滅する素材を含む)、特定の吸着ないし混入物質を徐放する担体、電子部品等を製造する時に利用される、例えばウエハー、同上回路設定用に所定の部分を研磨する等の研磨用基材に、透湿性を利用した建築用結露防止通気性フィルム素材、同衣類素材、おむつ・生理用品等の衛生用品素材、通気透湿性で細菌、ゴミ等の通過を阻止する包装用フィルム、白度の高い光反射フィルム、印刷用紙材料等に有利に最適化され利用されるに適する特殊な通流体性多孔体である。   The present invention is typified by a lithium ion battery, a lithium metal battery, a lithium polymer battery, or a nickel metal hydride battery, which is used as a base material as it is or in combination with an electrolyte, an electrically conductive object, etc. as a base material. For separators such as electrochemical separators (separators), electrolytic capacitors, and electric double layer capacitors used in various secondary batteries, other secondary batteries, and primary batteries, etc., and in gases and liquids It is represented by a filter medium for filtering and removing a substance having a predetermined shape and property, a specific blood cell in blood, or a base material for filtering or adsorbing and removing a specific substance or the same component in blood. Precision / active microfiltration membranes, carriers for culturing various types of cells for medical use (including materials that are biodegraded and disappear after culture), and culturing various types of cells for medical use to effectively extract specific active ingredients Used as a filter material, a carrier that adsorbs specific substances (including materials that biodegrade and disappear after culture), a carrier that slowly releases specific adsorbed or mixed substances, electronic components, etc. It is a base material for polishing such as polishing a predetermined part for circuit setting, anti-condensation breathable film material for construction using moisture permeability, clothing material, sanitary materials such as diapers and sanitary products, breathable moisture permeability It is a special fluid-permeable porous material that is advantageously optimized and used for packaging films that prevent the passage of bacteria, dust, etc., light-reflecting films with high whiteness, and printing paper materials.

従来、熱可塑性樹脂として最も一般的なポリオレフィン(PO)系樹脂、例えば、結晶性高密度ポリエチレン(HDPE),結晶性ポリプロピレン(PP)等よりなる微多孔体で、厚みが20〜100μm程度で、厚さ方向に一表面から他の表面に連通する、孔径が0.01μmから5μm程度の連通孔を、厚さの垂直方向の全面にわたって均一に有する微多孔フィルムは公知で、これらは一般に透気度(秒/100cc・25μm厚み)が50〜1000程度の気体透過性を有する一方で、耐透水性を有し、このような性能が要求される数多くの用途、例えば、電解液中でイオン透過性で且つ、電極間の絶縁用隔膜として電池等の用途に使用されている。
従来、このような多孔質フィルムの製造方法として、例えば、以下の(1)〜(4)の製造方法が知られている。即ち、 (1)上記高結晶性のHDPEを、多量の可塑剤(体積的に45〜80vol%もの)に加熱溶解させゲル状とし、次にフィルム乃至シート状に押し出し、冷却させ、該樹脂を固化結晶化させ、可塑剤と相分離させた後、該可塑剤を溶媒で抽出して、微孔核を形成させ、次に更に、延伸により該微孔を成長拡大させて製造する、いわゆる相分離開口法である。
Conventionally, the most common polyolefin (PO) resin as a thermoplastic resin, for example, a microporous body made of crystalline high-density polyethylene (HDPE), crystalline polypropylene (PP), etc., with a thickness of about 20 to 100 μm, There are known microporous films having communication holes with a diameter of about 0.01 μm to 5 μm that are communicated from one surface to the other surface in the thickness direction uniformly over the entire surface in the vertical direction of the thickness. Degree (second / 100 cc · 25 μm thickness) has gas permeability of about 50 to 1000, while having water permeability resistance, such as many applications that require such performance, for example, ion permeation in electrolyte And is used for applications such as batteries as an insulating diaphragm between electrodes.
Conventionally, as a method for producing such a porous film, for example, the following production methods (1) to (4) are known. (1) The above highly crystalline HDPE is heated and dissolved in a large amount of a plasticizer (volume of 45 to 80 vol%) to form a gel, then extruded into a film or sheet, cooled, and the resin is After solidifying and crystallizing and phase-separating with the plasticizer, the plasticizer is extracted with a solvent to form microporous nuclei, and then the so-called phase is produced by growing and expanding the micropores by stretching. Separation aperture method.

この方法では、上記のうち可塑剤量が比較的少ない場合(例えば、40〜55vol%)では、連通孔の均一性に優れるものの、孔サイズが小さくなり過ぎ(例えば、0.001〜0.1μm 程度の平均径)、透過抵抗が大きく、厚みを厚くする事に限界があり、又表面で目詰まりし易く、用途に限界がある。
又反対に、可塑剤量が比較的多い場合(例えば、50〜80vol%)は、相分離した可塑剤が集合し大きな粒径となる場合があり、ボイド的な大きな不均一孔が生成する。又多量の危険(安全・衛生上に)な溶剤を使用しなければいけないし、抽出効率の問題で高スピードで厚いのものを生産することが困難な問題を有する。
次に、(2)結晶性樹脂を溶融しシート状に押し出し加工する時に、樹脂それぞれに最適な温度とドロー比で、縦(流れ)方向に流動配向(有る程度分子を流れ方向に揃えさせ)、その後次の工程で、充分それぞれの樹脂に最適な条件で充分時間を掛け(例えば、段階的に温度を上げ、5分〜30分程度も)アニールして結晶を成長させ、その界面を明確にさせ、次に1軸(縦)方向に強い力で冷間延伸させ結晶界面を破壊して微孔をもうけさせ、次に更により高温で熱間に1軸延伸させ開口部分をある程度成長させる方法(例えば
、特許文献1参照)、いわゆる延伸開口法がある。
In this method, when the amount of the plasticizer is relatively small (for example, 40 to 55 vol%), the hole size is too small (for example, 0.001 to 0.1 μm), although the uniformity of the communication holes is excellent. Average diameter), permeation resistance is large, there is a limit to increasing the thickness, and clogging is likely to occur on the surface, which limits the application.
On the other hand, when the amount of the plasticizer is relatively large (for example, 50 to 80 vol%), the phase-separated plasticizer may be aggregated to have a large particle size, and large void-like nonuniform pores are generated. In addition, a large amount of dangerous (for safety and hygiene) solvents must be used, and it is difficult to produce a thick product at high speed due to extraction efficiency.
Next, (2) when the crystalline resin is melted and extruded into a sheet, it is flow oriented in the longitudinal (flow) direction at the optimum temperature and draw ratio for each of the resins (some molecules are aligned in the flow direction). Then, in the next step, spend enough time under the optimum conditions for each resin (for example, increase the temperature stepwise for about 5 to 30 minutes) to grow crystals and clarify the interface Next, cold stretching is performed with a strong force in the uniaxial (longitudinal) direction to break the crystal interface to create micropores, and then uniaxially stretching to hot at higher temperatures to grow the opening part to some extent. There is a method (for example, see Patent Document 1), a so-called stretch opening method.

この方法では、生産性(生産スピード、収率、例えば、生産中のフィルム切れが多く、又偏肉分散等が出来なく、ゲイジバンドによる巻き姿のフラット性阻害等の品質性)等に問題がある。又この方法で2軸延伸する場合には、タテ・ヨコ方向の強度バランスが悪く、タテ方向に引き裂き易い大きな欠点が有る。
その他に、(3)可溶性のフィラーを添加しフィルムに成膜し、その後フィラーを溶出させて微多孔化する方法(例えば、特許文献2参照)があるが、この方法では、もろくて延伸ができなく、強度も低く、孔も不均一で大きく、該透気度が極端に大きく、緻密な多孔体はできない。
又、さらに(4)フィラーを多量(例えば、40〜60重量%も)に添加した組成物をダイスから直接インフレーションし、連通状の微多孔体にする方法が知られている。この方法には、孔にフィラーが詰まった状態であり、強度が低く、該フイラーが脱粒する、孔サイズがバラツク、通流体性が悪い等の問題点が有る。
In this method, there are problems in productivity (production speed, yield, for example, many pieces of film during production, uneven thickness dispersion, etc., quality such as inhibition of flatness of winding shape by gage band), etc. . Further, when biaxial stretching is performed by this method, the strength balance in the vertical / horizontal direction is poor, and there is a great drawback that it is easy to tear in the vertical direction.
In addition, there is (3) a method in which a soluble filler is added to form a film on a film, and then the filler is eluted to make it microporous (for example, see Patent Document 2). However, this method is brittle and can be stretched. In addition, the strength is low, the pores are uneven and large, the air permeability is extremely large, and a dense porous body cannot be formed.
Further, there is known a method (4) in which a composition containing a large amount of filler (for example, 40 to 60% by weight) is directly blown from a die to form a continuous microporous material. This method has a problem that the pores are clogged with filler, the strength is low, the filler is crushed, the pore size varies, and the fluid permeability is poor.

特公昭55−32531号公報Japanese Patent Publication No.55-32531 特開昭58−29839号公報JP 58-29839 A

本発明は、特定の組成物からなる成形体を、溶剤等で抽出することなく、延伸する事により一挙(同時に得られる多層状のものを含む)に得られる所の、従来無い構造と特性を合わせ持つ、各種用途に適応される多孔体であり、比較的大きな開孔と、その開孔壁に複数個のより小さな開口を有し、且つ全体に延伸配向された特性を有する単層状、又は更には他種樹脂層とを組み合わせた、又は異なった構造の層とを組み合わせた、新規な通流体性多孔体を提供するものである。   The present invention has an unprecedented structure and characteristics that can be obtained at once (including multi-layered products obtained) by stretching a molded body made of a specific composition without extracting it with a solvent or the like. A porous body adapted for various uses, having a relatively large aperture and a plurality of smaller apertures on the aperture wall, and a single-layer shape having the properties of being stretched and oriented as a whole, or Furthermore, the present invention provides a novel fluid-permeable porous body in which another kind of resin layer is combined or a layer having a different structure is combined.

即ち、本発明は、
1.連続相となる基材の熱可塑性樹脂(A)の50〜99重量%と、これに混合分散する開孔材(B)と開口剤(C)との合計量の1〜50重量%とからなる、微多孔体形成前駆組成物成型体を延伸する事により、基材の熱可塑性樹脂(A)と該開孔材(B)及び開口剤(C)との界面の少なくとも1部が剥離し、開孔(P)及び開口(I)が生成することにより形成された熱可塑性樹脂の微細通流体性多孔体であって、該多孔体が、0.5〜100μmの平均孔径を有する大きな開孔(P)群と、その開孔(P)の少なくとも1部の開孔壁部分に、0.01〜30μmの平均開口径を有するより小さな開口(I)群とを有し、透気度が1000(sec /100cc・25μm厚み)以下で、多孔度が30〜90%であることを特徴とする微細通流体性多孔体。
That is, the present invention
1. From 50 to 99% by weight of the base material thermoplastic resin (A) to be a continuous phase, and 1 to 50% by weight of the total amount of the pore-opening material (B) and the opening agent (C) mixed and dispersed therein. By stretching the molded body of the microporous body forming precursor composition, at least a part of the interface between the thermoplastic resin (A) of the base material and the pore opening material (B) and the opening agent (C) is peeled off. A fine fluid-permeable porous body of thermoplastic resin formed by the formation of the opening (P) and the opening (I), the porous body having a large opening having an average pore diameter of 0.5 to 100 μm. A hole (P) group and a smaller opening (I) group having an average opening diameter of 0.01 to 30 μm in at least a part of the opening wall portion of the opening (P), and air permeability Is 1000 (sec / 100 cc · 25 μm thickness) or less, and the porosity is 30 to 90%. Porous material.

2.上記1に記載の微細通流体性多孔体を更に延伸することにより、該開孔(P)群と該開口(I)群との少なくとも1部を崩壊又は連続させて形成された、少なくともその1部に、不織布状にフイブリル化した構造を有し、透気度が、0.05〜500(sec /100cc・25μm厚み)で、多孔度が30〜90%である事を特徴とする微細通流体性多孔体。
3.熱可塑性樹脂(A)が55〜98重量%と、該開孔材(B)が2〜45重量%、該開口剤(C)が0〜15重量%とからなることを特徴とする上記1又は2に記載の微細通流体性多孔体。
4.熱可塑性樹脂(A)が60〜94重量%と、該開孔材(B)が5〜40重量%、該開口剤(C)が1〜10重量%とから成ることを特徴とする上記1〜3のいずれか1項に記載の微細通流体性多孔体。
2. By further stretching the microfluidic porous material described in 1 above, at least a part of at least one part of the aperture (P) group and the aperture (I) group is collapsed or continuously formed. The part has a non-woven fibrillated structure, has an air permeability of 0.05 to 500 (sec / 100 cc · 25 μm thickness), and a porosity of 30 to 90%. Fluid porous body.
3. The thermoplastic resin (A) is 55 to 98% by weight, the pore-opening material (B) is 2 to 45% by weight, and the opening agent (C) is 0 to 15% by weight. Or the fine fluid-permeable porous body of 2.
4). 1 above, characterized in that the thermoplastic resin (A) comprises 60 to 94% by weight, the pore-opening material (B) 5 to 40% by weight, and the opening agent (C) 1 to 10% by weight. The fine fluid-permeable porous material according to any one of -3.

5.熱可塑性樹脂(A)が、ポリオレフィン系樹脂、脂肪族ポリエステル系樹脂、芳香族成分を含むポリエステル系樹脂、α−オレフィンと一酸化炭素共重合体、ポリアミド系樹脂、フッ素系樹脂、ポリスルホン系樹脂から選ばれる少なくとも1種からなる上記1〜4のいずれか1項に記載の微細通流体性多孔体。
6.開孔材(B)が、ポリフェニレンエーテル系樹脂、スチレン系樹脂、環球法軟化点が150℃以上の飽和炭化水素系樹脂から選ばれる少なくとも1種の樹脂からなる上記1〜5のいずれか1項に記載の微細通流体性多孔体。
7.開孔材(B)が、ポリフェニレンエーテル系樹脂とスチレン系樹脂との組成物、ポリフェニレンエーテル系樹脂と飽和炭化水素系樹脂との組成物、ポリフェニレンエーテル系樹脂とスチレン系樹脂と飽和炭化水素系樹脂との組成物から選ばれる1種の組成物からなる上記1〜6のいずれか1項に記載の微細通流体性多孔体。
5. The thermoplastic resin (A) is a polyolefin resin, an aliphatic polyester resin, a polyester resin containing an aromatic component, an α-olefin and carbon monoxide copolymer, a polyamide resin, a fluorine resin, or a polysulfone resin. 5. The microfluidic porous material according to any one of 1 to 4 above, comprising at least one selected.
6). Any one of 1 to 5 above, wherein the pore-opening material (B) comprises at least one resin selected from polyphenylene ether resins, styrene resins, and saturated hydrocarbon resins having a ring and ball softening point of 150 ° C. or higher. The microfluidic porous material described in 1.
7). Opening material (B) is a composition of polyphenylene ether resin and styrene resin, composition of polyphenylene ether resin and saturated hydrocarbon resin, polyphenylene ether resin, styrene resin and saturated hydrocarbon resin 7. The fine fluid-permeable porous body according to any one of 1 to 6 above, comprising one kind of composition selected from the compositions.

8.多孔体が、0.5〜100μmの平均孔径を有する大きな開孔(P)群と、その開孔(P)の少なくとも1部の開孔壁部分に、少なくとも2個の0.01〜30μmの平均開口径を有するより小さな開口(I)群とを有し、その平均径比(P/I)が少なくとも2であり、透気度が0.5〜500(sec /100cc・25μm厚み)で、ハイブリッド構造を有していることを特徴とするの上記1〜7のいずれか1項に記載の微細通流体性多孔体。
9.多孔体が、2〜200μm厚みのフィルム状、200〜5000μm厚みのシート状、2〜5000μm径の糸状、2〜5000μm径の中空糸状から選ばれる1種のものであることを特徴とする上記1〜8のいずれか1項に記載の微細通流体性多孔体。
8). The porous body has at least two 0.01-30 μm pores on a large aperture (P) group having an average pore diameter of 0.5-100 μm and at least one aperture wall portion of the aperture (P). A smaller aperture (I) group having an average aperture diameter, an average diameter ratio (P / I) of at least 2, and an air permeability of 0.5 to 500 (sec / 100 cc · 25 μm thickness) 8. The microfluidic porous material according to any one of 1 to 7 above, which has a hybrid structure.
9. The porous material is one type selected from a film shape having a thickness of 2 to 200 μm, a sheet shape having a thickness of 200 to 5000 μm, a thread shape having a diameter of 2 to 5000 μm, and a hollow fiber shape having a diameter of 2 to 5000 μm. The fine fluid-permeable porous material according to any one of -8.

10.多孔体が、異なった組成から成る層、又は異なった構造から成る層、異なった特性からなる層、から選ばれる1種以上の層の組み合わせから成る多層状であることを特徴とする上記1〜9のいずれか1項に記載の微細通流体性多孔体。
11.多孔体が、多孔度30〜80%、透気度0. 5〜500(sec/100cc・25μm厚み)を有することを特徴とする上記1〜10のいずれか1項に記載の微細通流体性多孔体。
12.多孔体が、多孔度40〜85%、透気度0. 1〜80(sec/100cc・25μm厚み)を有することを特徴とする上記1〜10のいずれか1項に記載の微細通流体性多孔体。
10. The porous body is a multilayer composed of a combination of one or more layers selected from layers having different compositions, layers having different structures, layers having different characteristics, or the like. 10. The microfluidic porous material according to any one of 9 above.
11. 11. The fine fluid permeability as described in any one of 1 to 10 above, wherein the porous body has a porosity of 30 to 80% and an air permeability of 0.5 to 500 (sec / 100 cc · 25 μm thickness). Porous body.
12 11. The microfluidic permeability as described in any one of 1 to 10 above, wherein the porous body has a porosity of 40 to 85% and an air permeability of 0.1 to 80 (sec / 100 cc · 25 μm thickness). Porous body.

13.上記1〜12のいずれか1項に記載の微細通流体性多孔体の製造方法であって、少なくとも1層の熱可塑性樹脂(A)を基材とする該微多孔体形成前駆層と、少なくとも1層の該前駆層を構成する樹脂と異なる熱可塑性樹脂を主成分とし、且つそれが延伸により通流体性構造とならない組成物の延伸補助層(S)とを共延伸し、次に該補助層を剥離除去する事を特徴とする微細通流体性多孔体の製造方法。
14.二層以上からなる多層状微細通流体性多孔体であって、少なくとも一つの層が、上記1〜12のいずれか1項に記載の微細通流体性多孔体であって、他の層がこれとは異なる特徴の多孔構造であることを特徴とする微細通流体性多孔体。
13. 13. The method for producing a microfluidic porous body according to any one of 1 to 12 above, wherein the microporous body-forming precursor layer based on at least one thermoplastic resin (A), and at least A stretching auxiliary layer (S) of a composition which is mainly composed of a thermoplastic resin different from the resin constituting the precursor layer and does not become a fluid-permeable structure by stretching, is then co-stretched. A method for producing a microfluidic porous material, wherein the layer is peeled and removed.
14 A multilayer microfluidic porous body comprising two or more layers, wherein at least one layer is the microfluidic porous body described in any one of 1 to 12 above, and the other layers are A microfluidic porous body characterized by a porous structure having characteristics different from those of the above.

新規な基材組成と構造を有する微細通流体性多孔体であって、リチウム2次電池、ニッケル水素2次電池等のセパレータ、着除去用濾材、細胞等の培養に有効な培養体、水を通さないが水蒸気を有効に透過させるヘルスケア用又は衣料用の透湿材料等に好適な多孔体を提供することができる。   A microfluidic porous body having a novel base material composition and structure, which is a separator for lithium secondary batteries, nickel hydride secondary batteries, etc., a filter medium for removing attachments, a culture body effective for culturing cells and the like, and water A porous body suitable for a moisture-permeable material for health care or clothing that does not pass through but effectively allows water vapor to pass therethrough can be provided.

以下に、本発明の各構成について詳しく説明する。
(1)熱可塑性樹脂(A)
本発明の多孔体の連続相となる基材の熱可塑性樹脂(A)(以下、単に基材樹脂(A)ということがある。)とは、ポリオレフィン系樹脂、脂肪族ポリエステル系樹脂、芳香族成分を含むポリエステル系樹脂、α−オレフィンと一酸化炭素共重合体、ポリアミド系樹脂、フッソ系樹脂、ポリスルホン系樹脂、等その他公知の樹脂から少なくとも1種選ばれるものである。
Below, each structure of this invention is demonstrated in detail.
(1) Thermoplastic resin (A)
The base material thermoplastic resin (A) (hereinafter sometimes simply referred to as base material resin (A)), which is the continuous phase of the porous body of the present invention, is a polyolefin resin, an aliphatic polyester resin, an aromatic resin. It is at least one selected from known resins such as polyester resins containing components, α-olefin and carbon monoxide copolymers, polyamide resins, fluorine resins, polysulfone resins, and the like.

更に詳細には、ポリオレフィン系樹脂とは、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、及びこれらのシングルサイト系触媒で重合したいわゆるリニアタイプの重合体、又は他の単量体と共重合したポリエチレン系樹脂、例えば、ホモ、他のα−オレフィンと共重合したランダム、ブロック共重合体、又これらの上記触媒で重合したもの等を含む、ポリプロピレン系樹脂、他のα−オレフィンと共重合した、結晶性ポリブテンー1系樹脂、4−メチルペンテンー1系樹脂、及びこれらの単量体から選ばれる共重合体と、他に極性基を含有する単量体(例えば、ビニルアセテート、アクリル酸及びこれらの誘導体、メタアクリル酸及びこれらの誘導体)との共重合体(高圧法、低圧法、及びラジカル法系、又は、触媒がこれら極性基で不活性化しない所の、特殊シングルサイト系触媒、特殊メタロセン系触媒で重合したもの)から少なくとも一種選ばれる重合体及びそれらの混合組成物等がある。
他にα−オレフィンと一酸化炭素共重合体、α−オレフィンと環状オレフィンとの共重合体、又はこれらの水添化樹脂等がある。
More specifically, the polyolefin-based resin is, for example, low-density polyethylene, medium-density polyethylene, high-density polyethylene, a so-called linear-type polymer polymerized with these single-site catalysts, or other monomers. Polymerized polyethylene resins, for example, homopolymers, random copolymers copolymerized with other α-olefins, and polypropylene resins, including those polymerized with these catalysts, and other α-olefins. Polymerized crystalline polybutene-1 resin, 4-methylpentene-1 resin, and copolymers selected from these monomers, and other monomers containing polar groups (for example, vinyl acetate, acrylic Copolymers with acids and derivatives thereof, methacrylic acid and derivatives thereof (high-pressure method, low-pressure method, radical method system or catalyst) There are polymers selected from at least one kind selected from special single-site catalysts and special metallocene catalysts, which are not inactivated by these polar groups, and mixed compositions thereof.
In addition, there are α-olefin and carbon monoxide copolymers, copolymers of α-olefins and cyclic olefins, and hydrogenated resins thereof.

脂肪族ポリエステル系樹脂とは、ポリ乳酸系樹脂、ポリグリコ−ル酸系樹脂、ポリ3−ヒドロキシ酪酸系樹脂、ポリα−ヒドロキシイソ酪酸系樹脂、又はこれらに使用する少なくとも1種の単量体とその他種から選ばれる少なくとも1種の単量体を25モル%以下共重合した樹脂等がある。
芳香族成分を含むポリエステル系樹脂とは、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、ポリシクロヘキサンジメタノールテレフタレート系樹脂、及びこれらに使用する単量体の自由な共重合体等である。
Aliphatic polyester resins are polylactic acid resins, polyglycolic acid resins, poly-3-hydroxybutyric acid resins, poly α-hydroxyisobutyric acid resins, or at least one monomer used in these. There are resins in which at least one monomer selected from other species is copolymerized in an amount of 25 mol% or less.
Polyester resins containing aromatic components are polyethylene terephthalate resins, polybutylene terephthalate resins, polyethylene naphthalate resins, polycyclohexanedimethanol terephthalate resins, and free copolymers of monomers used in these resins. Etc.

ポリアミド系樹脂とは、脂肪族ジカルボン酸と同ジアミン、又は各カプロラクタム等を原料とする、ナイロン−6 、同−66、同6−66、同6−10、同12、又は酸成分、又はアミン成分のどちらかに芳香族成分を有するポリアミド系樹脂である。
フッ素系樹脂とは、ポリフッ化ビニリデン系樹脂で代表される他に、結晶性で押し出し加工が可能なその他のポリオレフィン分子構造の水素の少なくとも1部がハロゲン置換された共重合体、又は極性官能基として、カルボキシル基、スルホン基、アミノ基等を含む、活性フッ素系樹脂等である。
他にエチレン−ビニルアルコール共重合体、ポリカーボネート系樹脂、その他エンプラ系樹脂等から選ばれるものである。
The polyamide-based resin is an aliphatic dicarboxylic acid and the same diamine, or nylon-6, the same -66, the same 6-66, the same 6-10, the same 12, or an acid component, or an amine. A polyamide-based resin having an aromatic component in one of the components.
In addition to being represented by polyvinylidene fluoride resin, the fluororesin is a copolymer in which at least a part of hydrogen of other polyolefin molecular structure that is crystalline and can be extruded is halogen-substituted, or a polar functional group As an active fluorine-based resin containing a carboxyl group, a sulfone group, an amino group, and the like.
In addition, it is selected from an ethylene-vinyl alcohol copolymer, a polycarbonate resin, other engineering plastic resins, and the like.

(2)開孔材(B)
開孔材(B)とは、それが熱可塑性樹脂である場合、必要により適時少量の相溶化材(剤)等を加えて混練りする事により、基材樹脂(A)に所望の形状のサイズ分布を有して分散されるもの、又は架橋された樹脂粒子、無機粒子等から選択されるものであって、且つ該開孔材(B)を含む基材樹脂(A)からなる原料樹脂を押し出し加工し、要望の形状の成形原反とし、これを延伸加工した時、基材樹脂(A)と該開孔材(B)との少なくとも界面の1部が剥離し、少なくとも大きめの開孔(P)群を形成する機能・作用を有するものである。
(2) Opening material (B)
When the pore opening material (B) is a thermoplastic resin, a desired amount of the compatibilizing material (agent) or the like is added to the base resin (A) in a desired shape by adding a small amount as needed. Raw material resin consisting of a base resin (A) which is selected from those dispersed or having a size distribution, or cross-linked resin particles, inorganic particles and the like, and containing the pore-opening material (B) Is extruded to form a desired shape of the forming raw material, and when this is stretched, at least a part of the interface between the base resin (A) and the aperture material (B) is peeled off, and at least a large opening is formed. It has the function and action of forming the hole (P) group.

該開孔材(B)として熱可塑性樹脂を利用する場合は、一般に該基材樹脂(A)にあま
り相溶化しない材料で、例えば粘弾性的減衰率曲線でも、その特性ピークが基材樹脂(A)と分子分散し同一化するものではなく、好ましくは混練り分散時の形態が、押し出し延伸加工後でも、基本的にそのまま粒状(例えばその平均径が、0.05μm以上)として残されるものが好ましく、場合により混練り中に一度相溶化しても、後処理で均一に相分離し、しかも延伸時に例えば粒状に近い状態に存在していて、上記大きめの開孔(P)群を形成することができるものでも良い。
When a thermoplastic resin is used as the pore-opening material (B), it is generally a material that is not so compatible with the base resin (A). For example, even in a viscoelastic damping coefficient curve, the characteristic peak is the base resin ( A) is not molecularly dispersed and identical to A), but preferably the form at the time of kneading and dispersing is basically left as it is even after extrusion stretching (for example, the average diameter is 0.05 μm or more). In some cases, even if it is compatibilized once during kneading, it is uniformly phase-separated by post-processing, and is present in, for example, a state close to granularity at the time of stretching, forming the above large aperture (P) group Anything that can be done.

又該開孔材(B)は、延伸温度条件において、基材樹脂(A)自身、又は基材樹脂(A)に他のものを添加し変性した基材樹脂組成物より硬めか、或いはより変形し難いもの、変形しても容易に界面が剥離するもの、変形しても実質的に少なくとも1部が架橋されていて流動し難く変形に対する回復力が働くもの、界面が容易に剥離する様に他の添加剤を加え変性したもの等が好ましくは選ばれる。 この具体的な尺度としては、例えば該開孔材(B)が樹脂成分の場合は、軟化点(ビカット軟化点、環球法軟化点、各種表面硬度等の測定法に準じ、延伸温度条件で測定された値のいずれか)の差、又は変形応力(例えば、10%変形時の引っ張り弾性率、圧縮弾性率、これら変形応力等のいずれか)の差が基材樹脂(A)より10%以上高い、又はより硬い開孔材(B)が、延伸応力が集中し開孔し易い点で好ましい。尚、上記軟化点については、樹脂成分のうち非晶部分の軟化点が低くても、結晶性でしかも結晶融点が高い場合には、結晶化させたあとの性質を利用しても良い。   In addition, the pore-opening material (B) is harder than the base resin (A) itself or the base resin composition modified by adding other materials to the base resin (A) under the stretching temperature condition, or more Those that are difficult to deform, those that easily peel off even when deformed, those that are substantially cross-linked and difficult to flow even if deformed, those that have a recovery force against deformation, and those that peel easily Those modified by adding other additives to are preferably selected. As a specific scale, for example, when the pore-opening material (B) is a resin component, it is measured under the stretching temperature condition according to the measuring method of the softening point (Vicat softening point, ring and ball method softening point, various surface hardnesses, etc.). Difference in any of the measured values) or deformation stress (for example, any of tensile elastic modulus, compression elastic modulus, deformation stress, etc. at 10% deformation) is 10% or more than that of the base resin (A) A high or harder pore-opening material (B) is preferable in that stretching stress concentrates and it is easy to open. As for the softening point, even if the softening point of the amorphous part of the resin component is low, if it is crystalline and has a high crystalline melting point, the property after crystallization may be used.

具体的には、該開孔材(B)は、該基材樹脂(A)がポリオレフィン系樹脂の場合は、前述の各ポリアミド系樹脂、エチレンビニルアルコール共重合体、脂肪族ポリエステル系樹脂、芳香族成分を含有するポリエステル系樹脂、環状飽和炭化水素成分を有する樹脂、エチレン一酸化炭素共重合体(水添変性物も含む)、ポリカーボネート樹脂(共重合変性した物も含む)、前述ハロゲン置換炭化水素系樹脂、スチレン系樹脂、スチレンとαメチルスチレン共重合体、スチレンと脂肪族カルボン酸誘導体単量体との共重合体、ハイインパクトポリスチレン、シンジオタクテックスチレン系樹脂、ポリフェニレンエーテル系樹脂(変性共重合体を含む)等から選ばれる少なくとも一種の樹脂、或いは該樹脂を原料に自由にコンパウンド化した変性樹脂組成物等から選ばれる。これらのものは分散制御の観点から比較的低重合物の樹脂が好ましいが、相溶化剤(材)との併用により比較的高分子状の物を利用し分散制御しても良い。   Specifically, when the base resin (A) is a polyolefin-based resin, the pore-opening material (B) has the above-mentioned polyamide-based resin, ethylene vinyl alcohol copolymer, aliphatic polyester-based resin, aromatic Polyester-based resin containing a group component, resin having a cyclic saturated hydrocarbon component, ethylene carbon monoxide copolymer (including hydrogenated modified product), polycarbonate resin (including copolymer modified product), halogen-substituted carbonized carbon Hydrogen resin, styrene resin, styrene and α-methylstyrene copolymer, copolymer of styrene and aliphatic carboxylic acid derivative monomer, high impact polystyrene, syndiotactic styrene resin, polyphenylene ether resin (modified) At least one kind of resin selected from (including copolymers), etc., or modified by freely compounding the resin as a raw material Selected from fat composition, or the like. These resins are preferably relatively low polymer resins from the viewpoint of dispersion control, but dispersion may be controlled by using a relatively high polymer in combination with a compatibilizing agent (material).

又、シリコーン樹脂(含変性物)のごとき架橋された微粒子で径を制御されたもので、該基材樹脂(A)に混合分散性が良く且つ前述の観点からはずれ、柔らかい物質でも、押し出し中に、裁断、併合、変形等の形状変形がされ難く、しかも界面が基材樹脂と剥離性が良い物質は、延伸時有効に上記大きめの開孔(P)群を形成することができ、該開孔材(B)とすることができる。
又、この他に上記観点で比較的硬い樹脂からなる架橋微粒子は、押し出し中に上記同様に変形され難く、延伸条件でも応力が集中し易く好ましい。
又、この他に熱硬化性樹脂系の制御された形状の微粒子でも良い。
又、この他に無機物として、シリカ、炭酸カルシユウム、カーボン粒子、それらの表面処理を施したものでも良い。
In addition, the diameter is controlled by crosslinked fine particles such as silicone resin (modified product). The base resin (A) has good mixing and dispersibility and is out of the above viewpoint. Even soft materials are being extruded. In addition, a material that is difficult to be deformed, such as cutting, merging, and deforming, and that has a good releasability from the base resin at the interface, can effectively form the above large aperture (P) group during stretching, It can be set as an aperture material (B).
In addition, cross-linked fine particles made of a relatively hard resin from the above viewpoint are preferable because they are not easily deformed during extrusion in the same manner as described above, and stress is easily concentrated even under stretching conditions.
In addition, fine particles with a controlled shape of a thermosetting resin system may be used.
In addition to these, silica, calcium carbonate, carbon particles, and those subjected to surface treatment thereof may be used as inorganic substances.

これら開孔材(B)の基材樹脂(A)中での分散形状は、望みの孔が得られれば任意で良いが、一般に好ましいのは、球状に近いほど延伸加工性、孔の均一性、通流体性特性、強度面から好ましいが、特別の制限は無く、入り組んだ、凹凸のある複雑な形状、糸状、分散径及び形状が不均一で大きくバラツクものは、孔の均一性、膜強度等の点から、好ましくない場合が多い。
これら開孔材(B)の形状(長径/ 短径の比)については、3次元投影法でそれぞれの直交する方向での長径/短径の平均を、更に3方向で平均したもので表した場合、その直
交する方向での長径/ 短径の比は好ましくは10倍以内、より好ましくは5倍以内であり、又上述各方向(3方向)それぞれでの平均値の最大/ 最小値の比が10倍以内、より好ましくは同様に5倍以内である。
The dispersion shape of the pore opening material (B) in the base resin (A) may be arbitrary as long as a desired hole is obtained, but generally, the closer to a spherical shape, the more stretchable and the uniformity of the hole. It is preferable from the viewpoint of fluid permeability and strength, but there is no special limitation. The complicated shape with unevenness, thread shape, dispersion diameter and shape are non-uniform and large variation, pore uniformity, membrane strength In many cases, it is not preferable.
About the shape (ratio of major axis / minor axis) of these aperture materials (B), the average of the major axis / minor axis in each orthogonal direction was further averaged in three directions by the three-dimensional projection method. In this case, the ratio of the major axis / minor axis in the orthogonal direction is preferably within 10 times, more preferably within 5 times, and the ratio of the maximum / minimum average value in each of the above directions (3 directions). Is within 10 times, more preferably within 5 times as well.

又該開孔材(B)は、基材樹脂(A)に対して、大きな開孔(P)形成する比較的大きめの径を有するものに対して、更により小さな径を有するものを併用して、該大きな開孔(P)の開孔壁に小さな開口(I)を形成させる開口剤(C)としての役目を更にもたせても良い。
その場合は、該開孔材(B)としては、同種の材料でも、他種の材料を利用しても良く、又この場合の比較的大きめの径を有するもの(Xとする)とより小さな径を有するもの(Yとする)の、上記いずれかの方法での平均分散径の比:X/Yは、少なくとも5、好ましくは少なくとも10、より好ましくは少なくとも20である。
又、更に好ましくは、これら両者の上記いずれかの同一の方法で測定した口径分布曲線の重なり部分の面積が20%未満であることが好ましい。より好ましくは10%未満、さらに好ましくは2%未満である。この理由は、上述の大きな開孔(P)、及び開孔壁の小さな開口(I)のそれぞれの分布の均一性、強度、延伸性等に問題を有するようになるからである。
In addition, the pore opening material (B) is used in combination with a base resin (A) having a relatively large diameter for forming a large opening (P) and a material having a smaller diameter. Thus, it may further serve as an opening agent (C) for forming a small opening (I) on the opening wall of the large opening (P).
In that case, as the pore opening material (B), the same kind of material or other kinds of materials may be used, and in this case, a material having a relatively large diameter (referred to as X) is smaller. The ratio of the average dispersion diameter in any one of the above methods (X / Y) of those having a diameter (referred to as Y) is at least 5, preferably at least 10, and more preferably at least 20.
More preferably, the area of the overlapping portion of the aperture distribution curves measured by any one of the above methods is preferably less than 20%. More preferably, it is less than 10%, More preferably, it is less than 2%. This is because there is a problem in the uniformity, strength, stretchability, etc. of the distribution of each of the large apertures (P) and the small apertures (I) in the aperture wall.

(3)開口剤(C)
開口剤(C)とは、少量の添加で、それ自身が延伸時に開孔壁部分に存在し、上記開孔材(B)より小さい径でミクロ分散し又はミクロ相分離し、基材樹脂(A)の微少結晶界面、結晶欠陥部、又は該基材の非晶部に微小分散して存在し、延伸時特に上記開孔材(B)が先ず基材樹脂(A)から剥離し比較的大きな開孔(P)を生じ、延伸と同時、又は開孔壁を形成する薄膜が出来はじめ、延伸応力が集中し易くなった時に、開口剤(C)が作用し、少なくともその開孔壁部分に多数の小開口(I)を形成し、結果として通流体性を発揮させるものである。
(3) Opening agent (C)
The opening agent (C) is added in a small amount, and is itself present in the pore wall portion during stretching, and is microdispersed or microphase-separated with a diameter smaller than the pore opening material (B). A) is present in a finely dispersed manner at the microcrystalline interface, crystal defect portion, or amorphous portion of the base material, and the pore-opening material (B) is first peeled off from the base resin (A) during stretching. A large aperture (P) is formed, and at the same time as stretching, a thin film forming an aperture wall begins to be formed, and when the stretching stress becomes easy to concentrate, the opening agent (C) acts, and at least the aperture wall portion A large number of small openings (I) are formed on the surface, and as a result, fluid permeability is exhibited.

又該開口剤(C)は、上記大きな開孔(P)を生じさせる開孔材(B)の界面の剥離を容易にする効果も合わせ持つものがより好ましい場合が多い。
該開口剤(C)としては、具体的には、比較的炭素鎖の長い脂肪族アルコール、同カルボン酸、又はこれらの誘導体として、脂肪酸アマイド、脂肪族アルコールエステル、多価アルコールエステル、アルカリ金属塩、アルカリ土類金属塩、等が有り、好ましくはステアリン酸アマイド、エルカ酸アマイド、脂肪酸グリセリンエステル(モノ、ジ、トリ等の部分エステル化物を含む)、ポリグリセリンエステル、ソルビタンエステル、ソルビトールエステル等が有る。又シリコーンオイル(アルキル型の他に、フェニール、フェノール、エーテル、カルビノール、アミノ、メルカプト、エポキシ、カルボキシル、高級脂肪酸エステル、フッ素等の各変性物を含む)系のもの、前記樹脂のオリゴマー類、流動パラフィン、パラフィンワックス等からなる飽和炭化水素系のものから選ばれるものでも良い。
Further, it is often preferable that the opening agent (C) also has an effect of facilitating the peeling of the interface of the opening material (B) that generates the large opening (P).
Specific examples of the opening agent (C) include fatty alcohols, aliphatic alcohol esters, polyhydric alcohol esters, alkali metal salts as aliphatic alcohols, carboxylic acids, or derivatives thereof having a relatively long carbon chain. Alkaline earth metal salts, etc., preferably stearic acid amide, erucic acid amide, fatty acid glycerin ester (including partially esterified products such as mono, di, and tri), polyglycerin ester, sorbitan ester, sorbitol ester, etc. Yes. Also, silicone oils (including alkyl type, modified products such as phenyl, phenol, ether, carbinol, amino, mercapto, epoxy, carboxyl, higher fatty acid ester, fluorine), oligomers of the above resins, It may be selected from saturated hydrocarbons such as liquid paraffin and paraffin wax.

(4)基材樹脂(A)、開孔材(B)、及び開口剤(C)の使用量
基材樹脂(A)、開孔材(B)、及び開口剤(C)の使用量は、基材樹脂(A)として、好ましくは熱可塑性樹脂(A)が50〜99重量%と、開孔材(B)及び該開口剤(C)の合計量が1〜50重量%、より好ましくは該熱可塑性樹脂(A)が55〜98重量%と、該開孔材(B)が2〜45重量%と、該開口剤(C)が0〜15重量%とから成り、更に好ましくは該熱可塑性樹脂(A)が60〜94重量%と、該開孔材(B)が5〜40重量%と、該開口剤(C)が1〜10重量%である。
さらに、製造時の延伸性、得られる微多孔フィルムの引張強度、引裂強度や孔径分布等を向上させる目的で、熱可塑性樹脂(A)、開孔材(B)、及び開口剤(C)の全体に対し、好ましくは0.05〜30重量%の範囲内で、結晶核剤、相溶化剤、軟質樹脂、エラストマーをはじめとする公知の改質剤、添加剤、加工助剤等を用いても差し支えない。
(4) Use amount of base resin (A), aperture material (B), and opening agent (C) The usage amount of base resin (A), aperture material (B), and opening agent (C) is The base resin (A) is preferably 50 to 99% by weight of the thermoplastic resin (A), and the total amount of the opening material (B) and the opening agent (C) is more preferably 1 to 50% by weight. Consists of 55 to 98% by weight of the thermoplastic resin (A), 2 to 45% by weight of the aperture material (B), and 0 to 15% by weight of the opening agent (C), more preferably The thermoplastic resin (A) is 60 to 94% by weight, the pore-opening material (B) is 5 to 40% by weight, and the opening agent (C) is 1 to 10% by weight.
Furthermore, for the purpose of improving the stretchability during production, the tensile strength, tear strength, pore size distribution, etc. of the resulting microporous film, the thermoplastic resin (A), the pore opening material (B), and the opening agent (C) With respect to the whole, preferably within a range of 0.05 to 30% by weight, using known modifiers, additives, processing aids such as crystal nucleating agents, compatibilizers, soft resins, elastomers, etc. There is no problem.

(5)微細通流体性多孔体の多孔構造・形状
本発明の微細通流体性多孔体(以下、単に多孔体ということがある。)の多孔構造は、その平均孔径が0.5〜100μm、好ましくは0.7〜50μm、より好ましくは1〜30μmである大きな開孔(P)群と、その開孔の少なくとも1部の開孔壁部分にある開口(I)で、1つの開孔(P)に対して該開口数が少なくとも複数個、好ましくは5個以上、より好ましくは10個以上であり、更にその平均開口径(上述開孔壁部分の)は0.01〜30μm、好ましくは0.03〜20μm、より好ましくは0.05〜10μmであるより小さな開口(I)群とを有し、好ましくはその平均径の比(P/I)が少なくとも2、好ましくは少なくとも5、より好ましくは少なくとも10である多孔構造である。
(5) Porous structure / shape of microfluidic porous body The porous structure of the microfluidic porous body of the present invention (hereinafter sometimes simply referred to as a porous body) has an average pore diameter of 0.5 to 100 μm, A large aperture (P) group that is preferably 0.7 to 50 μm, more preferably 1 to 30 μm, and an aperture (I) in an aperture wall portion of at least one part of the aperture is one aperture ( The number of the apertures is at least a plurality, preferably 5 or more, more preferably 10 or more with respect to P), and the average aperture diameter (of the above-mentioned aperture wall portion) is 0.01 to 30 μm, preferably A smaller aperture (I) group that is 0.03 to 20 μm, more preferably 0.05 to 10 μm, and preferably its ratio of average diameters (P / I) is at least 2, preferably at least 5, more A porous structure, preferably at least 10 It is.

尚、上記開孔(P)(開口(I))の平均開孔(開口)径は、多孔体の表面を走査型電子顕微鏡(SEM)で観察し、開孔(開口)部10個の直径(楕円の場合は短径)を平均して求めた。   In addition, the average opening (opening) diameter of the opening (P) (opening (I)) is obtained by observing the surface of the porous body with a scanning electron microscope (SEM), and the diameter of 10 opening (opening) portions. It was obtained by averaging (minor axis in the case of an ellipse).

本発明の微細通流体性多孔体の多孔度は、30〜90%、好ましくは30〜80%、より好ましくは40〜85%である。   The porosity of the microfluidic porous material of the present invention is 30 to 90%, preferably 30 to 80%, more preferably 40 to 85%.

本発明の多孔体の透気度は、その特定の多孔構造により、1000(sec /100cc・25μm厚み)以下、好ましくは0.05〜1000(sec /100cc・25μm厚み)、より好ましくは0.1〜700(sec /100cc・25μm厚み)、更に好ましくは0.5〜500(sec /100cc・25μm厚み)の低い透気度(高い通流体性)とすることが出来る。
又上述のごとく上記多孔体を更に延伸し、フイブリル化することにより、好ましくは0.05〜1000(sec /100cc・25μm厚み)、より好ましくは0.05〜500(sec /100cc・25μm厚み)、更に好ましくは0.1〜100(sec /100cc・25μm厚み)の一層低い透気度(一層高い通流体性)とすることが出来る。
The air permeability of the porous body of the present invention is 1000 (sec / 100 cc · 25 μm thickness) or less, preferably 0.05 to 1000 (sec / 100 cc · 25 μm thickness), more preferably 0.00, depending on the specific porous structure. A low air permeability (high fluid permeability) of 1 to 700 (sec / 100 cc · 25 μm thickness), more preferably 0.5 to 500 (sec / 100 cc · 25 μm thickness) can be achieved.
Further, as described above, the porous body is further stretched and fibrillated, so that it is preferably 0.05 to 1000 (sec / 100 cc · 25 μm thickness), more preferably 0.05 to 500 (sec / 100 cc · 25 μm thickness). More preferably, the air permeability (higher fluid permeability) of 0.1 to 100 (sec / 100 cc · 25 μm thickness) can be obtained.

本発明の多孔体は、少なくとも1軸方向に延伸配向され、延伸方向にその最大収縮率が少なくとも30%、好ましくは少なくとも40%であり、又その最大収縮応力は少なくとも20g/mm2 、好ましくは少なくとも50g/mm2 であり、フィルム、シート状のものでは2軸方向に延伸されると強度、通流体性等の面で好ましい。
又本発明の多孔体の形状は、その目的に合わせ、2〜200μmのフィルム状、200〜5000μm厚みのシート状、5〜5000μm径の糸状、5〜5000μm径の中空糸状から選ばれるものである。
又本発明の各用途における、より好ましい多孔体は多層状である。
その理由は、高機能性材料のように、多孔体に要求される特性が、多孔体全体に要求される性質、表層に要求される性質が異なる場合、多孔体を多層状に形成する必要があるが、本発明の好ましい製造法に依れば、各々の機能が異なる多層状の多孔体が簡単に得られるからである。
The porous body of the present invention is stretched and oriented in at least one axial direction, and its maximum shrinkage is at least 30%, preferably at least 40% in the stretch direction, and its maximum shrinkage stress is at least 20 g / mm 2 , preferably It is at least 50 g / mm 2 , and in the case of a film or sheet, stretching in the biaxial direction is preferable in terms of strength and fluid permeability.
The shape of the porous body of the present invention is selected from a film shape of 2 to 200 μm, a sheet shape of 200 to 5000 μm thickness, a thread shape of 5 to 5000 μm diameter, and a hollow fiber shape of 5 to 5000 μm diameter according to the purpose. .
A more preferable porous body in each application of the present invention is a multilayer.
The reason for this is that when the properties required for the porous body are different from the properties required for the entire porous body and the properties required for the surface layer, such as a highly functional material, it is necessary to form the porous body in multiple layers. However, according to the preferred production method of the present invention, a multilayer porous body having different functions can be easily obtained.

本発明の多層状の多孔体は、目的に応じて、同一の基材樹脂を使用しても異なった組成からなる層、又は異なる基材樹脂を使用した組成からなる層、又は異なった構造からなる層、異なった特性からなる層から選ばれる1層以上の組み合わせからなる多層状の多孔体である。
また、本発明の多孔体は、用途により本発明とは違う別の特徴の多孔構造を有する多孔体とを組み合わせた多層状としてもよい。
本発明の好ましい製法は、違う多孔構造をもった多孔体を形成するための製法に対しても適合性が高く、様々な機能を持った多層複合多孔体を容易に得ることができる。
Depending on the purpose, the multilayer porous body of the present invention has different layers even if the same base resin is used, or a layer made of a composition using different base resins, or a different structure. A multi-layer porous body composed of a combination of one or more layers selected from layers having different characteristics.
In addition, the porous body of the present invention may be formed in a multilayered form in which a porous body having a porous structure having a different characteristic from that of the present invention is combined depending on applications.
The preferred production method of the present invention is highly compatible with a production method for forming a porous body having a different porous structure, and a multilayer composite porous body having various functions can be easily obtained.

具体的には、本発明の多孔体の好ましい用途は、例えば、リチウムイオン2次電池用のセパレータがある。この場合は、好ましくは3層状で、表層機能由来の耐熱性(空気中で加熱し延伸方向に寸法が5%収縮する温度)が、少なくとも120℃、好ましくは少なくとも130℃、より好ましくは少なくとも140℃、更に好ましくは少なくとも160℃であり、且つ同時に内層の閉塞温度(ヒューズ温度と称する:電池内でその厚み方向に主に収縮、又は流動し、多孔構造が有効に閉塞され、高抵抗又は絶縁状態になり、電池内の電極間の電気化学的反応が実質的に停止する、いわゆる電気的に絶縁状態となる温度)が、140℃以下、より好ましくは120℃以下、更に好ましくは110℃以下、最も好ましくは100℃以下である。そして、本発明の多孔体においては、上記表層機能由来の耐熱性及び内層の閉塞温度を、樹脂を自由に選定することにより、目的に合わせ更に自由に設定できる特徴がある。   Specifically, a preferred use of the porous body of the present invention is, for example, a separator for a lithium ion secondary battery. In this case, preferably in the form of three layers, the heat resistance derived from the surface layer function (temperature at which the dimension is shrunk by 5% in the stretching direction when heated in air) is at least 120 ° C, preferably at least 130 ° C, more preferably at least 140. C., more preferably at least 160.degree. C., and at the same time, the inner layer plugging temperature (referred to as the fuse temperature: mainly shrinks or flows in the thickness direction in the battery, and the porous structure is effectively plugged, resulting in high resistance or insulation. The temperature at which the electrochemical reaction between the electrodes in the battery is substantially stopped, the so-called electrically insulating state) is 140 ° C. or less, more preferably 120 ° C. or less, and even more preferably 110 ° C. or less. Most preferably, it is 100 ° C. or lower. The porous body of the present invention is characterized in that the heat resistance derived from the surface layer function and the closing temperature of the inner layer can be set more freely according to the purpose by freely selecting the resin.

本発明の多孔体のハイブリッド構造では、小さな開口(I)群が主に素早く閉塞され、温度的、時間的にも、シヤープに反応し電池の安全性(暴走反応による爆発防止)に有効に寄与でき、更に加えて表層の耐熱層は、更に高温まで収縮し、又は溶融流動し、電極がショートし爆発することを防いでより安全性に寄与するものである。
又本発明の多孔体の次に好ましい用途として、2次電池としての「ニッケル−水素電池」用のセパレータがある。この「ニッケル−水素電池」は、短時間で高出力を取り出せる点で優位な電池であり、これは低内部抵抗の水系電解質の使用と、それに合わせたより低抵抗の性能を有するセパレータを使用している点に特徴がある。現在ポリプロピレン製の不織布が使用されているが、今後該電池を高容量化し、小型軽量で安全な電池が電気を駆動原とする電気自動車回りの用途、ポータブル機器への搭載に展開するには、該セパレータでは、次の点で問題がある。即ち、薄くすると、ピンホールが多くなり電極同士のショ−トの危険性があるのと、充放電時の電極の膨張収縮に対しクッション性(緩衝性)が無くなる。 又細い繊維を用いこの問題に対応しようとすると、製造し難くなり高価額になる等の理由で、セパレータを薄く出来難い問題点がある。
In the hybrid structure of the porous body of the present invention, the small aperture (I) group is mainly quickly closed, and responds effectively to the safety of the battery (explosion prevention due to runaway reaction) by reacting to the thermal and time. In addition, the heat-resistant layer on the surface layer further shrinks to a high temperature or melts and flows, and prevents the electrode from short-circuiting and exploding, thereby contributing to more safety.
The next preferred use of the porous body of the present invention is a separator for a “nickel-hydrogen battery” as a secondary battery. This “nickel-hydrogen battery” is a battery that is advantageous in that it can take out a high output in a short time. This is achieved by using a low internal resistance aqueous electrolyte and a separator having a lower resistance performance corresponding thereto. There is a feature in that. Polypropylene nonwoven fabric is currently used, but in the future, the battery will be increased in capacity, and small, lightweight and safe batteries will be used for applications around electric vehicles that use electricity as the driving source, mounting in portable devices, The separator has the following problems. That is, if the thickness is reduced, the number of pinholes increases and there is a risk of shorting between the electrodes, and cushioning (buffering) against the expansion and contraction of the electrodes during charge / discharge is lost. Further, when trying to cope with this problem using thin fibers, there is a problem that it is difficult to make the separator thin for reasons such as difficulty in manufacturing and high price.

これに対し、ポータブル機器の高度化(電気使用量増加傾向に対処)、環境・省資材問題から、最近特に必要性が提起されている、電気自動車用電池、ガソリン使用のハイブリッド自動車用、燃料電池使用ハイブリッド電気自動車等に搭載用の高エネルギー密度化が可能で、且つ急充放電でエネルギーを有効に出し入れ出来る電池に使用可能な優れたセパレータが要求されているのが現状である。
本発明の多孔体は、上記ハイブリッド電気自動車等に搭載される電池用セパレータとして最適な多孔体である。
On the other hand, the need for electric vehicles, gasoline-powered hybrid vehicles, and fuel cells has recently been particularly raised due to the advancement of portable devices (responding to the increasing trend of electricity usage), environmental and material-saving problems. At present, there is a demand for an excellent separator that can be used in a battery that can increase the energy density for use in a hybrid electric vehicle or the like that can be efficiently charged and discharged.
The porous body of the present invention is an optimal porous body as a battery separator to be mounted on the hybrid electric vehicle or the like.

即ち、本発明の多孔体は、電池の内部抵抗の主因となる電気抵抗も前(後)述のごとく低くすることが出来、その厚みが薄い領域でも、電気電解液の高吸収性・高含液性、電極の使用時の厚み変化に追従可能な適度なクッション性が発揮され、又低透気度(気体を透し易い)による発生ガスの対極へのスムーズな移動性(電池内圧上昇で爆発するのを防ぐ)等も確保され、従来の相分離法多孔膜(樹脂と多量の可塑剤を利用し、相分離後可塑剤を抽出して製造される例えば口径が0.04μm程度で、且つ単一な口径分布の気孔群からなる、高透気度300〜600(sec /100cc・25μm厚み)程度を有するもの)では達成出来ない優れた性能を発揮するセパレータとして用いられ、単層、又は上記3層の耐熱性と安全閉塞機能を有した層構造(実施例で詳述する)等の形態で利用される。
本発明の多孔体が上記優れた機能を発揮するのは、その大きな開孔(P)と該開孔(P)の少なくとも1部の開孔壁部分に設けられた小さな開口(I)からなる多孔構造に由来する。その特定の多孔構造の律速部分である小さな開口(I)部分が多孔体の主に厚み方向の大きな開孔(P)の開孔壁に有るため、合計した厚み相当分が少なく(その理由は、大きな開孔(P)が存在するため)、電気抵抗がその分低くなり、さらには該開孔(P)/開口(I)による通流体部分によって、通電時に電流密度の異なる部分が厚み方向に多
数存在することとなるため、本発明の多孔体をリチウムイオン電池において使用する場合には、充電中にリチウム金属デンドライト(針状結晶)が厚み方向に垂直に成長し難く、短絡現象も起こり難い。又上記特定の開孔(P)/開口(I)構造により、電気電解液の吸収保持性、クッション性にも優れる。
In other words, the porous body of the present invention can also reduce the electrical resistance, which is the main cause of the internal resistance of the battery, as described above (after), and even in the thin region, the high absorbency and high content of the electrolysis solution. Liquidity, moderate cushioning that can follow changes in thickness when using electrodes, and smooth mobility to the counter electrode of the generated gas due to low air permeability (easy to pass gas) The prevention of explosion) is also ensured, and the conventional phase separation method porous membrane (using a resin and a large amount of plasticizer, which is manufactured by extracting the plasticizer after phase separation, for example, the aperture is about 0.04 μm, In addition, it is used as a separator that exhibits excellent performance that cannot be achieved with a high air permeability of about 300 to 600 (sec / 100 cc · 25 μm thickness) consisting of a group of pores having a single aperture distribution, Or has the above three layers of heat resistance and safety occlusion function The layer structure is utilized in the form of such (elaborating the embodiment).
The porous body of the present invention exerts the above-mentioned excellent function is composed of its large opening (P) and a small opening (I) provided in an opening wall portion of at least one part of the opening (P). Derived from a porous structure. Since the small opening (I) portion, which is the rate-determining part of the specific porous structure, is mainly on the opening wall of the large opening (P) in the thickness direction of the porous body, the total equivalent thickness is small (the reason is In other words, the electrical resistance is lowered by a large amount due to the presence of a large opening (P), and further, the portion where the current density is different when energized due to the fluid passage portion due to the opening (P) / opening (I). Therefore, when the porous body of the present invention is used in a lithium ion battery, lithium metal dendrites (needle crystals) hardly grow perpendicular to the thickness direction during charging, and a short-circuit phenomenon also occurs. hard. Further, the above-described specific opening (P) / opening (I) structure is excellent in absorption retention and cushioning properties of the electrolysis solution.

(6)微細通流体性多孔体の製造方法
本発明の微細通流体性多孔体の製造方法は、基材の熱可塑性樹脂(A)と、上記開孔材(B)と開口剤(C)と、必要により該(B)の分散径、分散形状を制御するための少量の相溶化剤(D)を2軸押し出し機等で良く混合し、単層又は多層状で、場合により延伸補助層を付加した積層体をダイから押出し、その後急冷固化し所望の成型体(原反)に加工し、次いで該成型体を15℃以上、且つ該基材の熱可塑性樹脂(A)の融点以下で、又はビカット軟化点に50℃を加えた温度以下で、少なくとも1方向に面積延伸倍率で、1.1倍以上70倍以下に延伸する事により、基材の熱可塑性樹脂(A)と該開孔材(B)との少なくとも1部の界面が剥離し、大きな開孔(P)群を生成し、該添加剤(C)により、その開孔(P)の少なくとも1部の開孔壁部分により小さな開口(I)群を形成して、2相の開孔(P)/開口(I)よりなる孔分布を有するハイブリッド型の通流体性経路を形成する製造方法である。
(6) Method for Producing Microfluidic Porous Material The method for producing a microfluidic porous material of the present invention comprises a thermoplastic resin (A) as a base material, the pore-opening material (B), and an opening agent (C). If necessary, a small amount of the compatibilizer (D) for controlling the dispersion diameter and dispersion shape of (B) is mixed well with a biaxial extruder or the like, and is a single layer or a multilayer, and optionally a stretching auxiliary layer Extrude the laminated body added with a die, and then rapidly cool and solidify it into a desired molded body (raw material), and then the molded body at 15 ° C. or higher and below the melting point of the thermoplastic resin (A) of the substrate. Or at a temperature of 50 ° C. or less added to the Vicat softening point and at least in one direction at an area stretch ratio of 1.1 times to 70 times, thereby extending the thermoplastic resin (A) of the substrate and the opening. At least a part of the interface with the pore material (B) peels off to form a large pore (P) group, and the additive (C ) To form a small aperture (I) group in the aperture wall portion of at least a part of the aperture (P), and a hybrid having a pore distribution of two-phase aperture (P) / aperture (I) A manufacturing method for forming a fluid-permeable path of a mold.

上記延伸操作は、必要に応じて適宜1軸延伸、逐次2軸延伸、同時2軸延伸が採用される。
又これらの延伸操作を多段階で行っても良い。この場合でも、15℃以上、かつ、基材の熱可塑性樹脂(A)の融点以下、又はビカット軟化点に50℃を加えた温度以下で、少なくとも1方向に面積延伸倍率で、1.1倍以上70倍以下であれば特に限定されないが、各段における延伸開始部の温度差が少なくとも5℃以上であることが好ましい。又多段の後段程、該延伸開始温度を少なくとも5℃程度高くするのが好ましい。
上記面積延伸倍率は、1.1〜70倍、好ましくは1.5〜50倍である。次に得られた微細通流体性多孔体を更に延伸し、フイブリル化して、不織布様にする場合は、その延伸倍率は、好ましくは16〜70倍、より好ましくは25〜60倍である。
また、寸法安定性を特に重要視する場合は、最終延伸段の温度を高めにしてヒートセット効果を付与しても、または次工程としてヒートセット工程を加えてもよい。
As the stretching operation, uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching are appropriately employed as necessary.
These stretching operations may be performed in multiple stages. Even in this case, at 15 ° C. or higher and below the melting point of the thermoplastic resin (A) of the base material or below the temperature obtained by adding 50 ° C. to the Vicat softening point, the area stretch ratio is 1.1 times in at least one direction. Although it will not specifically limit if it is more than 70 times or less, It is preferable that the temperature difference of the extending | stretching start part in each stage is at least 5 degreeC or more. Further, the stretching start temperature is preferably increased by at least about 5 ° C. in the subsequent stages of the multistage.
The area stretch ratio is 1.1 to 70 times, preferably 1.5 to 50 times. Next, when the obtained microfluidic porous material is further stretched and fibrillated to form a nonwoven fabric, the stretching ratio is preferably 16 to 70 times, more preferably 25 to 60 times.
Further, when dimensional stability is particularly important, the temperature of the final drawing stage may be increased to give a heat setting effect, or a heat setting process may be added as the next process.

以下に、本発明の多孔体の製造方法の好ましい例を説明する。
高品質の本発明の多孔体(M層と略す)を得るために、加工(押し出し、延伸、その他の操作)を補助するための目的で、該M層を製品化する時に剥離除去する補助層(S層と略す)が用いられる。
更に詳細には、このS層を用いることにより、M層単独では不可能だった、均一で高度な流動配向を押し出し時に付与することが可能で、更に以下の問題点をも解決出来る。
即ち、延伸工程中に不均一になり裂けてしまう、厚み方向で孔形成性が異なる、厚み方向で特性が異なる、幅方向で均一性に欠ける、更には、条件的により厳しいバブル法での延伸ができない(特により低温条件下、又は横方向に高度な延伸を加える場合等にはパンクや不均一化の問題の他に、バブル内の空気が抜けて封入できず、延伸が継続して出来ない等の問題がある)等の場合でも、このS層を用いることにより、微多孔フィルムを効率よく生産することができる。
Below, the preferable example of the manufacturing method of the porous body of this invention is demonstrated.
To obtain a high-quality porous body (abbreviated as M layer) of the present invention, an auxiliary layer that is peeled and removed when the M layer is commercialized for the purpose of assisting processing (extrusion, stretching, other operations). (Abbreviated as S layer) is used.
More specifically, by using this S layer, it is possible to impart a uniform and high fluid orientation during extrusion, which was impossible with the M layer alone, and also solve the following problems.
That is, it becomes non-uniform and tears during the stretching process, the hole forming property is different in the thickness direction, the property is different in the thickness direction, the uniformity is not uniform in the width direction, and the bubble method is more severely conditioned by the condition. (Especially in the case of low temperature conditions or when applying a high degree of stretching in the transverse direction, in addition to the problem of puncture and non-uniformity, the air in the bubble cannot escape and cannot be sealed, and the stretching can be continued. Even in the case of a problem such as absence, a microporous film can be efficiently produced by using this S layer.

又加工中、又は取り扱い中にS層が、M層の傷、汚染(菌、汚れ、他)を保護する役目もはたすことが出来る。
このS層は、該M層を製品化する時に剥離除去されるので、基本的にM層と異なる種類の樹脂が選定される。S層がM層と接着する、又は両層が互いに入り込んでしてしまうとM層の表面の開口に影響を与えてしまい、開口が不均一になり極端な場合は開口しない部分が出来てしまうが、実用的に剥離出来る程度ではM層の表面の開口に影響が無い事が判
明している。
該S層を構成する樹脂(E)としては、該M層の成膜性、延伸性等を向上させ、後にM層と容易に剥離できるものであれば、特に限定されないが、M層を構成する熱可塑性樹脂(A)と異なった熱可塑性樹脂で、延伸時に通流体性多孔体とならず、延伸後に容易に剥離するものが選ばれる。
In addition, during processing or handling, the S layer can also serve to protect the M layer from scratches and contamination (bacteria, dirt, etc.).
Since this S layer is peeled and removed when the M layer is commercialized, basically a different type of resin from the M layer is selected. If the S layer adheres to the M layer, or if both layers enter each other, the opening on the surface of the M layer is affected, and the opening becomes non-uniform, and in extreme cases, a portion that does not open is created. However, it has been found that there is no influence on the opening of the surface of the M layer as long as it can be practically peeled off.
The resin (E) constituting the S layer is not particularly limited as long as it can improve the film formability and stretchability of the M layer and can be easily peeled off from the M layer later. A thermoplastic resin different from the thermoplastic resin (A) to be used is selected which does not become a fluid-permeable porous body at the time of stretching but easily peels after stretching.

具体的には、隣接するM層を構成する樹脂の種類と同一でないものが基本的に選ばれればよい。特に、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂のいずれかを主成分とすることが好ましい。このうちポリオレフィン系樹脂としては、低密度ポリエチレン系樹脂、ポリプロピレン系樹脂、結晶性ポリブテンー1系樹脂、アイオノマー系樹脂等を主体(50vol%以上)とするものである。これらの内、特に好ましい組成は、例えば、結晶性ポリブテンー1系樹脂、該ポリブテン−1系樹脂に石油系樹脂を30重量%以下混合した組成物又はポリブテンー1系樹脂を全組成中の割合で10〜90重量%混合した3元組成物、又はポリプロピレン系樹脂に石油系樹脂を5〜30重量%混合した組成物、共重合ポリエステル系樹脂、或いは、
以下後述の(E1)、(E2)及び(E3)とからなる樹脂組成物、(E1)及び(E2)とからなる樹脂組成物、または(E2)及び(E3)とからなる樹脂組成物からなる群より選択される樹脂組成物である。
Specifically, what is not necessarily the same as the type of resin constituting the adjacent M layer may be selected. In particular, it is preferable that one of a polyolefin resin, a polyamide resin, and a polyester resin be a main component. Among these, the polyolefin resin is mainly composed of a low density polyethylene resin, a polypropylene resin, a crystalline polybutene 1 resin, an ionomer resin or the like (50 vol% or more). Among these, a particularly preferred composition is, for example, a crystalline polybutene-1 resin, a composition in which the polybutene-1 resin is mixed with 30% by weight or less of a petroleum resin, or a polybutene-1 resin in a ratio of 10 in the total composition. A ternary composition mixed with ˜90% by weight, a composition obtained by mixing 5-30% by weight of a petroleum-based resin with a polypropylene-based resin, a copolymerized polyester-based resin, or
Hereinafter, from a resin composition comprising (E1), (E2) and (E3), a resin composition comprising (E1) and (E2), or a resin composition comprising (E2) and (E3), which will be described later. A resin composition selected from the group consisting of:

E1:低密度ポリエチレン(高圧法、又はメタロセン系触媒、シングルサイト系触媒等で重合したもの、共重合するα−オレフィンが15モル%以下のもので例えば、エチレンと炭素数がC3〜C12のα−オレフィン系単量体の少なくとも1種を含むもの)、またはビニルエステル単量体、脂肪族不飽和モノカルボン酸、該モノカルボン酸アルキルエステルより選択される少なくとも1種の単量体とエチレンの共重合体、エチレン−スチレン系共重合体、またはこれらの誘導体から選択される少なくとも1種のVSP(ビカット軟化点)が80℃以上の(共)重合体又は、これらの混合組成物;
E2:VSPが80℃以下の軟質熱可塑性エラストマー;
E3:プロピレン、ブテン−1、4−メチルペンテン−1の単独重合体、HDPE等より選択される少なくとも1種、またはこれらの単量体とエチレンまたは別のα−オレフィンから選択される少なくとも1種の単量体との共重合体、またはこれらの誘導体から選択される少なくとも1種の共重合体;
E1: Low density polyethylene (polymerized by high pressure method, metallocene catalyst, single site catalyst, etc., copolymerized α-olefin having 15 mol% or less, for example, α and C3-C12 α -Containing at least one olefinic monomer), or at least one monomer selected from vinyl ester monomers, aliphatic unsaturated monocarboxylic acids, monocarboxylic acid alkyl esters, and ethylene. A (co) polymer having at least one VSP (Vicat softening point) selected from a copolymer, an ethylene-styrene copolymer, or a derivative thereof having a temperature of 80 ° C. or higher, or a mixed composition thereof;
E2: a soft thermoplastic elastomer having a VSP of 80 ° C. or lower;
E3: at least one selected from a homopolymer of propylene, butene-1,4-methylpentene-1, HDPE and the like, or at least one selected from these monomers and ethylene or another α-olefin At least one copolymer selected from copolymers of these with monomers, or derivatives thereof;

尚、上記ポリブテン−1とは、ブテン−1含量93モル%以上の結晶性で他のモノマー(例えば、エチレン、プロピレン、C5以上のもの)との共重合体をも含む高分子量のものであって、液状及びワックス状の低分子量のものとは異なり、MI(ASTM法 D1238(E条件に準じて測定):以後MIと言う)0.2〜10のものが好ましい。また、ポリブテン−1に水添飽和炭化水素系樹脂(好ましくは、その構成単位の一成分に環状部分を少なくとも一部含む同樹脂)を混合した組成物も好ましく用いられる。
また、上記S層を構成する熱可塑性樹脂(E)には、M層との剥離性を適度にする、又は同時に工程中(特に延伸中)の密着性(各層がバラバラにならないよう)を高める、多孔体表層の開口を均一且つスムーズにする、剥離時の静電気等の発生を阻止・リークする等のために、M層との界面までブリード可能な各種の添加剤を含有させることが好ましい。
The polybutene-1 is a high molecular weight polymer having a butene-1 content of 93 mol% or more and containing a copolymer with other monomers (for example, ethylene, propylene, C5 or more). Unlike liquid and waxy low molecular weight, MI (ASTM method D1238 (measured according to E conditions): hereinafter referred to as MI) 0.2 to 10 is preferable. A composition obtained by mixing polybutene-1 with a hydrogenated saturated hydrocarbon resin (preferably, the same resin containing at least part of a cyclic portion as one component of the structural unit) is also preferably used.
In addition, the thermoplastic resin (E) constituting the S layer has moderate peelability from the M layer, or at the same time, improves the adhesion during the process (particularly during stretching) (so that each layer does not fall apart). In order to make the opening of the surface of the porous body uniform and smooth, to prevent or leak the generation of static electricity at the time of peeling, it is preferable to contain various additives that can bleed to the interface with the M layer.

このような添加剤の例としては、非イオン系の界面活性剤、例えば、脂肪酸と多価アルコールとのエステル、ポリオキシエチレンアルキルエーテル、または、高級アルコール、各脂肪酸アマイド類、ワックス類、フッ素系・シリコン系の添加剤、その他特殊な機能を有する個々の目的に合致したものが挙げられ、これらを目的に合わせて選択すればよい。
これらの内好ましくは、少なくとも50℃で液状の成分が主体のもので、更に好ましくは、M層とS層を共押出し、延伸した後、これらがすばやくM層との界面にブリードし、
上述の様に両層の剥離が容易にできると同時に、両層の間に適度な密着性を保ちつつ、静電気の発生防止及びリーク対策も行うことができる物が選ばれる。このような添加剤は、エージングすることなく有効にブリードアウトし、オンラインでも高速で破損することなく補助層と微多孔フィルムを剥離して巻き取ることを可能とする。
Examples of such additives include nonionic surfactants such as esters of fatty acids and polyhydric alcohols, polyoxyethylene alkyl ethers, or higher alcohols, fatty acid amides, waxes, and fluorine-based surfactants. -Silicon-based additives and other additives that meet specific purposes with special functions may be mentioned, and these may be selected according to the purpose.
Of these, preferably the liquid component is mainly composed of at least 50 ° C., more preferably, the M layer and the S layer are coextruded and stretched, and then these quickly bleed to the interface with the M layer,
As described above, a material is selected that can easily peel off both layers, and at the same time maintain appropriate adhesion between the two layers, and can also prevent static electricity and prevent leakage. Such an additive effectively bleeds out without aging, and makes it possible to peel off and wind up the auxiliary layer and the microporous film without breaking at high speed even on-line.

又場合により、上述のブリード可能な添加剤を、M層、或いは両層に適用してもよい。これら添加剤の添加量は、0.2〜5重量%であり、その量が0.2重量%未満では、剥離が容易になる効果等が十分に得られない場合があり、また、この量が5重量%を超えると両層の間に適度な密着性が保たれず、工程(特に延伸)中に剥離する場合がある。
M層とS層とを合わせた好ましい全体の層構成を例示すると、それらは、少なくとも両層が1層ずつ含まれていればよいが、例えば、M/S、M/S/M、S/M/S、M/S/M/S/M等が挙げられる。M層が単層の場合は、生産性の面から複数のM層を含む全体層構成が経済的に望ましい場合もある。
また、既に述べたように、各M層及びS層自体がそれぞれが多層構造であってもよく、特に微多孔フィルムの高性能化、高品質化を優先する場合には、好ましくはS/M1/M2、S/M1/M2/S、S/M1/M2/M1、S/M1/M2/M1/S、M1/M2/M1/S/M1/M2/M1等が例示される。
上記S層/全層厚みの比率は、10〜90%、好ましくは20〜80%、よリ好ましくは30〜70%である。
In some cases, the above bleedable additive may be applied to the M layer or both layers. The additive amount of these additives is 0.2 to 5% by weight. If the amount is less than 0.2% by weight, the effect of facilitating peeling may not be sufficiently obtained. If the amount exceeds 5% by weight, appropriate adhesion between the two layers cannot be maintained, and peeling may occur during the process (particularly stretching).
When the preferable whole layer constitution combining the M layer and the S layer is exemplified, it is sufficient that at least both layers are included in one layer. For example, M / S, M / S / M, S / M / S, M / S / M / S / M, etc. are mentioned. When the M layer is a single layer, an entire layer configuration including a plurality of M layers may be economically desirable from the viewpoint of productivity.
Further, as already described, each of the M layer and the S layer itself may have a multilayer structure, and when priority is given to high performance and high quality of the microporous film, preferably S / M1 / M2, S / M1 / M2 / S, S / M1 / M2 / M1, S / M1 / M2 / M1 / S, M1 / M2 / M1 / S / M1 / M2 / M1, etc. are exemplified.
The S layer / total layer thickness ratio is 10 to 90%, preferably 20 to 80%, more preferably 30 to 70%.

上記比率の下限は、冷間で強力に延伸する場合の該S層の延伸力で、単独では冷間延伸が出来なく、開孔を達成することのできない組成から成る機能層に強力でしかも均一に延伸力(低温、高倍率領域に)を与えせしめ、該層の延伸開孔を、安定して(フィルムの破れ、サージングなしに)達成させる場合に必要な比率である。
また、上記比率は、M層の構成により最適になるように決定すれば良い。例えば、M層が冷間延伸により開孔せしめ難い組成層を含む場合は、全体層の内、該S層比率下限は比較的高く、逆に目的の孔構造に開孔せしめやすい組成のM層を含む場合は、低いS層比率で良い事は言うまでもない。
本発明では、少なくとも1層のM層を構成する熱可塑性樹脂を主成分とする組成物と、好ましくは、少なくとも1層のS層を構成する熱可塑性樹脂を主成分とする組成物とを、それぞれ別々の押出機で熱可塑化溶融し、多層ダイより共押出後、急冷固化させ十分均一なチューブまたはシート状原反とし、次いでこれらを延伸成形する。
共押出の方法としては、多層のT−ダイ法、多層の環状ダイ法とが挙げられるが、後者の方法が原反効率の良さ、流動配向の均一性等の点で好ましい。
The lower limit of the above ratio is the stretching force of the S layer when it is strongly stretched in the cold, and it is strong and uniform in the functional layer composed of a composition that cannot be cold-stretched by itself and cannot achieve opening. Is a ratio necessary for imparting stretching force (low temperature, high magnification region) to achieve stretch opening of the layer stably (without film tearing and surging).
The ratio may be determined so as to be optimal depending on the configuration of the M layer. For example, when the M layer includes a composition layer that is difficult to open by cold drawing, the lower limit of the S layer ratio is relatively high in the entire layer, and conversely, the M layer has a composition that is easy to open the target hole structure. Needless to say, a low S layer ratio is acceptable.
In the present invention, a composition mainly comprising a thermoplastic resin constituting at least one M layer, and preferably a composition mainly comprising a thermoplastic resin constituting at least one S layer, Each of them is thermoplasticized and melted in separate extruders, coextruded from a multilayer die, and then rapidly cooled and solidified to form a sufficiently uniform tube or sheet raw material, which are then stretch-molded.
Examples of the coextrusion method include a multilayer T-die method and a multilayer annular die method, and the latter method is preferable from the standpoints of good raw fabric efficiency and uniformity of flow orientation.

次に、上記延伸成形方法としては、ロール延伸法、テンターフレーム法、(ダブルバブル、トリプルバブル等のマルチバブルプロセスを含む)チューブラー法等の各種方法があるが、以下の理由等から一般に、チューブラー法によるのが好ましく、更にこれにS層を少なくとも一層配するのがより好ましい。
又比較的厚みの厚いシート状のものは、Tダイにより押し出し後、キャストロールで急冷し、ロール間で加熱し、1軸延伸、又は好ましくは2軸延伸される。 この場合、具体的にはロール群間でのタテ1軸延伸、テンターでのヨコ1軸延伸、テンターフレームでの同時2軸延伸、ロールとテンターを組み合わせての逐次2軸延伸が採用される。
又糸状のものは、該組成物を紡孔から押し出し、冷却媒体で、急冷後、加熱しながら1軸延伸して得られる。
中空糸状のものは、該組成物を単層、又は必要により多層状の中空糸用ダイから押し出し、冷却媒体で急冷後加熱し1軸に延伸、又は押し出しながら適当な温調媒体中で差動ロール間で1軸に延伸して得られる。
Next, as the stretch molding method, there are various methods such as a roll stretching method, a tenter frame method, and a tubular method (including a multi-bubble process such as double bubble and triple bubble). Generally, for the following reasons, It is preferable to use a tubular method, and it is more preferable to dispose at least one S layer thereon.
A sheet having a relatively thick thickness is extruded with a T die, quenched with a cast roll, heated between rolls, and uniaxially stretched, or preferably biaxially stretched. In this case, specifically, vertical uniaxial stretching between roll groups, horizontal uniaxial stretching with a tenter, simultaneous biaxial stretching with a tenter frame, and sequential biaxial stretching in combination of a roll and a tenter are employed.
A filamentous product is obtained by extruding the composition from the spinning hole, quenching with a cooling medium, and uniaxially stretching while heating.
In the hollow fiber form, the composition is extruded from a single layer or, if necessary, a multilayer hollow fiber die, quenched with a cooling medium, heated and stretched uniaxially or differentially in an appropriate temperature control medium while being extruded. It is obtained by stretching uniaxially between rolls.

さらに、延伸前又は延伸後に、原反の延伸性、延伸開孔性を高め、また本発明の多孔体
の強度、耐熱性、寸法安定性を向上させる目的で、該M層、S層に2〜20Mrad、好ましくは2.5〜15Mradの高エネルギー線により、架橋処理を行ってもよい。
この際の方法としては、電離性放射線、例えば電子線、放射性同位元素から放射されるβ線、γ線を照射する方法、またはベンゾフェノンやパーオキサイド等の増感剤をあらかじめM層に混合しておき、紫外線照射、熱架橋等を行う方法が挙げられる。
これらのうち、工業的には高エネルギー電子線を使用するのが好ましい。
また、多層状M層の場合に所定のM層の架橋度合いを、目的により樹脂の種類、分子量の制御、(架橋を促進または抑制する)添加剤等を利用する事により、またはエネルギー線の透過深度を制御することによりコントロール(例えば、表層の架橋密度を高くする、中間層の架橋密度を下げる、または実質的にゲル分率が測定できない程度の弱い架橋を行う等)してもよい。
さらにこれらの架橋処理をS層にも適用してもよい。
Furthermore, before stretching or after stretching, 2 layers are added to the M layer and S layer for the purpose of enhancing the stretchability and stretchability of the original fabric and improving the strength, heat resistance and dimensional stability of the porous body of the present invention. The crosslinking treatment may be performed with a high energy beam of ˜20 Mrad, preferably 2.5 to 15 Mrad.
As a method at this time, ionizing radiation, for example, a method of irradiating an electron beam, a β ray or a γ ray emitted from a radioisotope, or a sensitizer such as benzophenone or peroxide is mixed in the M layer in advance. Examples of the method include ultraviolet irradiation and thermal crosslinking.
Among these, it is preferable to use a high energy electron beam industrially.
In the case of a multilayer M layer, the degree of cross-linking of a predetermined M layer can be determined by controlling the type of resin, molecular weight, additives (accelerating or suppressing cross-linking), etc. depending on the purpose, or transmission of energy rays. It may be controlled by controlling the depth (for example, increasing the cross-linking density of the surface layer, decreasing the cross-linking density of the intermediate layer, or performing weak cross-linking to such an extent that the gel fraction cannot be measured substantially).
Further, these crosslinking treatments may be applied to the S layer.

以下本発明で用いる特性値の測定法について説明する。
(1)透気度は、ASTM D−726(B)法に基づいて測定したガーレー値(秒/100cc)で所定の面積を、100ccの空気が透過する時間で表す、又多孔体の厚みを25μmに換算した値である。但し、透気度が低い、つまり通過し易い(例えば、5sec 以下)場合はフィルムの枚数を重ねて(例えば5〜10枚)測定するか、又はカバーフイルム等で測定面積を小さくして測定して後で、その値をもとの所定の方法に合う様に換算するものとする。
(2)結晶融点(mp)、ガラス転移点(Tg)とは、JIS−K−7121に基づいて、示差走査型熱量計(DSC、パーキンエルマー社製 DSC−7)を用い、サンプル−の5mgを溶解、急冷した後、所定の温度から10℃/分の昇温速度で昇温して測定されたものである。
The characteristic value measurement method used in the present invention will be described below.
(1) The air permeability is a Gurley value (second / 100 cc) measured based on the ASTM D-726 (B) method, and represents a predetermined area as a time required for 100 cc of air to pass. It is a value converted to 25 μm. However, if the air permeability is low, that is, it is easy to pass through (for example, 5 sec or less), measure the number of films by overlapping (for example, 5 to 10) or by reducing the measurement area with a cover film or the like. Later, the value will be converted to match the original predetermined method.
(2) Crystal melting point (mp) and glass transition point (Tg) are based on JIS-K-7121, using a differential scanning calorimeter (DSC, DSC-7 manufactured by PerkinElmer Co., Ltd.) After being melted and rapidly cooled, the temperature was measured at a rate of temperature increase of 10 ° C./min from a predetermined temperature.

(3)多孔度(Po)は、多孔体の体積(V)を求め、それから多孔体を形成する樹脂組成物の分の体積(J)を減じた体積(V−J)を、多孔体の体積(V)で、除した比率を100倍した値で、Po=(V−J)X100/Vで表す。
(4)開孔(P)(開口(I))の平均開孔(開口)径は、多孔体の表面を走査型電子顕微鏡(SEM)で観察し、開孔(開口)部10個の直径(楕円の場合は短径)を平均して求めた。
(5)ビカット軟化点(VSP)は,ASTMD1525(荷重が1Kgで測定)に準じて測定した値。
(3) The porosity (Po) is obtained by determining the volume (V) of the porous body by determining the volume (V) of the porous body and then subtracting the volume (J) of the resin composition forming the porous body. The value obtained by multiplying the divided ratio by 100 by volume (V) is represented by Po = (V−J) X100 / V.
(4) The average opening (opening) diameter of the opening (P) (opening (I)) is obtained by observing the surface of the porous body with a scanning electron microscope (SEM), and the diameter of 10 opening (opening) portions. It was obtained by averaging (minor axis in the case of an ellipse).
(5) Vicat softening point (VSP) is a value measured according to ASTM D1525 (load measured at 1 kg).

(6)環球法軟化点(BVSP)とは、JIS−K−2207に準じて測定される値。
(7)引張弾性率とは、ASTM−D882に準拠して測定される値。
(6) Ring ball method softening point (BVSP) is a value measured according to JIS-K-2207.
(7) The tensile elastic modulus is a value measured according to ASTM-D882.

(8)電気抵抗は、リチウムイオン電池用の電解液中で、多孔体の空間部分を該電解液で置換し、交流法(1kHz )で測定した抵抗値(Ω・cm2 単位でフィルム厚み25μmでの換算値)。
(9)電池安全性能(閉塞 /短絡)温度は、加熱しても電解液が蒸発しないような約1kg/cm2 の窒素加圧雰囲気下の容器内で、電極として2枚の150メッシュのニッケル製(又は他の金属スクリーンにニッケルメッキしたもの)スクリーンメッシュに、セパレータを挟みこんだ状態の電解セルに、リチウムイオン電池用の電解液を注入し、その両極の外側に絶縁板としてガラス板を置き、面圧が均一に100g/cm2 になるように設定し、交流電流を流し、2℃/ 分の昇温スピードで加熱して行きセパレータの開口が閉塞すると共に、電気抵抗が急に上昇する温度(閉塞温度)、及び更に昇温してゆき、セパレータが溶融流動し電極がショート(短絡温度)する温度を表す。
(8) The electrical resistance is a resistance value measured by an alternating current method (1 kHz) by replacing the space portion of the porous body with the electrolytic solution in an electrolytic solution for a lithium ion battery (film thickness is 25 μm in units of Ω · cm 2 ). Conversion value).
(9) Battery safety performance (closure / short circuit) The temperature is about 150 kg of nickel as two electrodes in a container under a nitrogen pressurized atmosphere of about 1 kg / cm 2 so that the electrolyte does not evaporate even when heated. An electrolytic solution for a lithium ion battery is injected into an electrolytic cell with a separator sandwiched between screen meshes made of nickel (or other metal screens plated with nickel), and a glass plate as an insulating plate on the outer sides of both electrodes. Set the surface pressure uniformly to 100 g / cm 2 , flow alternating current, heat at a heating rate of 2 ° C / min, close the separator opening, and increase the electrical resistance suddenly. It represents the temperature at which the separator is melted and flown and the electrode is short-circuited (short-circuit temperature).

次に実施例と比較例を挙げて本発明を説明する。
以下に実施例で使用する熱可塑性樹脂組成例を示す。
(1)基材となる熱可塑性樹脂(A)としては、以下のものを使用する。
A−1:高密度ポリエチレン樹脂であり、密度0.962g/m、MFR(210℃/2.16kg)0.8、VSP120℃、mp133℃。
A−2:ポリプロピレンであり、密度0.910g/cm3 、MFR(230℃/2.16kg)3.3、VSP143℃、mp160℃。
A−3:脂肪族ポリエステル樹脂のポリL−乳酸(D−乳酸を3モル%共重合したもの)であり、密度1.26g/cm3 、MFR(200℃/2.16kg)1.5、mp174℃,VSP58℃。
A−4:脂肪族ポリエステル樹脂のポリグリコール酸(L−乳酸を5モル%共重合したもの)であり、密度1.57g/cm3 、mp215℃,VSP36℃。
Next, an Example and a comparative example are given and this invention is demonstrated.
Examples of thermoplastic resin compositions used in the examples are shown below.
(1) As a thermoplastic resin (A) used as a base material, the following are used.
A-1: High density polyethylene resin, density 0.962 g / m 3 , MFR (210 ° C./2.16 kg) 0.8, VSP 120 ° C., mp 133 ° C.
A-2: Polypropylene, density 0.910 g / cm 3 , MFR (230 ° C./2.16 kg) 3.3, VSP 143 ° C., mp 160 ° C.
A-3: Poly-L-lactic acid of aliphatic polyester resin (copolymerized with 3 mol% of D-lactic acid), density 1.26 g / cm 3 , MFR (200 ° C./2.16 kg) 1.5, mp 174 ° C, VSP 58 ° C.
A-4: Polyglycolic acid of aliphatic polyester resin (5 mol% copolymerized L-lactic acid), density 1.57 g / cm 3 , mp 215 ° C., VSP 36 ° C.

A−5:4−メチルペンテン−1樹脂(密度0.834g/ cm3 、mp240℃、MFR(260℃/5kg)26、VSP160℃。
A−6:α−オレフィン/一酸化炭素共重合体(α−オレフィン成分の内エチレン44モル%にプロピレンを6モル%共重合したもの)樹脂であり、密度1.235g/cm3 、MFR(240℃/2.16kg)、VSP(荷重5kg)205℃。
A−7:ポリスルホン樹脂であり、密度1.24g/cm3 、VSP188℃、MFR(240℃/2.16kg)3。
A−8:フッ化ビニリデン樹脂(ヘキサフルオロプロピレンを10重量%共重合したもの)で、密度1.79g/cm3 、VSP140℃、MFR(230℃/2.16kg)1、mp145℃。
A−9:リニヤー低密度ポリエチレンであり、密度0.921g/cm3 、MFR(=MI)1.0,mp121℃。
A-5: 4-methylpentene-1 resin (density 0.834 g / cm 3 , mp 240 ° C., MFR (260 ° C./5 kg) 26, VSP 160 ° C.
A-6: α-olefin / carbon monoxide copolymer (copolymer of 6 mol% of propylene with 44 mol% of ethylene among α-olefin components) resin, density 1.235 g / cm 3 , MFR ( 240 ° C./2.16 kg), VSP (load 5 kg) 205 ° C.
A-7: Polysulfone resin, density 1.24 g / cm 3 , VSP 188 ° C., MFR (240 ° C./2.16 kg) 3.
A-8: Vinylidene fluoride resin (copolymerized with 10% by weight of hexafluoropropylene), density 1.79 g / cm 3 , VSP 140 ° C., MFR (230 ° C./2.16 kg) 1, mp 145 ° C.
A-9: Linear low density polyethylene, density 0.921 g / cm 3 , MFR (= MI) 1.0, mp 121 ° C.

(2)開孔材(B)としては、以下のものを使用する。
B−1:ポリフェニレンエーテル:VSP214℃、MFR(280℃/10kg)4が53重量%と、GPPS:VSP105℃、MFR(200℃/5kg)7が47重量%とのコンパウンド樹脂でVSP157℃のもの。
B−2:スチレン86重量%に、メタアクリル酸を14重量%共重合したSMAA樹脂で、VSP135℃、MFR(230℃/3.8kg)1.6、の特性のもの。
B−3:シクロペンタジエンを主原料として重合した石油樹脂を水添した樹脂で、BVSPが170℃、GPCによる数平均分子量(Mn)が1250のもの。
B−4:エチレン/一酸化炭素共重合樹脂で、VSP225℃、mp250℃、Tg15℃のもの。
(2) As the pore opening material (B), the following are used.
B-1: Polyphenylene ether: VSP 214 ° C., MFR (280 ° C./10 kg) 4 is 53% by weight, GPPS: VSP 105 ° C., MFR (200 ° C./5 kg) 7 is a compound resin of VSP 157 ° C. .
B-2: SMAA resin obtained by copolymerization of 86% by weight of styrene and 14% by weight of methacrylic acid and having characteristics of VSP 135 ° C. and MFR (230 ° C./3.8 kg) 1.6.
B-3: A resin obtained by hydrogenating a petroleum resin polymerized using cyclopentadiene as a main raw material and having a BVSP of 170 ° C. and a GPC number average molecular weight (Mn) of 1250.
B-4: An ethylene / carbon monoxide copolymer resin having VSP of 225 ° C., mp of 250 ° C., and Tg of 15 ° C.

B−5:共重合ポリアミド樹脂(ナイロン6−66)mp195℃、MFR(230℃/2.16kg)3.5のもの。
B−6:平均粒径0.5μm、粒径分布0.2〜1.3μm(全体の93%)の架橋シリコーン樹脂パウダー。
B−7:平均粒径5.0μm、粒径分布2.0〜8.0μm(全体の95%)の架橋シリコーン樹脂パウダー。
B−8:平均粒径1.5μm(分布1.35〜1.65μmに95%)の架橋アクリル樹脂パウダー。
B−9:平均粒径0.3μm(分布0.20〜0.50μmに98%)の球状シリカパウダー。
又は前述(B)に記述したもので、他の開孔材として1次孔に寄与するものと組み合わせて使用するときに、明細書中に記述の気孔壁の開口に役立つ種類のもの。
B-5: Copolymerized polyamide resin (nylon 6-66) with mp 195 ° C. and MFR (230 ° C./2.16 kg) 3.5.
B-6: Cross-linked silicone resin powder having an average particle size of 0.5 μm and a particle size distribution of 0.2 to 1.3 μm (93% of the total).
B-7: Cross-linked silicone resin powder having an average particle size of 5.0 μm and a particle size distribution of 2.0 to 8.0 μm (95% of the total).
B-8: Cross-linked acrylic resin powder having an average particle size of 1.5 μm (95% in a distribution of 1.35 to 1.65 μm).
B-9: Spherical silica powder with an average particle size of 0.3 μm (98% distribution 0.20 to 0.50 μm).
Or what was described in the above-mentioned (B), and is a kind which is useful for opening of the pore wall described in the specification when used in combination with another pore-opening material which contributes to the primary hole.

(3)開口剤(C)としては、以下のものを使用する。
C−1:エルカ酸アミド
C−2:ステアリン酸ソーダ
C−3:高級脂肪酸変成シリコーンオイル(mp64℃)
C−4:グリセリン12−ヒドロキシステアレート(mp71〜77℃)
C−5:パラフィンワックス(mp58℃)
(3) The following are used as the opening agent (C).
C-1: erucic acid amide C-2: sodium stearate C-3: higher fatty acid modified silicone oil (mp 64 ° C.)
C-4: Glycerin 12-hydroxystearate (mp 71-77 ° C.)
C-5: Paraffin wax (mp 58 ° C.)

(4)次に補助層(S)として利用される組成を以下に例示する。
S−1:メタロセン系触媒で重合した低密度ポリエチレン(オクテン−1を4モル%共重合したもので、密度:0.926g/cm3 ,MI:1.2)(E−1):60重量%と、エチレン86モル%にプロピレンを14モル%共重合した熱可塑性エラストマー(密度:0.887g/cm3 ,MI:0.44)(E−2):10重量%と、ポリプロピレン(シングルサイト系触媒で重合した密度:0.905g/cm3 、MFR:1.4,mp;153℃のもの)(E−3):10重量%と、結晶性ポリブテン−1(プロピレンを3.5モル%共重合したもので密度:0.907g/cm3 ,MI:1.6):10重量%、石油樹脂(水添飽和炭化水素で、環球法軟化点が125℃):10重量%を充分混練りした物の100重量部に、液状添加物としてノニルフエニルエーテルポリエチレンオキサイド付加物を2.2重量部混合した組成物。
(4) Next, the composition used as the auxiliary layer (S) is exemplified below.
S-1: Low-density polyethylene polymerized with a metallocene catalyst (4 mol% octene-1 copolymerized, density: 0.926 g / cm 3 , MI: 1.2) (E-1): 60 wt. Thermoplastic elastomer (density: 0.887 g / cm 3 , MI: 0.44) (E-2): 10% by weight, polypropylene (single site) Density polymerized with a system catalyst: 0.905 g / cm 3 , MFR: 1.4, mp; 153 ° C.) (E-3): 10% by weight, crystalline polybutene-1 (3.5 mol of propylene) % Copolymerized density: 0.907 g / cm 3 , MI: 1.6): 10% by weight, petroleum resin (hydrogenated saturated hydrocarbon, ring and ball softening point 125 ° C.): 10% by weight is sufficient To 100 parts by weight of the kneaded product, Nonylphenyl ether polyethylene oxide adduct 2.2 parts by weight of mixed composition as an additive.

S−2:ポリプロピレン(密度:0.905g/cm3 、MFR:2.5,mp;162℃):70重量%(E−3)に、エチレン85モル%にブテン−1 を15モル%共重合した熱可塑性エラストマー(密度:0.890g/cm3 ,MI:0.90)(E−2)15重量%、石油樹脂(同上)15重量%混合した物の100重量部に、ジグリセリンモノラウレートを2重量部とエルカ酸アミド3重量部混合した組成物。
S−3:共重合ポリエステル樹脂(テレフタル酸にアルコール成分としてシクロヘキサジメタノール30モル%にエチレングリコール70モル%共重合したVSPが82℃のもの)。
S−4:結晶性ポリブテン−1樹脂(エチレンを2モル%共重合したもので密度0.905g/cm3 ,MI:1.1)100重量部に、オレイン酸アミド1.5重量部、アルキルシリコーンオイル1.0重量部を混合した組成物。
S-2: Polypropylene (density: 0.905 g / cm 3 , MFR: 2.5, mp; 162 ° C.): 70% by weight (E-3), 85% by mole of ethylene and 15% by mole of butene-1 Polymerized thermoplastic elastomer (density: 0.890 g / cm 3 , MI: 0.90) (E-2) 15% by weight and petroleum resin (same as above) 15% by weight were mixed with 100 parts by weight of diglycerin mono A composition in which 2 parts by weight of laurate and 3 parts by weight of erucamide are mixed.
S-3: Copolyester resin (VSP copolymerized with terephthalic acid as an alcohol component, 30 mol% of cyclohexadimethanol and 70 mol% of ethylene glycol at 82 ° C).
S-4: crystalline polybutene-1 resin (copolymerized with 2 mol% of ethylene, density 0.905 g / cm 3 , MI: 1.1), 100 parts by weight, oleic acid amide 1.5 parts by weight, alkyl A composition in which 1.0 part by weight of silicone oil is mixed.

(実施例1)
内層を構成する基材樹脂(機能層:M1:多孔体)層用として、基材樹脂(A)に前述のA−1:80重量%と、次に開孔材(B)としてB−1:10重量%と、改質材(基材の延伸性改質・相溶化分散調整材)として、水添スチレン−ブタジエンブロック共重合樹脂(SBS型由来で、結合スチレンが32重量%、MFR:230℃/ 2160gで測定:5のもの):10重量%との混合物の100重量部に、開口剤(C)として、C−1を3重量部添加してなる組成物を、2軸押出し機で充分混練りしておき、次に表層(S)用に、補助層としてS−2を用い、それぞれ別の押し出し機で混練り溶融し、2種3層の層構成を有するサーキュラダイにて共押出しし、冷却媒体で急冷成形し、厚み比(S/M1/S:1/3/1)の3層の均一なチューブ状原反とし、この原反を、2対の送りニップロールと引取りニップロールの間に通して加熱炉内で、熱風により82℃に加熱し、次にそのまま工程最後部にある空気封入用ニップロールで引取りながら、内部に空気を入れ、温調リング室内で、連続的に膨張させて、最後に冷却リングにて急冷させ、延伸を終了させ、機械方向(流れ方向;タテ)の延伸倍率が5.5倍、横方向(バブル径方向:)の延伸倍率が5.0倍になるように延伸し、次いでもう一組の2対の送りニップロールと引取りニップロールの間に通し内部に空気を封入しチューブ状にして周方向より熱風により115℃に加熱してタテ方向に5%、ヨコ方向に5%収縮させながら30秒間ヒートセットした。最後に両端の耳部をスリットしながら、延伸された3層フイルムをそれぞれ巻き取り機で巻き取った。次に剥離用の巻き取り機で、補助層(S層)を剥離した。M層は容易
に剥離することが出来、剥離時には静電気の発生もなく、高速剥離性(70m/分)もよかった。
(Example 1)
For the base resin (functional layer: M1: porous body) layer constituting the inner layer, the base resin (A) has the above-mentioned A-1: 80% by weight, and then the pore-opening material (B) is B-1. : 10% by weight, as a modifier (stretchability modifier / compatibility dispersion regulator), hydrogenated styrene-butadiene block copolymer resin (derived from SBS type, bound styrene is 32% by weight, MFR: A composition obtained by adding 3 parts by weight of C-1 as an opening agent (C) to 100 parts by weight of a mixture of 10% by weight measured at 230 ° C / 2160g: 5) In a circular die having a layer structure of two types and three layers, using S-2 as an auxiliary layer for the surface layer (S) and then kneading and melting with separate extruders. Co-extrusion, quench molding with a cooling medium, and three layers of thickness ratio (S / M1 / S: 1/3/1) This tube is passed through between two pairs of feed nip rolls and take-up nip rolls, heated in a heating furnace to 82 ° C. with hot air, and then directly filled with air at the end of the process. While taking in with the nip roll, the inside is filled with air, is continuously expanded in the temperature control ring chamber, is finally quenched with the cooling ring, and the drawing is finished, and the draw ratio in the machine direction (flow direction: vertical) Is stretched so that the stretching ratio in the transverse direction (bubble diameter direction) is 5.0 times, and then air passes between another pair of feed nip rolls and take-up nip rolls, and air is introduced into the interior. Was heated to 115 ° C. with hot air from the circumferential direction and heat set for 30 seconds while shrinking 5% in the vertical direction and 5% in the horizontal direction. Finally, the stretched three-layer film was wound with a winder while slitting the ears at both ends. Next, the auxiliary layer (S layer) was peeled off with a winder for peeling. The M layer could be easily peeled off, no static electricity was generated at the time of peeling, and high-speed peelability (70 m / min) was also good.

更に、各工程中でも各層間で適度な密着性があり、延伸安定性も良く、延伸中のパンク現象、空気抜け現象も無く、剥離してバラバラになることもなかった。又機能層(M1)の表面に開口が内層部に比し不均一になりスキン構造が出来る等の不良現象は見られなく、厚み方向にも均一であった。得られた均一な微細通流体性多孔フィルム(M1)は、厚み23μm、透気度5sec/100cc・25μm厚み(以下、「/100cc・25μm厚み」は省略して表記する。)、多孔度70%、電気抵抗0.82Ω・cm2 、最大収縮率は65%、最大収縮応力は220g/mm2 であった。
又大きな気孔群(P)の平均孔径は、約7μm、気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対し10個以上でその平均口径は約0.13μm、又その体積比率は、前者(P)が全体の75%であった。
このフィルムを単セル(陰極と陽極間にセパレータと電解液を挿入した構造のもの)のリチウムイオン電池に組立て充放電テスト(レート1C)を実施した結果、「比較サンプル−1」(HDPEのみから、「相分離―2軸延伸後―同可塑剤抽出法」による、電気抵抗1.10Ω・cm2 、透気度620sec 、開口が小口径(平均口径0.04μm)群のみのフィルム)より、充放電曲線が優れていた。
又、「閉塞 /短絡」温度は、単層フィルムでありながらそれぞれ「136℃ /156℃」であり、短絡温度は高い値が得られた。比較のために上記「比較サンプル−1」がそれぞれ「138℃/ 146℃」と狭い範囲であった。
Further, even during each process, there was appropriate adhesion between the respective layers, good stretching stability, no puncture phenomenon during drawing, no air bleeding phenomenon, and no peeling and separation. Moreover, the opening of the surface of the functional layer (M1) was not uniform as compared with the inner layer portion, and a defective phenomenon such as a skin structure was not observed, and the thickness was uniform in the thickness direction. The obtained uniform microfluidic porous film (M1) has a thickness of 23 μm, an air permeability of 5 sec / 100 cc · 25 μm (hereinafter, “/ 100 cc · 25 μm thickness” is omitted), and a porosity of 70. %, Electrical resistance 0.82 Ω · cm 2 , maximum shrinkage 65%, and maximum shrinkage stress 220 g / mm 2 .
The average pore diameter of the large pore group (P) is about 7 μm, the number of small aperture groups (I) in the bubble wall portion is 10 or more per bubble wall, the average diameter is about 0.13 μm, and the volume thereof. The ratio of the former (P) was 75% of the total.
As a result of assembling this film in a lithium ion battery of a single cell (with a separator and electrolyte inserted between the cathode and anode) and conducting a charge / discharge test (Rate 1C), “Comparative Sample-1” (from HDPE only) From “Phase Separation—After Biaxial Stretching—Same Plasticizer Extraction Method”, an electric resistance of 1.10 Ω · cm 2 , an air permeability of 620 sec, and an aperture only in a group having a small aperture (average aperture of 0.04 μm) The charge / discharge curve was excellent.
Moreover, the “closure / short circuit” temperatures were “136 ° C./156° C.”, respectively, although they were single layer films, and the short circuit temperature was high. For comparison, “Comparative Sample-1” was in a narrow range of “138 ° C./146° C.”, respectively.

(実施例2)
内層を構成する基材樹脂(機能層:M2:多孔体)層用として、基材樹脂(A )に前述のA−2;65重量%と、次に開孔材(B)としてB−1:23重量%と、改質材(基材の延伸性改質・相溶化分散調整材)として、水添スチレン−ブタジエンブロック共重合樹脂(実施例1と同様なもの):7重量%と、更に基材の延伸性改質材として、ポリブテンー1樹脂(比重:0.915、mp:125℃、VSP:111℃、MFR:1.8のもの)5重量%とよりなる混合樹脂100重量部に、開口剤(C)として、C−4を3重量部添加してなる組成物を、2軸押出し機で充分混練りしておき、次に表層(S)用に、補助層としてS−1を用い、それぞれ別の押し出し機で混練り溶融し、2種3層の層構成を有するサーキュラダイにて共押出しし、冷却媒体で急冷成形し、厚み比(S/M2/S:1/1/1)の3層の均一なチューブ状原反とし、この原反を、2対の送りニップロールと引取りニップロールの間に通して加熱炉内で、熱風により75℃に加熱し、次にそのまま工程最後部にある空気封入用ニップロールで引取りながら、内部に空気を入れ、温調リング室内で、連続的に膨張させて、最後に冷却リングにて急冷させ、延伸を終了させ、機械方向(流れ方向;タテ)の延伸倍率が4.5倍、横方向(バブル径方向:)の延伸倍率が4倍になるように延伸し、次いでもう一組の2対の送りニップロールと引取りニップロールの間に通し内部に空気を封入しチューブ状にして周方向より熱風により120℃に加熱してタテ方向に5%、ヨコ方向に6%収縮させながら20秒間ヒートセットした。最後に両端の耳部をスリットしながら、延伸された2 枚の3層フイルムをそれぞれ巻き取り機で巻き取った。次に剥離用の巻き取り機で、補助層(S層)を剥離した。M層は容易に剥離することが出来、剥離時には静電気の発生もなく、高速剥離性(100m/分)も問題が無かった。
(Example 2)
For the base resin (functional layer: M2: porous body) layer constituting the inner layer, the base resin (A) has the aforementioned A-2: 65% by weight, and then the pore-opening material (B) is B-1. : 23 wt%, and as a modifier (stretchability modifier / compatibility dispersion modifier), hydrogenated styrene-butadiene block copolymer resin (same as in Example 1): 7 wt%, Furthermore, 100 parts by weight of a mixed resin comprising 5% by weight of polybutene 1 resin (specific gravity: 0.915, mp: 125 ° C., VSP: 111 ° C., MFR: 1.8) as a stretchability modifier for the substrate In addition, a composition obtained by adding 3 parts by weight of C-4 as an opening agent (C) is sufficiently kneaded with a twin-screw extruder, and then S-- as an auxiliary layer for the surface layer (S). 1 and kneaded and melted in separate extruders, and co-pressed with a circular die having a layer structure of 2 types and 3 layers Then, it is rapidly cooled with a cooling medium to form a three-layer uniform tube-shaped raw material having a thickness ratio (S / M2 / S: 1/1/1), and this raw material is taken up with two pairs of feed nip rolls. Pass between the nip rolls and heat in a heating furnace to 75 ° C with hot air, and then take in the air-filled nip roll at the end of the process as it is. Finally, it is rapidly cooled with a cooling ring to finish stretching, and the stretching ratio in the machine direction (flow direction; vertical) is 4.5 times, and the stretching ratio in the transverse direction (bubble diameter direction) is 4 times. Then, between two pairs of feed nip rolls and take-up nip rolls, the inside is filled with air, made into a tube, heated to 120 ° C. with hot air from the circumferential direction, and 5 in the vertical direction. %, 20 seconds while shrinking 6% in the horizontal direction Heat set for a while. Finally, two stretched three-layer films were each wound up by a winder while slitting the ears at both ends. Next, the auxiliary layer (S layer) was peeled off with a winder for peeling. The M layer could be easily peeled off, no static electricity was generated at the time of peeling, and there was no problem with high-speed peelability (100 m / min).

更に、各工程中でも各層間で適度な密着性があり、延伸安定性も良く、延伸中のパンク現象、空気抜け現象も無く、剥離してバラバラになることもなかった。 表層に不均一な開口部分も無く、厚み方向にも均一であり、得られた均一な微細通流体性多孔フィルムは、厚み25μm、透気度15sec、多孔度73%、電気抵抗1.12Ω・cm2 、最大収縮率は50%、最大収縮応力は340g/mm2 であった。又大きな気孔群(P)の平
均孔径は、約10μm、気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対し10個以上でその平均口径は約0.09μm、又その体積比率は、前者(P)が全体80%であった。
このフィルムを単セル(陰極と陽極間にセパレータと電解液を挿入した構造のもの)のリチウムイオン電池に組立て充放電テスト(レート1C)を実施した結果、上記「比較サンプル−1」より、充放電曲線が優れていた。
又、「閉塞 /短絡」温度は、単層フィルムでありながらそれぞれ「165℃ /200℃」であり、短絡温度は高い値が得られた。
Further, even during each process, there was appropriate adhesion between the respective layers, good stretching stability, no puncture phenomenon during drawing, no air bleeding phenomenon, and no peeling and separation. There are no non-uniform openings in the surface layer and it is uniform in the thickness direction. The resulting uniform microfluidic porous film has a thickness of 25 μm, an air permeability of 15 sec, a porosity of 73%, an electrical resistance of 1.12 Ω · cm 2 , the maximum shrinkage was 50%, and the maximum shrinkage stress was 340 g / mm 2 . The average pore size of the large pore group (P) is about 10 μm, the number of small aperture groups (I) in the bubble wall portion is 10 or more per bubble wall, the average aperture is about 0.09 μm, and the volume The ratio of the former (P) was 80% overall.
As a result of assembling this film into a lithium ion battery of a single cell (with a separator and an electrolyte inserted between the cathode and anode) and conducting a charge / discharge test (Rate 1C) The discharge curve was excellent.
Further, the “closure / short circuit” temperatures were “165 ° C./200° C.”, respectively, although the film was a single layer film, and the short circuit temperature was high.

(実施例3)
実施例2と同様な方法で、実施例2の機能層(M2)部分の中間に実施例1の機能層(M1)を配置し「M2/M1/M2」とし、同様に3種5層サイキュラーダイで層構成がそれぞれ「S1/M2/M1/M2/S1」で、同様に厚み比(1/1/1/1/1)に設定し均一なチューブ状原反とし、この原反を、実施例2と同様な方法で熱風により70℃に加熱し、次にそのまま工程最後部にある空気封入用ニップロールで引取りながら、内部に空気を入れ、温調リング室内で、連続的に膨張させて、最後に冷却リングにて急冷させ、延伸を終了させ、機械方向(流れ方向;タテ)の延伸倍率が4.0倍、横方向(バブル径方向:)の延伸倍率が3.5倍になるように延伸し、次いでもう一組の2対の送りニップロールと引取りニップロールの間に通し内部に空気を封入しチューブ状にして周方向より熱風により120℃に加熱してタテ方向に4%、ヨコ方向に6%収縮させながら15秒間ヒートセットした。
最後に両端の耳部をスリットしながら、延伸された2枚の5層フイルムをそれぞれ巻き取り機で巻き取った。
次に剥離用の巻き取り機で、補助層(S層)を剥離した。S層は容易に剥離することが出来、剥離時には静電気の発生もなく、高速剥離性(100m/分)でも機能層同士が剥離することもなく、問題が無かった。
(Example 3)
In the same manner as in Example 2, the functional layer (M1) of Example 1 is arranged in the middle of the functional layer (M2) part of Example 2 to make “M2 / M1 / M2”, and similarly, the three types, five layers The layer structure is “S1 / M2 / M1 / M2 / S1” for each of the curled dies. Similarly, the thickness ratio (1/1/1/1/1) is set to obtain a uniform tube-shaped original fabric. In the same manner as in Example 2, it is heated to 70 ° C. with hot air, and then taken in with the air-filling nip roll at the end of the process, air is introduced inside, and it continuously expands in the temperature control ring chamber. Finally, it is rapidly cooled with a cooling ring to finish stretching, and the stretching ratio in the machine direction (flow direction; vertical) is 4.0 times, and the stretching ratio in the transverse direction (bubble diameter direction) is 3.5 times. And then another set of two pairs of feed nip roll and take-up nip 4% in the longitudinal direction and heated to 120 ° C. with hot air from the circumferential direction in the form sealed air tube therein through during and 15 seconds heat set while 6% shrinkage in the transverse direction.
Finally, the two stretched five-layer films were each wound up by a winder while slitting the ears at both ends.
Next, the auxiliary layer (S layer) was peeled off with a winder for peeling. The S layer could be easily peeled off, no static electricity was generated at the time of peeling, and there was no problem because the functional layers were not peeled even at high speed peelability (100 m / min).

更に、各工程中でも各層には適度な密着性があり、延伸安定性も良く、延伸中のパンク現象、空気抜け現象も無く、剥離してバラバラになることもなかった。 又、機能層のS層側の表層、及び機能層同士の界面も均一で通流体性能に実質的影響が無いものであった。
得られた3層の均一な微細通流体性多孔フィルムは、厚み27μm、透気度10sec、平均(3層での)多孔度63%、電気抵抗0.96Ω・cm、最大収縮率は53%、最大収縮応力は240g/mm2 であった。又大きな気孔群(P)の平均孔径は、(M2/M1)各層で、それぞれ約(9/5)μmであった、又気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対しいずれも10個以上で、その平均口径は同様にそれぞれ約(0.09/0.08)μmであった。又上記(P)の体積比率は、それぞれ全体の約(70/63)%であった。
このフィルムを実施例1と同様に、充放電テスト(レート1C)を実施した結果、上記「比較サンプル−1」のフィルムより、充放電曲線が優れていた。又、「閉塞 /短絡」温度は、それぞれ「134℃ /200℃」であり、その温度差が66℃と幅広い温度特性を有していた。
Further, even during each step, each layer had appropriate adhesion, good stretching stability, no puncture phenomenon during drawing, no air bleeding phenomenon, and no peeling and separation. Further, the surface layer on the S layer side of the functional layer and the interface between the functional layers were uniform and had substantially no influence on the fluid flow performance.
The obtained three-layer uniform microfluidic porous film has a thickness of 27 μm, an air permeability of 10 sec, an average (in three layers) porosity of 63%, an electric resistance of 0.96 Ω · cm 2 , and a maximum shrinkage of 53 %, The maximum shrinkage stress was 240 g / mm 2 . The average pore diameter of the large pore group (P) was about (9/5) μm in each layer (M2 / M1), and the number of small aperture groups (I) in the bubble wall portion was one bubble wall. On the other hand, the number was 10 or more, and the average diameter was about (0.09 / 0.08) μm, respectively. The volume ratio of (P) was about (70/63)% of the total.
As a result of conducting a charge / discharge test (Rate 1C) on this film in the same manner as in Example 1, the charge / discharge curve was superior to the film of “Comparative Sample-1”. Moreover, the “closure / short circuit” temperatures were “134 ° C./200° C.”, respectively, and the temperature difference was 66 ° C., which had a wide temperature characteristic.

(実施例4)
実施例3と同様な方法で(但し、機能層の中間層を構成する組成を以下の組成物に代え)、機能層の中間層の基材樹脂(機能層:M−3)として前述のA−9:70重量%と次に開孔材(B)としてB−1:25重量%と、実施例1と同様な水添スチレンーブタジエンブロック共重合体5重量%とを混合した組成物100重量部に、開口剤(C)としてC−3を2重量部混合した組成物を用い、機能層を「M2/M3/M2」とし、表層(S)用に、補助層としてS−3を用い延伸時の加熱温度を64℃とし、次に延伸後の熱処理温
度を105℃した以外は実施例3と同様に処理し、得られたフィルムから表層(S)を剥離し、3層の機能層を有する、厚み26μmのフィルムを得た。このフィルムは、透気度15sec 、平均多孔度65%、電気抵抗1.06Ω・cm、最大収縮率は59%、最大収縮応力は270g/mm2 であった。
Example 4
In the same manner as in Example 3 (however, the composition constituting the intermediate layer of the functional layer is replaced with the following composition), the above-mentioned A as the base resin (functional layer: M-3) of the intermediate layer of the functional layer -9: 70% by weight, B-1: 25% by weight as the pore-opening material (B), and 5% by weight of the same hydrogenated styrene-butadiene block copolymer as in Example 1 A composition obtained by mixing 2 parts by weight of C-3 as an opening agent (C) is used in parts by weight, the functional layer is “M2 / M3 / M2,” and S-3 is used as an auxiliary layer for the surface layer (S). The heating temperature at the time of stretching was 64 ° C., and then the same treatment as in Example 3 was performed except that the heat treatment temperature after stretching was 105 ° C., and the surface layer (S) was peeled off from the obtained film to function three layers. A film having a thickness of 26 μm was obtained. This film had an air permeability of 15 sec, an average porosity of 65%, an electric resistance of 1.06 Ω · cm 2 , a maximum shrinkage of 59%, and a maximum shrinkage stress of 270 g / mm 2 .

又大きな気孔群(P)の平均孔径は、(M2/M3)各層で、それぞれ約(5/3)μmであった。
又気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対しいずれも10個以上でその平均口径は同様にそれぞれ約(0.08/0.05)μmであった。又上記(P)の体積比率は、それぞれ全体の約(63/68)%であった。
このフィルムの同じ方法での「閉塞/ 短絡」温度は、「120℃/ 200℃」であり、その差80℃と巾広い範囲の同温度特性を有していた。
The average pore diameter of the large pore group (P) was about (5/3) μm in each (M2 / M3) layer.
The number of small aperture groups (I) in the bubble wall portion was 10 or more per bubble wall, and the average diameter was about (0.08 / 0.05) μm, respectively. The volume ratio of (P) was about (63/68)% of the total.
The “clogging / short-circuiting” temperature of this film in the same method was “120 ° C./200° C.”, and the difference was 80 ° C. and had the same temperature characteristics in a wide range.

(実施例5)
内層を構成する基材樹脂(機能層:M4:多孔体)層用として、基材樹脂(A )に前述のA−3;83重量%と、次に開孔材(B)としてB−4:10重量%と、改質材(基材の延伸性改質・相溶化分散調整材)として、水添スチレン−ブタジエンブロック共重合樹脂(SBS型由来で、結合スチレンが32重量%、MFR:230℃/ 2160gで測定:5のもの):7重量%との混合物の100重量部に、開口剤(C)として、B−9を3重量部添加してなる組成物を、2軸押出し機で充分混練りしておき、次に表層(S)用に、補助層としてS−2を用い、延伸倍率を「タテ(機械方向)/ヨコ(機械方向と直角方向)」(以下、同じ)でそれぞれ「3.7/3.3」倍として、延伸時の加熱温度を75℃とし加工し、又熱処理はテンターフレームにした以外は実施例1と同様にして処理し、表層(S)を容易に剥離し均一な多孔フィルムを得た。
このフィルムは厚み28μm、透気度15sec、多孔度74%、電気抵抗1.12Ω・cm、最大収縮率は69%、最大収縮応力は120g/mm2 であった、
又大きな気孔群(P)の平均孔径は、約32μm、気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対し10個以上でその平均口径は約0.43μm、又上記(P)の体積比率は、78%であった。
(Example 5)
For the base resin (functional layer: M4: porous body) layer constituting the inner layer, the base resin (A) has A-3; 83% by weight as described above, and then the pore opening material (B) has B-4. : 10% by weight, as a modifier (stretchability modifier / compatibility dispersion regulator), hydrogenated styrene-butadiene block copolymer resin (derived from SBS type, bound styrene is 32% by weight, MFR: A composition obtained by adding 3 parts by weight of B-9 as an opening agent (C) to 100 parts by weight of a mixture of 7% by weight measured at 230 ° C./2160 g: 5 twin screw extruder Then, for the surface layer (S), S-2 is used as an auxiliary layer, and the draw ratio is “vertical (machine direction) / horizontal (direction perpendicular to the machine direction)” (hereinafter the same). In each case, the heating temperature during stretching was set to 75 ° C., and the heat treatment was performed using a tenter. A treatment was carried out in the same manner as in Example 1 except that the frame was used, and the surface layer (S) was easily peeled off to obtain a uniform porous film.
This film had a thickness of 28 μm, an air permeability of 15 sec, a porosity of 74%, an electric resistance of 1.12 Ω · cm 2 , a maximum shrinkage of 69%, and a maximum shrinkage stress of 120 g / mm 2 .
The average pore diameter of the large pore group (P) is about 32 μm, the number of small aperture groups (I) in the bubble wall portion is 10 or more per bubble wall, the average aperture is about 0.43 μm, and the above ( The volume ratio of P) was 78%.

(実施例6)
実施例5と同様な方法で、内層の機能層(M5)用として、基材樹脂(A)としてA−4:86重量%と、次に開孔材(B)としてB−7:7重量%と、改質材として、ポリブテンー1樹脂(実施例2で使用したものと同じもの):7重量%との混合物の100重量部に、開口剤(C)として、B−6を3重量部添加してなる組成物を、補助層としてS−2を利用し、延伸時の加熱温度を73℃にして、他は実施例5と同様にし均一な多孔フィルムを得た
このフィルムは厚み25μm、透気度20sec、多孔度70%、電気抵抗1.40Ω・cm、最大収縮率は72%、最大収縮応力は80g/mm2 であった。
又大きな気孔群(P)の平均孔径は、約22μm、気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対し10個以上でその平均口径は約0.8μm、又上記(P)の体積比率は、75%であった。
(Example 6)
In the same manner as in Example 5, for the functional layer (M5) of the inner layer, A-4: 86% by weight as the base resin (A), and then B-7: 7% by weight as the aperture material (B) % And polybutene 1 resin (same as that used in Example 2): 7 parts by weight of 100 parts by weight of the mixture, and 3 parts by weight of B-6 as the opening agent (C) The composition formed by using S-2 as an auxiliary layer, the heating temperature at the time of stretching was set to 73 ° C., and others were obtained in the same manner as in Example 5 to obtain a uniform porous film. This film had a thickness of 25 μm, The air permeability was 20 sec, the porosity was 70%, the electric resistance was 1.40 Ω · cm 2 , the maximum shrinkage was 72%, and the maximum shrinkage stress was 80 g / mm 2 .
The average pore size of the large pore group (P) is about 22 μm, the number of small aperture groups (I) in the bubble wall portion is 10 or more per bubble wall, the average aperture is about 0.8 μm, and the above ( The volume ratio of P) was 75%.

(実施例7)
実施例6と同様な方法で、内層の機能層(M6)用として、基材樹脂(A)としてA−5:73重量%と、次に開孔材(B)としてB−3とB−1の比率1/1の混合コンパウンド:17重量%と、改質材として、ポリブテンー1樹脂(実施例2で使用したものと同じもの):10重量%との混合物の100重量部に、開口剤(C)として、C−2を3重量部添加してなる組成物を、補助層としてS−2を利用し、延伸時の加熱温度を70℃、延伸倍率「タテ/ ヨコ」をそれぞれ「4.5/ 4.2」にして、他は同様にして均一な多
孔フィルムを得た。
このフィルムは厚み20μm、透気度14sec、多孔度70%、電気抵抗1.0Ω・cm、最大収縮率は72%、最大収縮応力は380g/mm2 であった。
又大きな気孔群(P)の平均孔径は、約35μm、気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対し10個以上でその平均口径は約0.06μm、又上記(P)の体積比率は、75%であった。
(Example 7)
In the same manner as in Example 6, for the functional layer (M6) of the inner layer, A-5: 73% by weight as the base resin (A), and then B-3 and B- as the opening material (B) Mixing compound having a ratio of 1/1: 17% by weight and polybutene 1 resin (same as that used in Example 2): 10% by weight as a modifier: As (C), a composition obtained by adding 3 parts by weight of C-2, S-2 as an auxiliary layer, heating temperature at stretching at 70 ° C., and stretching ratio “vertical / horizontal” at “4” .5 / 4.2 ", and otherwise obtained a uniform porous film.
This film had a thickness of 20 μm, an air permeability of 14 sec, a porosity of 70%, an electric resistance of 1.0 Ω · cm 2 , a maximum shrinkage of 72%, and a maximum shrinkage stress of 380 g / mm 2 .
The average pore size of the large pore group (P) is about 35 μm, the number of small aperture groups (I) in the bubble wall portion is 10 or more per bubble wall, the average aperture is about 0.06 μm, and ( The volume ratio of P) was 75%.

(実施例8)
実施例6と同様な方法で、内層の機能層(M7)用として、基材樹脂(A)としてA−3:73重量%と、次に開孔材(B)としてB−1とB−2の比率1/1の混合コンパウンド:17重量%と、改質材として、ポリブテンー1樹脂(実施例2で使用したものと同じもの):10重量%との混合物の100重量部に、開口剤(C)として、C−2を3重量部添加してなる組成物と、次の内層の機能層(M8)用として、基材樹脂(A)としてA−4:75重量%と、次に開孔材(B)としてB−1とB−2の比率1/1の混合コンパウンド:15重量%と、改質材として、ポリブテンー1樹脂(実施例2で使用したものと同じもの):10重量%との混合物の100重量部に、開口剤(C)として、C−3を3重量部添加してなる組成物とを、M7/M8/M7の順にその比率1/1/1となる様に配置し、次に補助層としてS−3を利用し、延伸時の加熱温度を70℃、延伸倍率「タテ/ ヨコ」をそれぞれ「4.5/ 4.2」にして、他は実施例6と同様にして均一な多孔フィルムを得たこのものは厚み50μm、透気度1 0sec、多孔度76%、電気抵抗1.3Ω・cm、最大収縮率は72%、最大収縮応力は38
0g/mm2 であった、又大きな気孔群(P)の平均孔径は、約30μm、気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対し10個以上でその平均口径は約0.8μm、又上記(P)の体積比率は、75%であった。
(Example 8)
In the same manner as in Example 6, for the functional layer (M7) of the inner layer, A-3: 73% by weight as the base resin (A), and then B-1 and B- as the opening material (B) Mixing compound of ratio 1/1 of 2: 17% by weight and polybutene 1 resin (same as used in Example 2) as a modifier: 100% by weight of the mixture of 10% by weight of the opening agent (C) As a composition obtained by adding 3 parts by weight of C-2, and for the functional layer (M8) of the next inner layer, A-4: 75% by weight as the base resin (A), As a pore opening material (B), a mixed compound having a ratio of B-1 and B-2 of 1/1: 15% by weight, and as a modifying material, polybutene 1 resin (the same as that used in Example 2): 10 A composition obtained by adding 3 parts by weight of C-3 as an opening agent (C) to 100 parts by weight of a mixture of , M7 / M8 / M7 in order of the ratio 1/1/1, then using S-3 as an auxiliary layer, heating temperature during stretching at 70 ° C., stretching ratio “vertical / horizontal” Were each set to “4.5 / 4.2”, and the others were obtained in the same manner as in Example 6 to obtain a uniform porous film having a thickness of 50 μm, an air permeability of 10 sec, a porosity of 76%, and an electric resistance of 1 .3 Ω · cm 2 , maximum shrinkage rate 72%, maximum shrinkage stress 38
The average pore diameter of the large pore group (P), which was 0 g / mm 2 , was about 30 μm, the number of small aperture groups (I) in the bubble wall portion was 10 or more per bubble wall, and the average aperture was About 0.8 μm, and the volume ratio of the above (P) was 75%.

(実施例9)
実施例6と同様な方法で、内層の機能層(M9)用として、基材樹脂(A)としてA−6:73重量%と、次に開孔材(B)としてB−1 とB−9の比率4/1の混合コンパウンド:10重量%と、改質材として、水添スチレン−ブタジエンブロック共重合樹脂(実施例5で使用のものと同じ):4重量%との混合物の100重量部に、開口剤(C)として、C −5を3重量部添加してなる組成物を、そして、補助層としてS−4を利用し、延伸時の加熱温度を110℃、延伸倍率「タテ/ ヨコ」をそれぞれ「3.7/ 3.2」にして、他は実施例6と同様にして均一な多孔フィルムを得た。このフィルムは厚み29μm、透気度24 sec、多孔度72%、電気抵抗1.1Ω・cm、最大収縮率は70%、最大収縮応力は
180g/mm2 であった。
又大きな気孔群(P)の平均孔径は、約15μm、気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対し10個以上でその平均口径は約0.05μm、又上記(P)の体積比率は、85%であった。
Example 9
In the same manner as in Example 6, for the functional layer (M9) of the inner layer, A-6: 73% by weight as the base resin (A), and then B-1 and B- as the opening material (B) 100% by weight of a mixture of 9: 4/1 mixed compound: 10% by weight and, as a modifier, hydrogenated styrene-butadiene block copolymer resin (same as used in Example 5): 4% by weight The composition obtained by adding 3 parts by weight of C-5 as an opening agent (C) to the part, and S-4 as an auxiliary layer was used. The heating temperature during stretching was 110 ° C., and the stretching ratio was “vertical”. “Horizontal” was changed to “3.7 / 3.2”, respectively, and a uniform porous film was obtained in the same manner as in Example 6. This film had a thickness of 29 μm, an air permeability of 24 sec, a porosity of 72%, an electrical resistance of 1.1 Ω · cm 2 , a maximum shrinkage of 70%, and a maximum shrinkage stress of 180 g / mm 2 .
The average pore diameter of the large pore group (P) is about 15 μm, the number of small aperture groups (I) in the bubble wall portion is 10 or more per bubble wall, and the average aperture is about 0.05 μm. The volume ratio of P) was 85%.

(実施例10)
実施例6と同様な方法で、内層の機能層(M10)用として、基材樹脂(A)としてA−7:86重量%と、次に開孔材(B)としてB−8とB−9との比率4/1の混合コンパウンド:10重量%と、改質材として、水添スチレン−ブタジエンブロック共重合樹脂(実施例5で使用のものと同じ):4重量%との混合物の100重量部に、開口剤(C)として、C−3を3重量部添加してなる組成物を、そして補助層としてS−2を利用し、延伸時の加熱温度を120℃、延伸倍率「タテ/ ヨコ」をそれぞれ「3.5/ 3.2」にして、他は実施例6と同様にして均一な多孔フィルムを得た。このフィルムは厚み23μm、透気度14 sec、多孔度68%、電気抵抗1.3Ω・cm、最大収縮率は64%、最大収縮応力
は150g/mm2 であった。
又大きな気孔群(P)の平均孔径は、約8μm、気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対し10個以上でその平均口径は約0.08μm、又上記(P)の体積比率は、85%であった。
(Example 10)
In the same manner as in Example 6, for the functional layer (M10) of the inner layer, A-7: 86% by weight as the base resin (A), and then B-8 and B- as the opening material (B) 100% of a mixture of 10% by weight of a mixed compound with a ratio of 9 to 9 and 10% by weight and a hydrogenated styrene-butadiene block copolymer resin (same as that used in Example 5) as a modifier: 4% by weight. A composition obtained by adding 3 parts by weight of C-3 as an opening agent (C) to parts by weight, and S-2 as an auxiliary layer, heating temperature during stretching at 120 ° C., stretching ratio “vertical” “Horizontal” was changed to “3.5 / 3.2”, respectively, and a uniform porous film was obtained in the same manner as in Example 6. This film had a thickness of 23 μm, an air permeability of 14 sec, a porosity of 68%, an electrical resistance of 1.3 Ω · cm 2 , a maximum shrinkage of 64%, and a maximum shrinkage stress of 150 g / mm 2 .
The average pore size of the large pore group (P) is about 8 μm, the number of small aperture groups (I) in the bubble wall portion is 10 or more per bubble wall, the average aperture is about 0.08 μm, and the above ( The volume ratio of P) was 85%.

(実施例11)
実施例6と同様な方法で、内層の機能層(M11)用として、基材樹脂(A)としてA−8:86重量%と、次に開孔材(B)としてB−1:10重量%と、改質材として、水添スチレン−ブタジエンブロック共重合樹脂(実施例5で使用のものと同じ):4重量%との混合物の100重量部に、開口剤(C)として、C −4を3重量部添加してなる組成物を、そして補助層としてS−3を利用し、延伸時の加熱温度を90℃、延伸倍率「タテ/ ヨコ」をそれぞれ「4.5/ 4. 2」にして、他は実施例6と同様にして均一な多孔フィルムを得た。
このフィルムは厚み25μm、透気度12 sec、多孔度75%、電気抵抗0.85Ω・cm、最大収縮率は74%、最大収縮応力は250g/mm2 であった。
又大きな気孔群(P)の平均孔径は、約35μm、気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対し10個以上でその平均口径は約0.10μm、又上記(P)の体積比率は、75%であった。
(Example 11)
In the same manner as in Example 6, for the functional layer (M11) of the inner layer, A-8: 86 wt% as the base resin (A), and then B-1: 10 wt as the aperture material (B) %, And as a modifier, hydrogenated styrene-butadiene block copolymer resin (same as that used in Example 5): 4% by weight of a mixture of 100% by weight as an opening agent (C), C − The composition formed by adding 3 parts by weight of 4 and S-3 as an auxiliary layer, the heating temperature during stretching is 90 ° C., and the stretching ratio “vertical / horizontal” is “4.5 / 4.2”, respectively. Otherwise, a uniform porous film was obtained in the same manner as in Example 6.
This film had a thickness of 25 μm, an air permeability of 12 sec, a porosity of 75%, an electric resistance of 0.85 Ω · cm 2 , a maximum shrinkage of 74%, and a maximum shrinkage stress of 250 g / mm 2 .
The average pore size of the large pore group (P) is about 35 μm, the number of small aperture groups (I) in the bubble wall portion is 10 or more per bubble wall, the average aperture is about 0.10 μm, and ( The volume ratio of P) was 75%.

(実施例12)
実施例6と同様な方法で、内層の機能層(M12)用として、基材樹脂(A)としてA−9:81重量%と、次に開孔材(B)としてB−1とB−5の混合比率4/1のものを混練りした組成物:15重量%と、改質材として、水添スチレン−ブタジエンブロック共重合樹脂(実施例5で使用のものと同じ):4重量%との混合物の100重量部に、開口剤(C)として、C−4を3重量部添加してなる組成物を、そして補助層としてS−3を利用し、延伸時の加熱温度を60℃、延伸倍率「タテ/ ヨコ」をそれぞれ「4.8/ 4. 5」にして、他は実施例6と同様にして均一な多孔フィルムを得た。
このフィルムは厚み29μm、透気度22sec、多孔度65%、電気抵抗1.25Ω・cm、最大収縮率は78%、最大収縮応力は320g/mm2 であった。
又大きな気孔群(P)の平均孔径は、約25 μm、気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対し10個以上でその平均口径は約0.1 5μm、又上記(P)の体積比率は、85%であった。
(Example 12)
In the same manner as in Example 6, for the functional layer (M12) of the inner layer, A-9: 81 wt% as the base resin (A), and then B-1 and B- as the pore opening material (B) 5: Mixing ratio of 4/1: 15% by weight and, as a modifier, hydrogenated styrene-butadiene block copolymer resin (same as used in Example 5): 4% by weight A composition obtained by adding 3 parts by weight of C-4 as an opening agent (C) to 100 parts by weight of the mixture with S-3 as an auxiliary layer, and the heating temperature during stretching is 60 ° C. A uniform porous film was obtained in the same manner as in Example 6 except that the draw ratio “vertical / horizontal” was set to “4.8 / 4.5”, respectively.
This film had a thickness of 29 μm, an air permeability of 22 sec, a porosity of 65%, an electric resistance of 1.25 Ω · cm 2 , a maximum shrinkage of 78%, and a maximum shrinkage stress of 320 g / mm 2 .
The average pore size of the large pore group (P) is about 25 μm, the number of small aperture groups (I) in the bubble wall portion is 10 or more per bubble wall, and the average aperture is about 0.15 μm, The volume ratio of (P) was 85%.

(実施例13)
実施例2と同様な方法で、機能層(M13)用として、基材樹脂(A)としてA−5:72重量%、次に開孔材(B)としてB−1:20重量%、改質剤として前出のポリブテン−1:8重量%を混練りした組成物100重量部に、開口剤(C)としてC−4を4重量部添加してなる組成物を、次に機能層(M14)用として、基材樹脂(A)としてA−9:72重量%、次に開孔材(B)としてB−2:20重量%、改質剤として前出のポリブテン−1:8重量%を混練りした組成物の100重量部に、開口剤(C)としてC−2を4重量部添加してなる組成物を、機能層の配置を「M13/M14/M13」とし、補助層(S)として、S−2を利用し、延伸条件として延伸倍率「タテ/ ヨコ」それぞれ「5.0/4.5」とし、延伸温度65℃にて延伸し、他は実施例2と同様にして熱処理し、S層を剥離し3層のフィルムを得た。
(Example 13)
In the same manner as in Example 2, for the functional layer (M13), A-5: 72% by weight as the base resin (A), and then B-1: 20% by weight as the aperture material (B) A composition obtained by adding 4 parts by weight of C-4 as an opening agent (C) to 100 parts by weight of a composition obtained by kneading the above polybutene-1: 8% by weight as a texture agent, and then a functional layer ( For M14), A-9: 72% by weight as the base resin (A), then B-2: 20% by weight as the pore opening material (B), polybutene-1: 8% by weight as the modifier A composition obtained by adding 4 parts by weight of C-2 as an opening agent (C) to 100 parts by weight of a composition obtained by kneading the composition with a functional layer of “M13 / M14 / M13”, and an auxiliary layer As (S), S-2 is used, the stretching ratio is “5.0 / 4.5” for each stretching ratio “vertical / horizontal”, and the stretching temperature Stretched at 65 ° C., the other is heat-treated in the same manner as in Example 2, to obtain a film having a three-layer peeling off the S layer.

このフィルムは厚み25μm、透気度19sec、平均(3層での)多孔度63%、電気抵抗1.06Ω・cm、最大収縮率は79%、最大収縮応力は340g/
mm2 であった、又大きな気孔群(P)の平均孔径は、(M2/M1)各層で、それぞれ約(15/7)μmであった。又気泡壁部分の小さな開口群(I)の数は1つの気泡壁に対しいずれも10個以上で、その平均口径は同様にそれぞれ約(0.10/0.05)μ
mであった、又多孔度はそれぞれ別に同一の延伸・処理条件で別々に製造したM11、M12単層の多孔度はそれぞれ順に(66/58)%であった。又上記(P)の体積比率は、は、それぞれ約(80/73)%であった。
このフィルムの「閉塞 /短絡」温度は、それぞれ「114℃ /235℃」であり、その温度差が121℃と幅広い温度特性を有していた。
This film has a thickness of 25 μm, an air permeability of 19 sec, an average (in three layers) porosity of 63%, an electric resistance of 1.06 Ω · cm 2 , a maximum shrinkage of 79%, and a maximum shrinkage stress of 340 g /
was mm 2, the average pore size of the large pore group (P) is a (M2 / M1) layers were each about (15/7) [mu] m. The number of small aperture groups (I) in the bubble wall portion is 10 or more per bubble wall, and the average aperture is about (0.10 / 0.05) μ respectively.
The porosity of each of the M11 and M12 monolayers prepared separately under the same stretching and processing conditions was (66/58)%, respectively. The volume ratio of (P) was about (80/73)%, respectively.
The “occlusion / short circuit” temperatures of this film were “114 ° C./235° C.”, respectively, and the temperature difference was 121 ° C. and the temperature characteristics were wide.

(実施例14)
実施例2において、その延伸熱処理後、更に加熱温度を90℃として、延伸倍率をタテ2倍、ヨコ1.8倍として延伸を加え、同様な熱処理を実施した。最後に両端の耳部をスリットしながら、延伸された2枚の3層フイルムをそれぞれ巻き取り機で巻き取った。次に剥離用の巻き取り機で、補助層(S層)を剥離した、M層は容易に剥離することが出来、剥離時には静電気の発生もなく、高速剥離性(100m/分)も問題が無かった、更に、各工程中でも各層に適度な密着性があり、延伸安定性も良く、延伸中のパンク現象、空気抜け現象も無く、工程中に剥離してバラバラになることもなかった。又表層には不均一な開口部分も無く、厚み方向にも均一であり、得られた均一な微細通流体性多孔フィルムは、厚み30μm、透気度0.8sec、多孔度79%、電気抵抗0.65Ω・cm、最大収縮率は70%、最大収縮応力は440g/mm2 であった。又大きな気孔群(P)、気泡壁部分の小さな開口群(I)は、破壊され、フイブリル化され、明確に判明出来なかった。このフィルムを濡れ処理として、発煙硫酸でスルホン化し、ニッケル水素電池用セパレータとして、陰極と陽極間にセパレータと電解液を挿入した構造のものとして電池に組立て充放電テストを実施した結果、寿命特性、電気容量特性、高レートでの充放電特性も良く、発生ガスの移動性不足による内圧の上昇も無く、又充電後の40℃での長期保存テストでも自己放電も少なく、好ましい傾向を示した。
(Example 14)
In Example 2, after the stretching heat treatment, the heating temperature was further set to 90 ° C., the stretching ratio was doubled and the width was 1.8 times, and the same heat treatment was performed. Finally, two stretched three-layer films were each wound up by a winder while slitting the ears at both ends. Next, the auxiliary layer (S layer) was peeled off with a winder for peeling, and the M layer could be easily peeled off. No static electricity was generated during peeling, and high-speed peelability (100 m / min) was problematic. Furthermore, each layer had appropriate adhesion in each step, good stretching stability, no puncture phenomenon during drawing, no air bleeding phenomenon, and it did not peel off during the process. Also, the surface layer has no non-uniform openings and is uniform in the thickness direction. The obtained uniform fine fluid-permeable porous film has a thickness of 30 μm, an air permeability of 0.8 sec, a porosity of 79%, and an electric resistance. The maximum shrinkage was 0.65 Ω · cm 2 , the maximum shrinkage was 70%, and the maximum shrinkage stress was 440 g / mm 2 . Further, the large pore group (P) and the small opening group (I) in the bubble wall portion were destroyed and fibrillated, and could not be clearly identified. This film was wetted, sulfonated with fuming sulfuric acid, as a nickel-hydrogen battery separator, assembled into a battery with a separator and electrolyte inserted between the cathode and anode, and subjected to charge / discharge test results in life characteristics, The electric capacity characteristics and charging / discharging characteristics at a high rate were good, the internal pressure was not increased due to insufficient mobility of the generated gas, and the self-discharge was small even in the long-term storage test at 40 ° C. after the charging.

(実施例15)
実施例1において、押出時の肉厚のみを変更する以外は実施例1と同様に実施し、より薄い多孔フィルムを得た。得られたフィルムは厚み8μm、透気度2sec、多孔度70%であった。
この多孔フィルムM1と延伸開口法で得られたポリプロピレン製多孔フィルムM2(厚み8μm、透気度200sec、多孔度40%)を、M2/M1/M2となるように積層ラミネートし、3層微細通流体性多孔フィルムを得た。
このフィルムを実施例1と同様に、充放電テスト(レート1C)を実施した結果、上記「比較サンプル−1」のフィルムより、充放電曲線が優れていた。
又「閉塞 /短絡」温度は、それぞれ「134℃ /190℃」であり、その温度差が56℃と幅広い温度特性を有していた。
(Example 15)
In Example 1, it carried out similarly to Example 1 except changing only the thickness at the time of extrusion, and the thinner porous film was obtained. The obtained film had a thickness of 8 μm, an air permeability of 2 sec, and a porosity of 70%.
This porous film M1 and a polypropylene porous film M2 (thickness 8 μm, air permeability 200 sec, porosity 40%) obtained by the stretch opening method are laminated and laminated so that M2 / M1 / M2 is obtained. A fluid porous film was obtained.
As a result of conducting a charge / discharge test (Rate 1C) on this film in the same manner as in Example 1, the charge / discharge curve was superior to the film of “Comparative Sample-1”.
The “closure / short circuit” temperatures were “134 ° C./190° C.”, respectively, and the temperature difference was 56 ° C., which was a wide temperature characteristic.

多孔体の表面を走査型電子顕微鏡(SEM)で観察した際の、開孔(P)及び開口(I)の概略図である。It is the schematic of an opening (P) and opening (I) when the surface of a porous body is observed with a scanning electron microscope (SEM).

Claims (14)

連続相となる基材の熱可塑性樹脂(A)の50〜99重量%と、これに混合分散する開孔材(B)と開口剤(C)との合計量の1〜50重量%とからなる、微多孔体形成前駆組成物成型体を延伸する事により、基材の熱可塑性樹脂(A)と該開孔材(B)及び開口剤(C)との界面の少なくとも1部が剥離し、開孔(P)及び開口(I)が生成することにより形成された熱可塑性樹脂の微細通流体性多孔体であって、該多孔体が、0.5〜100μmの平均孔径を有する大きな開孔(P)群と、その開孔(P)の少なくとも1部の開孔壁部分に、0.01〜30μmの平均開口径を有するより小さな開口(I)群とを有し、透気度が1000(sec /100cc・25μm厚み)以下で、多孔度が30〜90%であることを特徴とする微細通流体性多孔体。   From 50 to 99% by weight of the base material thermoplastic resin (A) to be a continuous phase, and 1 to 50% by weight of the total amount of the pore-opening material (B) and the opening agent (C) mixed and dispersed therein. By stretching the molded body of the microporous body forming precursor composition, at least a part of the interface between the thermoplastic resin (A) of the base material and the pore opening material (B) and the opening agent (C) is peeled off. A fine fluid-permeable porous body of thermoplastic resin formed by the formation of the opening (P) and the opening (I), the porous body having a large opening having an average pore diameter of 0.5 to 100 μm. A hole (P) group and a smaller opening (I) group having an average opening diameter of 0.01 to 30 μm in at least a part of the opening wall portion of the opening (P), and air permeability Is 1000 (sec / 100 cc · 25 μm thickness) or less, and the porosity is 30 to 90%. Porous material. 請求項1に記載の微細通流体性多孔体を更に延伸することにより、該開孔(P)群と該開口(I)群との少なくとも1部を崩壊又は連続させて形成された、少なくともその1部に、不織布状にフイブリル化した構造を有し、透気度が、0.05〜500(sec /100cc・25μm厚み)で、多孔度が30〜90%である事を特徴とする微細通流体性多孔体。   The microfluidic porous body according to claim 1 is further stretched to form at least a part of at least one part of the aperture (P) group and the aperture (I) group. 1 part has a non-woven fibrillated structure, air permeability is 0.05 to 500 (sec / 100 cc · 25 μm thickness), and porosity is 30 to 90%. Fluid-permeable porous body. 熱可塑性樹脂(A)が55〜98重量%と、該開孔材(B)が2〜45重量%、該開口剤(C)が0〜15重量%とからなることを特徴とする請求項1又は2に記載の微細通流体性多孔体。   The thermoplastic resin (A) is 55 to 98% by weight, the pore-opening material (B) is 2 to 45% by weight, and the opening agent (C) is 0 to 15% by weight. The fine fluid-permeable porous material according to 1 or 2. 熱可塑性樹脂(A)が60〜94重量%と、該開孔材(B)が5〜40重量%、該開口剤(C)が1〜10重量%とから成ることを特徴とする請求項1〜3のいずれか1項に記載の微細通流体性多孔体。   The thermoplastic resin (A) is 60 to 94% by weight, the pore-opening material (B) is 5 to 40% by weight, and the opening agent (C) is 1 to 10% by weight. The fine fluid-permeable porous body according to any one of 1 to 3. 熱可塑性樹脂(A)が、ポリオレフィン系樹脂、脂肪族ポリエステル系樹脂、芳香族成分を含むポリエステル系樹脂、α−オレフィンと一酸化炭素共重合体、ポリアミド系樹脂、フッ素系樹脂、ポリスルホン系樹脂から選ばれる少なくとも1種からなる請求項1〜4のいずれか1項に記載の微細通流体性多孔体。   The thermoplastic resin (A) is a polyolefin resin, an aliphatic polyester resin, a polyester resin containing an aromatic component, an α-olefin and carbon monoxide copolymer, a polyamide resin, a fluorine resin, or a polysulfone resin. The fine fluid-permeable porous body according to any one of claims 1 to 4, comprising at least one selected. 開孔材(B)が、ポリフェニレンエーテル系樹脂、スチレン系樹脂、環球法軟化点が150℃以上の飽和炭化水素系樹脂から選ばれる少なくとも1種の樹脂からなる請求項1〜5のいずれか1項に記載の微細通流体性多孔体。   The pore-opening material (B) is made of at least one resin selected from polyphenylene ether resins, styrene resins, and saturated hydrocarbon resins having a ring and ball softening point of 150 ° C or higher. The microfluidic porous material according to item. 開孔材(B)が、ポリフェニレンエーテル系樹脂とスチレン系樹脂との組成物、ポリフェニレンエーテル系樹脂と飽和炭化水素系樹脂との組成物、ポリフェニレンエーテル系樹脂とスチレン系樹脂と飽和炭化水素系樹脂との組成物から選ばれる1種の組成物からなる請求項1〜6のいずれか1項に記載の微細通流体性多孔体。   Opening material (B) is a composition of polyphenylene ether resin and styrene resin, composition of polyphenylene ether resin and saturated hydrocarbon resin, polyphenylene ether resin, styrene resin and saturated hydrocarbon resin The fine fluid-permeable porous body according to any one of claims 1 to 6, comprising one kind of composition selected from the composition. 多孔体が、0.5〜100μmの平均孔径を有する大きな開孔(P)群と、その開孔(P)の少なくとも1部の開孔壁部分に、少なくとも2個の0.01〜30μmの平均開口径を有するより小さな開口(I)群とを有し、その平均径比(P/I)が少なくとも2であり、透気度が0.5〜500(sec /100cc・25μm厚み)で、ハイブリッド構造を有していることを特徴とするの請求項1〜7のいずれか1項に記載の微細通流体性多孔体。   The porous body has at least two 0.01-30 μm pores on a large aperture (P) group having an average pore diameter of 0.5-100 μm and at least one aperture wall portion of the aperture (P). A smaller aperture (I) group having an average aperture diameter, an average diameter ratio (P / I) of at least 2, and an air permeability of 0.5 to 500 (sec / 100 cc · 25 μm thickness) The microfluidic porous body according to any one of claims 1 to 7, wherein the porous body has a hybrid structure. 多孔体が、2〜200μm厚みのフィルム状、200〜5000μm厚みのシート状、2〜5000μm径の糸状、2〜5000μm径の中空糸状から選ばれる1種のものであることを特徴とする請求項1〜8のいずれか1項に記載の微細通流体性多孔体。   The porous body is one type selected from a film shape having a thickness of 2 to 200 μm, a sheet shape having a thickness of 200 to 5000 μm, a thread shape having a diameter of 2 to 5000 μm, and a hollow fiber shape having a diameter of 2 to 5000 μm. The fine fluid-permeable porous body according to any one of 1 to 8. 多孔体が、異なった組成から成る層、又は異なった構造から成る層、異なった特性からなる層、から選ばれる1種以上の層の組み合わせから成る多層状であることを特徴とする請求項1〜9のいずれか1項に記載の微細通流体性多孔体。   2. The porous body is a multilayer composed of a combination of one or more layers selected from layers having different compositions or layers having different structures and layers having different properties. The fine fluid-permeable porous material according to any one of? 9. 多孔体が、多孔度30〜80%、透気度0. 5〜500(sec/100cc・25μm厚み)を有することを特徴とする請求項1〜10のいずれか1項に記載の微細通流体性多孔体。   The microfluidic fluid according to any one of claims 1 to 10, wherein the porous body has a porosity of 30 to 80% and an air permeability of 0.5 to 500 (sec / 100 cc · 25 µm thickness). Porous material. 多孔体が、多孔度40〜85%、透気度0. 1〜80(sec/100cc・25μm厚み)を有することを特徴とする請求項1〜10のいずれか1項に記載の微細通流体性多孔体。   11. The microfluidic fluid according to claim 1, wherein the porous body has a porosity of 40 to 85% and an air permeability of 0.1 to 80 (sec / 100 cc · 25 μm thickness). Porous material. 請求項1〜12のいずれか1項に記載の微細通流体性多孔体の製造方法であって、少なくとも1層の熱可塑性樹脂(A)を基材とする該微多孔体形成前駆層と、少なくとも1層の該前駆層を構成する樹脂と異なる熱可塑性樹脂を主成分とし、且つそれが延伸により通流体性構造とならない組成物の延伸補助層(S)とを共延伸し、次に該補助層を剥離除去する事を特徴とする微細通流体性多孔体の製造方法。   The method for producing a microfluidic porous body according to any one of claims 1 to 12, wherein the microporous body-forming precursor layer based on at least one thermoplastic resin (A), And co-stretching a stretching auxiliary layer (S) of a composition comprising a thermoplastic resin different from the resin constituting the at least one precursor layer as a main component and which does not become a fluid-permeable structure by stretching, A method for producing a microfluidic porous material, wherein the auxiliary layer is peeled and removed. 二層以上からなる多層状微細通流体性多孔体であって、少なくとも一つの層が、請求項1〜12のいずれか1項に記載の微細通流体性多孔体であって、他の層がこれとは異なる特徴の多孔構造であることを特徴とする微細通流体性多孔体。   It is a multilayer microfluidic porous body consisting of two or more layers, and at least one layer is the microfluidic porous body according to any one of claims 1 to 12, wherein the other layers are A microfluidic porous body characterized by a porous structure having a different characteristic.
JP2006333031A 2006-12-11 2006-12-11 Fluid-permeable fine porous material and its manufacturing method Withdrawn JP2008144039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333031A JP2008144039A (en) 2006-12-11 2006-12-11 Fluid-permeable fine porous material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333031A JP2008144039A (en) 2006-12-11 2006-12-11 Fluid-permeable fine porous material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008144039A true JP2008144039A (en) 2008-06-26

Family

ID=39604577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333031A Withdrawn JP2008144039A (en) 2006-12-11 2006-12-11 Fluid-permeable fine porous material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008144039A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122961A1 (en) * 2008-03-31 2009-10-08 旭化成イーマテリアルズ株式会社 Microporous film and method for producing the same
JP2009242693A (en) * 2008-03-31 2009-10-22 Asahi Kasei Chemicals Corp Resin composition excellent in stretch-opening property
WO2010013801A1 (en) * 2008-07-31 2010-02-04 旭化成イーマテリアルズ株式会社 Microporous film and method for producing the same
WO2010013800A1 (en) * 2008-07-31 2010-02-04 旭化成イーマテリアルズ株式会社 Multilayer microporous membrane, method for producing same and battery separator
JP2011074212A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Fine porous film, method for producing fine porous film, and separator for battery
JP2011073277A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Laminated microporous film, method for manufacturing the same, and separator for battery
JP2012092302A (en) * 2010-10-01 2012-05-17 Mitsubishi Plastics Inc Porous film, battery separator, and battery
JP2013100458A (en) * 2011-10-14 2013-05-23 Toray Ind Inc Porous polyolefin film and electric storage system
CN105246443A (en) * 2013-06-12 2016-01-13 金伯利-克拉克环球有限公司 Absorbent article containing a porous polyolefin film
KR20160020447A (en) * 2013-06-12 2016-02-23 킴벌리-클라크 월드와이드, 인크. Pore initiation technique
CN105358107A (en) * 2013-06-12 2016-02-24 金伯利-克拉克环球有限公司 Absorbent article containing a nonwoven web formed from porous polyolefin fibers
JP2016053110A (en) * 2014-09-03 2016-04-14 三菱樹脂株式会社 Fluororesin porous body
US20160122491A1 (en) * 2013-06-12 2016-05-05 Kimberly-Clark Worldwide, Inc. Polymeric Material for Use in Thermal Insulation
JP2016527406A (en) * 2013-06-12 2016-09-08 キンバリー クラーク ワールドワイド インコーポレイテッド Multifunctional fabric
JP2016532784A (en) * 2013-06-12 2016-10-20 キンバリー クラーク ワールドワイド インコーポレイテッド Garments containing porous polymeric materials
KR20180073707A (en) * 2015-12-11 2018-07-02 킴벌리-클라크 월드와이드, 인크. Method for forming porous fibers
JP2020141765A (en) * 2019-03-04 2020-09-10 国立大学法人東北大学 Film
US11084916B2 (en) * 2013-06-12 2021-08-10 Kimberly-Clark Worldwide, Inc. Polymeric material with a multimodal pore size distribution
US11186927B2 (en) 2014-06-06 2021-11-30 Kimberly Clark Worldwide, Inc. Hollow porous fibers
US11965083B2 (en) 2013-06-12 2024-04-23 Kimberly-Clark Worldwide, Inc. Polyolefin material having a low density

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213862B1 (en) 2008-03-31 2012-12-18 아사히 가세이 이-매터리얼즈 가부시키가이샤 Microporous film and method for producing the same
JP2009242693A (en) * 2008-03-31 2009-10-22 Asahi Kasei Chemicals Corp Resin composition excellent in stretch-opening property
WO2009122961A1 (en) * 2008-03-31 2009-10-08 旭化成イーマテリアルズ株式会社 Microporous film and method for producing the same
US8309256B2 (en) 2008-03-31 2012-11-13 Asahi Kasei E-Materials Corporation Microporous film and method for producing the same
WO2010013801A1 (en) * 2008-07-31 2010-02-04 旭化成イーマテリアルズ株式会社 Microporous film and method for producing the same
WO2010013800A1 (en) * 2008-07-31 2010-02-04 旭化成イーマテリアルズ株式会社 Multilayer microporous membrane, method for producing same and battery separator
CN102105517B (en) * 2008-07-31 2013-05-08 旭化成电子材料株式会社 Microporous film and method for producing the same
CN102105302A (en) * 2008-07-31 2011-06-22 旭化成电子材料株式会社 Multilayer microporous membrane, method for producing same and battery separator
JP2011137159A (en) * 2008-07-31 2011-07-14 Asahi Kasei E-Materials Corp Microporous film and method for producing the same
KR101250151B1 (en) * 2008-07-31 2013-04-05 아사히 가세이 이-매터리얼즈 가부시키가이샤 Microporous film and method for producing the same
US8298465B2 (en) 2008-07-31 2012-10-30 Asahi Kasei E-Materials Corporation Microporous film and method for producing the same
JP2011074212A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Fine porous film, method for producing fine porous film, and separator for battery
JP2011073277A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Laminated microporous film, method for manufacturing the same, and separator for battery
JP2012092302A (en) * 2010-10-01 2012-05-17 Mitsubishi Plastics Inc Porous film, battery separator, and battery
JP2016040386A (en) * 2010-10-01 2016-03-24 三菱樹脂株式会社 Method for producing porous film
JP2013100458A (en) * 2011-10-14 2013-05-23 Toray Ind Inc Porous polyolefin film and electric storage system
US20160122491A1 (en) * 2013-06-12 2016-05-05 Kimberly-Clark Worldwide, Inc. Polymeric Material for Use in Thermal Insulation
KR102257717B1 (en) * 2013-06-12 2021-05-31 킴벌리-클라크 월드와이드, 인크. Polyolefin material having a lowdensity
CN105358107A (en) * 2013-06-12 2016-02-24 金伯利-克拉克环球有限公司 Absorbent article containing a nonwoven web formed from porous polyolefin fibers
KR20160018590A (en) * 2013-06-12 2016-02-17 킴벌리-클라크 월드와이드, 인크. Polyolefin material having a lowdensity
US11965083B2 (en) 2013-06-12 2024-04-23 Kimberly-Clark Worldwide, Inc. Polyolefin material having a low density
US20160114071A1 (en) * 2013-06-12 2016-04-28 Kimberly-Clark Worldwide, Inc. Absorbent Article Containing a Porous Polyolefin Film
CN105246443A (en) * 2013-06-12 2016-01-13 金伯利-克拉克环球有限公司 Absorbent article containing a porous polyolefin film
US20160121523A1 (en) * 2013-06-12 2016-05-05 Kimberly-Clark Worldwide, Inc. Pore Initiation Technique
US20160122484A1 (en) * 2013-06-12 2016-05-05 Kimberly-Clark Worldwide, Inc. Polyolefin Film for Use in Packaging
JP2016527406A (en) * 2013-06-12 2016-09-08 キンバリー クラーク ワールドワイド インコーポレイテッド Multifunctional fabric
JP2016530404A (en) * 2013-06-12 2016-09-29 キンバリー クラーク ワールドワイド インコーポレイテッド Porous polyolefin fiber
JP2016532784A (en) * 2013-06-12 2016-10-20 キンバリー クラーク ワールドワイド インコーポレイテッド Garments containing porous polymeric materials
KR101767851B1 (en) * 2013-06-12 2017-08-11 킴벌리-클라크 월드와이드, 인크. Garment containing a porous polymeric material
US11767615B2 (en) 2013-06-12 2023-09-26 Kimberly-Clark Worldwide, Inc. Hollow porous fibers
KR102439981B1 (en) * 2013-06-12 2022-09-05 킴벌리-클라크 월드와이드, 인크. Absorbent article containing a nonwoven web formed from porous polyolefin fibers
US11286362B2 (en) * 2013-06-12 2022-03-29 Kimberly-Clark Worldwide, Inc. Polymeric material for use in thermal insulation
US10752745B2 (en) * 2013-06-12 2020-08-25 Kimberly-Clark Worldwide, Inc. Polyolefin film for use in packaging
US11155688B2 (en) * 2013-06-12 2021-10-26 Kimberly-Clark Worldwide, Inc. Polyolefin material having a low density
US10857705B2 (en) * 2013-06-12 2020-12-08 Kimberly-Clark Worldwide, Inc. Pore initiation technique
KR102208277B1 (en) 2013-06-12 2021-01-27 킴벌리-클라크 월드와이드, 인크. Pore initiation technique
KR20210010674A (en) * 2013-06-12 2021-01-27 킴벌리-클라크 월드와이드, 인크. Absorbent article containing a nonwoven web formed from porous polyolefin fibers
US11001944B2 (en) * 2013-06-12 2021-05-11 Kimberly-Clark Worldwide, Inc. Porous polyolefin fibers
KR20160020447A (en) * 2013-06-12 2016-02-23 킴벌리-클라크 월드와이드, 인크. Pore initiation technique
US11028246B2 (en) * 2013-06-12 2021-06-08 Kimberly-Clark, Inc. Absorbent article containing a porous polyolefin film
US11084916B2 (en) * 2013-06-12 2021-08-10 Kimberly-Clark Worldwide, Inc. Polymeric material with a multimodal pore size distribution
US11186927B2 (en) 2014-06-06 2021-11-30 Kimberly Clark Worldwide, Inc. Hollow porous fibers
JP2016053110A (en) * 2014-09-03 2016-04-14 三菱樹脂株式会社 Fluororesin porous body
KR101960236B1 (en) * 2015-12-11 2019-03-19 킴벌리-클라크 월드와이드, 인크. Method for forming porous fibers
CN108368656A (en) * 2015-12-11 2018-08-03 金伯利-克拉克环球有限公司 The method for being used to form porous fibre
KR20180073707A (en) * 2015-12-11 2018-07-02 킴벌리-클라크 월드와이드, 인크. Method for forming porous fibers
JP2020141765A (en) * 2019-03-04 2020-09-10 国立大学法人東北大学 Film

Similar Documents

Publication Publication Date Title
JP2008144039A (en) Fluid-permeable fine porous material and its manufacturing method
JP4734397B2 (en) Laminated porous film, separator for lithium ion battery using the same, and battery
JP4902455B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
KR101250151B1 (en) Microporous film and method for producing the same
KR101071602B1 (en) Laminated porous film, separator for lithium cell, and cell
JP2012522669A (en) Polyolefin multilayer microporous membrane with excellent physical properties and high-temperature safety
JP7047382B2 (en) Polyolefin microporous membrane, lithium ion secondary battery and polyolefin microporous membrane manufacturing method
JP2008255307A (en) Polyolefin multilayer microporous film, method for producing the same, separator for battery and battery
JP2011194650A (en) Polyolefin resin porous film and separator for battery
KR20190127663A (en) Polyolefin microporous membrane, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5512461B2 (en) Microporous film and battery separator
JP4229504B2 (en) Fluid-permeable microporous film and method for producing the same
JPWO2018043335A1 (en) Microporous membrane, lithium ion secondary battery and method of producing microporous membrane
WO2020195380A1 (en) Microporous polyolefin membrane, separator for secondary batteries, and secondary battery
JP2010111095A (en) Laminated porous film and separator for lithium cell and battery using the same
WO2021033735A1 (en) Polyolefin microporous film, layered body, and battery
JP7380570B2 (en) Polyolefin microporous membrane, battery separator, secondary battery, and manufacturing method of polyolefin microporous membrane
JP2018076476A (en) High temperature low heat shrinkable polyolefin multilayer microporous film and method for producing the same
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP4801706B2 (en) Laminated porous film for separator and method for producing the same
JP6311585B2 (en) Porous body and method for producing the same
JP7268004B2 (en) Separator for power storage device
JP2013028099A (en) Laminated microporous film and method for manufacturing the same, and cell separator
JP7380553B2 (en) Polyolefin microporous membrane, battery separator and secondary battery
JP7532843B2 (en) Polyolefin microporous membrane, battery separator, and secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302