Nothing Special   »   [go: up one dir, main page]

JP2008032261A - Air conditioner and ventilating duct - Google Patents

Air conditioner and ventilating duct Download PDF

Info

Publication number
JP2008032261A
JP2008032261A JP2006203461A JP2006203461A JP2008032261A JP 2008032261 A JP2008032261 A JP 2008032261A JP 2006203461 A JP2006203461 A JP 2006203461A JP 2006203461 A JP2006203461 A JP 2006203461A JP 2008032261 A JP2008032261 A JP 2008032261A
Authority
JP
Japan
Prior art keywords
air
ventilation duct
blower
rectifying
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006203461A
Other languages
Japanese (ja)
Inventor
Yasushi Tejima
泰 手島
Shigehiro Omori
茂広 大守
Hidetaka Hayashi
秀孝 林
Takayoshi Mitsubori
隆義 三堀
Shunji Tomita
俊爾 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA MICRODUCT KK
Kansai Electric Power Co Inc
MAG Co Ltd
Original Assignee
OSAKA MICRODUCT KK
Kansai Electric Power Co Inc
MAG Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA MICRODUCT KK, Kansai Electric Power Co Inc, MAG Co Ltd filed Critical OSAKA MICRODUCT KK
Priority to JP2006203461A priority Critical patent/JP2008032261A/en
Publication of JP2008032261A publication Critical patent/JP2008032261A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Duct Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner of a simple structure capable of reducing dispersion in supply wind velocities and wind volumes of the air from each of supply openings of a ventilating duct, and to provide the ventilating duct suitably applied to supply a gas for air conditioning. <P>SOLUTION: This air conditioner 10 includes a rectifying cylinder 13 having a spiral rectifying means 20 for applying spiral swirling force to the distributed airflow on its inner face, between a blower 11 and the ventilating duct 12. As the distributed airflow flows in the ventilating duct 12 while spirally swirled by the rectifying means 20 on the inner face of the rectifying cylinder 13 when the distributed airflow from the blower 11 passes through the rectifying cylinder 13, the difference in flow velocities between an upstream side and a downstream side in the ventilating duct 12 is reduced, and the difference in the supplying wind velocities/wind volumes of the conditioned air from each of the supply openings 14 of the ventilating duct 12 can be reduced. Thus equipment costs and adjustment costs can be reduced, and further running costs can be reduced by reducing consumption of energy by the blower 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷暖房空気を通風ダクトに送風して通風ダクトに形成した複数の吹出口からダクト外に吹出す空調装置に関するものである。   The present invention relates to an air conditioner that blows air from a plurality of air outlets formed in a ventilation duct by blowing air to the ventilation duct.

工場や体育館、作物栽培用温室のような広い空調対象の空間に、温度や湿度調整された冷暖房空気を送風して空調する場合、空調対象の広い空間に配置された長尺な通風ダクトに冷暖房空気を送風している。通風ダクトは、壁面上部(軒部)や天井部に略水平に取り付けられたものが多く、ダクト軸方向に間隔を開けて複数の吹出口を設けている。この通風ダクトは、片端部に送風機を連結し、送風機から冷暖房空気を通風ダクト内に送風することにより、各吹出口から空気を吹出している。   When air conditioning is performed by blowing air that has been adjusted in temperature and humidity, such as factories, gymnasiums, and greenhouses for crop cultivation, air conditioning is performed on a long ventilation duct placed in a wide space for air conditioning. Air is blowing. Many ventilation ducts are mounted substantially horizontally on the upper part of the wall surface (eave part) and the ceiling part, and are provided with a plurality of outlets at intervals in the duct axial direction. In this ventilation duct, a blower is connected to one end, and air is blown out from each outlet by blowing air from the blower into the ventilation duct.

通風ダクトの片端部に送風機を連接し、送風機から冷暖房空気を通風ダクトに送風すると、ダクト内の送風動圧が送風機のある上流ほど高く、下流になるほど低くなる。そのため、上流の吹出口からの吹出し風速・風量が下流の吹出口からの吹出し風速・風量より大きくなる。このような通風ダクトのダクト軸方向に並ぶ複数の吹出口からの風速・風量のばらつきは、通風ダクトの全長が長くなるほど顕著に現れる。   When a blower is connected to one end of the ventilation duct and the cooling / heating air is blown from the blower to the ventilation duct, the ventilation dynamic pressure in the duct is higher in the upstream where the blower is located and lower in the downstream. For this reason, the blown air velocity / air volume from the upstream air outlet becomes larger than the blown air velocity / air volume from the downstream air outlet. Such variations in wind speed and air volume from a plurality of air outlets arranged in the duct axial direction of the ventilation duct become more prominent as the overall length of the ventilation duct becomes longer.

上記複数の吹出口からの個々の吹出し風速・風量のばらつきは、体育館のような室内全体を空調する場合には、あまり問題視されない。しかし、育苗ハウスのような温室で同一種類の複数の栽培作物に個々に空調された微風を吹き付けて生長促進を図るような場合、上記吹出し風速・風量のばらつきが作物の生長ばらつき、品質ばらつきとなって現れる。例えば、温室栽培においては、個々の栽培作物の受粉や生長に差がでないようにするには、概ね0.5m/s以下の微風を吹き付ける空調が効果的とされている。しかし、通風ダクトの下流側で0.5m/sの微風を発生させる場合、通風ダクトの上流側では0.5m/sを大きく超過して、上流側で栽培作物の生長を阻害することになりかねない。逆に上流側で0.5m/sの微風を発生させる場合、通風ダクトの下流側では0.5m/sを大きく下回る微風となり、ハウス内で、栽培作物の生長に大きなばらつきが生じることがある。   Variations in the individual blown air speeds and air volumes from the plurality of air outlets are not considered as a significant problem when air-conditioning the entire room such as a gymnasium. However, when the growth is promoted by blowing individually conditioned winds to a plurality of cultivated crops of the same type in a greenhouse such as a nursery house, the above-mentioned variation in blowing wind speed and air volume is caused by variations in crop growth and quality. It appears. For example, in greenhouse cultivation, air conditioning that blows a gentle breeze of approximately 0.5 m / s or less is effective in order to prevent differences in pollination and growth of individual cultivated crops. However, when a slight wind of 0.5 m / s is generated on the downstream side of the ventilation duct, it greatly exceeds 0.5 m / s on the upstream side of the ventilation duct and inhibits the growth of cultivated crops on the upstream side. It might be. On the other hand, when a gentle breeze of 0.5 m / s is generated on the upstream side, the breeze is significantly lower than 0.5 m / s on the downstream side of the ventilation duct, and the growth of cultivated crops may vary greatly in the house. .

また、温度や湿度に影響を受けやすい複数の工業製品の個々に空調された冷暖房空気を吹き付けて製品管理するような場合も、上記ばらつきが製品の品質ばらつきとなって現れる。   Also, in the case where product management is performed by blowing individually air-conditioned air-conditioning air of a plurality of industrial products that are easily affected by temperature and humidity, the above variations appear as product quality variations.

そこで、通風ダクトのダクト軸方向に点在させた複数の吹出口から吹き出される冷暖房空気の吹出し風速・風量を均一化するため、一般的には個々の吹出口にバルブやオリフィス(例えば、特許文献1参照)、ダンパー(例えば、特許文献2参照)などの風速・風量調整手段を取り付けて、個々に調整するようにしている。
特開2001−027444号公報 特開平07−269930号公報
Therefore, in order to uniformize the air speed and air volume of the cooling / heating air blown out from a plurality of air outlets scattered in the duct axial direction of the ventilation duct, generally, valves and orifices (for example, patents) A wind speed / air volume adjusting means such as a literature 1) or a damper (for example, see Patent Literature 2) is attached and adjusted individually.
JP 2001-027444 A JP 07-269930 A

上記風速・風量調整手段は、吹出口の構造が複雑となり、しかも、複数の吹出口を個々に調整する必要がある。また、個々の吹出口の調整が他の吹出口の調整に影響するため、空調設備全体の設備コスト、調整コストが高くなり、調整に長時間を要するなどの不具合がある。また、複数の各吹出口に設けた風速・風量調整手段による調整が容易にできるように、送風機から通風ダクトに送る送風量を増大させる場合、容量の大きな大型で高価な送風機が必要となり、設備コストが高くなると共に、容量の大きな送風機はエネルギー消費量が多くなって、空調装置のランニングコストが高くなる不具合がある。   The wind speed / air volume adjusting means has a complicated outlet structure, and it is necessary to individually adjust a plurality of outlets. In addition, since adjustment of individual air outlets affects adjustment of other air outlets, there are problems such as an increase in equipment costs and adjustment costs of the entire air conditioning equipment, and a long time for adjustment. Also, when increasing the amount of air sent from the blower to the ventilation duct so that adjustment by the wind speed and air volume adjustment means provided at each of the plurality of air outlets can be facilitated, a large and expensive blower with a large capacity is required, As the cost increases, a large capacity blower has a problem that the energy consumption increases and the running cost of the air conditioner increases.

本発明に係る空調装置は、送風機と、この送風機からの送風気流をダクト軸方向に流す通風ダクトを有し、通風ダクトに軸方向に点在させた複数の吹出口から送風気流を空調対象に吹き出す空調装置において、通風ダクトは入口側に、送風気流に渦巻き状の旋回力を付与して整流する整流手段を内面に有する整流筒を具備する。   The air conditioner according to the present invention has a blower and a ventilation duct for flowing a blown airflow from the blower in the axial direction of the fan, and the blown airflow is targeted for air conditioning from a plurality of outlets scattered in the axial direction of the ventilation duct. In the air conditioner that blows out, the ventilation duct is provided with a rectifying cylinder on the inlet side, which has rectifying means on the inner surface for rectifying by applying a spiral turning force to the air flow.

整流筒は、通風ダクトと一体物でもよく、通風ダクトと別体物でもよい。整流筒内面の整流手段は、例えば、整流筒の片端から他端へと螺旋状に延在する突起物であればよい。   The flow straightening tube may be integrated with the ventilation duct or may be a separate body from the ventilation duct. The rectifying means on the inner surface of the rectifying cylinder may be a protrusion that spirally extends from one end of the rectifying cylinder to the other end, for example.

本発明によれば、送風機からの送風気流が通風ダクトの入口に流入して通過する際に、入口側の整流筒により送風気流が渦巻き状に旋回力を受けて渦巻き状に通風ダクト内に流れる結果、通風ダクト内を上流側と下流側とで流速の差を小さくでき、通風ダクトの各吹出口からの空調空気の吹出し風速・風量の差を小さくすることができる。従って、通風ダクトの複数の吹出口の個々に特別な風速・風量調整手段を設ける必要がなく、各吹出口毎に風速・風量を調整する手間が省けて、設備コスト、調整コストの低減が図れる。また、上流での送風量を少なく抑えても、下流の吹出口からの空調空気の吹出し風速・風量がそれほど落ちず、上流の吹出口との差を小さくすることができるから、送風機の送風量を少なく抑えることができる。このため、送風機のエネルギー消費量を抑制してランニングコストを低減させることができる。   According to the present invention, when the blast airflow from the blower flows into and passes through the inlet of the ventilation duct, the blast airflow is swirled by the rectifying cylinder on the inlet side and flows into the ventilation duct in a spiral shape. As a result, the difference in the flow velocity between the upstream side and the downstream side in the ventilation duct can be reduced, and the difference in the blown air velocity / air volume of the conditioned air from each outlet of the ventilation duct can be reduced. Therefore, there is no need to provide special wind speed / air volume adjusting means for each of the plurality of air outlets of the ventilation duct, and the labor for adjusting the air speed / air volume for each air outlet can be saved, and the equipment cost and adjustment cost can be reduced. . In addition, even if the amount of air blown upstream is kept low, the blown air speed / air amount of the conditioned air from the downstream air outlet does not drop so much, and the difference from the upstream air outlet can be reduced. Can be reduced. For this reason, the energy consumption of a fan can be suppressed and a running cost can be reduced.

また、入口側に整流筒を備えた通風ダクトは、空調以外の用途転用が容易である。例えば、エンジンの吸気管に通風ダクトを使用すれば、管内を流れる気体の動圧損失が小さくなり、効率よく空気を吸気できて燃費が低減される。   Moreover, the ventilation duct provided with the rectification | straightening pipe | tube on the entrance side is easy for application uses other than an air conditioning. For example, if a ventilation duct is used for the intake pipe of an engine, the loss of dynamic pressure of the gas flowing in the pipe is reduced, and air can be efficiently taken in and fuel efficiency is reduced.

以下、本発明の一実施形態に係る空調装置を図面に基づいて説明する。   Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to the drawings.

図1は、育苗ハウスのような土耕栽培の温室1で、同一種類の複数の栽培作物4に冷暖房空気の微風を吹き付ける空調装置を示す。温室1は、数haの広い室内に複数の栽培作物4を植栽した畝3を有する。複数条の畝3は、等間隔で平行に並び、複数の畝3のそれぞれに栽培作物4を植栽している。   FIG. 1 shows an air conditioner that blows breeze of air conditioning air on a plurality of cultivated crops 4 of the same type in a greenhouse 1 of soil cultivation such as a nursery house. The greenhouse 1 has a basket 3 in which a plurality of cultivated crops 4 are planted in a large room of several ha. The plurality of ridges 3 are arranged in parallel at equal intervals, and the cultivated crop 4 is planted in each of the plurality of ridges 3.

この空調装置に示す通風系統10は、送風機11と、通風ダクト12と、通風ダクト12の入口部を構成する整流筒13と、送風ダクト12の底部に軸方向に点在させた吹出口14を備えている。通風ダクト12は、送風機11からの送風気流を必要な長さの流路で流すものであり、送風気流が流入する入口側に所定長さの整流筒13が連接される。この実施形態では、通風ダクト12は、図2に示すように、グラスウール保温材16とアルミ箔の表面材17を有する円筒である。   The ventilation system 10 shown in this air conditioner includes a blower 11, a ventilation duct 12, a rectifying cylinder 13 that constitutes an inlet portion of the ventilation duct 12, and a blower outlet 14 that is dotted in the axial direction at the bottom of the ventilation duct 12. I have. The ventilation duct 12 allows the airflow from the blower 11 to flow through a flow path having a required length, and a rectifying cylinder 13 having a predetermined length is connected to the inlet side into which the airflow flows. In this embodiment, the ventilation duct 12 is a cylinder which has the glass wool heat insulating material 16 and the surface material 17 of an aluminum foil, as shown in FIG.

図1に示すように、複数条の畝3のそれぞれの真上に通風ダクト12が畝3と略水平にして設置される。通風ダクト12は、温室1の天井から吊り具21で吊り下げられる。各通風ダクト12は、複数の吹出口14をダクトの軸方向に間隔を開けて設けている。図3に示すように、複数の通風ダクト12はそれぞれ整流筒13を介して共通の送風機11に連結される。各通風ダクト12の送風機11と反対側の末端側(出口側)端部は開口され、この隣接する通風ダクト12の末端側にはフレキシブルダクト12’が連結されており、隣接するダクトを連通してループ化したり、共通の通風ダクトを連結してループダクトを構成している。   As shown in FIG. 1, the ventilation duct 12 is installed substantially horizontally with the ridge 3 immediately above each of the plurality of ridges 3. The ventilation duct 12 is suspended from the ceiling of the greenhouse 1 by a hanging tool 21. Each ventilation duct 12 is provided with a plurality of outlets 14 at intervals in the axial direction of the duct. As shown in FIG. 3, the plurality of ventilation ducts 12 are each connected to a common blower 11 via a rectifying cylinder 13. An end portion (exit side) opposite to the blower 11 of each ventilation duct 12 is opened, and a flexible duct 12 ′ is connected to the end side of the adjacent ventilation duct 12 so that the adjacent ducts communicate with each other. Loop loops or connecting common ventilation ducts to form loop ducts.

整流筒13は、図4に示すように、送風機11からの送風気流Aに渦巻き状の旋回力を付与するように整流させる整流手段20を内面に有する。この実施形態では、整流筒13は、図6に示すように、通風ダクト12と同一サイズの円形のグラスウールダクトである。整流筒13の内面の整流手段20は、螺旋状の突起物20aで構成している。突起物20aは、整流筒13の片開口端から他開口端まで螺旋状に延在する螺旋板で、整流筒13の内周面に固定される。   As shown in FIG. 4, the rectifying cylinder 13 has rectifying means 20 on the inner surface that rectifies the airflow A from the blower 11 so as to apply a spiral turning force. In this embodiment, the rectifying cylinder 13 is a circular glass wool duct having the same size as the ventilation duct 12 as shown in FIG. The rectifying means 20 on the inner surface of the rectifying cylinder 13 is constituted by a spiral protrusion 20a. The protrusion 20 a is a spiral plate that spirally extends from one opening end of the rectifying cylinder 13 to the other opening end, and is fixed to the inner peripheral surface of the rectifying cylinder 13.

通風ダクト12と整流筒13は、別々に製造することもできるが、1本の長尺なグラスウールダクトを製造して、その入口側端部を整流筒構造に製作し、残りをそのまま通風ダクト12として使用してもよい。このように製作すれば、別々に製作した整流筒13と通風ダクト12を連結する手間が省け、連結するための特別な部材が省略できて、ダクトの製作コストと施工コストが低減できる。   Although the ventilation duct 12 and the rectifying cylinder 13 can be manufactured separately, one long glass wool duct is manufactured, the inlet side end portion is manufactured in a rectifying cylinder structure, and the rest is directly used as the ventilation duct 12. May be used as If manufactured in this way, it is possible to save the trouble of connecting the rectifying cylinder 13 and the ventilation duct 12 manufactured separately, and a special member for connection can be omitted, and the manufacturing cost and construction cost of the duct can be reduced.

次に、上記整流筒13の空調動作要領を説明する。送風機11は、整流筒13に空調された冷暖房空気を送風する。送風機11からの送風気流Aは、図4及び図5に示すように、円形の整流筒13に流入する。整流筒13の内面近くをダクト軸方向に流れる送風気流Aの外側領域気流が、螺旋状の突起物20aに沿って流れる際に渦巻く方向に整流されて進行し、そのまま通風ダクト12内に給送される。   Next, the air conditioning operation procedure of the flow straightening cylinder 13 will be described. The blower 11 blows air that is air-conditioned in the rectifying cylinder 13. The blown airflow A from the blower 11 flows into the circular flow straightening tube 13 as shown in FIGS. The airflow outside the blast airflow A flowing near the inner surface of the rectifying cylinder 13 in the axial direction of the airflow is rectified in the direction of vortex when flowing along the spiral projection 20a, and is fed into the ventilation duct 12 as it is. Is done.

このように、送風気流Aは、整流筒13内で渦巻き状に整流され、通風ダクト12内をダクトの軸方向に進行する。通風ダクト12を進行する渦巻き状の送風気流Bは、その外側領域気流が渦巻くことで、外側領域気流の動圧が中心部より高く、かつ、安定した動圧で流れるため、通風ダクト12内を低空気抵抗で円滑性よく進行する。その結果、通風ダクト12の上流から下流へとほぼ同程度の平均した動圧で流れ、複数の各吹出口14から均一的な風速・風量で吹き出される。このことは通風ダクト12の中心部の風速がゼロ近くなっても安定した吹出し風速が得られることでも明らかである。また、隣接する通風ダクト12の末端側をフレキシブルダクト12’で連通してループダクト構成にしていることで、末端付近での吹出し風速の低下が回避され、下流側でも吹出口14からの均一的な風速・風量が確保できる。   Thus, the blast airflow A is rectified in a spiral shape in the rectifying cylinder 13 and travels in the ventilation duct 12 in the axial direction of the duct. The spiral blast airflow B traveling through the ventilation duct 12 is swirled by the outer region airflow, so that the dynamic pressure of the outer region airflow is higher than the central portion and flows at a stable dynamic pressure. Proceeds smoothly with low air resistance. As a result, the air flows from the upstream side to the downstream side of the ventilation duct 12 with approximately the same average dynamic pressure, and is blown out from each of the plurality of outlets 14 at a uniform wind speed and volume. This is also clear from the fact that a stable blown wind speed can be obtained even when the wind speed at the center of the ventilation duct 12 approaches zero. In addition, since the end side of the adjacent ventilation duct 12 is communicated with the flexible duct 12 ′ to form a loop duct configuration, a decrease in the blowing air speed near the end is avoided, and the downstream side is evenly distributed from the outlet 14. It can secure a good wind speed and volume.

また、従来に比べて、上流での送風量を少なく抑えても、下流の吹出口からの空調空気の吹出し風速・風量がそれほど落ちず、上流の吹出口との差を小さくすることができるから、送風機の送風量を少なく抑えることができる。このため、送風機のエネルギー消費量を抑制してランニングコストを低減させることができる。   In addition, even if the amount of air blown upstream is kept small compared to the prior art, the blown air speed / air volume of the conditioned air from the downstream air outlet does not drop so much, and the difference from the upstream air outlet can be reduced. The amount of air blown from the blower can be reduced. For this reason, the energy consumption of a fan can be suppressed and a running cost can be reduced.

以上のように通風ダクト12に渦巻き状の送風気流Bを給送するための整流筒13の全長は、整流筒13の内径の1.5倍から2倍程度が実質的に有効である。即ち、整流筒13の全長を内径の1.5倍より小さく設定すると、十分な旋回力を与えることができない。また、整流筒13の全長を内径の2倍以上と大きくするほど、螺旋状突起物による接触抵抗が増加し、旋回力が減少する。   As described above, the total length of the rectifying cylinder 13 for feeding the spiral airflow B to the ventilation duct 12 is substantially effective about 1.5 to 2 times the inner diameter of the rectifying cylinder 13. That is, if the total length of the rectifying cylinder 13 is set to be smaller than 1.5 times the inner diameter, a sufficient turning force cannot be applied. Further, as the total length of the rectifying cylinder 13 is increased to twice or more of the inner diameter, the contact resistance due to the spiral protrusion increases and the turning force decreases.

図7は、通風ダクト12に、上記整流筒13を取り付けた効果を試験した試験の内容を示している。整流筒13には通風ダクト12の内周面に送風気流に渦巻き状の旋回力を与えるため、内周面に螺旋状の突起物20aを固定したものを用いた。通風ダクト12は、保温材としてグラスウールを用いた内径100mmの円形直管の全長約20mダクトである。通風ダクト12には、軸方向に等間隔(35cm)に直径30mmの円形の吹出口を52箇所×2穴で設けて実施した。   FIG. 7 shows the contents of a test for testing the effect of attaching the flow straightening cylinder 13 to the ventilation duct 12. In order to give the air flow to the inner peripheral surface of the ventilation duct 12 in the rectifying cylinder 13, a spiral projection 20a is fixed to the inner peripheral surface. The ventilation duct 12 is a duct having a total length of about 20 m, which is a circular straight pipe having an inner diameter of 100 mm using glass wool as a heat insulating material. The ventilation duct 12 was formed by providing circular outlets with a diameter of 30 mm at 52 locations × 2 holes at equal intervals (35 cm) in the axial direction.

試験では、整流筒13を取り付けた通風ダクト12Aと、整流筒13を取り付けないで直接送風機11に取り付けた通風ダクト12Bにおいて、同じ位置の吹出口14からの吹出し風速を比較した。また、一定風量の送風機を使用し、風量調整は行っていない。   In the test, in the ventilation duct 12A attached with the rectifying cylinder 13 and the ventilation duct 12B attached directly to the blower 11 without attaching the rectifying cylinder 13, the blowing wind speed from the outlet 14 at the same position was compared. In addition, a blower with a constant air volume is used and the air volume is not adjusted.

その結果、送風ダクト12の上流側のNo,2〜52までの吹出し風速の振れ幅は整流筒13が無い場合の0.7〜0.1m/sに対して、整流筒13を設置した場合は0.2〜0.1m/sと吹出し風速を安定させることができた。   As a result, when the rectifying cylinder 13 is installed, the fluctuation width of the blown air speed from No. 2 to 52 upstream of the air duct 12 is 0.7 to 0.1 m / s when the rectifying cylinder 13 is not provided. Was able to stabilize the blowing wind speed at 0.2 to 0.1 m / s.

また、整流筒13を設置した場合は、各吹出口14に特別な風速・風量調整手段を配備する必要がなく、各吹出口14の構造も簡単になり、設備コストや調整コストの低減ができると共に、送風に伴う圧力損失が少ないので、送風動力を低減することができる。   In addition, when the rectifying cylinder 13 is installed, it is not necessary to provide a special wind speed / air volume adjusting means at each air outlet 14, the structure of each air outlet 14 is simplified, and equipment costs and adjustment costs can be reduced. At the same time, since the pressure loss due to the air blowing is small, the air blowing power can be reduced.

このように、整流筒13を取り付けることにより、少ない送風量で、各吹出口14から略均一に送風することができる。温室栽培においては、個々の栽培作物4に対して概ね0.5m/s以下の微風で、かつ、ばらつきの少ない空調が効果的とされていることから、図1に示すように、植物を栽培する温室1に使用するのに好適である。   In this manner, by attaching the flow straightening cylinder 13, it is possible to blow air substantially uniformly from each of the air outlets 14 with a small amount of blown air. In greenhouse cultivation, since air conditioning with a slight wind of 0.5 m / s or less and less variation is effective for each cultivated crop 4, plants are cultivated as shown in FIG. It is suitable for use in the greenhouse 1 to be used.

以上、本発明の一実施形態に係る空調装置を説明したが、本発明に係る空調装置は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができるのは勿論である。   The air conditioner according to one embodiment of the present invention has been described above. However, the air conditioner according to the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. Of course, it can be added.

空調装置に使用した通風ダクトは、内面に整流手段を備えた整流筒を連接した状態で他の用途に転用できる。例えば、エンジンの吸気管や排気管に使用すれば、吸気管や排気管の管内を流れる気体の動圧損失が少なくなり、効率よく空気を吸排気することができて燃費が低減される。   The ventilation duct used for the air conditioner can be diverted to other applications in a state where a flow straightening tube having a flow straightening means is connected to the inner surface. For example, when used in an intake pipe or exhaust pipe of an engine, a loss of dynamic pressure of gas flowing through the intake pipe or exhaust pipe is reduced, so that air can be efficiently taken in and exhausted to reduce fuel consumption.

本発明の一実施形態に係る空調装置を示す側面図である。It is a side view which shows the air-conditioner which concerns on one Embodiment of this invention. 図1装置における通風ダクトの断面図である。It is sectional drawing of the ventilation duct in the apparatus of FIG. 図1装置における通風系統の平面図である。It is a top view of the ventilation system in the apparatus of FIG. 図1装置における通風ダクトの入口側整流筒の斜視図である。It is a perspective view of the inlet side rectification | straightening pipe | tube of the ventilation duct in the apparatus of FIG. 図1装置における通風ダクトの斜視図である。It is a perspective view of the ventilation duct in the apparatus of FIG. 図4の整流筒の断面を示す鳥瞰図である。It is a bird's-eye view which shows the cross section of the rectification | straightening cylinder of FIG. 本発明の一実施形態に係る空調装置の効果確認試験の内容を説明するための実験データ図である。It is an experimental data figure for demonstrating the content of the effect confirmation test of the air conditioner which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 温室
10 通風系統
11 送風機
12 通風ダクト
13 整流筒
14 吹出口
20 整流手段
20a 突起物
DESCRIPTION OF SYMBOLS 1 Greenhouse 10 Ventilation system 11 Blower 12 Ventilation duct 13 Rectification cylinder 14 Air outlet 20 Rectification means 20a Projection

Claims (7)

送風機と、この送風機からの送風気流をダクト軸方向に流す通風ダクトを有し、前記通風ダクトに軸方向に点在させた複数の吹出口から前記送風気流を空調対象に吹き出す空調装置において、
前記通風ダクトは入口側に、前記送風気流に渦巻き状の旋回力を付与して整流する整流手段を内面に有する整流筒を具備することを特徴とする空調装置。
In the air conditioner that has a blower and a ventilation duct that flows the blown airflow from the blower in the axial direction of the fan, and blows out the blown airflow to the air-conditioning target from a plurality of outlets that are scattered in the axial direction of the ventilation duct.
The air-conditioning apparatus according to claim 1, wherein the ventilation duct includes a rectifying cylinder having an inner surface of a rectification unit that rectifies the blast airflow by applying a spiral turning force to the blast airflow.
前記整流手段は、前記整流筒の内面に形成した突起物であることを特徴とする請求項1に記載の空調装置。   The air conditioner according to claim 1, wherein the rectifying means is a protrusion formed on an inner surface of the rectifying cylinder. 前記突起物は、前記整流筒内面の片開口端から他開口端に螺旋状に延在することを特徴とする請求項2に記載の空調装置。   The air conditioner according to claim 2, wherein the protrusion extends spirally from one open end to the other open end of the inner surface of the flow straightening cylinder. 前記整流筒が、軸方向の全長が内径の1.5倍〜2.0倍であることを特徴とする請求項1〜3のいずれかに記載の空調装置。   The air conditioner according to any one of claims 1 to 3, wherein the rectifying cylinder has an axial total length of 1.5 to 2.0 times an inner diameter. 前記送風機に連結された、それぞれが前記整流筒を有する複数の前記通風ダクトの末端側を互いに連通させたことを特徴とする請求項1〜4のいずれかに記載の空調装置。   5. The air conditioner according to claim 1, wherein terminal ends of the plurality of ventilation ducts, each connected to the blower, each having the rectifying cylinder, communicate with each other. ダクト軸方向に気体を流す通風ダクトであって、当該通風ダクトの入口側に、流入する前記気体に渦巻き状の旋回力を付与して整流する整流手段を内面に有する整流筒を一体に具備することを特徴とする通風ダクト。   A ventilation duct for flowing gas in the duct axial direction, and integrally provided with a rectification cylinder having rectification means on the inner surface for imparting a swirling force to the inflowing gas and rectifying on the inlet side of the ventilation duct. Ventilation duct characterized by that. 前記整流手段は螺旋状の突起物であることを特徴とする請求項6に記載の通風ダクト。   The ventilation duct according to claim 6, wherein the rectifying means is a spiral projection.
JP2006203461A 2006-07-26 2006-07-26 Air conditioner and ventilating duct Pending JP2008032261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203461A JP2008032261A (en) 2006-07-26 2006-07-26 Air conditioner and ventilating duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006203461A JP2008032261A (en) 2006-07-26 2006-07-26 Air conditioner and ventilating duct

Publications (1)

Publication Number Publication Date
JP2008032261A true JP2008032261A (en) 2008-02-14

Family

ID=39121886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203461A Pending JP2008032261A (en) 2006-07-26 2006-07-26 Air conditioner and ventilating duct

Country Status (1)

Country Link
JP (1) JP2008032261A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019483A (en) * 2008-07-10 2010-01-28 Kondo Kogyo Kk Air blowoff apparatus for air curtain
JP2013024513A (en) * 2011-07-25 2013-02-04 Hitachi Plant Technologies Ltd Air outlet duct and system provided with the same
JP2014199145A (en) * 2013-03-29 2014-10-23 日立造船株式会社 Pipe conduit cutoff device
WO2014184958A1 (en) * 2013-05-17 2014-11-20 豊和化成株式会社 Air discharge device
JP2019089385A (en) * 2017-11-13 2019-06-13 豊和化成株式会社 Air blowout device
CN112753563A (en) * 2019-11-04 2021-05-07 杨智杰 Supplementary pollination system
WO2022200148A1 (en) * 2021-03-24 2022-09-29 Richel Group Ventilation system for a greenhouse having an optimized flow straightener

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118632A (en) * 1991-10-28 1993-05-14 Nippon Sekkei Kk Air mixing device
JPH09166348A (en) * 1995-12-15 1997-06-24 Kajima Corp Duct unit and assembling method thereof at site
JP2000073877A (en) * 1998-08-26 2000-03-07 Nissan Motor Co Ltd Exhaust gas reflux device for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118632A (en) * 1991-10-28 1993-05-14 Nippon Sekkei Kk Air mixing device
JPH09166348A (en) * 1995-12-15 1997-06-24 Kajima Corp Duct unit and assembling method thereof at site
JP2000073877A (en) * 1998-08-26 2000-03-07 Nissan Motor Co Ltd Exhaust gas reflux device for engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019483A (en) * 2008-07-10 2010-01-28 Kondo Kogyo Kk Air blowoff apparatus for air curtain
JP2013024513A (en) * 2011-07-25 2013-02-04 Hitachi Plant Technologies Ltd Air outlet duct and system provided with the same
JP2014199145A (en) * 2013-03-29 2014-10-23 日立造船株式会社 Pipe conduit cutoff device
WO2014184958A1 (en) * 2013-05-17 2014-11-20 豊和化成株式会社 Air discharge device
US20160075309A1 (en) * 2013-05-17 2016-03-17 Howa Plastics Co., Ltd. Air blowing device
JPWO2014184958A1 (en) * 2013-05-17 2017-02-23 豊和化成株式会社 Air blowing device
JP2019089385A (en) * 2017-11-13 2019-06-13 豊和化成株式会社 Air blowout device
CN112753563A (en) * 2019-11-04 2021-05-07 杨智杰 Supplementary pollination system
WO2022200148A1 (en) * 2021-03-24 2022-09-29 Richel Group Ventilation system for a greenhouse having an optimized flow straightener
FR3121010A1 (en) * 2021-03-24 2022-09-30 Richel Group Ventilation system of a greenhouse with optimized flow rectifier

Similar Documents

Publication Publication Date Title
JP2008032261A (en) Air conditioner and ventilating duct
US7645188B1 (en) Air diffuser apparatus
US8052062B2 (en) Constant air volume / variable air temperature zone temperature and humidity control system
US11796214B2 (en) Apparatus for tensioning pliable airducts while supporting internal HVAC components
WO2017166935A1 (en) Indoor air conditioning unit
JP2012154611A (en) One-span air conditioning system
US20110180170A1 (en) Directional flow-controlled air duct
US20080079179A1 (en) Turbulence induced steam dispersion apparatus
CN100587346C (en) Air cooling and air dehumidifying module including capillary pad and method of use thereof
CN102538072B (en) Single-span air conditioning system
JPH11223378A (en) Air-outlet for air-conditioning equipment
JP7232468B2 (en) air conditioner
AU2015207691B2 (en) Induction supply air terminal unit with increased air induction ratio, method of providing increased air induction ratio
SE531995C2 (en) Plenum box
CN212320029U (en) Air deflector, air conditioner indoor unit and air conditioner
JP2017046615A (en) Air-conditioning system for plants
ITMI20090604A1 (en) AIR TREATMENT PLANT
JP5271620B2 (en) Humidification unit installation duct
JP2020173076A (en) Distribution chamber
CN209857214U (en) Humidification structure, air conditioning system who has it and air processing system
CN220624207U (en) Air conditioner
CN220624208U (en) Fin, heat exchanger and air conditioner
CN109737579A (en) A kind of easy even wind transformation device
JP6600030B2 (en) Pneumatic radiation unit
CN206055766U (en) A kind of wall-hanging air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101208