Nothing Special   »   [go: up one dir, main page]

JP2008025990A - Method and apparatus for detecting surface flaw of steel strip - Google Patents

Method and apparatus for detecting surface flaw of steel strip Download PDF

Info

Publication number
JP2008025990A
JP2008025990A JP2006195003A JP2006195003A JP2008025990A JP 2008025990 A JP2008025990 A JP 2008025990A JP 2006195003 A JP2006195003 A JP 2006195003A JP 2006195003 A JP2006195003 A JP 2006195003A JP 2008025990 A JP2008025990 A JP 2008025990A
Authority
JP
Japan
Prior art keywords
steel strip
line
line camera
scanning
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006195003A
Other languages
Japanese (ja)
Inventor
Satoshi Nouchi
聡 野内
Sukeyuki Yokoi
弐至 横井
Katsuaki Nagata
勝顕 永田
Ryuichi Yamashita
竜一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2006195003A priority Critical patent/JP2008025990A/en
Publication of JP2008025990A publication Critical patent/JP2008025990A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical detection method for precisely detecting the surface flaw of a steel strip in a steel strip continuous transferring line, and to provide an optical detector therefor. <P>SOLUTION: A light source (1) for irradiating the surface of the steel strip, and a line camera (2) for photographing the optical image of the steel strip are arranged so as to be inclined with respect to a steel strip transfer direction, and the line camera (2) is scanned along a scanning line Z (inclined at an angle θ with respect to the width direction of the steel strip) to take in an optical image. As the effect of this oblique scanning, an angle of inclination is formed with respect to a camera scanning direction and a flaw component in surface flaw detection operation setting the fine linear flaw or the like of the same component as that in the width direction of the steel strip, and the data of a normal part and the data of a flaw part are present in image data obtained by one scanning. Under the flaw detection operation of the actual operation accompanied by the variation of base noise (the signal caused by the surface roughness, gloss and other factors of the steel strip), the presence and size of the surface flaw of the steel strip are precisely judged. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続帯状体である鋼帯を所定方向に移送しながら、鋼帯の表面欠陥を光学的に検出する方法及び装置に係り、特に鋼帯の移送方向と直交する向き(鋼帯の幅方向)に発生した微細線状疵等の表面欠陥を精度よく検出し得るようにしたものである。   The present invention relates to a method and an apparatus for optically detecting a surface defect of a steel strip while transporting a steel strip which is a continuous strip-like body in a predetermined direction, and in particular, a direction orthogonal to the transport direction of the steel strip (of the steel strip). The surface defects such as fine linear wrinkles generated in the width direction) can be detected with high accuracy.

鋼帯を所定方向に送り出しながら、移送ライン内において鋼帯の表面欠陥を検出する技術として、鋼帯表面を照明しながらその光学画像をラインカメラで撮影し、得られた画像信号に一定の処理を施して表面疵の有無及びその形状等を判定する光学的手法が知られている。その一般的な検出態様を図6(正面図)及び図7(俯瞰図)に示す。鋼帯(S)は所定方向(矢符Y)に連続移送され、その上方に光源(1)及びラインカメラ(2)が配置されている。線X(鋼帯移送方向Yに直交する鋼帯の幅方向軸)は、鋼帯表面を撮像するラインカメラ(2)の走査方向を示している。この走査線Xは、光源(1)により鋼帯の全幅に亘って照射され、その反射光像を捉えるラインカメラ(2)は走査線Xの全幅を視野内におさめる位置に設置されている。ラインカメラ(2)で取り込まれる画像信号は、信号処理部(図示せず)で所定の処理を施され、表面欠陥部と正常部との画像信号の強弱の差に基づいて、欠陥の有無およびその等級が判定される。   As a technology to detect the surface defects of the steel strip in the transfer line while feeding the steel strip in a predetermined direction, the optical image is taken with a line camera while illuminating the steel strip surface, and the obtained image signal is processed to a certain degree An optical method for determining the presence or absence of surface defects and the shape thereof is known. The general detection mode is shown in FIG. 6 (front view) and FIG. 7 (overhead view). The steel strip (S) is continuously transferred in a predetermined direction (arrow Y), and a light source (1) and a line camera (2) are arranged above it. Line X (the width direction axis of the steel strip perpendicular to the steel strip transfer direction Y) indicates the scanning direction of the line camera (2) that images the steel strip surface. The scanning line X is irradiated over the entire width of the steel strip by the light source (1), and the line camera (2) for capturing the reflected light image is installed at a position where the entire width of the scanning line X is within the field of view. The image signal captured by the line camera (2) is subjected to predetermined processing by a signal processing unit (not shown), and based on the difference in strength of the image signal between the surface defect portion and the normal portion, The grade is determined.

上記表面欠陥の検出精度を改善するための工夫として、
光源からの照明光の進路上(又は被検査物とカメラとの間の光学画像の進路上)に光フィルタを設置し、所定の波長帯域の光を選択的に透過させて光学画像を取り込むことにより正常部分と欠陥部分との明度差を強調し検出を容易にする(特許文献1)、
複数の光源を異なる高さ位置に配置して入射角の異なる複数の表面照射を行うと共に、それぞれの反射光像を複数のラインカメラで個別に撮像することにより、色調変化疵や凹凸変化疵等種類の異なる表面欠陥の検出を容易にする(特許文献2)、
あるいはラインカメラに取り込まれる画像信号からベースノイズ(鋼帯の表面粗度や光沢の差異等によるランダムな信号)を排除して検出精度を高めるために、撮像された画像信号をデジタル変換し、平滑化して閾値を求め、閾値と元の画像信号との差の正値を2値化したうえ、2値化画像信号の面積率に基づいて欠陥の有無を判定する(特許文献3)、
等の欠陥検出技術が提案されている。
特開平8−136474号公報 特開平7−218451号公報 特開平5−180781号公報
As a device to improve the detection accuracy of the surface defects,
An optical filter is installed on the path of illumination light from the light source (or on the path of the optical image between the object to be inspected and the camera), and the optical image is captured by selectively transmitting light of a predetermined wavelength band. Enhances the brightness difference between the normal part and the defective part to facilitate detection (Patent Document 1).
Multiple light sources are placed at different heights to irradiate multiple surfaces with different angles of incidence, and each reflected light image is individually captured by multiple line cameras, resulting in color tone changes, unevenness changes, etc. Making it easy to detect different types of surface defects (Patent Document 2),
Or in order to eliminate base noise (random signals due to differences in surface roughness and gloss of steel strips) from the image signal captured by the line camera and improve detection accuracy, the captured image signal is converted to digital data and smoothed. To obtain a threshold value, binarize the positive value of the difference between the threshold value and the original image signal, and determine the presence or absence of a defect based on the area ratio of the binarized image signal (Patent Document 3),
Such defect detection techniques have been proposed.
JP-A-8-136474 Japanese Patent Laid-Open No. 7-218451 Japanese Patent Laid-Open No. 5-180781

鋼帯の表面欠陥には、比較的粗大なものから微細なもの、更には鋼帯の長手方向(鋼帯移送方向)に延在するものや鋼帯の幅方向(移送方向と略直交する向き)に延在するもの等、その形態は多岐にわたる。なかでも、鋼帯の板幅方向に延在する微細な線状疵(所謂「畳みじわ」と称される表面疵)は、鋼帯表面を撮像するラインカメラの走査方向と同じ成分であるために、その表面疵と正常部との区別に必要な画像信号の強度レベルの差異が明瞭でなく、従って表面疵の有無を判定するための適正な閾値を設定することが困難であり、検出精度を高めることは容易でない。
本発明は上記に対処するものであり、鋼帯の板幅方向に延在する微細な線状疵をはじめ、鋼帯表面の各種表面欠陥を、複雑な検出走査や装置構成を要することなく精度良く検出し得るようにした鋼帯表面欠陥の検出方法及び検出装置を提供するものである。
The surface defects of the steel strip include relatively coarse to fine ones, as well as those extending in the longitudinal direction of the steel strip (steel strip transport direction) and the width direction of the steel strip (direction substantially perpendicular to the transport direction). ) Extends to a wide variety of forms. Among them, fine linear wrinkles extending in the width direction of the steel strip (surface wrinkles called “folding wrinkles”) have the same components as the scanning direction of a line camera that images the steel strip surface. Therefore, the difference in the intensity level of the image signal necessary for distinguishing the surface defect from the normal part is not clear, and therefore it is difficult to set an appropriate threshold value for determining the presence or absence of the surface defect. It is not easy to increase accuracy.
The present invention copes with the above, and various surface defects on the surface of the steel strip, including fine linear wrinkles extending in the plate width direction of the steel strip, can be accurately detected without requiring complicated detection scanning and apparatus configuration. It is an object of the present invention to provide a steel strip surface defect detection method and detection apparatus which can be well detected.

本発明に係る鋼帯表面の欠陥検出方法(請求項1)は、
所定方向に走行している鋼帯の表面の全幅に照明光を投光し、照射された鋼帯表面の全幅の光学画像をラインカメラで撮像し、撮像された光学画像信号を処理して鋼帯の表面欠陥を検出する方法において、鋼帯の移送方向に対し傾斜する向きに鋼帯表面を照射すると共に、その傾斜方向と直交する向きに設置されたラインカメラを走査して鋼帯表面を撮像することを特徴としている。
The method for detecting defects on the steel strip surface according to the present invention (Claim 1)
Illumination light is projected over the entire width of the surface of the steel strip traveling in a predetermined direction, an optical image of the entire width of the irradiated steel strip surface is captured with a line camera, and the captured optical image signal is processed and the steel is processed. In the method of detecting the surface defect of the strip, the steel strip surface is irradiated in the direction inclined with respect to the steel strip transfer direction, and the surface of the steel strip is scanned by a line camera installed in the direction orthogonal to the inclination direction. It is characterized by imaging.

本発明に係る鋼帯表面の欠陥検出装置(請求項2)は、
所定方向に走行している鋼帯の表面の全幅に照明光を照射する光源、照射された鋼帯表面の全幅を視野内として光学画像を撮像するラインカメラ、該ラインカメラで取り込まれる画像信号を処理して表面欠陥を検出する信号処理部およびその信号処理結果を出力する出力部を備えた欠陥検出装置において、前記光源およびラインカメラを、鋼帯の移送方向に対して傾斜する向きに対向配置すると共に、その傾斜方向と直交する向きにラインカメラを設置し走査するように構成されている。
The steel strip surface defect detection device according to the present invention (Claim 2)
A light source that illuminates the entire width of the surface of the steel strip traveling in a predetermined direction, a line camera that captures an optical image with the entire width of the irradiated steel strip surface within the field of view, and an image signal captured by the line camera In a defect detection apparatus including a signal processing unit that detects surface defects by processing and an output unit that outputs the signal processing result, the light source and the line camera are arranged to face each other in a direction inclined with respect to a steel strip transfer direction. In addition, the line camera is installed in a direction orthogonal to the tilt direction and scanned.

本発明は、従来の検出技術(ラインカメラを鋼帯移送方向Yと直交する鋼帯幅方向Xに走査する)と異なって、鋼帯移送方向(Y)に対して傾斜配置させた光源で鋼帯表面を斜め照射(傾斜角θ)すると共に、鋼帯表面を撮像するラインカメラをその傾斜方向に対し直交する向き(鋼帯幅方向軸Xに対し傾斜角θをなす)に設置し走査することとしている。この斜め走査の効果として、鋼帯の幅方向と同じ成分の微細な線状疵等の表面欠陥の検出において、カメラの走査方向と欠陥成分とに傾斜角がつき、一走査で得られる画像情報のなかに正常部と欠陥部の情報が存在することになり、これによりベースノイズ(鋼帯の表面粗度,光沢,その他の要因による信号)の変動を伴なう実操業の欠陥検出条件のもとで、表面欠陥の有無および大きさ等を精度良く判定することが可能となる。   The present invention is different from the conventional detection technique (scanning the line camera in the steel strip width direction X orthogonal to the steel strip transport direction Y), and the light source is inclined with respect to the steel strip transport direction (Y). The belt surface is irradiated obliquely (inclination angle θ), and a line camera for imaging the steel strip surface is installed in a direction orthogonal to the inclination direction (inclination angle θ with respect to the steel strip width direction axis X) for scanning. I am going to do that. As an effect of this oblique scanning, in the detection of surface defects such as fine line wrinkles with the same component as the width direction of the steel strip, there is an inclination angle between the scanning direction of the camera and the defect component, and image information obtained by one scanning The information on the normal part and the defective part is present in this, and as a result, the defect detection conditions of the actual operation accompanied by fluctuations in the base noise (signal due to the surface roughness, gloss, and other factors of the steel strip) Originally, it is possible to accurately determine the presence and size of surface defects.

図1及び図2は、本発明による表面欠陥検出の実施の態様及び装置構成を模式的に示している(図1:正面図、図2:俯瞰図)。
本発明の欠陥検出装置は、鋼帯(S)の表面を照明する光源(1)、照射された鋼帯表面を撮像するラインカメラ(2)、ラインカメラ(2)で撮像された鋼帯表面の光学画像信号を処理し、表面欠陥の有無及び程度を判定する画像信号処理部(3)、およびその処理結果を出力する出力部(プリンタ、モニター等)(4)を備えた構成を有している。
図中、直線Xは、鋼帯幅方向軸線(鋼帯移送方向Yに直交する向き)を示し、直線Zは、ラインカメラ(2)による鋼帯表面の走査帯域と走査方向を示している。該走査線Zは、鋼帯幅方向Xに対し予め設定された角度θだけ傾斜している。
1 and 2 schematically show an embodiment and apparatus configuration of surface defect detection according to the present invention (FIG. 1: front view, FIG. 2: overhead view).
The defect detection apparatus of the present invention includes a light source (1) that illuminates the surface of a steel strip (S), a line camera (2) that images the irradiated steel strip surface, and a steel strip surface imaged by the line camera (2). Image signal processing unit (3) for processing the optical image signal of the image and determining the presence and degree of surface defects, and an output unit (printer, monitor, etc.) (4) for outputting the processing result. ing.
In the figure, the straight line X indicates the steel strip width direction axis (direction perpendicular to the steel strip transport direction Y), and the straight line Z indicates the scanning zone and scanning direction of the steel strip surface by the line camera (2). The scanning line Z is inclined with respect to the steel strip width direction X by a preset angle θ.

光源(1)は、走査線Zの全幅を一様に照明するように、鋼帯移送方向Yに対して角度θ(走査線Zの傾斜角θに対応)をもって偏位した位置に設置されている。光源(1)は、連続光を発光するハロゲンランプ等、または高速繰返し発光する高周波蛍光灯、高輝度蛍光灯等が使用される。光源(1)として、図5に示すように、鋼帯の走査線Z方向にのびる管状光源(1)を使用すれば、鋼帯の走査線Zの全幅に亘る照明をより均一なものとすることができる。   The light source (1) is installed at a position displaced with an angle θ (corresponding to the inclination angle θ of the scanning line Z) with respect to the steel strip transport direction Y so as to uniformly illuminate the entire width of the scanning line Z. Yes. As the light source (1), a halogen lamp that emits continuous light, a high-frequency fluorescent lamp that emits light repeatedly at high speed, a high-intensity fluorescent lamp, or the like is used. If the tubular light source (1) extending in the scanning line Z direction of the steel strip is used as the light source (1) as shown in FIG. 5, the illumination over the entire width of the scanning line Z of the steel strip is made more uniform. be able to.

ラインカメラ(2)は、鋼帯表面の走査線Zの傾斜に対応して角度θだけ鋼帯移送方向Yから偏位して光源(1)と向い合い、走査線Zの全幅を撮像する視野角が得られる位置に設置されている。ラインカメラ(2)は、電荷結合素子を撮像素子とする工業用テレビカメラ(CCDカメラ)が好ましく使用される。CCDカメラは、被検査物の表面の色彩濃淡・陰影の検出に適し、また小型・軽量でメンテナンス性等の点で有利である。   The line camera (2) is deviated from the steel strip transport direction Y by an angle θ corresponding to the inclination of the scanning line Z on the steel strip surface, and faces the light source (1) to capture the entire width of the scanning line Z. It is installed at a position where a corner can be obtained. As the line camera (2), an industrial television camera (CCD camera) having a charge coupled device as an imaging device is preferably used. The CCD camera is suitable for detecting color shading and shading on the surface of the object to be inspected, and is advantageous in terms of maintenance, etc. due to its small size and light weight.

図3及び図4は、本発明における光源(1)及びラインカメラ(2)の配置態様について他の例を示している。これは複数台のラインカメラ(2)(図では3台のカメラ2,2,2)を配置し、鋼帯表面の走査線Zの撮像視野を略3等分して、各ラインカメラ(2)(2)(2)による走査を行うようにしている。隣合うラインカメラ同士の撮像視野は適当なラップ代(走査線Z方向に例えば20-30mm)が与えられる。画像信号処理部(3)や出力部(4)とうの構成は前記図1のそれと同様である。
このように走査線Zを複数域に分けて複数のラインカメラ(2)(2)(2)で走査すれば、ラインカメラに取り込まれる画像信号の歪みが少なくなり、カメラ走査方向の画素分解能が向上し、表面欠陥の検出精度が高められる。
3 and 4 show other examples of the arrangement of the light source (1) and the line camera (2) in the present invention. This is done by arranging multiple line cameras (2) (three cameras 2 1 , 2 2 , 2 3 in the figure) and dividing the field of view of the scanning line Z on the steel strip surface into approximately three equal parts. Scanning by the cameras (2 1 ) (2 2 ) (2 3 ) is performed. The imaging field of view between adjacent line cameras is given an appropriate lapping margin (for example, 20-30 mm in the scanning line Z direction). The configuration of the image signal processing unit (3) and the output unit (4) is the same as that of FIG.
If the scanning line Z is divided into a plurality of areas and scanned by a plurality of line cameras (2 1 ) (2 2 ) (2 3 ) in this way, the distortion of the image signal taken into the line camera is reduced, and the camera scanning direction is reduced. Pixel resolution is improved and surface defect detection accuracy is increased.

斜め配置される上記ラインカメラ(2)の傾斜角θは、約5〜20゜の範囲が適当であり、具体的にはラインカメラ(2)の走査周波数やライン速度(鋼帯移送速度)等に応じて適宜設定される。なお、鋼帯表面に対する光源(1)の投光角(入射角)および光学画像を取り込むラインカメラ(2)の受光角(反射角)は例えば10〜20゜である。反射光の受光は、正反射受光(投光角=受光角)又は乱反射受光(投光角≠受光角)が適宜採択される。   The inclination angle θ of the line camera (2) disposed obliquely is suitably in the range of about 5 to 20 °. Specifically, the scanning frequency of the line camera (2), the line speed (steel strip transfer speed), etc. It is set appropriately according to The light projection angle (incident angle) of the light source (1) with respect to the steel strip surface and the light reception angle (reflection angle) of the line camera (2) for capturing an optical image are, for example, 10 to 20 °. As the light reception of the reflected light, regular reflection light reception (light projection angle = light reception angle) or irregular reflection light reception (light projection angle ≠ light reception angle) is appropriately adopted.

ラインカメラ(2)で撮像された鋼帯表面の光学画像は電気信号として画像信号処理部(3)に入力される。画像信号処理部(3)では、画像解析の所定の処理、例えばベースノイズ((鋼帯の表面粗度,光沢,その他の要因によりランダムに発生する信号)の影響を除去する平滑化(シェーディング補正)処理、幅方向の信号強度の偏りを修正する処理、予め設定された閾値による2値化処理等が施され、表面欠陥の有無およびその種類や等級(大きさ等)が判定される。これらの信号処理は公知の各種手法を適宜採用して行えばよい。判定結果は、出力部(4)において、プリンタによるプリントアウト、モニター画面の表示等がなされ作業者に報知される。   The optical image of the steel strip surface picked up by the line camera (2) is inputted as an electric signal to the image signal processing section (3). In the image signal processing unit (3), predetermined processing of image analysis, for example, smoothing (shading correction to remove the influence of base noise (a signal generated randomly due to the surface roughness, gloss, and other factors of the steel strip) ) Processing, processing for correcting the deviation of the signal strength in the width direction, binarization processing using a preset threshold value, and the like are performed, and the presence or absence and the type and grade (size, etc.) of the surface defect are determined. The signal processing may be performed by appropriately adopting various known methods, and the determination result is notified to the operator through a printout by a printer, display of a monitor screen, and the like in the output unit (4).

冷延鋼帯の移送ラインに、図1及び図2の表面欠陥検出装置を設置し、鋼帯の連続移送下に表面疵の検出を行った。
[1]検出条件
(1)鋼帯幅サイズ:1400mm
(2)鋼帯移送速度:132m/min
(3)走査線Zの傾斜角θ:15゜
(4)光 源 :ハロゲンランプ(電圧Max5V)
投光角:15゜
距 離:300mm
(5)ラインカメラ:CCDカメラ(画素:2048、走査周波数:20MHz)
受光角:15゜
距 離:1000mm
The surface defect detection apparatus of FIG.1 and FIG.2 was installed in the transfer line of the cold rolled steel strip, and the surface flaw was detected under the continuous transfer of the steel strip.
[1] Detection conditions
(1) Steel strip width size: 1400mm
(2) Steel strip transfer speed: 132m / min
(3) Inclination angle θ of scanning line Z: 15 °
(4) Light source: Halogen lamp (voltage max. 5V)
Emitting angle: 15 ° Distance: 300mm
(5) Line camera: CCD camera (pixel: 2048, scanning frequency: 20MHz)
Light reception angle: 15 ° Distance: 1000mm

[2]検出結果
上記表面疵検査による検出信号は明瞭であり、従来の検出法では困難な「畳みじわ」と称される鋼帯幅方向の線状疵を、大きさ約0.3mmの微細なものまで確実に検出することができた。
なお、表面欠陥の検出精度は、検出しようとする表面欠陥の大きさのほか、ラインカメラの画素数やライン速度(鋼帯の移送速度)により異なる。上記実施例では、ラインカメラの斜め走査の効果として、大きさ約0.3mmまでの微細な表面疵を精度よく検出しているが、更に微細な表面疵を対象とし、より高速度(ライン速度)での検出を行う場合は、例えば走査周波数の高いラインカメラを採用することにより、良好な検出精度を得ることができる。
[2] Detection result The detection signal from the surface wrinkle inspection is clear, and a wire wrinkle in the width direction of the steel strip called “Folding Wrinkle”, which is difficult with the conventional detection method, is about 0.3 mm in size. It was possible to detect even certain things reliably.
In addition, the detection accuracy of the surface defect differs depending on the size of the surface defect to be detected, the number of pixels of the line camera, and the line speed (steel strip transfer speed). In the above embodiment, as a result of the oblique scanning of the line camera, a fine surface flaw up to a size of about 0.3 mm is detected with high accuracy. However, for a finer surface flaw, higher speed (line speed) is targeted. In the case of performing detection with the above, good detection accuracy can be obtained by adopting, for example, a line camera having a high scanning frequency.

本発明によれば、鋼帯表面の検出困難な幅方向の微細線状疵をも精度良く検出することができ、鋼帯製造工程の適切な管理、製品鋼帯品質の維持等に大きく寄与するものである。またその欠陥検出は、特別の機器や煩瑣な処理操作を必要とせず、光源とラインカメラを傾斜配置するという簡素な構成により行うことができ、実機への適用も容易であり工業的に大きな価値を有するものである。   According to the present invention, it is possible to accurately detect fine line wrinkles in the width direction that are difficult to detect on the surface of the steel strip, and contribute greatly to appropriate management of the steel strip manufacturing process, maintenance of product steel strip quality, and the like. Is. Moreover, the defect detection can be performed with a simple configuration in which the light source and the line camera are arranged at an angle without requiring any special equipment or cumbersome processing operation. It is what has.

本発明の検出装置の配置構成を示す正面図である。It is a front view which shows the arrangement configuration of the detection apparatus of this invention. 図1の配置構成の俯瞰図である。FIG. 2 is an overhead view of the arrangement configuration of FIG. 1. 本発明の検出装置の他の配置構成を示す正面図である。It is a front view which shows the other arrangement structure of the detection apparatus of this invention. 図3の配置構成の俯瞰図である。FIG. 4 is an overhead view of the arrangement configuration of FIG. 3. 本発明の検出装置の他の配置構成を示す正面図である。It is a front view which shows the other arrangement structure of the detection apparatus of this invention. 従来の一般的な検出装置の配置構成を示す正面図である。It is a front view which shows the arrangement configuration of the conventional common detection apparatus. 図6の配置構成の俯瞰図である。FIG. 7 is an overhead view of the arrangement configuration of FIG. 6.

符号の説明Explanation of symbols

1:光源
2:ラインカメラ
3:画像信号処理部
4:出力部
S:鋼帯
Y:鋼帯移送方向
X:鋼帯幅方向を示す軸線
Z:走査線
1: Light source 2: Line camera 3: Image signal processing unit 4: Output unit S: Steel strip Y: Steel strip transport direction X: Axis Z indicating steel strip width direction Z: Scanning line

Claims (2)

所定方向に走行している鋼帯の表面の全幅に照明光を投光し、照射された鋼帯表面の全幅の光学画像をラインカメラで撮像し、撮像された光学画像信号を処理して鋼帯の表面欠陥を検出する方法において、鋼帯の移送方向に対し傾斜する向きに鋼帯表面を照射すると共に、その傾斜方向と直交する向きに設置されたラインカメラを走査して鋼帯表面を撮像することを特徴とする鋼帯表面欠陥の検出方法。   Illumination light is projected over the entire width of the surface of the steel strip traveling in a predetermined direction, an optical image of the entire width of the irradiated steel strip surface is captured with a line camera, and the captured optical image signal is processed and the steel is processed. In the method of detecting the surface defect of the strip, the steel strip surface is irradiated in the direction inclined with respect to the steel strip transfer direction, and the surface of the steel strip is scanned by a line camera installed in the direction orthogonal to the inclination direction. A method for detecting a surface defect of a steel strip, comprising imaging. 所定方向に走行している鋼帯の表面の全幅に照明光を照射する光源、照射された鋼帯表面の全幅を視野内として光学画像を撮像するラインカメラ、該ラインカメラで取り込まれる画像信号を処理して表面欠陥を検出する信号処理部およびその信号処理結果を出力する出力部を備えた欠陥検出装置において、前記光源およびラインカメラを、鋼帯の移送方向に対して傾斜する向きに対向配置すると共に、その傾斜方向と直交する向きにラインカメラを設置して走査するように構成されていることを特徴とする鋼帯表面欠陥の検出装置。   A light source that illuminates the entire width of the surface of the steel strip traveling in a predetermined direction, a line camera that captures an optical image with the entire width of the irradiated steel strip surface within the field of view, and an image signal captured by the line camera In a defect detection apparatus including a signal processing unit that detects surface defects by processing and an output unit that outputs the signal processing result, the light source and the line camera are arranged to face each other in a direction inclined with respect to a steel strip transfer direction. In addition, the steel strip surface defect detection apparatus is configured to scan by installing a line camera in a direction orthogonal to the inclination direction.
JP2006195003A 2006-07-18 2006-07-18 Method and apparatus for detecting surface flaw of steel strip Pending JP2008025990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195003A JP2008025990A (en) 2006-07-18 2006-07-18 Method and apparatus for detecting surface flaw of steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195003A JP2008025990A (en) 2006-07-18 2006-07-18 Method and apparatus for detecting surface flaw of steel strip

Publications (1)

Publication Number Publication Date
JP2008025990A true JP2008025990A (en) 2008-02-07

Family

ID=39116784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195003A Pending JP2008025990A (en) 2006-07-18 2006-07-18 Method and apparatus for detecting surface flaw of steel strip

Country Status (1)

Country Link
JP (1) JP2008025990A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168580A (en) * 2008-01-15 2009-07-30 Saki Corp:Kk Device for inspecting object to be inspected
JP2009204426A (en) * 2008-02-27 2009-09-10 Sumitomo Electric Ind Ltd Food testing system
JP2010230450A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Object surface inspection apparatus
JP2010249615A (en) * 2009-04-14 2010-11-04 Canon Inc Recording material surface detecting device, and image forming apparatus having the same
CN107202797A (en) * 2017-07-06 2017-09-26 天津电气科学研究院有限公司 Contactless Continuous Hot Dip Galvanizing Line strip steel weld joint detecting system and its method
CN109490331A (en) * 2017-09-11 2019-03-19 波音公司 High-velocity duct checking system
CN113390886A (en) * 2020-03-11 2021-09-14 上海宝信软件股份有限公司 Imaging device for detecting surface defects of grinded strip steel and using method thereof
CN115086522A (en) * 2022-06-10 2022-09-20 福州大学 Method for acquiring image of surface of bar-shaped metal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180781A (en) * 1991-12-27 1993-07-23 Kawasaki Steel Corp Method and apparatus for surface defect inspection
JPH07218451A (en) * 1994-01-31 1995-08-18 Nippon Steel Corp Device for optically inspecting steel plate for surface flaw
JPH08136474A (en) * 1994-11-04 1996-05-31 Toshiba Eng Co Ltd Defect detecting apparatus
JP2001255275A (en) * 2000-03-13 2001-09-21 Kawasaki Steel Corp Surface defect inspection method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180781A (en) * 1991-12-27 1993-07-23 Kawasaki Steel Corp Method and apparatus for surface defect inspection
JPH07218451A (en) * 1994-01-31 1995-08-18 Nippon Steel Corp Device for optically inspecting steel plate for surface flaw
JPH08136474A (en) * 1994-11-04 1996-05-31 Toshiba Eng Co Ltd Defect detecting apparatus
JP2001255275A (en) * 2000-03-13 2001-09-21 Kawasaki Steel Corp Surface defect inspection method and device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168580A (en) * 2008-01-15 2009-07-30 Saki Corp:Kk Device for inspecting object to be inspected
JP2009204426A (en) * 2008-02-27 2009-09-10 Sumitomo Electric Ind Ltd Food testing system
JP2010230450A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Object surface inspection apparatus
JP2010249615A (en) * 2009-04-14 2010-11-04 Canon Inc Recording material surface detecting device, and image forming apparatus having the same
CN107202797A (en) * 2017-07-06 2017-09-26 天津电气科学研究院有限公司 Contactless Continuous Hot Dip Galvanizing Line strip steel weld joint detecting system and its method
CN109490331A (en) * 2017-09-11 2019-03-19 波音公司 High-velocity duct checking system
CN109490331B (en) * 2017-09-11 2023-09-15 波音公司 High-speed pipeline inspection system
CN113390886A (en) * 2020-03-11 2021-09-14 上海宝信软件股份有限公司 Imaging device for detecting surface defects of grinded strip steel and using method thereof
CN115086522A (en) * 2022-06-10 2022-09-20 福州大学 Method for acquiring image of surface of bar-shaped metal
CN115086522B (en) * 2022-06-10 2023-05-26 福州大学 Bar-shaped metal surface image acquisition method

Similar Documents

Publication Publication Date Title
JP5659540B2 (en) Steel plate surface defect inspection method and apparatus
JP5031691B2 (en) Surface flaw inspection device
JP2008025990A (en) Method and apparatus for detecting surface flaw of steel strip
JP3754003B2 (en) Defect inspection apparatus and method
JP7262260B2 (en) Defect inspection device and defect inspection method
JPWO2017169242A1 (en) Defect inspection apparatus and defect inspection method
JP2001255275A (en) Surface defect inspection method and device
JP2008275424A (en) Surface inspection device
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP6822494B2 (en) Defect inspection equipment and defect inspection method for steel sheets
CN110402386B (en) Cylindrical body surface inspection device and cylindrical body surface inspection method
JP2012037425A (en) Method for inspecting polycrystal silicon wafer and device thereof
JP2010078485A (en) Method for inspecting printed matter
WO2023047866A1 (en) Sheet-like material unevenness measuring device, and sheet-like material unevenness measuring method
JP4015436B2 (en) Gold plating defect inspection system
JP5201014B2 (en) Scale remaining inspection equipment for pickled steel sheet
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP7136064B2 (en) Apparatus for inspecting surface of object to be inspected and method for inspecting surface of object to be inspected
JP2010122155A (en) Method for detecting defect in plate-like body and defect detector
JP2007003332A (en) Method and detector for detecting defect on planar body side face
JP4792314B2 (en) Substrate inspection apparatus and substrate inspection method
JP2006189294A (en) Inspection method and device of irregular defect
TW201915481A (en) Damage inspection method of optical display panel
JP2012141322A (en) Surface defect inspection device
JP2004132800A (en) Surface defect inspection device for band like body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110610

A02 Decision of refusal

Effective date: 20111212

Free format text: JAPANESE INTERMEDIATE CODE: A02