Nothing Special   »   [go: up one dir, main page]

JP2008024980A - High-strength galvannealed steel sheet and producing method therefor - Google Patents

High-strength galvannealed steel sheet and producing method therefor Download PDF

Info

Publication number
JP2008024980A
JP2008024980A JP2006197875A JP2006197875A JP2008024980A JP 2008024980 A JP2008024980 A JP 2008024980A JP 2006197875 A JP2006197875 A JP 2006197875A JP 2006197875 A JP2006197875 A JP 2006197875A JP 2008024980 A JP2008024980 A JP 2008024980A
Authority
JP
Japan
Prior art keywords
steel sheet
strength
plating
sio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006197875A
Other languages
Japanese (ja)
Other versions
JP4932363B2 (en
Inventor
Masashi Azuma
昌史 東
Kazuhiko Honda
和彦 本田
Tetsuo Nishiyama
鉄生 西山
Naoki Yoshinaga
直樹 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006197875A priority Critical patent/JP4932363B2/en
Publication of JP2008024980A publication Critical patent/JP2008024980A/en
Application granted granted Critical
Publication of JP4932363B2 publication Critical patent/JP4932363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength galvannealed steel sheet capable of stably obtaining higher fatigue durability than heretofore. <P>SOLUTION: In the high-strength galvannealed steel sheet having galvannealed layer on the high-strength steel sheet, the high-strength steel sheet has ≥5% the volume ratio of the retained austenite and ≥10% the total of volume ratios of bainite and martensite, and in the interface between the galvannealed layer and the high-strength steel sheet, the thickness of a range, in which Fe concentration with GDS (glow discharge spectrometry) becomes 20-90%, is ≥1.2μm. Thereby, the high strength, high workability and high fatigue-durability can simultaneously be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度合金化溶融亜鉛めっき鋼板及びその製造方法に関する。特に本発明は、従来と比較して高い疲労耐久性を安定して得ることができる高強度合金化溶融亜鉛めっき鋼板及びその製造方法に関する。   The present invention relates to a high-strength galvannealed steel sheet and a method for producing the same. In particular, the present invention relates to a high-strength alloyed hot-dip galvanized steel sheet capable of stably obtaining high fatigue durability as compared with the prior art and a method for producing the same.

耐食性の良好なめっき鋼板として合金化溶融亜鉛めっき鋼板がある。この合金化溶融亜鉛めっき鋼板は、通常、鋼板を脱脂後、無酸化炉または直化炉にて予熱し、表面の清浄化および材質確保のために還元炉にて還元焼鈍を行い、溶融亜鉛浴に浸漬し、溶融亜鉛の付着量を制御した後、合金化を行うことによって製造される。この鋼板は、耐食性およびめっき密着性等に優れることから、自動車、建材用途等を中心として広く使用されている。   An alloyed hot-dip galvanized steel sheet is available as a plated steel sheet having good corrosion resistance. This alloyed hot-dip galvanized steel sheet is usually degreased and then preheated in a non-oxidizing furnace or straightening furnace, and subjected to reduction annealing in a reducing furnace to clean the surface and secure the material, It is manufactured by alloying after being immersed in and controlling the adhesion amount of molten zinc. Since this steel plate is excellent in corrosion resistance, plating adhesion, and the like, it is widely used mainly for automobiles, building materials and the like.

特に近年、自動車分野においては衝突時に乗員を保護するような機能の確保、及び燃費向上を目的とした軽量化を両立させるために、めっき鋼板の高強度化が必要とされてきている。しかしながら、高強度化は一般的に加工性の劣化を招くことから、加工性を維持しつつ高強度化を図る方法の確立が望まれてきた。   Particularly in recent years, in the automobile field, it has been necessary to increase the strength of plated steel sheets in order to achieve both a function for protecting passengers in the event of a collision and weight reduction for the purpose of improving fuel consumption. However, since increasing strength generally causes deterioration of workability, establishment of a method for increasing strength while maintaining workability has been desired.

加工性を維持しつつ高強度化を図る方法としては、例えば特許文献1及び2に記載の方法がある。この方法は、鋼中に残留オーステナイトを分散させ、加工時に残留オーステナイトが応力及び加工誘起を起こすことを利用することで、高強度化及び高い加工性を同時に得るものである。特許文献1及び2に記載の鋼板は、C、Si、及びMnを基本的な合金元素としており、二相域で焼鈍後、300〜450℃程度の温度域で熱処理を行うことによりベイナイト変態を利用し、室温でも残留オーステナイトを得ている。しかしながら、300〜450℃での熱処理中にセメンタイト等の炭化物が出やすく、オーステナイトが分解してしまうことから、SiあるいはAlを添加する必要がある。   As methods for increasing the strength while maintaining the workability, there are methods described in Patent Documents 1 and 2, for example. In this method, residual austenite is dispersed in steel, and the use of the fact that residual austenite induces stress and processing induction during processing provides high strength and high workability at the same time. The steel sheets described in Patent Documents 1 and 2 use C, Si, and Mn as basic alloy elements, and after annealing in a two-phase region, heat treatment is performed in a temperature range of about 300 to 450 ° C., thereby performing bainite transformation. Utilized and obtained retained austenite even at room temperature. However, carbide such as cementite is likely to be produced during heat treatment at 300 to 450 ° C., and austenite is decomposed. Therefore, Si or Al needs to be added.

しかしながら、Si及びAlはFeより酸化しやすいため、上記した鋼板では表面にSiやAlを含有する酸化物が形成されやすい。これら酸化物は、溶融Znとの濡れ性が悪い。このため、Si又はAlを添加した鋼板では、不めっき部分が形成されやすいという問題がある。また上記した酸化物はZnとFeの合金化反応を遅延させる。このため、Si又はAlを添加した鋼板では、軟鋼板と比較して高温長時間の合金化処理が必要となり、生産性の低下を招くばかりではなく、高温長時間の処理によりオーステナイトがパーライトや炭化物を含むベイナイト組織へ分解してしまい、優れた加工性が得られない。   However, since Si and Al are easier to oxidize than Fe, the above steel sheet tends to form an oxide containing Si or Al on the surface. These oxides have poor wettability with molten Zn. For this reason, in the steel plate which added Si or Al, there exists a problem that a non-plating part is easy to be formed. Further, the above oxides delay the alloying reaction between Zn and Fe. For this reason, steel sheets to which Si or Al is added require an alloying treatment at a high temperature and a long time as compared with a mild steel plate, which not only leads to a decrease in productivity, but austenite is converted to pearlite or carbide by the high temperature and long time treatment. It decomposes into a bainite structure containing, and excellent workability cannot be obtained.

これらの課題を解決する方法として、特許文献3に記載の方法がある。この方法は溶融Zn中に適切な濃度のAlを添加することにより、鋼板と溶融Znの濡れ性を改善し、かつ合金化反応の促進を図るものである。   As a method for solving these problems, there is a method described in Patent Document 3. This method is intended to improve the wettability between the steel sheet and the molten Zn and to promote the alloying reaction by adding an appropriate concentration of Al to the molten Zn.

しかし、上記したいずれの技術においても、疲労耐久性を改善することは考慮されていない。疲労耐久性とは、引張最大強度に対して十分低い応力が繰り返し加えられた場合の変形特性であり、自動車、建機、建材など繰り返し応力を受ける構造部材にとっては必要不可欠な特性である。繰返し応力を受けると、応力の大きさが降伏応力未満であっても鋼板内部では微細な変形が生じ、これが積み重なることにより、鋼板は破断に至ってしまう。この破断は、表面に亀裂が形成され、この亀裂が内部に伝播することにより生じる。
このことから疲労耐久性を向上させるためには、疲労亀裂亀裂の形成抑制、あるいは、亀裂伝播を抑制することが重要となる。
However, none of the techniques described above considers improving fatigue durability. Fatigue durability is a deformation characteristic when a sufficiently low stress is repeatedly applied to the maximum tensile strength, and is an indispensable characteristic for structural members such as automobiles, construction machines, and building materials that receive repeated stress. When subjected to repeated stress, even if the magnitude of the stress is less than the yield stress, fine deformation occurs inside the steel sheet, and the steel sheet will break due to the accumulation of this. This rupture is caused by a crack formed on the surface and propagating inside.
Therefore, in order to improve the fatigue durability, it is important to suppress the formation of fatigue cracks or to suppress the propagation of cracks.

組織強化は、軟質なフェライトを硬質なマルテンサイトや残留オーステナイトなどの硬質組織で強化することから、軟質なフェライト中を伝播する疲労亀裂の伝播を、硬質組織にて抑制することから、一定の硬質相分率までは疲労耐久性の向上にも寄与する。しかし疲労亀裂は軟質組織を伝播することから、硬質組織分率増加のみでは、疲労限は増加し難いという問題を有する。この結果、硬質組織の分率が一定以上になると、鋼板強度は増加するものの、疲労限は増加しなくなることから、高強度化と疲労耐久性の両立を図ることは困難であった。(例えば非特許文献1参照)。
一方、自動車や建機に使用される薄鋼板は、板厚が薄いことから、疲労亀裂が形成されると、すぐに板厚を貫通し、破断に至ってしまう場合がある。このことから、疲労亀裂形成の抑制が特に重要である。
また、自動車部材への適用を考えた場合、微小な亀裂であっても、車体の衝突時に、破壊の起点となる懸念があり、所定の衝突安全性が得られない懸念があることから、衝突特性向上のためにも重要と考えられる。
このため、表面の亀裂形成を抑制することが、疲労耐久性を向上させる上で特に重要になる。
Strengthening the structure of soft ferrite with a hard structure such as hard martensite and retained austenite, which suppresses the propagation of fatigue cracks propagating in soft ferrite with a hard structure. The phase fraction contributes to the improvement of fatigue durability. However, since fatigue cracks propagate through soft tissue, there is a problem that the fatigue limit is difficult to increase only by increasing the hard tissue fraction. As a result, when the hard structure fraction exceeds a certain level, the strength of the steel sheet increases, but the fatigue limit does not increase. Therefore, it is difficult to achieve both high strength and fatigue durability. (For example, refer nonpatent literature 1).
On the other hand, thin steel plates used in automobiles and construction machinery have a thin plate thickness, and therefore, when a fatigue crack is formed, the plate thickness may be penetrated immediately, leading to breakage. For this reason, suppression of fatigue crack formation is particularly important.
In addition, when considering application to automobile parts, there is a concern that even if it is a minute crack, it may become a starting point of destruction at the time of vehicle collision, and there is a concern that the predetermined collision safety cannot be obtained. It is considered important for improving the characteristics.
For this reason, suppressing the formation of cracks on the surface is particularly important in improving fatigue durability.

疲労耐久性を向上させる一般的な技術としては、析出硬化を利用する方法がある(例えば特許文献4参照)。しかし、析出硬化を利用するためには、鋼板を析出物(例えばNbやTiの炭窒化物)が溶融する程度の高温に加熱した後冷却する必要があるため、熱延鋼板では適用できるが冷延鋼板へは適用し難い。   As a general technique for improving fatigue durability, there is a method using precipitation hardening (see, for example, Patent Document 4). However, in order to use precipitation hardening, it is necessary to cool the steel sheet after it has been heated to such a high temperature that precipitates (for example, Nb and Ti carbonitrides) melt. It is difficult to apply to rolled steel sheets.

また、特許文献5には、硬質第二相中に軟質相(フェライト)を孤立分散させ、かつ硬質相の厚さを軟質相の粒径により定められる値より大きくすることにより、疲労特性を向上させる技術が記載されている。しかし、この技術は表面に形成された亀裂が内部に伝播することを抑制するものであり、表面の亀裂形成を抑制するものではない。このため、本技術では十分に鋼板の疲労耐久性を向上させることは難しい。   In Patent Document 5, fatigue characteristics are improved by isolating and dispersing the soft phase (ferrite) in the hard second phase and making the thickness of the hard phase larger than the value determined by the particle size of the soft phase. The technology to be described is described. However, this technique suppresses the propagation of cracks formed on the surface, and does not suppress the formation of cracks on the surface. For this reason, it is difficult to sufficiently improve the fatigue durability of the steel sheet with this technology.

また、特許文献6には、めっき層/鋼板の界面における粒界酸化物深さを0.5μm以下にすることにより、疲労耐久性を向上させる技術が記載されている。疲労耐久性が向上するのは、粒界酸化物深さを小さくすることによりめっき層/鋼板界面への応力集中が抑制されるためと考えられる。
しかし、この技術によっても表面の亀裂形成を十分に抑制することは難しかった。
Patent Document 6 describes a technique for improving fatigue durability by setting the grain boundary oxide depth at the plating layer / steel plate interface to 0.5 μm or less. The fatigue durability is improved because the stress concentration at the plating layer / steel plate interface is suppressed by reducing the grain boundary oxide depth.
However, even with this technique, it has been difficult to sufficiently suppress the formation of cracks on the surface.

横幕俊典、外3名、日本金属学会第40期学術講演会前刷、1991年、p16Yokomaku Toshinori, 3 others, The 40th Annual Conference of the Japan Institute of Metals, 1991, p16 特開平05−70886号公報Japanese Patent Laid-Open No. 05-70886 特開平05−195143号公報JP 05-195143 A 特開2003−105516号公報JP 2003-105516 A 特開2006−57120号公報JP 2006-57120 A 特開2005−194586号公報JP 2005-194586 A 特開2003−171752号公報JP 2003-171752 A

上記したように、鋼板の疲労耐久特性を向上させるためには、表面の亀裂形成を抑制する必要があるが、従来の技術では表面の亀裂形成を安定して抑制することは難しかった。本発明はこのような事情を考慮してなされたものであり、その目的は、表面の亀裂形成を安定して抑制することにより、高い疲労耐久性を安定して得ることができる高強度合金化溶融亜鉛めっき鋼板及びその製造方法を提供することにある。   As described above, in order to improve the fatigue endurance characteristics of the steel sheet, it is necessary to suppress the formation of cracks on the surface. However, it has been difficult to stably suppress the formation of cracks on the surface with conventional techniques. The present invention has been made in consideration of such circumstances, and its purpose is to make a high-strength alloy that can stably obtain high fatigue durability by stably suppressing the formation of cracks on the surface. An object of the present invention is to provide a hot-dip galvanized steel sheet and a method for producing the same.

上記課題を解決することを目的とした本発明の要旨は以下の通りである。
(1)質量%で、
C:0.07〜0.25%、
Si:0.8〜2.0%、
Mn:1.1〜2.5%、
Al:0.001〜2.0%、
N:0.01%以下、
S:0.01%以下、
O:0.01%以下
を含有し、残部がFe及び可避的不純物からなる高強度鋼板の上に、Feを含有する合金化溶融亜鉛めっき層を有する高強度合金化溶融亜鉛鋼板であって、
前記高強度鋼板は、残留オーステナイトの体積率が5%以上であり、かつベイナイトとマルテンサイトの体積率が合計で10%以上であり、
前記合金化溶融亜鉛めっき層及び前記高強度鋼板の界面において、GDSによるFe濃度が20〜90%となる領域の厚みが1.2μm以上であることを特徴とする高強度合金化溶融亜鉛めっき鋼板。
The gist of the present invention aimed at solving the above problems is as follows.
(1) In mass%,
C: 0.07 to 0.25%,
Si: 0.8-2.0%,
Mn: 1.1 to 2.5%
Al: 0.001 to 2.0%,
N: 0.01% or less,
S: 0.01% or less,
O: A high-strength galvanized steel sheet having an alloyed hot-dip galvanized layer containing Fe on a high-strength steel sheet containing 0.01% or less and the balance being Fe and unavoidable impurities. ,
The high-strength steel sheet has a volume ratio of retained austenite of 5% or more, and a total volume ratio of bainite and martensite of 10% or more,
A high-strength galvannealed steel sheet having a thickness of 1.2 μm or more in a region where the Fe concentration by GDS is 20 to 90% at the interface between the galvannealed layer and the high-strength steel sheet .

(2)前記合金化溶融亜鉛めっき層または鋼板のいずれか一方、または、両方にFeSiO3、Fe2SiO4、MnSiO3、及びMn2SiO4から選ばれた1種以上のSi酸化物が存在し、かつ前記めっき層または鋼板のいずれか一方、または、両方にSiO2が存在し、前記Si酸化物の濃度分布のピークが、前記SiO2の濃度分布のピークより前記合金化溶融亜鉛めっき鋼板の表面側に位置することを特徴とする(1)に記載の高強度合金化溶融亜鉛めっき鋼板。 (2) One or more Si oxides selected from FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , and Mn 2 SiO 4 are present in one or both of the galvannealed layer and the steel sheet. And either one or both of the plated layer and the steel plate, SiO 2 is present, and the peak of the concentration distribution of the Si oxide is higher than the peak of the concentration distribution of the SiO 2. The high-strength galvannealed steel sheet according to (1), which is located on the surface side of the steel sheet.

(3)前記高強度鋼板は、さらに質量%で
Ni:0.05〜2.0%、
Cu:0.05〜2.0%、
Cr:0.05〜2.0%、
Mo:0.05〜2.0%、
B:0.0001〜0.002%、
Ti:0.001〜0.1%、
Nb:0.001〜0.1%、
V:0.001〜0.1%、
REM:0.0001〜0.1%、
Ca:0.0001〜0.1%
の一種以上を含有することを特徴とする上記(1)又は(2)に記載の高強度合金化溶融亜鉛めっき鋼板。
(3) The high-strength steel plate is Ni: 0.05 to 2.0% in mass%.
Cu: 0.05-2.0%,
Cr: 0.05-2.0%,
Mo: 0.05-2.0%,
B: 0.0001 to 0.002%,
Ti: 0.001 to 0.1%,
Nb: 0.001 to 0.1%,
V: 0.001 to 0.1%
REM: 0.0001 to 0.1%,
Ca: 0.0001 to 0.1%
The high-strength galvannealed steel sheet according to (1) or (2) above, which contains at least one of the following.

(4)前記合金化溶融亜鉛めっき層は、更にAlを含有することを特徴とする上記(1)〜(3)のいずれかに記載の高強度合金化溶融亜鉛めっき鋼板。
(5)平行部が30mm、板厚2mm、曲率半径が100mmであるJIS Z 2275に規定の1号試験片に対してJIS Z 2275に準拠した疲労試験を行うことにより求められる2×10回時間強さを引張最大強度で除した値である疲労限度比が、0.55以上であることを特徴とする上記(1)〜(4)のいずれかに記載の高強度合金化溶融亜鉛めっき鋼板。
(6)引張最大強度(Ts)と伸び(EI)の積が21000(MPa・%)以上であることを特徴とする上記(1)〜(5)のいずれかに記載の高強度合金化溶融亜鉛めっき鋼板。
(4) The high-strength galvannealed steel sheet according to any one of (1) to (3), wherein the galvannealed layer further contains Al.
(5) 2 × 10 6 times obtained by performing a fatigue test in accordance with JIS Z 2275 on the first test piece defined in JIS Z 2275 having a parallel part of 30 mm, a plate thickness of 2 mm, and a radius of curvature of 100 mm. The high-strength galvannealed high-galvanized coating according to any one of (1) to (4) above, wherein a fatigue limit ratio, which is a value obtained by dividing time strength by maximum tensile strength, is 0.55 or more steel sheet.
(6) The high-strength alloying melt according to any one of (1) to (5) above, wherein the product of maximum tensile strength (Ts) and elongation (EI) is 21000 (MPa ·%) or more. Galvanized steel sheet.

(7)質量%で、
C:0.07〜0.25%、
Si:0.8〜2.0%、
Mn:1.1〜2.5%、
Al:0.001〜2.0%、
N:0.001〜0.1%
S:0.0001〜0.1%、
O:0.0001〜0.1%
を含有し、残部がFe及び可避的不純物からなる高強度鋼板を還元帯に通すことにより還元し、その後めっき浴に浸漬して引き上げ、その後合金化処理を行うことにより、連続的に溶融亜鉛めっきを施す高強度合金化溶融亜鉛めっき鋼板の製造方法であって、
前記還元帯の雰囲気として、H2を1〜60体積%含有し、残部がN2、H2O、O2、CO2、COの1種又は2種以上並びに不可避的不純物からなり、その雰囲気中の酸素分圧の対数logPO2
−0.000034T2+0.105T−0.2〔Si%〕2+2.1〔Si%〕−98.8≦logPO2≦−0.000038T2+0.107T−90.4…(1)
923≦T≦1173 ・・・(2)
T:鋼板の最高到達温度(K)、〔Si%〕:鋼板中のSi含有量(mass%)
に制御した雰囲気で還元を行い、
前記高強度鋼板を前記めっき浴に浸漬させる際に、前記めっき浴内の溶融亜鉛を、前記高強度鋼板の板幅方向に流動させることを特徴とする高強度合金化溶融亜鉛めっき鋼板の製造方法。
(7) By mass%
C: 0.07 to 0.25%,
Si: 0.8-2.0%,
Mn: 1.1 to 2.5%
Al: 0.001 to 2.0%,
N: 0.001 to 0.1%
S: 0.0001 to 0.1%,
O: 0.0001 to 0.1%
Is reduced by passing a high-strength steel plate containing Fe and unavoidable impurities through a reduction zone, and then dipped in a plating bath to be pulled up, and then subjected to alloying treatment to continuously melt zinc. A method for producing a high-strength galvannealed steel sheet to be plated,
As the atmosphere of the reduction zone, 1 to 60% by volume of H 2 is contained, and the balance consists of one or more of N 2 , H 2 O, O 2 , CO 2 , CO and inevitable impurities, and the atmosphere The logarithmic log PO 2 of the partial pressure of oxygen is −0.000034T 2 + 0.105T−0.2 [Si%] 2 +2.1 [Si%] − 98.8 ≦ log PO 2 ≦ −0.000038 T 2 +0.107 T -90.4 ... (1)
923 ≦ T ≦ 1173 (2)
T: Maximum attained temperature (K) of steel sheet, [Si%]: Si content in steel sheet (mass%)
Reduction in a controlled atmosphere,
A method for producing a high-strength galvannealed steel sheet characterized by causing molten zinc in the plating bath to flow in the plate width direction of the high-strength steel sheet when the high-strength steel sheet is immersed in the plating bath. .

(8)前記めっき液の流動速度を0.5〜2.5m/秒にすることを特徴とする上記(7)に記載の高強度合金化溶融亜鉛めっき鋼板の製造方法。
(9)前記合金化処理を480℃以下の温度で行うことを特徴とする上記(7)又は(8)に記載の高強度合金化溶融亜鉛めっき鋼板の製造方法。
(10)前記高強度鋼板は、
鋳造スラブを加熱し、前記加熱された鋳造スラブをAr3変態点以上で熱間圧延した後、630℃以下の温度域において巻き取り、その後、酸洗後に圧下率40〜70%で冷間圧延することにより形成され、
前記高強度鋼板を還元する際に、
前記還元帯において750℃以上900℃以下で焼鈍処理し、その後650℃まで0.1〜200℃/秒で冷却し、その後650℃〜500℃の間の平均冷却速度が3〜200℃/秒となるように、(前記めっき液の温度−40)〜(前記めっき液の温度+50)℃まで冷却することを特徴とする上記(7)〜(9)のいずれかに記載の高強度合金化溶融亜鉛めっき鋼板の製造方法。
(8) The method for producing a high-strength galvannealed steel sheet according to (7) above, wherein the flow rate of the plating solution is 0.5 to 2.5 m / sec.
(9) The method for producing a high-strength galvannealed steel sheet according to (7) or (8), wherein the alloying treatment is performed at a temperature of 480 ° C. or lower.
(10) The high-strength steel plate is
The cast slab is heated, and the heated cast slab is hot-rolled at an Ar 3 transformation point or higher, and then wound in a temperature range of 630 ° C. or lower, and then cold-rolled at a reduction rate of 40 to 70% after pickling. Formed by
When reducing the high-strength steel plate,
In the reduction zone, annealing is performed at 750 ° C. or more and 900 ° C. or less, and then cooled to 650 ° C. at 0.1 to 200 ° C./second, and then the average cooling rate between 650 ° C. and 500 ° C. is 3 to 200 ° C./second. It is cooled to (temperature of the plating solution −40) to (temperature of the plating solution +50) ° C. so that the high-strength alloy is formed according to any one of the above (7) to (9) Manufacturing method of hot dip galvanized steel sheet.

本発明によれば、高強度合金化溶融亜鉛めっき鋼板において、表面の亀裂形成を安定して抑制することにより、高い疲労耐久性を安定して得ることができる。また、高強度及び高加工性も同時に得ることができる。   According to the present invention, high fatigue durability can be stably obtained by stably suppressing surface crack formation in a high-strength galvannealed steel sheet. Further, high strength and high workability can be obtained at the same time.

発明者らは、高強度合金化溶融亜鉛めっき鋼板において疲労耐久性を向上させることを目的として鋭意検討を行った。その結果、フェライトからなる軟質相、並びに残留オーステナイト、マルテンサイト、及びベイナイトからなる硬質相の双方を含む鋼板においては、めっき層/鋼板の界面部分に形成される合金層の厚みを厚くすることにより、表面の亀裂形成を安定して抑制でき、その結果、鋼板の高強度及び高加工性を維持しつつ疲労耐久性を向上できることを見出した。ここで言う合金層とは、Fe濃度が20〜90%の領域を意味する。
この理由は、合金層(ビッカース硬度がHV300〜330程度)は鋼板の軟質相(ビッカース硬度がHV150〜200程度)と比較して高硬度であるため、合金層が存在することにより表面の亀裂形成が抑制されること、及び、一般に鋼板表面は凹凸が形成されているが、合金層の厚みをこの凹凸以上にすることにより亀裂形成を抑制できるためと考えられる。特に、軟質なフェライトと硬質なベイナイト組織、残留オーステナイト及びマルテンサイト組織(ビッカース硬度がHV300〜500程度)の硬度差は大きく、繰り返し変形を受けると両組織の界面に変形が集中し、疲労亀裂の形成の起点となる。しかし、鋼板表面に軟質層より硬質な合金層を付与することで、繰り返し変形時の軟質層の変形を抑制することが可能である。この結果、軟質組織と硬質組織の界面への応力集中を緩和することが可能となり、疲労耐久性が向上するものと考えられる。
The inventors have intensively studied for the purpose of improving fatigue durability in a high-strength galvannealed steel sheet. As a result, in a steel sheet that includes both a soft phase composed of ferrite and a hard phase composed of retained austenite, martensite, and bainite, by increasing the thickness of the alloy layer formed at the interface portion of the plated layer / steel sheet It has been found that the formation of cracks on the surface can be stably suppressed, and as a result, the fatigue durability can be improved while maintaining the high strength and high workability of the steel sheet. The alloy layer here means a region where the Fe concentration is 20 to 90%.
The reason for this is that the alloy layer (Vickers hardness is about HV300 to 330) is harder than the soft phase of the steel sheet (Vickers hardness is about HV150 to 200). It is considered that the formation of cracks can be suppressed by making the thickness of the alloy layer equal to or greater than the unevenness. In particular, the difference in hardness between soft ferrite and hard bainite structure, retained austenite and martensite structure (Vickers hardness of about HV 300 to 500) is large. The starting point of formation. However, it is possible to suppress deformation of the soft layer during repeated deformation by providing an alloy layer harder than the soft layer on the steel plate surface. As a result, the stress concentration at the interface between the soft tissue and the hard tissue can be relaxed, and the fatigue durability is considered to be improved.

具体的には、めっき層/鋼板の界面において、GDSによるFe濃度が20〜90%となる領域の厚みが1.2μm以上にすると、後述する成分系の高強度合金化溶融亜鉛めっき鋼板において、疲労耐久性を向上させることができる。上限は特に定めることなく本発明の効果であるめっき性や優れた疲労耐久性は発揮されるが、厚みを10μm以上とすることは経済上好ましくないことからこれが実質的な上限である。   Specifically, when the thickness of the region where the Fe concentration by GDS is 20 to 90% is 1.2 μm or more at the plating layer / steel plate interface, in the high-strength galvannealed steel plate of the component system described later, Fatigue durability can be improved. The upper limit is not particularly defined, and the plating properties and excellent fatigue durability which are the effects of the present invention are exhibited. However, since it is not economically preferable to set the thickness to 10 μm or more, this is a substantial upper limit.

この効果は、硬質相の体積率が15%以上の高強度鋼板において、特に顕著になる。これは、硬質相の体積率が高いほど鋼板は高強度になる一方、疲労特性が劣化するためである。ここで言う硬質相とは、ベイナイト組織、マルテンサイト組織、パーライト組織のことである。ただし、本鋼では、セメンタイト等の炭化物形成を抑制のため、SiやAlを添加しており、ベイナイト組織中にセメンタイトが含まれない、あるいは、含まれたとしても極少量の場合があるが、これもベイナイト組織として分類した。   This effect is particularly remarkable in a high-strength steel sheet having a hard phase volume ratio of 15% or more. This is because the higher the volume fraction of the hard phase, the higher the strength of the steel sheet, while the fatigue characteristics deteriorate. The hard phase referred to here is a bainite structure, a martensite structure, or a pearlite structure. However, in this steel, Si and Al are added to suppress the formation of carbides such as cementite, and cementite is not included in the bainite structure, or there may be a very small amount even if included. This was also classified as a bainite structure.

なお、硬質相は、例えば残留オーステナイトの体積率が5%以上であり、かつベイナイトとマルテンサイトの体積率が合計で10%以上とする。残留オーステナイトの体積率が多いほど強度と延性のバランスが良く、加工性に優れる。ただし、本発明は、めっき性、疲労耐久性及び加工性に優れた鋼板として、残留体積率5%以上としたが、加工性の向上を考慮しないのであれば、残留オーステナイトを含まないフェライト及びマルテンサイト鋼、フェライト及びベイナイト鋼へも、本法である合金層厚み制御による疲労耐久性向上は適用可能である。   In the hard phase, for example, the volume ratio of retained austenite is 5% or more, and the volume ratio of bainite and martensite is 10% or more in total. The greater the volume fraction of retained austenite, the better the balance between strength and ductility and the better the workability. However, in the present invention, the residual volume ratio is 5% or more as a steel plate excellent in plating property, fatigue durability and workability. However, if improvement in workability is not taken into consideration, ferrite and martensite containing no retained austenite are considered. The fatigue durability improvement by controlling the alloy layer thickness, which is the present method, can also be applied to site steel, ferrite and bainite steel.

なお、残留オーステナイトの体積率は、めっき層/鋼板の合金化温度が高いほど、残留オーステナイトの分解が促進されるため、少なくなる。合金化温度が高くなって残留オーステナイトの分解が進むと、疲労耐久性、強度及び延性が低下する。このため、本発明に係る鋼板の製造方法において、合金化温度は480℃以下であるのが好ましい。   The volume ratio of retained austenite decreases because the decomposition of retained austenite is promoted as the alloying temperature of the plating layer / steel plate increases. As the alloying temperature increases and the decomposition of retained austenite proceeds, fatigue durability, strength, and ductility decrease. For this reason, in the manufacturing method of the steel plate which concerns on this invention, it is preferable that alloying temperature is 480 degrees C or less.

また本発明者らは、めっき層形成前に行う高強度鋼板の焼鈍処理において、還元帯の酸素ポテンシャルを、焼鈍時の最高到達温度及び鋼板中のSi濃度によって定められる所定の範囲内に収めることにより、上記した合金層の厚みを厚くできること、また、めっき浴中の溶融Znに鋼板の板幅方向の流動を与えつつめっきを行うことにより、上記した合金層の厚みを厚くできることを見出した。   In addition, in the annealing treatment of the high-strength steel plate performed before the formation of the plating layer, the present inventors keep the oxygen potential of the reduction zone within a predetermined range determined by the highest temperature reached during annealing and the Si concentration in the steel plate. Thus, it has been found that the thickness of the above-described alloy layer can be increased, and that the thickness of the above-described alloy layer can be increased by performing plating while applying a flow in the plate width direction of the steel sheet to the molten Zn in the plating bath.

具体的には、還元帯の雰囲気として、H2を1〜60体積%含有し、残部N2、H2O、O2、CO2、COの1種又は2種以上並びに不可避的不純物からなり、その雰囲気中の酸素分圧の対数logPO2を下記(1)式に制御し、かつ鋼板の最高到達温度T(K)を下記式(2)に制御する。なお、本発明においては、対数は全て常用対数で示す。
−0.000034T2+0.105T−0.2〔Si%〕2+2.1〔Si%〕−98.8≦logPO2≦−0.000038T2+0.107T−90.4…(1)
923≦T≦1173 ・・・(2)
〔Si%〕:鋼板中のSi含有量(mass%)
Specifically, as the atmosphere of the reducing zone, and H 2 contains 1 to 60 vol%, the remainder N 2, H 2 O, made O 2, CO 2, CO 1, two or more and unavoidable impurities The logarithm log PO 2 of the oxygen partial pressure in the atmosphere is controlled by the following equation (1), and the maximum temperature T (K) of the steel sheet is controlled by the following equation (2). In the present invention, all logarithms are shown as common logarithms.
−0.000034T 2 + 0.105T−0.2 [Si%] 2 +2.1 [Si%] − 98.8 ≦ log PO 2 ≦ −0.000038 T 2 + 0.107T-90.4 (1)
923 ≦ T ≦ 1173 (2)
[Si%]: Si content in the steel sheet (mass%)

酸素ポテンシャルの制御によって合金層の厚みを厚くできるのは、以下の理由による。すなわち鋼板中には、FeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4から選ばれた1種以上のSi酸化物と、SiO2が存在する。logPO2が−0.000034T2+0.105T−0.2〔Si%〕2+2.1〔Si%〕−98.8未満では、鋼板内に含まれるSiが鋼板表面へと拡散し、鋼板表面にSiO2を形成する。SiO2は、溶融亜鉛との濡れ性が悪いことから不めっきの原因となる。このことから鋼板表面へのSiO2の形成は好ましくない。 The reason why the thickness of the alloy layer can be increased by controlling the oxygen potential is as follows. That is, one or more Si oxides selected from FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 and Mn 2 SiO 4 and SiO 2 are present in the steel sheet. When logPO 2 is less than −0.000034T 2 + 0.105T−0.2 [Si%] 2 +2.1 [Si%] − 98.8, Si contained in the steel sheet diffuses to the steel sheet surface, and the steel sheet surface SiO 2 is formed on the substrate. Since SiO 2 has poor wettability with molten zinc, it causes non-plating. For this reason, formation of SiO 2 on the steel sheet surface is not preferable.

一方、logPO2が−0.000034T2+0.105T−0.2〔Si%〕2+2.1〔Si%〕−98.8以上の場合は、SiやMnといったFeに比較し酸化し易い元素が鋼板表層に拡散することなく、鋼板内部で酸化物を形成する。特に、雰囲気を上記範囲に制御することで、SiO2の濃度分布のピークをSi酸化物の濃度分布のピークの内側に位置させることが可能となる。この結果、溶融亜鉛との濡れ性が特に悪いSiO2の鋼板表面への形成を抑制することが可能となる。この結果、めっき性が改善され、かつZnとFeが相互に拡散しやすくなって合金層が厚くなる。また、合金化を阻害するSi及びMnが酸化物として固定されるため、合金化が促進され、合金層が厚くなる。 On the other hand, when logPO 2 is −0.000034T 2 + 0.105T−0.2 [Si%] 2 +2.1 [Si%] − 98.8 or more, elements such as Si and Mn are more easily oxidized than Fe. Forms an oxide inside the steel sheet without diffusing into the surface layer of the steel sheet. In particular, by controlling the atmosphere within the above range, the SiO 2 concentration distribution peak can be positioned inside the Si oxide concentration distribution peak. As a result, it becomes possible to suppress the formation of SiO 2 on the steel sheet surface, which has particularly poor wettability with molten zinc. As a result, the plating property is improved, Zn and Fe are easily diffused to each other, and the alloy layer becomes thick. Moreover, since Si and Mn which inhibit alloying are fixed as oxides, alloying is promoted and the alloy layer becomes thick.

また、変形時には、鋼板内部に形成させたSi酸化物やSiO2の周囲にも応力が集中し、この結果、表面への応力集中が緩和されて亀裂の発生が抑制可能である。特に、還元帯の雰囲気を上記範囲内に制御することで、SiO2をより鋼板内部に形成させることが可能である。このことから、SiO2の濃度ピークをSi酸化物の濃度ピークの内側にすることで、鋼板表面への応力集中が緩和でき、疲労耐久性向上の観点からはより効果的である。
ただし、当然のことながら、Si酸化物やSiO2が混在する領域が存在するが、SiO2の濃度分布のピークをSi酸化物の濃度分布のピークの内側に位置させることで、本発明の効果である優れためっき性と疲労耐久性の確保が可能となる。
また、条件によっては、SiO2の分率が非常に小さくなる場合があるが、本発明の条件の効果である優れためっき性や疲労耐久性は確保される。
Further, at the time of deformation, stress concentrates also around the Si oxide or SiO 2 formed inside the steel plate, and as a result, the stress concentration on the surface is relaxed and the generation of cracks can be suppressed. In particular, by controlling the atmosphere of the reduction zone within the above range, it is possible to form SiO 2 more inside the steel plate. Therefore, by setting the SiO 2 concentration peak inside the Si oxide concentration peak, stress concentration on the steel sheet surface can be alleviated, which is more effective from the viewpoint of improving fatigue durability.
However, as a matter of course, there is a region where Si oxide and SiO 2 are mixed, but the effect of the present invention can be obtained by positioning the peak of the concentration distribution of SiO 2 inside the peak of the concentration distribution of Si oxide. It is possible to ensure excellent plating properties and fatigue durability.
Further, depending on the conditions, the SiO 2 fraction may be very small, but excellent plating properties and fatigue durability, which are the effects of the conditions of the present invention, are ensured.

また、logPO2を−0.000038T2+0.107T−90.4以下に限定する理由は、還元帯において鉄の酸化物を還元するためである。logPO2が−0.000038T2+0.107T−90.4を超えると鉄の酸化領域にはいるため、鋼板表面に鉄の酸化膜が生成し、ブルーイングとなる。 Also, the reason for limiting the LogPO 2 below -0.000038T 2 + 0.107T-90.4 is to reduce oxides of iron in the reduction zone. If logPO 2 exceeds −0.000038T 2 + 0.107T-90.4, it enters the iron oxidation region, so that an iron oxide film is generated on the surface of the steel sheet, resulting in bluing.

なお、還元帯の酸素ポテンシャルは、PH2O/PH2で管理される場合が多いが、上記したように本発明では酸素ポテンシャルを直接管理する。酸素ポテンシャルを管理するのは、以下の理由による。 The oxygen potential in the reduction zone is often managed by PH 2 O / PH 2 , but as described above, the oxygen potential is directly managed in the present invention. The oxygen potential is managed for the following reasons.

FeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4は、SiO2よりも酸素ポテンシャルが高い領域で安定であるため、鋼板表面または表面側にFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4から選ばれた1種以上のSi酸化物の濃度ピークが存在し、鋼板内面側にSiO2の濃度ピークが存在する状態とするためには、還元帯の酸素ポテンシャルすなわち鋼板表面の酸素ポテンシャルをSiO2が単独で内部酸化する値より大きくする必要がある。 Since FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , and Mn 2 SiO 4 are stable in a region where the oxygen potential is higher than that of SiO 2 , FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn In order to obtain a state in which a concentration peak of one or more Si oxides selected from 2 SiO 4 exists and a concentration peak of SiO 2 exists on the inner surface side of the steel sheet, the oxygen potential in the reduction zone, that is, the oxygen on the surface of the steel sheet It is necessary to make the potential larger than the value at which SiO 2 alone is internally oxidized.

詳細には、鋼中の酸素ポテンシャルは鋼板表面から内部に向かって減少するため、鋼板表面または表面側にFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4から選ばれた1種以上のSi酸化物が生成するように鋼板表面の酸素ポテンシャルを制御すると、鋼板表面または表面側にFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4から選ばれた1種以上のSi酸化物が生成し、酸素ポテンシャルが減少した鋼板内面側にSiO2が生成する。 Specifically, since the oxygen potential in the steel decreases from the steel sheet surface toward the inside, at least one selected from FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , and Mn 2 SiO 4 is formed on the steel sheet surface or surface side. When the oxygen potential on the steel sheet surface is controlled so that Si oxide is generated, one or more Si oxides selected from FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn 2 SiO 4 are formed on the steel sheet surface or surface side. SiO 2 is generated on the inner surface side of the steel plate that has been generated and the oxygen potential has decreased.

一方、雰囲気中のガスがH2、H2O、O2、残部N2の場合、下記平衡反応が起こると考えられ、PH2O/PH2はPO2の1/2乗と平衡定数1/Kに比例する。
O=H+1/2O:K=P(H)・P(O)1/2/P(HO)
ただし、平衡定数Kは温度に依存する変数であるため、温度が変化した場合、PH2O/PH2とPO2は別々に変化する。即ち、ある温度域でSiの内部酸化領域の酸素ポテンシャルにあたる水分圧と水素分圧の比の領域であっても、別の温度域では鉄が酸化する領域の酸素ポテンシャルに対応したり、Siの外部酸化領域の酸素ポテンシャルに対応したりするためである。
On the other hand, when the gas in the atmosphere is H 2 , H 2 O, O 2 , and the balance N 2 , it is considered that the following equilibrium reaction occurs, and PH 2 O / PH 2 is a power of 1/2 of PO 2 and an equilibrium constant of 1 proportional to / K 1.
H 2 O = H 2 + 1 / 2O 2 : K 1 = P (H 2 ) · P (O 2 ) 1/2 / P (H 2 O)
However, since the equilibrium constant K 1 is a variable depending on temperature, when the temperature changes, PH 2 O / PH 2 and PO 2 change separately. That is, even in a region where the ratio of moisture pressure and hydrogen partial pressure, which corresponds to the oxygen potential of the internal oxidation region of Si at a certain temperature range, corresponds to the oxygen potential of the region where iron is oxidized at another temperature range, This is to cope with the oxygen potential of the external oxidation region.

従って、PH2O/PH2を管理しても本発明で規定した酸化物を生成させることができず、本発明で規定した酸化物を所望の条件で生成させるためには、雰囲気中のPO2を直接管理する必要がある。 Therefore, even if PH 2 O / PH 2 is controlled, the oxide defined in the present invention cannot be generated. In order to generate the oxide defined in the present invention under desired conditions, the PO in the atmosphere It is necessary to manage 2 directly.

また、H2を1〜60体積%に限定する理由は、1%未満では鋼板表面に生成した酸化膜を十分還元できず、めっき濡れ性が確保できないためであり、60%を超えると、還元作用の向上が見られず、コストが増加するためである。 The reason why H 2 is limited to 1 to 60% by volume is that if it is less than 1%, the oxide film formed on the surface of the steel sheet cannot be sufficiently reduced, and plating wettability cannot be ensured. This is because the improvement of the action is not seen and the cost increases.

また、Tを923K以上に限定する理由は、Tが923K未満ではSiが外部酸化する酸素ポテンシャルが小さく、このため工業的に操業できる範囲の酸素ポテンシャルでは鉄の酸化域となるため、鋼板表面にSiO2が生成し塗装後耐食性を劣化させることがないためである。一方、Tを1173K以下に限定する理由は、1173Kを超える温度で焼鈍するのは多大のエネルギーを要して不経済であるためである。鋼板の機械特性を得る目的であれば、後に記すように最高到達板温は1153K以下で十分である。 Further, the reason for limiting T to 923K or more is that when T is less than 923K, the oxygen potential of Si being externally oxidized is small, and therefore the oxygen potential in the range where it can be industrially operated becomes an iron oxidation region. This is because SiO 2 is not generated and the corrosion resistance after coating is not deteriorated. On the other hand, the reason for limiting T to 1173K or less is that annealing at a temperature exceeding 1173K requires a lot of energy and is uneconomical. For the purpose of obtaining the mechanical properties of the steel sheet, it is sufficient that the maximum reached plate temperature is 1153 K or less, as will be described later.

また、炉内の雰囲気温度は高いほど鋼板の板温を上げ易くなるため有利であるが、雰囲気温度が高すぎると炉内の耐火物の寿命が短くなり、コストがかかるため1273K以下が望ましい。   Further, the higher the atmospheric temperature in the furnace, the easier it is to raise the plate temperature of the steel sheet. However, if the atmospheric temperature is too high, the life of the refractory in the furnace is shortened and the cost is increased.

本発明において、PO2はH2O、O2、CO2、COの1種または2種以上を導入することにより操作する。前述した平衡反応式において、温度が決まれば平衡定数が決定し、その平衡定数に基づいて酸素分圧、即ち酸素ポテンシャルが決定する。雰囲気温度773Kから1273Kにおいては、気体の反応は短時間で平衡状態に達するため、PO2は炉内のPH2、PH2O、PCO2、PCOと雰囲気温度が決まると決定する。 In the present invention, PO 2 is operated by introducing one or more of H 2 O, O 2 , CO 2 and CO. In the above-described equilibrium reaction formula, when the temperature is determined, the equilibrium constant is determined, and the oxygen partial pressure, that is, the oxygen potential is determined based on the equilibrium constant. At atmospheric temperatures from 773 K to 1273 K, the gas reaction reaches an equilibrium state in a short time, so that PO 2 is determined to determine the atmospheric temperature of PH 2 , PH 2 O, PCO 2 and PCO in the furnace.

2とCOは意識的に導入する必要はないが、本焼鈍温度でH2を1体積%以上含有する炉内にH2O、CO2を導入した場合、その一部とHとの平衡反応により、O2、COが生成する。H2O、CO2は必要な量導入できればよく、その導入方法は特に限定しないが、例えば、COとH2を混合した気体を燃焼させ、発生したH2O、CO2を導入する方法や、CH4、C26、C38等の炭化水素の気体や、LNG等の炭化水素の混合物を燃焼させ、発生したH2O、CO2を導入する方法、ガソリンや軽油、重油等、液体の炭化水素の混合物を燃焼させ、発生したH2O、CO2を導入する方法、CH3OH、C25OH等のアルコール類やその混合物、各種の有機溶剤を燃焼させ、発生したH2O、CO2を導入する方法等が挙げられる。 O 2 and CO do not need to be consciously introduced. However, when H 2 O and CO 2 are introduced into a furnace containing 1% by volume or more of H 2 at the main annealing temperature, a part of them and H 2 O 2 and CO are produced by the equilibrium reaction. The introduction method of H 2 O and CO 2 is not particularly limited as long as a necessary amount can be introduced. For example, a method in which a gas in which CO and H 2 are mixed is burned and the generated H 2 O and CO 2 are introduced. , CH 4 , C 2 H 6 , C 3 H 8 and other hydrocarbon gases, and a mixture of hydrocarbons such as LNG, and the generated H 2 O and CO 2 are introduced, gasoline, light oil, heavy oil Such as burning a mixture of liquid hydrocarbons and introducing the generated H 2 O, CO 2 , burning alcohols such as CH 3 OH, C 2 H 5 OH and mixtures thereof, various organic solvents, Examples include a method of introducing the generated H 2 O and CO 2 .

COのみ燃焼させ、発生したCO2を導入する方法も考えられるが、本焼鈍温度、雰囲気の炉内にCO2を導入した場合、その一部がH2により還元され、COとH2Oが生成するため、H2O、CO2を導入した場合と本質的に差はない。 CO only burned, but also conceivable to introduce CO 2 generated, the annealing temperature, if CO 2 was introduced into the furnace atmosphere, part is reduced by H 2, CO and H 2 O is Therefore, there is essentially no difference from the case where H 2 O and CO 2 are introduced.

また、燃焼により発生したH2O、CO2を導入する方法以外にも、COとH2を混合した気体、CH4、C26、C38等の炭化水素の気体や、LNG等の炭化水素の混合物、ガソリンや軽油、重油等、液体の炭化水素の混合物、CH3OH、C25OH等のアルコール類やその混合物、各種の有機溶剤等を酸素と同時に焼鈍炉内に導入し、炉内で燃焼させてH2O、CO2を発生させる方法も使用できる。 In addition to the method of introducing H 2 O and CO 2 generated by combustion, a gas in which CO and H 2 are mixed, a hydrocarbon gas such as CH 4 , C 2 H 6 , and C 3 H 8 , LNG A mixture of hydrocarbons such as gasoline, light oil, heavy oil, etc., a mixture of liquid hydrocarbons, alcohols such as CH 3 OH and C 2 H 5 OH and mixtures thereof, various organic solvents, etc. in an annealing furnace simultaneously with oxygen It is also possible to use a method of introducing H 2 O and CO 2 by introducing into the furnace and burning in a furnace.

こうした方法は、水蒸気を飽和させたN2や露点を上げたN2を利用して水蒸気を供給する方法に比べ、簡便で制御性が優れる。また、配管内で結露したりする心配もないため、配管の断熱を行う手間なども省くことができる。 Such method utilizes N 2 raising the N 2 and dew point saturated with water vapor compared to the method of supplying steam, simple and the control is excellent. In addition, since there is no fear of condensation in the pipe, it is possible to save the trouble of heat insulation of the pipe.

本発明において、請求項に規定したPO2と温度における還元時間は特に規定しないが、望ましくは10秒以上30分以下である。還元炉内においてPO2を大きくすると、昇温過程において、logPO2が−0.000038T+0.107T−90.4を超える領域を通過した後、−0.000038T+0.107T−90.4以下の領域で還元されるため、最初に生成した鉄の酸化膜を還元し、目的とした鋼板表面または表面側にFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4から選ばれた1種以上のSi酸化物の濃度ピークが存在し、鋼板内面側にSiO2の濃度ピークが存在する鋼板を得るためには、10秒以上保持することが望ましい。ただし、30分を超える保持は、経済上好ましくない。
ただし、上記条件が満たされるのであれば、炉内雰囲気の全部を−0.000034T2+0.105T−0.2〔Si%〕2+2.1〔Si%〕−98.8≦logPO2の範囲とする必要はない。上記雰囲気とする目的は、SiO2やSi酸化物を鋼板内部に形成させることにある。形成したSiO2やSi酸化物は、還元帯の雰囲気では、還元され難いことから、SiやMn等のFeより酸化し易い元素を、一旦鋼板内部でSiO2やSi酸化物としてしまえば、鋼板表層にSiO2やSi酸化物を形成することがなくなる。このことから、炉内雰囲気の全部を上記範囲に制御する必要はない。同様に、鋼板表面に一旦SiO2やSi酸化物ができると還元し難いことから、加熱時の炉内雰囲気は上記範囲内とすることが重要である。
In the present invention, the reduction time at the PO 2 and temperature specified in the claims is not particularly specified, but is preferably 10 seconds to 30 minutes. Increasing the PO 2 in the reducing furnace, the Atsushi Nobori process, after the LogPO 2 has passed the region exceeding -0.000038T 2 + 0.107T-90.4, -0.000038T 2 + 0.107T-90.4 1) selected from FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn 2 SiO 4 on the target steel plate surface or surface side because the iron oxide film formed first is reduced because it is reduced in the following regions. In order to obtain a steel sheet in which a concentration peak of Si oxide of a seed or more exists and a concentration peak of SiO 2 exists on the inner surface side of the steel sheet, it is desirable to hold for 10 seconds or more. However, holding for more than 30 minutes is not economically preferable.
However, if the above conditions are satisfied, the whole furnace atmosphere is in the range of −0.000034T 2 + 0.105T−0.2 [Si%] 2 +2.1 [Si%] − 98.8 ≦ log PO 2 . It is not necessary to. The purpose of the atmosphere is to form SiO 2 or Si oxide inside the steel sheet. Since the formed SiO 2 and Si oxides are difficult to be reduced in the reduction zone atmosphere, once an element that is more easily oxidized than Fe, such as Si or Mn, is converted into SiO 2 or Si oxide inside the steel plate, the steel plate No SiO 2 or Si oxide is formed on the surface layer. For this reason, it is not necessary to control the entire furnace atmosphere within the above range. Similarly, once SiO 2 or Si oxide is formed on the surface of the steel sheet, it is difficult to reduce, so it is important that the furnace atmosphere during heating is within the above range.

また、還元雰囲気のPO2と温度が本発明範囲内であれば、通常の無酸化炉方式の溶融めっき法やオールラジアントチューブ方式の焼鈍炉を使用した溶融めっき法を使用できる。特開昭55−122865号公報に記されたように予め鋼板表面に酸化膜を生成させた後、焼鈍及び前記鉄酸化膜の還元を行う方法も使用可能である。 Further, if the PO 2 and temperature in the reducing atmosphere are within the range of the present invention, a normal non-oxidizing furnace type hot dipping method or a hot dipping method using an all radiant tube type annealing furnace can be used. As described in JP-A-55-122865, a method of forming an oxide film on the surface of a steel plate in advance and then annealing and reducing the iron oxide film can be used.

鉄酸化膜を形成させる方法としては、例えば酸化帯において燃焼空気比を0.8〜1.2に制御し鉄酸化膜を形成させる方法や酸化帯の露点を273K以上に制御し鉄酸化膜を形成させる方法が使用できる。   As a method of forming an iron oxide film, for example, a method of forming an iron oxide film by controlling the combustion air ratio in the oxidation zone to 0.8 to 1.2, or a dew point of the oxidation zone is controlled to 273 K or more and an iron oxide film is formed. Any method of forming can be used.

燃焼空気比を0.8〜1.2の範囲に調節する理由は、Siの外部酸化を抑制するのに十分な鉄酸化膜を生成するために0.8以上の燃焼空気比が必要であり、0.8未満の場合は十分な鉄酸化膜を形成せしめることができないためである。又、燃焼空気比が1.2を超えると酸化帯内で形成される鉄酸化膜厚が厚すぎて、剥離した酸化物がロールに付着し外観疵を発生させるためである。   The reason for adjusting the combustion air ratio in the range of 0.8 to 1.2 is that a combustion air ratio of 0.8 or more is necessary in order to generate an iron oxide film sufficient to suppress external oxidation of Si. If it is less than 0.8, a sufficient iron oxide film cannot be formed. Further, when the combustion air ratio exceeds 1.2, the iron oxide film formed in the oxidation zone is too thick, and the peeled oxide adheres to the roll and generates appearance defects.

また、酸化帯の露点を273K以上に制御する理由は、Siの外部酸化を抑制するのに十分な鉄酸化膜を生成するために273K以上の露点が必要であり、273K未満の場合は十分な鉄酸化膜を形成せしめることができないためである。露点の上限は特に規定しないが、設備の劣化などへの影響を考慮し、373K以下が望ましい。   The reason for controlling the dew point of the oxidation band to 273K or more is that a dew point of 273K or more is necessary to generate an iron oxide film sufficient to suppress external oxidation of Si, and the dew point is less than 273K. This is because an iron oxide film cannot be formed. The upper limit of the dew point is not specified, but it is preferably 373K or less in consideration of the influence on the deterioration of the equipment.

酸化膜の厚みは、燃焼空気比、露点のみではなく、ライン速度、到達板温等も影響するため、これらを適切に制御し、酸化膜の厚みが20〜200nmになるような条件で通板することが望ましい。   Since the thickness of the oxide film affects not only the combustion air ratio and dew point, but also the line speed, the ultimate plate temperature, etc., these are controlled appropriately, and the plate is passed under the condition that the thickness of the oxide film is 20 to 200 nm. It is desirable to do.

ただし、生成した鉄の酸化膜の還元を終了させるため、請求項に規定したPO2と温度における還元時間は、20秒以上とすることが望ましい。 However, in order to finish the reduction of the generated iron oxide film, the reduction time at PO 2 and temperature specified in the claims is preferably 20 seconds or more.

上記製造方法は,連続溶融めっき設備に,CO2を1〜100体積%含有し,残部N2,H2O,O2,COおよび不可避的不純物からからなる気体を導入する装置を還元炉に配設することや,還元炉中でCOまたは炭化水素を燃焼させ,CO2を1〜100体積%含有し,残部N2,H2O,O2,COおよび不可避的不純物からからなる気体を発生させる装置を配設することにより可能となる。 In the above manufacturing method, the apparatus for introducing a gas containing 1 to 100% by volume of CO 2 into the continuous hot dipping equipment and the balance N 2 , H 2 O, O 2 , CO and unavoidable impurities is used as a reduction furnace. be arranged and the CO or hydrocarbon is combusted in a reducing furnace, the CO 2 containing 1 to 100% by volume, balance N 2, H 2 O, a gas consisting of O 2, CO and unavoidable impurities This can be achieved by providing a generating device.

なお、鋼板表面または表面側にFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4から選ばれた1種以上のSi酸化物が生成した鋼板に亜鉛めっきを行い、合金化することによって、めっき層中へFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4から選ばれた1種以上のSi酸化物を含むめっき層をつくることが可能である。 In addition, by performing galvanization on the steel plate on which one or more kinds of Si oxides selected from FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn 2 SiO 4 are formed on the steel plate surface or the surface side, and alloying them, A plating layer containing one or more Si oxides selected from FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , and Mn 2 SiO 4 can be formed in the plating layer.

めっき浴内の溶融Znには、幅方向の流動を与える必要がある。Fe濃度勾配は、酸素ポテンシャルを条件の範囲内に制御することと流動を与えることで疲労特性が改善される値になる。めっき浴中ではZnが鋼板表面から拡散する。酸素ポテンシャルの制御を行うと鋼板内の表面近傍にシリケートが生成するので、この際に酸化物の体積膨張が発生する。このことでメッキ前の鋼板表面には微細な凹凸が生成すると考えられる。この為にZnが拡散する際の界面積が増加することでZnの拡散が促進される。更に、めっき浴中で流動が有るとメッキ浴から鋼板への熱伝達係数が上がるので、拡散界面温度が高くなりZnの拡散係数が大きくなることで拡散が促進される。これらが複合することでめっき浴中で既に拡散が進行するのでFe濃度勾配がある範囲が大きくなる。一方、SiやMnが高い本発明の鋼板では合金化処理中でのめっき層中へのFeの拡散はIF鋼の様に大きくは無く、強度-延性バランスに対する影響を無視して合金処理温度を高くしてもFe濃度勾配がある範囲はさほど大きくならない。   It is necessary to give a flow in the width direction to the molten Zn in the plating bath. The Fe concentration gradient is a value at which fatigue characteristics are improved by controlling the oxygen potential within a range of conditions and applying flow. Zn diffuses from the surface of the steel sheet in the plating bath. When the oxygen potential is controlled, silicate is generated in the vicinity of the surface in the steel sheet. At this time, volume expansion of the oxide occurs. It is thought that fine unevenness | corrugation produces | generates on the steel plate surface before plating by this. For this reason, the diffusion of Zn is promoted by increasing the interface area when Zn is diffused. Further, if there is a flow in the plating bath, the heat transfer coefficient from the plating bath to the steel sheet increases, so that the diffusion interface temperature increases and the diffusion coefficient of Zn increases, thereby promoting diffusion. By combining these, diffusion has already progressed in the plating bath, so the range where the Fe concentration gradient exists is large. On the other hand, in the steel sheet of the present invention with high Si and Mn, the diffusion of Fe into the plating layer during alloying treatment is not as great as in IF steel, and the alloy treatment temperature is ignored ignoring the effect on the strength-ductility balance. Even if it is increased, the range where the Fe concentration gradient exists is not so large.

この様に、酸素ポテンシャルを制御した後にめっき浴内で流動を与えるとFe濃度勾配がある範囲が大きくと共に、同時に、幅方向にも均一な合金層を形成することが可能となる。幅方向の流動は、スナウト内で鋼板が浸漬する際に、メタルポンプを用いて横方向の流動を発生させる。本方法はIF鋼やアルミキルド鋼では生成したアルミドロスの付着防止の為に、0.5m/sから1m/s程度の流動をさせることが知られている。本発明ではめっき浴中のAlはIF鋼よりも低いので、アルミドロスの生成は少ないので、通常はメタルポンプを使用していなかった。幅方向の流動を0.5m/秒以上としたのは、流動がこれよりも小さいと、界面でのFeとZnの拡散を十分に促進することが出来きず、合金層厚みを1.2μm以上とすることが出来ないためである。一方、2.5m/秒を越える速度で、流動を与えたとしても、その効果は飽和するばかりでなく、大幅な設備投資を招くことから好ましくない。ただし、この値を超える流速での流動を行ったとしも、本発明の効果である疲労耐久性の向上は得られる。また、流動は大きい方が良いので、好適な範囲は1.5m/s〜2.5m/sである。   As described above, when the flow is applied in the plating bath after controlling the oxygen potential, the range in which the Fe concentration gradient exists is large, and at the same time, a uniform alloy layer can be formed in the width direction. The flow in the width direction generates a flow in the lateral direction using a metal pump when the steel plate is immersed in the snout. This method is known to flow from 0.5 m / s to 1 m / s in order to prevent adhesion of aluminum dross produced in IF steel and aluminum killed steel. In the present invention, since the Al in the plating bath is lower than that of IF steel, the production of aluminum dross is small, so that a metal pump is not usually used. The flow in the width direction is set to 0.5 m / second or more. If the flow is smaller than this, the diffusion of Fe and Zn at the interface cannot be sufficiently promoted, and the thickness of the alloy layer is 1.2 μm or more. It is because it cannot be said. On the other hand, even if the flow is applied at a speed exceeding 2.5 m / sec, the effect is not only saturated but also a significant capital investment is incurred, which is not preferable. However, even if the flow is performed at a flow rate exceeding this value, the fatigue durability, which is the effect of the present invention, can be obtained. Moreover, since it is better that the flow is large, a preferable range is 1.5 m / s to 2.5 m / s.

また、Zn及びFeの厚さ方向の濃度勾配が緩やかになると、硬度の勾配が緩やかになるため、めっき層と鋼板の界面に集中する応力が小さくなる。この結果、繰り返し応力が加えられて弾性変形が行われる際にめっき層が剥離することが抑制される。同時に、鋼板表層に存在する合金層は、繰り返し変形時の軟質なフェライトの変形も抑制することから、フェライトと硬質組織の界面への変形の集中と、これに伴う疲労亀裂の形成を抑制することが可能であり、疲労耐久性の向上に大きく寄与する。   Further, when the concentration gradient of Zn and Fe in the thickness direction becomes gentle, the gradient of hardness becomes gentle, so that the stress concentrated on the interface between the plating layer and the steel sheet becomes small. As a result, peeling of the plating layer is suppressed when repeated stress is applied and elastic deformation is performed. At the same time, the alloy layer on the steel sheet surface layer suppresses the deformation of soft ferrite during repeated deformation, thereby suppressing the concentration of deformation at the interface between ferrite and hard structure and the accompanying formation of fatigue cracks. Can greatly contribute to the improvement of fatigue durability.

以上をまとめると、表1のようになる。特にlogPO2を上記した範囲に制御し、めっき浴中の溶融Znに鋼板の板幅方向の流動を与え、かつ合金化温度を480℃以下にすると、平行部が30mm、板厚2mm、曲率半径が100mmであるJIS Z 2275に規定の1号試験片に対してJIS Z 2275に準拠した疲労試験を行うことにより求められる2×10回時間強さを引張最大強度で除した値である疲労限度比を、安定して0.55以上にすることができる。また、引張最大強度(Ts)と伸び(EI)の積が21000(MPa・%)以上にすることができる。
疲労試験片の形状を平行部が30mm、板厚2mm、曲率半径が100mmとしたのは、曲率半径が大きいと応力集中係数が大きく、容易の疲労亀裂の形成が起こる。このことから、本発明の効果である疲労亀裂形成の抑制による疲労耐久性向上効果の評価に適さないためである。
The above is summarized in Table 1. In particular, when logPO 2 is controlled within the above range, the molten Zn in the plating bath is flowed in the plate width direction of the steel plate, and the alloying temperature is 480 ° C. or less, the parallel part is 30 mm, the plate thickness is 2 mm, and the radius of curvature. Fatigue that is a value obtained by dividing the 2 × 10 6 time strength obtained by performing a fatigue test in accordance with JIS Z 2275 on the No. 1 test piece defined in JIS Z 2275 with a tensile strength of 100 mm The limit ratio can be stably set to 0.55 or more. Further, the product of the maximum tensile strength (Ts) and the elongation (EI) can be 21000 (MPa ·%) or more.
The shape of the fatigue test piece is 30 mm for the parallel part, 2 mm for the plate thickness, and 100 mm for the radius of curvature. If the radius of curvature is large, the stress concentration factor is large, and easy formation of fatigue cracks occurs. From this, it is because it is not suitable for evaluation of the fatigue durability improvement effect by suppression of fatigue crack formation which is an effect of the present invention.

Figure 2008024980
Figure 2008024980

次に、高強度鋼板中の成分の限定理由について説明する。以下、質量%を単に%と記載する。   Next, the reason for limiting the components in the high-strength steel plate will be described. Hereinafter, the mass% is simply described as%.

Cはマルテンサイトや残留オーステナイトによる組織強化で鋼板を高強度化しようとする場合に必須の元素である。Cの含有量を0.07%以上とする理由は、Cが0.07%未満では、高強度化と延性の向上に必要な残留オーステナイト体積率を5%以上とすることが困難なためである。一方、Cの含有量を0.25%以下とする理由は、Cが0.25%を超えると、スポット溶接部の強度を確保することが困難となるためである。ただし、かしめやボルトによる機械的な締結を行うのであれば、0.25%を超えてCを含有したとしても本発明の効果であるめっき性、疲労耐久性及び強度-延性バランスに優れた高強度合金化溶融亜鉛めっき鋼板を得ることができる。   C is an essential element for increasing the strength of a steel sheet by strengthening the structure with martensite or retained austenite. The reason why the content of C is set to 0.07% or more is that when C is less than 0.07%, it is difficult to set the retained austenite volume ratio necessary for increasing strength and improving ductility to 5% or more. is there. On the other hand, the reason why the C content is 0.25% or less is that when C exceeds 0.25%, it is difficult to ensure the strength of the spot weld. However, if mechanical fastening by caulking or bolts is performed, even if it contains C exceeding 0.25%, the effect of the present invention is excellent in plating property, fatigue durability and strength-ductility balance. A high-strength galvannealed steel sheet can be obtained.

Siは鋼板の加工性、特に伸びを大きく損なうことなく強度を増す元素として0.8〜2.0%添加する。Siの含有量を0.8%以上とする理由は、Siが0.8%未満では必要とする引張強さの確保が困難であるためであり、かつ、めっき直後に行う合金化処理のための再加熱において炭化物の形成を著しく遅滞させ、室温まで冷却した後でも、上記した体積率のマルテンサイト、ベイナイトおよび残留オーステナイトがフェライト中に混在するようにするためである。ここで述べる炭化物とは、セメンタイトやパーライト組織のことを指し示す。これらが多量に存在するとオーステナイトが分解してしまうことから、5%以上の残留オーステナイト体積率を確保できなくなるためである。また、Siの含有量を2.0%以下とする理由は、Siが2.0%を超えると強度を増す効果が飽和すると共に延性及び溶接性の低下が起こり、かつめっき濡れ性を損なうためである。また、Siは固溶強化によりフェライトを高強度化することから、繰り返し変形時のフェライトへの変形の集中を抑制することから、疲労耐久性の向上の観点からも添加する必要がある。   Si is added in an amount of 0.8 to 2.0% as an element that increases the strength without significantly impairing the workability of the steel sheet, particularly the elongation. The reason why the Si content is 0.8% or more is that it is difficult to ensure the required tensile strength when Si is less than 0.8%, and because of the alloying treatment performed immediately after plating. This is because the formation of carbides is remarkably delayed in reheating, and the above-described volume ratio of martensite, bainite and retained austenite are mixed in the ferrite even after cooling to room temperature. The carbide described here indicates cementite or pearlite structure. This is because if a large amount of these exists, austenite will be decomposed, so that it becomes impossible to secure a retained austenite volume ratio of 5% or more. The reason for making the Si content 2.0% or less is that when Si exceeds 2.0%, the effect of increasing the strength is saturated, ductility and weldability are lowered, and plating wettability is impaired. It is. Further, since Si increases the strength of the ferrite by solid solution strengthening, it suppresses the concentration of deformation on the ferrite during repeated deformation, and therefore needs to be added from the viewpoint of improving fatigue durability.

Mn:Mnは、強化元素であり、鋼板の強度を上昇させることに有効である。また、パーライト変態を抑制することから、残留オーステナイトの確保にも重要な役割を果たす。しかしながら、2.5%超となると鋼板の成形性が低下することからその上限を2.5%とした。1.1%未満になると、パーライト変態の抑制やめっき浴浸漬及び引き続いて行われる合金化処理時の炭化物形成の抑制が困難となることから、その下限値を1.1%とした。   Mn: Mn is a strengthening element and is effective in increasing the strength of the steel sheet. It also plays an important role in securing retained austenite because it suppresses pearlite transformation. However, if it exceeds 2.5%, the formability of the steel sheet is lowered, so the upper limit was made 2.5%. If the content is less than 1.1%, it becomes difficult to suppress pearlite transformation, plating bath immersion, and subsequent carbide formation during the alloying treatment. Therefore, the lower limit is set to 1.1%.

Al:AlはSiと同様に、めっき直後に行う合金化処理のための再加熱において炭化物の形成を著しく遅滞させることから、残留オーステナイトの確保に有効であることから添加しても良い。また、脱酸材としても活用可能である。加えて、Alは、フェライト形成を促進し、延性を向上させるので添加しても良い。ただし、2.0%を超えるとコスト高となるばかりか、表面性状を劣化させ、かつ溶接性及びめっき濡れ性を損なうため、その含有量は2.0%以下とする。一方、Al含有量を0.001%未満とすることは、大幅なコスト増を招くことから経済上好ましくない。   Al: Al, like Si, may be added because it remarkably delays the formation of carbides in reheating for alloying performed immediately after plating, and is effective in securing retained austenite. It can also be used as a deoxidizer. In addition, Al may be added because it promotes ferrite formation and improves ductility. However, if it exceeds 2.0%, not only the cost is increased, but also the surface properties are deteriorated and the weldability and plating wettability are impaired, so the content is made 2.0% or less. On the other hand, making the Al content less than 0.001% is economically undesirable because it causes a significant increase in cost.

Nは、粗大な窒化物を形成して曲げ性や穴拡げ性を劣化させ、かつ溶接時のブローホール発生の原因になることから、含有量を0.01%以下に抑制する必要がある。一方、N含有量の下限は特に定める必要はないが、N含有量を極端に低下させることは多大なコストが必要になるため、経済性の観点から0.0005%が実質的な下限になる。   N forms coarse nitrides and deteriorates bendability and hole expansibility, and causes blowholes during welding, so the content must be suppressed to 0.01% or less. On the other hand, the lower limit of the N content does not need to be set in particular. However, extremely reducing the N content requires a large amount of cost, so 0.0005% is a practical lower limit from the viewpoint of economy. .

Sは溶接性並びに鋳造時及び熱延時の製造性に悪影響を及ぼすことから、含有量を0.01%以下に抑制する必要がある。一方、S含有量の下限は特に定める必要はないが、S含有量を極端に低下させることは多大なコストが必要になるため、経済性の観点から0.001%が実質的な上限になる。   Since S adversely affects weldability and manufacturability during casting and hot rolling, it is necessary to suppress the content to 0.01% or less. On the other hand, the lower limit of the S content does not need to be set in particular, but extremely reducing the S content requires a large amount of cost, so 0.001% is a practical upper limit from the viewpoint of economy. .

Oは酸化物を形成し、成形性を劣化させることから、含有量を0.01%以下に抑制する必要がある。一方、O含有量の下限は特に定める必要はないが、O含有量を極端に低下させることは多大なコストが必要になるため、経済性の観点から0.001%が実質的な上限になる。なお、ここでいうO含有量とは、鋼板表層に含まれる内部酸化物、及びめっき層中に含まれる酸化物を除去した後の鋼板中に含まれるOの含有量を指す。本発明の鋼板は鋼板表層及びめっき層中のいずれか一方又は双方に酸化物を含むことから、表層のO含有量は鋼板内部に比較して高くなる。しかし、これら酸化物はめっき層中や鋼板表層に存在するため、成形性に悪影響を及ぼさない。   Since O forms an oxide and deteriorates the moldability, it is necessary to suppress the content to 0.01% or less. On the other hand, the lower limit of the O content does not need to be set in particular. However, extremely reducing the O content requires a large amount of cost, so 0.001% is a practical upper limit from the viewpoint of economy. . In addition, O content here refers to content of O contained in the steel plate after removing the internal oxide contained in a steel plate surface layer, and the oxide contained in a plating layer. Since the steel plate of this invention contains an oxide in any one or both in a steel plate surface layer and a plating layer, O content of a surface layer becomes high compared with the inside of a steel plate. However, since these oxides are present in the plating layer or on the surface layer of the steel sheet, the formability is not adversely affected.

また、これらを主成分とする鋼にNi、Cu、Cr、Mo、B、Ti、Nb、V、REM(例えばLa,Ce)、Caの一種以上を添加しても良い。これらを含有しても本発明の効果を損なわず、その量によっては耐食性や加工性が改善される等好ましい場合もある。具体的には、Ni:0.05〜2.0%、Cu:0.05〜2.0%、Cr:0.05〜2.0%、Mo:0.05〜2.0%、B:0.0001〜0.002%、Ti:0.001〜0.1%、Nb:0.001〜0.1%、V:0.001〜0.1%、REM:0.0001〜0.1%、Ca:0.0001〜0.1%である。   Further, one or more of Ni, Cu, Cr, Mo, B, Ti, Nb, V, REM (for example, La, Ce), and Ca may be added to the steel containing these as the main components. Even if these are contained, the effects of the present invention are not impaired, and depending on the amount, the corrosion resistance and workability may be improved. Specifically, Ni: 0.05-2.0%, Cu: 0.05-2.0%, Cr: 0.05-2.0%, Mo: 0.05-2.0%, B : 0.0001-0.002%, Ti: 0.001-0.1%, Nb: 0.001-0.1%, V: 0.001-0.1%, REM: 0.0001-0 0.1%, Ca: 0.0001 to 0.1%.

次に、合金化溶融亜鉛めっき層について述べる。本発明において、合金化溶融亜鉛めっき層とは、合金化反応によってZnめっき中に鋼中のFeが拡散しできたFe−Zn合金を主体としためっき層のことである。Feの含有率は特に限定しないが、めっき中のFe含有率7質量%未満ではめっき表面に柔らかいZn−Fe合金が形成されプレス成形性を劣化させ、Fe含有率15質量%を超えると地鉄界面に脆い合金層が発達し過ぎてめっき密着性が劣化するため、7〜15質量%が適切である。   Next, the alloyed hot-dip galvanized layer will be described. In the present invention, the alloyed hot dip galvanized layer is a plated layer mainly composed of an Fe—Zn alloy in which Fe in steel can diffuse during Zn plating by an alloying reaction. The Fe content is not particularly limited, but if the Fe content in the plating is less than 7% by mass, a soft Zn—Fe alloy is formed on the plating surface to deteriorate the press formability. Since a brittle alloy layer develops too much at the interface and plating adhesion deteriorates, 7 to 15% by mass is appropriate.

また、溶融亜鉛めっきを施す際、めっき浴中での合金化反応を制御する目的でめっき浴にAlを添加するため、めっき中には0.05〜0.5質量%のAlが含まれる。また、合金化の過程ではFeの拡散と同時に鋼中に添加した元素も拡散するため、めっき中にはこれらの元素も含まれる。   In addition, when performing hot dip galvanization, since Al is added to the plating bath for the purpose of controlling the alloying reaction in the plating bath, 0.05 to 0.5% by mass of Al is contained in the plating. In addition, during the alloying process, the elements added to the steel diffuse simultaneously with the diffusion of Fe, so these elements are also included in the plating.

本発明鋼板は、溶融亜鉛めっき浴中あるいは亜鉛めっき中にPb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、希土類元素の1種または2種以上を含有、あるいは混入してあっても本発明の効果を損なわず、その量によっては耐食性や加工性が改善される等好ましい場合もある。合金化溶融亜鉛めっきの付着量については特に制約は設けないが、耐食性の観点から20g/m2以上、経済性の観点から150g/m2以下であることが望ましい。 The steel sheet of the present invention is one of Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and rare earth elements during hot dip galvanizing bath or galvanizing. Alternatively, even if two or more kinds are contained or mixed, the effects of the present invention are not impaired, and depending on the amount, there are cases where the corrosion resistance and workability are improved, and so on. There are no particular restrictions on the amount of alloying hot dip galvanizing, but it is preferably 20 g / m 2 or more from the viewpoint of corrosion resistance and 150 g / m 2 or less from the viewpoint of economy.

次に、製造条件の限定理由について述べる。熱間圧延に供するスラブは特に限定するものではなく、連続鋳造スラブや薄スラブキャスター等で製造したものであればよい。また鋳造後直ちに熱間圧延を行う連続鋳造−直送圧延(CC−DR)のようなプロセスにも適合する。   Next, the reasons for limiting the manufacturing conditions will be described. The slab to be used for hot rolling is not particularly limited as long as it is manufactured with a continuously cast slab or a thin slab caster. It is also suitable for processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.

熱間圧延の仕上温度は鋼板のプレス成形性を確保するという観点からAr3点以上とする必要がある。熱延後の冷却条件は特に限定しないが、巻き取り温度は630℃以下とすることが望ましい。630℃を超える温度で巻き取ることは、鋼板表面に形成する酸化物の厚さを過度に増大させるため、酸洗性が劣るので好ましくない。下限については特に定めることなく本発明の効果は発揮されるが、室温以下の温度で巻き取ることは技術的に難しいので、これが実質の下限となる。なお、熱延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。 The hot rolling finishing temperature needs to be at least Ar 3 from the viewpoint of securing the press formability of the steel sheet. The cooling conditions after hot rolling are not particularly limited, but the winding temperature is preferably 630 ° C. or lower. Winding at a temperature exceeding 630 ° C. is not preferable because the thickness of the oxide formed on the surface of the steel sheet is excessively increased and the pickling property is poor. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, since it is technically difficult to wind up at a temperature of room temperature or lower, this is the actual lower limit. Note that rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once.

このようにして製造した熱延鋼板に、酸洗を行う。酸洗は鋼板表面の酸化物の除去が可能であることから、めっき性向上のためには重要である。また、一回の酸洗を行っても良いし、複数回に分けて酸洗を行っても良い。次いで、酸洗した熱延鋼板を圧下率40〜70%で冷間圧延して、連続焼鈍ラインあるいは連続溶融亜鉛めっきラインを通板する。圧下率が40%未満では、形状を平坦に保つことが困難である。また、最終製品の延性が劣悪となるのでこれを下限とする。一方、70%を越える冷延は、冷延荷重が大きくなりすぎてしまい冷延が困難となることから、これを上限とする。45〜65%がより好ましい範囲である。圧延パスの回数、各パス毎の圧下率については特に規定することなく本発明の効果は発揮される。
なお、熱延板に直接めっきを行う場合は、冷間圧延を行わなくても良い。あるいは、箱焼鈍や連続焼鈍ラインを通板後、めっきを行っても構わない。
The hot-rolled steel sheet thus manufactured is pickled. Pickling is important for improving plating properties because it can remove oxides on the surface of the steel sheet. Moreover, pickling may be performed once, or pickling may be performed in a plurality of times. Next, the pickled hot-rolled steel sheet is cold-rolled at a rolling reduction of 40 to 70% and passed through a continuous annealing line or a continuous hot-dip galvanizing line. If the rolling reduction is less than 40%, it is difficult to keep the shape flat. Moreover, since the ductility of the final product becomes poor, this is the lower limit. On the other hand, cold rolling exceeding 70% makes the cold rolling difficult because the cold rolling load becomes too large. 45 to 65% is a more preferable range. The effect of the present invention is exhibited without particularly specifying the number of rolling passes and the rolling reduction for each pass.
In addition, when directly plating a hot-rolled sheet, it is not necessary to perform cold rolling. Alternatively, plating may be performed after passing through box annealing or continuous annealing line.

ライン内焼鈍方式の連続溶融亜鉛めっき設備の還元帯で焼鈍する際、その焼鈍温度は750℃以上900℃以下のフェライト、オーステナイト二相共存域とする。焼鈍温度が750℃未満では熱延の巻き取り時に形成した炭化物の溶解に時間がかかりすぎてしまい十分な量のオーステナイトを確保することが出来ない。900℃を超すような温度で焼鈍することは鋼帯表面にSiやMnの酸化物層の成長が著しく、めっき不良が起こりやすくなるため好ましくない。また、過度の高温加熱は、コストの上昇を招くことから経済的に好ましくないばかりでなく、高温通板時の板形状が劣悪になったり、ロールの寿命を低下させたりとトラブルを誘発することから、最高加熱温度の上限を900℃とする。   When annealing in the reduction zone of the in-line annealing method of continuous hot dip galvanizing equipment, the annealing temperature is in the range of 750 ° C. or more and 900 ° C. or less of ferrite and austenite. If the annealing temperature is less than 750 ° C., it takes too much time to dissolve the carbide formed at the time of hot rolling, and a sufficient amount of austenite cannot be secured. Annealing at a temperature exceeding 900 ° C. is not preferable because the growth of an oxide layer of Si or Mn is remarkable on the surface of the steel strip and plating defects are liable to occur. Excessive high-temperature heating not only is economically undesirable because it leads to an increase in cost, but also induces troubles such as deterioration of the plate shape at the time of high-temperature feeding and reduction of the roll life. Therefore, the upper limit of the maximum heating temperature is set to 900 ° C.

鋼帯は焼鈍後、引き続きめっき浴へ浸漬する過程で冷却されるが、この場合の冷却速度はその最高到達温度から650℃までを平均0.1〜200℃/秒で、引き続いて650℃から500℃までの平均冷却速度を1〜200℃/秒とする。650℃までを平均0.1〜200℃/秒とするのは加工性を改善するためにフェライトの体積率を増すと同時に、オーステナイトのC濃度を増すことにより、その生成自由エネルギーを下げ、マルテンサイト変態の開始する温度をめっき浴温度以下とすることを目的とする。650℃までの平均冷却速度を0.1℃/秒未満とするためには連続溶融亜鉛めっき設備のライン長を長くする必要がありコスト高となるため、650℃までの平均冷却速度は0.1℃/秒以上とする。   The steel strip is cooled in the process of being subsequently immersed in the plating bath after annealing. In this case, the cooling rate is from 0.1 to 200 ° C./second on average from the maximum temperature to 650 ° C., and subsequently from 650 ° C. The average cooling rate up to 500 ° C. is 1 to 200 ° C./second. The average of 0.1 to 200 ° C./second up to 650 ° C. is to increase the volume fraction of ferrite in order to improve the workability, and at the same time to increase the C concentration of austenite, thereby lowering its free energy of formation, The purpose is to set the temperature at which site transformation starts to be equal to or lower than the plating bath temperature. In order to make the average cooling rate up to 650 ° C. less than 0.1 ° C./second, it is necessary to lengthen the line length of the continuous hot dip galvanizing equipment, resulting in high costs. 1 ° C / second or more.

一方、650℃までの平均冷却速度200℃/秒を超えて冷却速度を上げる事は、大幅な設備投資を必要とし、製造コスト高を招くこととなるので、上限を200℃/秒とすることが好ましい。   On the other hand, increasing the cooling rate exceeding the average cooling rate of 200 ° C./second up to 650 ° C. requires a large capital investment, leading to high manufacturing costs, so the upper limit should be 200 ° C./second. Is preferred.

650℃からめっき浴までの平均冷却速度を1〜200℃/秒とするのは、その冷却途上でオーステナイトがパーライトに変態するのを避けるためであり、その冷却速度が1℃/秒未満では本発明で規定する温度で焼鈍し、また650℃まで冷却したとしてもパーライトの生成を避けられない。一方、650℃からめっき浴までを平均冷却速度200℃/秒を超えて冷却速度を上げる事は、製造コスト高を招くこととなるので、上限を200℃/秒とすることが好ましい。   The reason why the average cooling rate from 650 ° C. to the plating bath is 1 to 200 ° C./second is to avoid the transformation of austenite to pearlite during the cooling, and the cooling rate is less than 1 ° C./second. Even if annealing is performed at the temperature specified in the invention and cooling to 650 ° C., formation of pearlite is inevitable. On the other hand, increasing the cooling rate from 650 ° C. to the plating bath by exceeding the average cooling rate of 200 ° C./sec results in high production costs, so the upper limit is preferably 200 ° C./sec.

本発明の合金化溶融亜鉛めっき鋼板の製造において、用いる溶融亜鉛めっき浴はAl濃度が浴中有効Al濃度で0.01〜0.5mass%に調整する。更に合金化温度が低い場合にはAl濃度が0.05〜0.09%の範囲にすることが好ましい。ここでめっき浴中の有効Al濃度とは、浴中Al濃度から浴中Fe濃度を差し引いた値である。   In the production of the alloyed hot-dip galvanized steel sheet of the present invention, the hot-dip galvanizing bath used is adjusted so that the Al concentration is 0.01 to 0.5 mass% in terms of the effective Al concentration in the bath. Further, when the alloying temperature is low, the Al concentration is preferably in the range of 0.05 to 0.09%. Here, the effective Al concentration in the plating bath is a value obtained by subtracting the Fe concentration in the bath from the Al concentration in the bath.

浴中有効Al濃度では、0.01質量%未満では、めっき初期の合金化バリアとなるFe−Al−Zn相の形成が不十分であってめっき処理時にめっき鋼板界面に脆いΓ相が厚くできるため、加工時のめっき皮膜密着力が劣る合金化溶融亜鉛めっき鋼板しか得られないため好ましくない。0.5質量%を超えてAlを添加すると合金化反応を著しく抑制してしまい、高温長時間の合金化が必要となり、鋼中に残存していたオーステナイトがパーライトに変態するため、高強度、疲労耐久性及び加工性の両立が困難となるためである。
また、得られた合金化溶融亜鉛めっき鋼板にスキンパス圧延を施しても構わない。
When the effective Al concentration in the bath is less than 0.01% by mass, the formation of the Fe—Al—Zn phase that becomes an alloying barrier at the initial stage of plating is insufficient, and a brittle Γ phase can be thickened at the plated steel plate interface during the plating process. For this reason, only an alloyed hot-dip galvanized steel sheet with poor plating film adhesion during processing is obtained, which is not preferable. Addition of Al exceeding 0.5% by mass significantly suppresses the alloying reaction, requires high temperature and long time alloying, and austenite remaining in the steel is transformed into pearlite. This is because it is difficult to achieve both fatigue durability and workability.
The obtained alloyed hot-dip galvanized steel sheet may be subjected to skin pass rolling.

なお、合金処理時の合金化温度については、上記したように480℃以下にするのが好ましい。
めっき鋼板のめっき密着性をさらに向上させるために、焼鈍前に鋼板に、Ni、Cu、Co、Feの単独あるいは複数より成るめっきを施しても本発明を逸脱するものではない。
また、本発明の溶接部の耐水素脆性に優れる高強度鋼板の素材は、通常の製鉄工程である精錬、製鋼、鋳造、熱延、冷延工程を経て製造されることを原則とするが、その一部あるいは全部を省略して製造されるものでも、本発明に係わる条件を満足する限り、本発明の効果を得ることができる。
In addition, about the alloying temperature at the time of alloy processing, it is preferable to set it as 480 degrees C or less as mentioned above.
In order to further improve the plating adhesion of the plated steel sheet, the present invention does not depart from the present invention even if the steel sheet is plated with Ni, Cu, Co, or Fe alone or before plating.
In addition, the material of the high-strength steel plate excellent in hydrogen embrittlement resistance of the welded portion of the present invention is generally manufactured through refining, steelmaking, casting, hot rolling, and cold rolling processes, which are ordinary steelmaking processes, Even if manufactured by omitting some or all of them, the effects of the present invention can be obtained as long as the conditions according to the present invention are satisfied.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

表2の組成からなるスラブを準備し、Ar3変態点以上で熱間圧延を行い板厚を4mmとし、630℃以下の温度域において巻き取り、その後、酸洗後に圧下率50%で冷間圧延することにより、厚さ2mmの高強度鋼板を形成した。その後、ライン内焼鈍方式の連続溶融亜鉛めっき設備を用いて表3に示す条件でめっき処理を行い、合金化溶融亜鉛めっき鋼板を製造した。連続溶融亜鉛めっき設備は、無酸化炉による加熱後、還元帯で還元・焼鈍を行う方式を使用した。無酸化炉の燃焼空気比は1.0に調節し、酸化帯として使用した。還元帯はCOとH2を混合した気体を燃焼させ発生したH2O、CO2を導入する装置を取り付け、H2を10体積%含むN2ガスにH2OとCO2を導入した。最後に、得られた鋼板について0.6%の圧下率でスキンパス圧延を行った。 A slab having the composition shown in Table 2 was prepared, hot-rolled at an Ar 3 transformation point or higher, the sheet thickness was 4 mm, wound in a temperature range of 630 ° C. or lower, and then cold pickled at 50% reduction after pickling. By rolling, a high-strength steel plate having a thickness of 2 mm was formed. Then, the plating process was performed on the conditions shown in Table 3 using the continuous hot dip galvanization equipment of the in-line annealing system, and the alloyed hot dip galvanized steel plate was manufactured. The continuous hot-dip galvanizing equipment used a method of reducing and annealing in a reduction zone after heating in a non-oxidizing furnace. The combustion air ratio of the non-oxidizing furnace was adjusted to 1.0 and used as an oxidation zone. Reduction zone is CO and H 2 The mixed gas by burning generated H 2 O, fitted with a device for introducing the CO 2, introducing H 2 O and CO 2 and H 2 in N 2 gas containing 10 vol%. Finally, skin pass rolling was performed on the obtained steel sheet at a rolling reduction of 0.6%.

Figure 2008024980
Figure 2008024980

Figure 2008024980
Figure 2008024980

表4にめっき性の評価結果を、表5にめっき層及び鋼板に含まれる酸化物の評価結果を、表6に後半のミクロ組織の評価結果を、表7に鋼板の機械的特性の評価結果を、それぞれ示す。   Table 4 shows the evaluation results of the plating properties, Table 5 shows the evaluation results of the oxides contained in the plating layer and the steel plate, Table 6 shows the evaluation results of the latter microstructure, and Table 7 shows the evaluation results of the mechanical properties of the steel plate. Are shown respectively.

Figure 2008024980
Figure 2008024980

Figure 2008024980
Figure 2008024980

Figure 2008024980
Figure 2008024980

Figure 2008024980
Figure 2008024980

還元炉内のPO2は、炉内の水素濃度、水蒸気濃度、CO2濃度、CO濃度、雰囲気温度の測定値と平衡反応H2O=H2+1/2O2,CO2=CO+1/2O2の平衡定数K1、K2を使用して求めた。 The PO 2 in the reduction furnace is the measured values of the hydrogen concentration, water vapor concentration, CO 2 concentration, CO concentration, and atmospheric temperature in the furnace and the equilibrium reactions H 2 O = H 2 + 1 / 2O 2 , CO 2 = CO + 1 / 2O 2. The equilibrium constants K 1 and K 2 were used.

めっきの付着量は、めっきをインヒビター入りの塩酸で溶解し、重量法により測定した。めっき中のFe%は、めっきをインヒビター入りの塩酸で溶解し、ICPにより測定して求めた。また、めっき層及び高強度鋼板の界面においてFe濃度が20〜90%となる領域の厚みは、GDS(グロー放電分光分析 RSV社製 Analymat 2504型)によって測定した。各試料とも異なる位置を合計5回測定し、その平均値をFe濃度が20〜90%となる領域の厚みとして求めた。めっき浴内で流動を行わなかったものは、流動を行わなかったものに比較して、その値がばらつく傾向があった。   The adhesion amount of the plating was measured by a gravimetric method after dissolving the plating with hydrochloric acid containing an inhibitor. The Fe% during plating was obtained by dissolving the plating with hydrochloric acid containing an inhibitor and measuring by ICP. Moreover, the thickness of the area | region where Fe density | concentration becomes 20 to 90% in the interface of a plating layer and a high-strength steel plate was measured by GDS (Glow discharge spectral analysis RSV Analymat 2504 type | mold). The positions different from each sample were measured 5 times in total, and the average value was obtained as the thickness of the region where the Fe concentration was 20 to 90%. Those that did not flow in the plating bath tended to vary in value compared to those that did not flow.

めっき外観は通板したコイル全長を目視で観察し、不めっき面積率を以下に示す基準で判定した。
○:不めっき部分なし
△:不めっき部分若干あり
×:不めっき部分多数あり
The plating appearance was determined by visually observing the entire length of the passed coil and determining the non-plating area ratio based on the following criteria.
○: No unplated part △: Some unplated part ×: Many unplated parts

鋼板内部の酸化物の種類、めっき層中の酸化物の種類、及び不めっき部の酸化物の種類は、抽出レプリカ試料を作成してTEM、EPMAを用いることにより特定した。抽出レプリカ試料は、酸化物を含む層を溶解させて酸化物を露出させ、露出面にカーボン膜を蒸着し、この蒸着膜を酸化物とともに剥離することにより、試料を作成する方法である。SiやMnを単独あるいは複合で含む酸化物は、他の原子を含む複合酸化物であったり、欠陥を多く含む場合があるが、元素分析及び構造同定からもっとも近いものを見つけて判別した。   The type of oxide inside the steel plate, the type of oxide in the plating layer, and the type of oxide in the non-plated part were specified by preparing an extracted replica sample and using TEM and EPMA. The extracted replica sample is a method for preparing a sample by dissolving a layer containing an oxide to expose the oxide, depositing a carbon film on the exposed surface, and peeling the deposited film together with the oxide. An oxide containing Si or Mn alone or in combination may be a complex oxide containing other atoms or may contain many defects, but the closest one was found and identified from elemental analysis and structural identification.

本鋼及びめっき層中に含まれる酸化物の同定を行ったところ、これらの酸化物は、MnSiO、MnSiO、SiO及びAl、あるいは前記した酸化物においてMnの代わりに一部Feを含有するものであった。これら酸化物の分布はGDSあるいはCMAを用いて測定可能である。前述のようにSi酸化物は、Mnを含む複合酸化物として存在している場合が多い。このことから、めっき層、鋼板表層のSi、Mn、Oの元素分布を、例えばGDS又はCMAにより測定することで酸化物の分布を求めることが出来る。 When the oxides contained in the steel and the plating layer were identified, these oxides were MnSiO 3 , Mn 2 SiO 4 , SiO 2 and Al 2 O 3 , or in place of Mn in the aforementioned oxides. Some of them contained Fe. The distribution of these oxides can be measured using GDS or CMA. As described above, the Si oxide often exists as a complex oxide containing Mn. From this, the distribution of oxides can be obtained by measuring the element distribution of Si, Mn, and O on the plating layer and the steel sheet surface layer by, for example, GDS or CMA.

GDSを用いた測定を行うのであれば、Mn、Si及びOの濃度分布を測定し、Mn濃度のピークが、Si濃度のピークより表面側にある場合を、Si酸化物(MnSiOもしくはMnSiO)が表面側に存在しているとした。本発明の製造条件を満たす場合、具体的には還元帯の雰囲気においてlogPO2及び温度を上記(1)式及び(2)式で示す範囲にした場合、Mn濃度のピークが鋼板表面側に存在しており、Si酸化物がSiOに対して表面側に存在していた。一方、本発明の条件を満たさない場合、Si濃度のピークがMn濃度のピークと同位置もしくは表面側に存在する、あるいは、Mn濃度のピークが測定できないことから、SiOの方が表面側に存在していた。尚、ここで言うSi,あるいはMnのピークとは、例えば図1に示すように、鋼板内のSiやMnの成分検出値を除いた部分でのピークを示す。 If the measurement using GDS is performed, the concentration distribution of Mn, Si and O is measured, and the case where the peak of Mn concentration is on the surface side from the peak of Si concentration is determined by the Si oxide (MnSiO 3 or Mn 2 It is assumed that SiO 4 ) exists on the surface side. When the production conditions of the present invention are satisfied, specifically, when logPO 2 and temperature are set in the ranges shown by the above formulas (1) and (2) in the reduction zone atmosphere, a peak of Mn concentration exists on the steel sheet surface side. Si oxide was present on the surface side with respect to SiO 2 . On the other hand, does not satisfy the conditions of the present invention, the peak of the Si concentration is present in the peak at the same position or the surface side of the Mn concentration, or from the peak of the Mn concentration can not be measured, towards the SiO 2 to the surface side Existed. In addition, the Si or Mn peak mentioned here indicates, for example, a peak at a portion excluding the detected values of Si and Mn components in the steel plate as shown in FIG.

CMAを用いた測定を行うのであれば、めっき層、鋼板表面のSi、Mn、Oの元素マッピングを行うことで酸化物の分布を測定できる。具体的には、Si、Mn、Oの元素マッピングを行い、Si、Mn、Oの存在位置が重なるものを、Si酸化物(MnSiOもしくはMnSiO)、SiとOの存在位置のみが重なるものをSiOとする。これにより、酸化物の分布を求めることが可能である。GDSもしくはCMAのいずれの方法を用いて測定しても構わないが、GDSの方が簡便である。
なお、当然のことながらSi酸化物とSiOが混在する領域があるが、Si酸化物の方が表面側に観察されるのであれば、Si酸化物が表面側に存在しているものとみなした。
If the measurement using CMA is performed, the oxide distribution can be measured by performing element mapping of Si, Mn, and O on the plating layer and the steel sheet surface. Specifically, element mapping of Si, Mn, and O is performed, and the positions where Si, Mn, and O exist overlap each other, only the positions where Si oxide (MnSiO 3 or Mn 2 SiO 4 ), Si and O exist are present. It overlaps what is referred to as SiO 2. Thereby, the distribution of oxide can be obtained. Measurement may be performed using either GDS or CMA, but GDS is simpler.
As a matter of course, there is a region where Si oxide and SiO 2 are mixed, but if the Si oxide is observed on the surface side, it is considered that the Si oxide exists on the surface side. It was.

鋼板内部の酸化物層厚みはSEMを用いて測定した。また酸化物の平均含有率は、酸化物を含有する層を溶解させ、溶け残った酸化物の重量を測定することにより特定した。   The thickness of the oxide layer inside the steel plate was measured using SEM. The average oxide content was determined by dissolving the oxide-containing layer and measuring the weight of the undissolved oxide.

鋼板のミクロ組織の種類及び体積率は、ナイタール試薬及び特開59−219473号公報に開示された試薬により鋼板圧延方向断面又は圧延方向直角方向断面を腐食して、1000倍の光学顕微鏡並びに1000〜10000倍のSEM及びTEMにより測定した。各試料において20視野以上の観察を行った。また体積率は、ポイントカウント法や画像解析により各組織の面積率を求めることにより、特定した。   The type and volume ratio of the microstructure of the steel sheet were determined by corroding the steel sheet rolling direction cross section or the rolling direction perpendicular cross section with the Nital reagent and the reagent disclosed in Japanese Patent Application Laid-Open No. 59-219473. Measured by SEM and TEM of 10,000 times. Each sample was observed over 20 fields of view. The volume ratio was specified by obtaining the area ratio of each tissue by the point count method or image analysis.

降伏応力(YS)、引張強さ(TS)、伸び(El)は、得られた溶融亜鉛めっき鋼板から、圧延方向に直角方向にJIS5号試験片を切り出し、常温での試験を行うことにより求めた。なお、降伏応力は0.2%オフセット法により測定した。引張強さと伸びの積である強度-延性バランス(TS×El)が、21000(MPa×%)以上となるものを加工性に優れた鋼板とした。   Yield stress (YS), tensile strength (TS), and elongation (El) are obtained by cutting a JIS No. 5 specimen from the obtained hot-dip galvanized steel sheet in a direction perpendicular to the rolling direction and conducting a test at room temperature. It was. The yield stress was measured by the 0.2% offset method. A steel sheet with excellent workability was obtained when the strength-ductility balance (TS × El), which is the product of tensile strength and elongation, was 21000 (MPa ×%) or more.

疲労耐久性については、疲労限度比で評価した。本明細書において疲労限度比は、平行部が30mm、板厚2mm、曲率半径が100mmであるJIS Z 2275に規定の1号試験片に対してJIS Z 2275に準拠した疲労試験を行うことにより求められる2×10回時間強さを引張最大強度で除した値である。 Fatigue durability was evaluated by the fatigue limit ratio. In this specification, the fatigue limit ratio is determined by performing a fatigue test in accordance with JIS Z 2275 on a No. 1 test piece defined in JIS Z 2275 having a parallel part of 30 mm, a plate thickness of 2 mm, and a curvature radius of 100 mm. It is a value obtained by dividing the strength of 2 × 10 6 times obtained by the maximum tensile strength.

鋼板番号A1〜A3、B1〜B3、C1、D1〜D3、E1〜E3、F1〜F3、G1、H1、及びI1は、鋼板の化学的成分が本発明で規定する範囲内にあり、かつ鋼板の製造条件も本発明で規定する範囲内にある。この結果、表4に示すように、鋼板とめっき層の界面においてFe濃度が20〜90%となる領域の厚みが1.2μm以上となった。まためっき性も良好であり、かつめっき層に含まれるFe濃度も7〜15質量%と良好である。また、表5に示すように、鋼板内部及びめっき層中それぞれにMnSiO3、Mn2SiO4、及びSiO2が観察されたが、MnSiO3及びMn2SiO4の濃度のピークはSiO2の濃度のピークよりめっき層表面側に位置していた。また、表6に示すように、鋼板において残留オーステナイトの体積率が5%以上かつベイナイト+マルテンサイトの体積率が10%以上となった。 Steel plate numbers A1 to A3, B1 to B3, C1, D1 to D3, E1 to E3, F1 to F3, G1, H1 and I1 are within the range defined by the present invention for the chemical components of the steel plate, and the steel plate The production conditions are also within the range defined by the present invention. As a result, as shown in Table 4, the thickness of the region where the Fe concentration was 20 to 90% at the interface between the steel sheet and the plating layer was 1.2 μm or more. Also, the plating property is good, and the Fe concentration contained in the plating layer is also good at 7 to 15% by mass. Further, as shown in Table 5, MnSiO 3 , Mn 2 SiO 4 , and SiO 2 were observed inside the steel plate and in the plating layer, respectively, but the peak of the concentration of MnSiO 3 and Mn 2 SiO 4 was the concentration of SiO 2 . It was located on the plating layer surface side from the peak of. Further, as shown in Table 6, the volume ratio of retained austenite in the steel sheet was 5% or more and the volume ratio of bainite + martensite was 10% or more.

この結果、これらの鋼板は表7に示すように、降伏応力が380MPa以上であり、引張り強さが600MPaであり、強度-延性バランスが21000(MPa×%)以上となり、高強度かつ高い加工性を示した。また、疲労限度比が0.60以上となり、高い疲労耐久性を示した。   As a result, as shown in Table 7, these steel sheets have a yield stress of 380 MPa or more, a tensile strength of 600 MPa, a strength-ductility balance of 21000 (MPa ×%) or more, high strength and high workability. showed that. Further, the fatigue limit ratio was 0.60 or more, indicating high fatigue durability.

一方、鋼板番号J1及びK1は、製造条件は本発明で規定する範囲内であったが鋼板の化学的成分が本発明で規定する範囲外であった。このためめっき性が悪くなった。また鋼板番号K1については引張最大強度と伸びの積も本発明で規定する範囲外になった。   On the other hand, steel plate numbers J1 and K1 were within the range defined by the present invention, but the chemical components of the steel plate were outside the range defined by the present invention. For this reason, the plating property deteriorated. For steel plate number K1, the product of tensile maximum strength and elongation was also outside the range specified in the present invention.

また、鋼板番号A5、B4、C2、D5、E4、及びF5はめっき浴中に板幅方向の流れを設けなかったため、Fe濃度が20〜90%となる領域の厚みが1.0μm未満になった。その結果、表7に示すように疲労限度比が0.54以下と低い値を示した。   Moreover, since the steel plate numbers A5, B4, C2, D5, E4, and F5 did not provide the flow in the plate width direction in the plating bath, the thickness of the region where the Fe concentration was 20 to 90% became less than 1.0 μm. It was. As a result, as shown in Table 7, the fatigue limit ratio was as low as 0.54 or less.

また、鋼板番号A9、D9、及びF9は還元帯の酸素ポテンシャルが本発明で規定した範囲より低かった。このため、鋼板表面にSiO2が形成され、めっき性が低下し、かつFe濃度が20〜90%となる領域の厚みが0.2μmと低い値になった。その結果、表7に示すように疲労限度比が0.53以下と低い値を示した。 In addition, the steel plate numbers A9, D9, and F9 had the oxygen potential in the reduction zone lower than the range defined in the present invention. Thus, SiO 2 is formed on the surface of the steel sheet, plating property is lowered, and the thickness of the region Fe concentration of 20% to 90% became 0.2μm and low value. As a result, as shown in Table 7, the fatigue limit ratio was as low as 0.53 or less.

また、鋼板番号A−10、D−10、及びF10は還元帯の酸素ポテンシャルが本発明で規定した範囲より低かった。このため、鋼板表面にSiO2が形成され、めっき性が低下した。また、めっき浴中に板幅方向の流れを設けなかった。以上のことから、Fe濃度が20〜90%となる領域の厚みが0.3μmと低い値になった。その結果、表7に示すように疲労限度比が0.52以下と低い値を示した。 Steel plates Nos. A-10, D-10, and F10 had an oxygen potential in the reduction zone lower than the range defined in the present invention. Thus, SiO 2 is formed on the surface of the steel sheet, the plating property was lowered. Further, no flow in the plate width direction was provided in the plating bath. From the above, the thickness of the region where the Fe concentration was 20 to 90% was as low as 0.3 μm. As a result, as shown in Table 7, the fatigue limit ratio was as low as 0.52 or less.

また、鋼板番号A8、D8、及びF8は還元帯の酸素ポテンシャルが本発明で規定した範囲より低かった。このため、鋼板表面にSiO2が形成され、めっき性が低下し、かつFe濃度が20〜90%となる領域の厚みが0.7μm以下になった。また、合金化温度が高かったため、表6に示すように、残留オーステナイトがパーライトや炭化物を含むベイナイト組織へ分解した。その結果、表7に示すように疲労限度比が0.49以下と低い値を示した。また引張最大強度と伸びの積も本発明で規定する範囲外になった。 In addition, the steel plate numbers A8, D8, and F8 had an oxygen potential in the reduction zone lower than the range defined in the present invention. Thus, SiO 2 is formed on the surface of the steel sheet, plating property is lowered, and the thickness of the region Fe concentration of 20% to 90% is equal to or less than 0.7 [mu] m. Further, since the alloying temperature was high, as shown in Table 6, the retained austenite was decomposed into a bainite structure containing pearlite and carbide. As a result, as shown in Table 7, the fatigue limit ratio was as low as 0.49 or less. Further, the product of the maximum tensile strength and the elongation was out of the range defined by the present invention.

また、鋼板番号A7、B6、D7、及びF4は還元帯の酸素ポテンシャルが本発明で規定した範囲より低かった。このため、鋼板表面にSiO2が形成され、めっき性が低下した。また、めっき浴中に板幅方向の流れを設けなかった。以上のことから、Fe濃度が20〜90%となる領域の厚みが0.6μmと低い値になった。また、合金化温度が高かったため、表6に示すように、残留オーステナイトがパーライトや炭化物を含むベイナイト組織へ分解した。その結果、表7に示すように疲労限度比が0.49以下と低い値を示した。また引張最大強度と伸びの積も本発明で規定する範囲外になった。 In addition, the steel plate numbers A7, B6, D7, and F4 had the oxygen potential in the reduction zone lower than the range defined in the present invention. Thus, SiO 2 is formed on the surface of the steel sheet, the plating property was lowered. Further, no flow in the plate width direction was provided in the plating bath. From the above, the thickness of the region where the Fe concentration was 20 to 90% was as low as 0.6 μm. Further, since the alloying temperature was high, as shown in Table 6, the retained austenite was decomposed into a bainite structure containing pearlite and carbide. As a result, as shown in Table 7, the fatigue limit ratio was as low as 0.49 or less. Further, the product of the maximum tensile strength and the elongation was out of the range defined by the present invention.

また、鋼板番号A4、D4、及びF4は合金化温度が高かったため、表6に示すように、残留オーステナイトがパーライトや炭化物を含むベイナイト組織へ分解した。このため、Fe濃度が20〜90%となる領域の厚みが2.7μm以上と十分であるにもかかわらず、表7に示すように疲労限度比が0.49以下と低い値を示した。また引張最大強度と伸びの積も本発明で規定する範囲外になった。   Further, since steel plate numbers A4, D4, and F4 had high alloying temperatures, as shown in Table 6, the retained austenite was decomposed into a bainite structure containing pearlite and carbides. For this reason, although the thickness of the region where the Fe concentration is 20 to 90% is sufficient to be 2.7 μm or more, the fatigue limit ratio was as low as 0.49 or less as shown in Table 7. Further, the product of the maximum tensile strength and the elongation was out of the range defined by the present invention.

また、鋼板番号A6、B5、C3、D6、E5、F6、G2、H2、I2、J2、及びK2は、酸素ポテンシャルが本発明で規定する範囲より高かった。このため、表5に示すように鋼板表面にFeOが形成され、めっき性が低下し、かつFe濃度が20〜90%となる領域の厚みが0.5μm以下と低い値になった。その結果、表7に示すように疲労限度比が0.54以下と低い値を示した。また、鋼板番号C3、G2、I2、J2及びK2については、引張最大強度と伸びの積も本発明で規定する範囲外になった。   Steel plate numbers A6, B5, C3, D6, E5, F6, G2, H2, I2, J2, and K2 were higher in oxygen potential than the range specified in the present invention. For this reason, as shown in Table 5, FeO was formed on the surface of the steel sheet, the plating property was lowered, and the thickness of the region where the Fe concentration was 20 to 90% was as low as 0.5 μm or less. As a result, as shown in Table 7, the fatigue limit ratio was as low as 0.54 or less. In addition, for steel plate numbers C3, G2, I2, J2, and K2, the product of the maximum tensile strength and the elongation was out of the range defined by the present invention.

GDSを用いたFe、Zn、Mn、及びSiの深さ方向の濃度分布を示すチャート。The chart which shows the density distribution of the depth direction of Fe, Zn, Mn, and Si using GDS.

Claims (10)

質量%で、
C:0.07〜0.25%、
Si:0.8〜2.0%、
Mn:1.1〜2.5%、
Al:0.001〜2.0%、
N:0.01%以下、
S:0.01%以下、
O:0.01%以下
を含有し、残部がFe及び可避的不純物からなる高強度鋼板の上に、Feを含有する合金化溶融亜鉛めっき層を有する高強度合金化溶融亜鉛鋼板であって、
前記高強度鋼板は、残留オーステナイトの体積率が5%以上であり、かつベイナイトとマルテンサイトの体積率が合計で10%以上であり、
前記合金化溶融亜鉛めっき層及び前記高強度鋼板の界面において、GDSによるFe濃度が20〜90%となる領域の厚みが1.2μm以上であることを特徴とする高強度合金化溶融亜鉛めっき鋼板。
% By mass
C: 0.07 to 0.25%,
Si: 0.8-2.0%,
Mn: 1.1 to 2.5%
Al: 0.001 to 2.0%,
N: 0.01% or less,
S: 0.01% or less,
O: A high-strength galvanized steel sheet having an alloyed hot-dip galvanized layer containing Fe on a high-strength steel sheet containing 0.01% or less and the balance being Fe and unavoidable impurities. ,
The high-strength steel sheet has a volume ratio of retained austenite of 5% or more, and a total volume ratio of bainite and martensite of 10% or more,
A high-strength galvannealed steel sheet having a thickness of 1.2 μm or more in a region where the Fe concentration by GDS is 20 to 90% at the interface between the galvannealed layer and the high-strength steel sheet .
前記合金化溶融亜鉛めっき層または鋼板のいずれか一方、または、両方にFeSiO3、Fe2SiO4、MnSiO3、及びMn2SiO4から選ばれた1種以上のSi酸化物が存在し、かつ前記めっき層または鋼板のいずれか一方、または、両方にSiO2が存在し、前記Si酸化物の濃度分布のピークが、前記SiO2の濃度分布のピークより前記合金化溶融亜鉛めっき鋼板の表面側に位置することを特徴とする請求項1に記載の高強度合金化溶融亜鉛めっき鋼板。 One or more Si oxides selected from FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , and Mn 2 SiO 4 are present in either one or both of the alloyed hot-dip galvanized layer and the steel sheet, and Either one or both of the plating layer and the steel sheet has SiO 2 , and the Si oxide concentration distribution peak is closer to the surface side of the galvannealed steel sheet than the SiO 2 concentration distribution peak. The high-strength galvannealed steel sheet according to claim 1, which is located in 前記高強度鋼板は、さらに質量%で
Ni:0.05〜2.0%、
Cu:0.05〜2.0%、
Cr:0.05〜2.0%、
Mo:0.05〜2.0%、
B:0.0001〜0.002%、
Ti:0.001〜0.1%、
Nb:0.001〜0.1%、
V:0.001〜0.1%、
REM:0.0001〜0.1%、
Ca:0.0001〜0.1%
の一種以上を含有することを特徴とする請求項1又は2に記載の高強度合金化溶融亜鉛めっき鋼板。
The high-strength steel plate is further Ni: 0.05-2.0% by mass,
Cu: 0.05-2.0%,
Cr: 0.05-2.0%,
Mo: 0.05-2.0%,
B: 0.0001 to 0.002%,
Ti: 0.001 to 0.1%,
Nb: 0.001 to 0.1%,
V: 0.001 to 0.1%
REM: 0.0001 to 0.1%,
Ca: 0.0001 to 0.1%
The high-strength galvannealed steel sheet according to claim 1 or 2, characterized by containing at least one of the following.
前記合金化溶融亜鉛めっき層は、更にAlを含有することを特徴とする請求項1〜3のいずれか一項に記載の高強度合金化溶融亜鉛めっき鋼板。   The high-strength galvannealed steel sheet according to any one of claims 1 to 3, wherein the galvannealed layer further contains Al. 平行部が30mm、板厚2mm、曲率半径が100mmであるJIS Z 2275に規定の1号試験片に対してJIS Z 2275に準拠した疲労試験を行うことにより求められる2×10回時間強さを引張最大強度で除した値である疲労限度比が、0.55以上であることを特徴とする請求項1〜4のいずれか一項に記載の高強度合金化溶融亜鉛めっき鋼板。 2 × 10 6 times strength required by conducting a fatigue test in accordance with JIS Z 2275 on the No. 1 test piece defined in JIS Z 2275 having a parallel part of 30 mm, a plate thickness of 2 mm, and a radius of curvature of 100 mm. The high-strength galvannealed steel sheet according to any one of claims 1 to 4, wherein a fatigue limit ratio, which is a value obtained by dividing by a tensile maximum strength, is 0.55 or more. 前記鋼板の引張最大強度(Ts)と伸び(EI)の積が21000(MPa・%)以上であることを特徴とする請求項1〜5のいずれか一項に記載の高強度合金化溶融亜鉛めっき鋼板。   The high-strength alloyed molten zinc according to any one of claims 1 to 5, wherein a product of maximum tensile strength (Ts) and elongation (EI) of the steel sheet is 21000 (MPa ·%) or more. Plated steel sheet. 質量%で、
C:0.07〜0.25%、
Si:0.8〜2.0%、
Mn:1.1〜2.5%、
Al:0.001〜2.0%、
N:0.001〜0.1%
S:0.0001〜0.1%、
O:0.0001〜0.1%
を含有し、残部がFe及び可避的不純物からなる高強度鋼板を還元帯に通すことにより還元し、その後めっき浴に浸漬して引き上げ、その後合金化処理を行うことにより、連続的に溶融亜鉛めっきを施す高強度合金化溶融亜鉛めっき鋼板の製造方法であって、
前記還元帯の雰囲気として、H2を1〜60体積%含有し、残部がN2、H2O、O2、CO2、COの1種又は2種以上並びに不可避的不純物からなり、その雰囲気中の酸素分圧の対数logPO2
−0.000034T2+0.105T−0.2〔Si%〕2+2.1〔Si%〕−98.8≦logPO2≦−0.000038T2+0.107T−90.4…(1)
923≦T≦1173 ・・・(2)
T:鋼板の最高到達温度(K)、〔Si%〕:鋼板中のSi含有量(mass%)
に制御した雰囲気で還元を行い、
前記高強度鋼板を前記めっき浴に浸漬させる際に、前記めっき浴内のめっき液を、前記高強度鋼板の板幅方向に流動させることを特徴とする高強度合金化溶融亜鉛めっき鋼板の製造方法。
% By mass
C: 0.07 to 0.25%,
Si: 0.8-2.0%,
Mn: 1.1 to 2.5%
Al: 0.001 to 2.0%,
N: 0.001 to 0.1%
S: 0.0001 to 0.1%,
O: 0.0001 to 0.1%
Is reduced by passing a high-strength steel plate containing Fe and unavoidable impurities through a reduction zone, and then dipped in a plating bath to be pulled up, and then subjected to alloying treatment to continuously melt zinc. A method for producing a high-strength galvannealed steel sheet to be plated,
As the atmosphere of the reduction zone, 1 to 60% by volume of H 2 is contained, and the balance consists of one or more of N 2 , H 2 O, O 2 , CO 2 , CO and inevitable impurities, and the atmosphere The logarithmic log PO 2 of the partial pressure of oxygen is −0.000034T 2 + 0.105T−0.2 [Si%] 2 +2.1 [Si%] − 98.8 ≦ log PO 2 ≦ −0.000038 T 2 +0.107 T -90.4 ... (1)
923 ≦ T ≦ 1173 (2)
T: Maximum attained temperature (K) of steel sheet, [Si%]: Si content in steel sheet (mass%)
Reduction in a controlled atmosphere,
A method for producing a high-strength galvannealed steel sheet, characterized by causing the plating solution in the plating bath to flow in the plate width direction of the high-strength steel sheet when the high-strength steel sheet is immersed in the plating bath. .
前記めっき液の流動速度を0.5〜2.5m/秒にすることを特徴とする請求項7に記載の高強度合金化溶融亜鉛めっき鋼板の製造方法。   The method for producing a high-strength galvannealed steel sheet according to claim 7, wherein a flow rate of the plating solution is set to 0.5 to 2.5 m / sec. 前記合金化処理を480℃以下の温度で行うことを特徴とする請求項7又は8に記載の高強度合金化溶融亜鉛めっき鋼板の製造方法。   The said alloying process is performed at the temperature of 480 degrees C or less, The manufacturing method of the high intensity | strength galvannealed steel plate of Claim 7 or 8 characterized by the above-mentioned. 前記高強度鋼板は、鋳造スラブを加熱し、前記加熱された鋳造スラブをAr3変態点以上で熱間圧延した後、630℃以下の温度域において巻き取り、その後、酸洗後に圧下率40〜70%で冷間圧延することにより形成され、
前記高強度鋼板を還元する際に、
前記還元帯において750℃以上900℃以下で焼鈍処理し、その後650℃まで0.1〜200℃/秒で冷却し、その後650℃〜500℃の間の平均冷却速度が1〜200℃/秒となるように、(前記めっき液の温度−40)〜(前記めっき液の温度+50)℃まで冷却することを特徴とする請求項7〜9のいずれか一項に記載の高強度合金化溶融亜鉛めっき鋼板の製造方法。
The high-strength steel sheet heats the cast slab, hot-rolls the heated cast slab at an Ar 3 transformation point or higher, winds it up in a temperature range of 630 ° C. or lower, and then pickles after the pickling 40 to 40% Formed by cold rolling at 70%,
When reducing the high-strength steel plate,
In the reduction zone, annealing is performed at 750 ° C. or more and 900 ° C. or less, and then cooled to 650 ° C. at 0.1 to 200 ° C./second, and then the average cooling rate between 650 ° C. and 500 ° C. is 1 to 200 ° C./second. The high-strength alloying melt according to any one of claims 7 to 9, wherein the temperature is cooled to (temperature of the plating solution −40) to (temperature of the plating solution +50) ° C. Manufacturing method of galvanized steel sheet.
JP2006197875A 2006-07-20 2006-07-20 High-strength galvannealed steel sheet and method for producing the same Active JP4932363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006197875A JP4932363B2 (en) 2006-07-20 2006-07-20 High-strength galvannealed steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006197875A JP4932363B2 (en) 2006-07-20 2006-07-20 High-strength galvannealed steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008024980A true JP2008024980A (en) 2008-02-07
JP4932363B2 JP4932363B2 (en) 2012-05-16

Family

ID=39115931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197875A Active JP4932363B2 (en) 2006-07-20 2006-07-20 High-strength galvannealed steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4932363B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038168A (en) * 2006-08-02 2008-02-21 Nippon Steel Corp High-strength hot-dip galvanized steel sheet excellent in metal-plating property, and producing method thereof
JP2012251229A (en) * 2011-06-06 2012-12-20 Nippon Steel & Sumitomo Metal Corp High-strength hot-dip galvannealed steel sheet and method for production thereof
WO2013018741A1 (en) * 2011-07-29 2013-02-07 新日鐵住金株式会社 High-strength steel sheet having excellent shape-retaining properties, high-strength zinc-plated steel sheet, and method for manufacturing same
WO2013047836A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 Galvanized steel sheet and method of manufacturing same
JP2013076148A (en) * 2011-09-30 2013-04-25 Nippon Steel & Sumitomo Metal Corp Hot-dip galvanized steel sheet having tensile strength of 980 mpa or more and excellent in formability and production method of the same
WO2014103279A1 (en) * 2012-12-27 2014-07-03 Jfeスチール株式会社 Hot-dip galvanized steel sheet
KR20150013719A (en) 2012-06-15 2015-02-05 제이에프이 스틸 가부시키가이샤 High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets
KR20160122255A (en) 2014-02-18 2016-10-21 제이에프이 스틸 가부시키가이샤 High-strength hot-dip galvanized steel plate and method for producing same
JP2018080362A (en) * 2016-11-15 2018-05-24 Jfeスチール株式会社 High-strength steel sheet, manufacturing method thereof and high-strength galvanized steel sheet
EP3382049A4 (en) * 2015-11-26 2018-10-03 JFE Steel Corporation Method for manufacturing high-strength hot-dip galvanized steel sheet, method for manufacturing hot-rolled steel plate for high-strength hot-dip galvanized steel sheet, method for manufacturing cold-rolled steel plate for high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
US10174411B2 (en) 2013-03-04 2019-01-08 Jfe Steel Corporation High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor (as amended)
KR20200077588A (en) * 2017-12-19 2020-06-30 아르셀러미탈 Cold rolled and heat-treated steel sheet and method for manufacturing the same
US10837074B2 (en) 2012-03-19 2020-11-17 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101585744B1 (en) 2013-12-26 2016-01-14 주식회사 포스코 Zn PLATED STEEL SHEET HAVING EXCELLENT SURFACE QUALITY AND DELAYED FRACTURE RESISTANCE AND METHOD FOR MANUFACTURING THE SAME

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294487A (en) * 2001-03-28 2002-10-09 Sumitomo Metal Ind Ltd Electrolytic zinc-base plated steel-sheet with high strength
JP2003171752A (en) * 2001-07-12 2003-06-20 Nippon Steel Corp High strength, high ductility hot-dip galvanized steel sheet having excellent fatigue durability and corrosion resistance
JP2003342641A (en) * 2002-03-18 2003-12-03 Jfe Steel Kk Process for manufacturing hot-dip galvanized high tensile steel sheet showing excellent ductility and fatigue resistance
JP2005060743A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp Method and facility for manufacturing high-strength galvannealed steel sheet
JP2005060742A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp High-strength galvannealed steel sheet with superior adhesiveness, and manufacturing method therefor
JP2005213643A (en) * 2004-02-02 2005-08-11 Nippon Steel Corp High-strength electrogalvanized steel sheet excellent in appearance uniformity and its production method
JP2005315960A (en) * 2004-04-27 2005-11-10 Optrex Corp Color image display apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294487A (en) * 2001-03-28 2002-10-09 Sumitomo Metal Ind Ltd Electrolytic zinc-base plated steel-sheet with high strength
JP2003171752A (en) * 2001-07-12 2003-06-20 Nippon Steel Corp High strength, high ductility hot-dip galvanized steel sheet having excellent fatigue durability and corrosion resistance
JP2003342641A (en) * 2002-03-18 2003-12-03 Jfe Steel Kk Process for manufacturing hot-dip galvanized high tensile steel sheet showing excellent ductility and fatigue resistance
JP2005060743A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp Method and facility for manufacturing high-strength galvannealed steel sheet
JP2005060742A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp High-strength galvannealed steel sheet with superior adhesiveness, and manufacturing method therefor
JP2005213643A (en) * 2004-02-02 2005-08-11 Nippon Steel Corp High-strength electrogalvanized steel sheet excellent in appearance uniformity and its production method
JP2005315960A (en) * 2004-04-27 2005-11-10 Optrex Corp Color image display apparatus

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038168A (en) * 2006-08-02 2008-02-21 Nippon Steel Corp High-strength hot-dip galvanized steel sheet excellent in metal-plating property, and producing method thereof
JP2012251229A (en) * 2011-06-06 2012-12-20 Nippon Steel & Sumitomo Metal Corp High-strength hot-dip galvannealed steel sheet and method for production thereof
WO2013018741A1 (en) * 2011-07-29 2013-02-07 新日鐵住金株式会社 High-strength steel sheet having excellent shape-retaining properties, high-strength zinc-plated steel sheet, and method for manufacturing same
JP5299591B2 (en) * 2011-07-29 2013-09-25 新日鐵住金株式会社 High-strength steel sheet excellent in shape freezing property, high-strength galvanized steel sheet, and production method thereof
US9988700B2 (en) 2011-07-29 2018-06-05 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet and high-strength galvanized steel sheet excellent in shape fixability, and manufacturing method thereof
WO2013047836A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 Galvanized steel sheet and method of manufacturing same
JP2013076148A (en) * 2011-09-30 2013-04-25 Nippon Steel & Sumitomo Metal Corp Hot-dip galvanized steel sheet having tensile strength of 980 mpa or more and excellent in formability and production method of the same
JP5376090B2 (en) * 2011-09-30 2013-12-25 新日鐵住金株式会社 Galvanized steel sheet and manufacturing method thereof
US9970092B2 (en) 2011-09-30 2018-05-15 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method of manufacturing the same
US10837074B2 (en) 2012-03-19 2020-11-17 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet
KR20150013719A (en) 2012-06-15 2015-02-05 제이에프이 스틸 가부시키가이샤 High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets
KR20160143893A (en) 2012-06-15 2016-12-14 제이에프이 스틸 가부시키가이샤 High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets
KR101679159B1 (en) 2012-12-27 2016-11-23 제이에프이 스틸 가부시키가이샤 Hot-dip galvanized steel sheet
WO2014103279A1 (en) * 2012-12-27 2014-07-03 Jfeスチール株式会社 Hot-dip galvanized steel sheet
CN104968824A (en) * 2012-12-27 2015-10-07 杰富意钢铁株式会社 Hot-dip galvanized steel sheet
KR20150096513A (en) * 2012-12-27 2015-08-24 제이에프이 스틸 가부시키가이샤 Hot-dip galvanized steel sheet
US9476111B2 (en) 2012-12-27 2016-10-25 Jfe Steel Corporation Hot dip galvanized steel sheet
JP2014125672A (en) * 2012-12-27 2014-07-07 Jfe Steel Corp Galvanized steel sheet
US10174411B2 (en) 2013-03-04 2019-01-08 Jfe Steel Corporation High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor (as amended)
KR20160122255A (en) 2014-02-18 2016-10-21 제이에프이 스틸 가부시키가이샤 High-strength hot-dip galvanized steel plate and method for producing same
US10301701B2 (en) 2014-02-18 2019-05-28 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing same
US11814695B2 (en) 2015-11-26 2023-11-14 Jfe Steel Corporation Method for manufacturing high-strength galvanized steel sheet and high-strength galvanized steel sheet
EP3382049A4 (en) * 2015-11-26 2018-10-03 JFE Steel Corporation Method for manufacturing high-strength hot-dip galvanized steel sheet, method for manufacturing hot-rolled steel plate for high-strength hot-dip galvanized steel sheet, method for manufacturing cold-rolled steel plate for high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
JP2018080362A (en) * 2016-11-15 2018-05-24 Jfeスチール株式会社 High-strength steel sheet, manufacturing method thereof and high-strength galvanized steel sheet
WO2018092735A1 (en) * 2016-11-15 2018-05-24 Jfeスチール株式会社 High strength steel sheet, production method therefor, and high strength galvanized steel sheet
KR20200077588A (en) * 2017-12-19 2020-06-30 아르셀러미탈 Cold rolled and heat-treated steel sheet and method for manufacturing the same
JP2021507985A (en) * 2017-12-19 2021-02-25 アルセロールミタル Cold-rolled heat-treated steel sheet and its manufacturing method
KR102493548B1 (en) 2017-12-19 2023-01-31 아르셀러미탈 Cold-rolled and heat-treated steel sheet and its manufacturing method
JP7232252B2 (en) 2017-12-19 2023-03-02 アルセロールミタル Cold-rolled heat-treated steel sheet and its manufacturing method
US11795519B2 (en) 2017-12-19 2023-10-24 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof

Also Published As

Publication number Publication date
JP4932363B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4932363B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP4741376B2 (en) High-strength galvannealed steel sheet with good appearance, manufacturing method and manufacturing equipment thereof
JP5223360B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP6390713B2 (en) Hot-dip galvanized steel sheet
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP6315154B1 (en) Hot-dip galvanized steel sheet
JP6390712B2 (en) Hot-dip galvanized steel sheet
JP4932376B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating properties and method for producing the same
JP5708884B2 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
CN110914464B (en) Hot-dip galvanized steel sheet
US20100304183A1 (en) High strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in shapeability and plateability and methods of production and apparatuses for production of the same
WO2011025042A1 (en) High-strength hot-dip galvanized steel sheet and process for producing same
JP6315155B1 (en) Hot-dip galvanized steel sheet
WO2020136988A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP5636683B2 (en) High-strength galvannealed steel sheet with excellent adhesion and manufacturing method
EP3382049B1 (en) Method for manufacturing cold-rolled steel sheet for high-strength hot-dip galvanized steel sheet, method for manufacturing high-strength hot-dip galvanized steel sheet
JP4837464B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same
JP5630588B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2018151023A1 (en) High-strength steel plate and method for manufacturing same
TW201319267A (en) Alloyed hot-dip galvanized steel sheet
JP4837459B2 (en) High-strength hot-dip galvanized steel sheet with good appearance and excellent corrosion resistance and method for producing the same
KR101647225B1 (en) High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same
WO2024053663A1 (en) Plated steel sheet
JP5354178B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R151 Written notification of patent or utility model registration

Ref document number: 4932363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350