JP2008019510A - Method of operating electric arc furnace by using steelmaking dust - Google Patents
Method of operating electric arc furnace by using steelmaking dust Download PDFInfo
- Publication number
- JP2008019510A JP2008019510A JP2007214016A JP2007214016A JP2008019510A JP 2008019510 A JP2008019510 A JP 2008019510A JP 2007214016 A JP2007214016 A JP 2007214016A JP 2007214016 A JP2007214016 A JP 2007214016A JP 2008019510 A JP2008019510 A JP 2008019510A
- Authority
- JP
- Japan
- Prior art keywords
- dust
- electric furnace
- coarse
- iron
- steelmaking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
本発明は、転炉等の製鋼設備から発生するダスト(以下、製鋼ダストという)を鉄源として使用する電気炉の操業方法に関するものである。 The present invention relates to a method for operating an electric furnace using dust generated from steelmaking facilities such as converters (hereinafter referred to as steelmaking dust) as an iron source.
一般に電気炉の操業においては、鉄源として主にスクラップ等の固体鉄源を装入して溶解する。また高炉から出銑した溶銑を使用できる立地条件であれば、溶銑を鉄源として電気炉に装入する場合もある。このようにして電気炉は、鉄源としてスクラップや溶銑等を装入して溶解し、溶鉄を溶製するものであるから、これらの鉄源のコストが溶鉄の製造コストに占める割合は大きい。 In general, in the operation of an electric furnace, a solid iron source such as scrap is mainly charged and melted as an iron source. In addition, if the hot metal extracted from the blast furnace can be used, it may be charged into the electric furnace using the hot metal as an iron source. In this way, the electric furnace is one in which scrap, hot metal, or the like is charged and melted as an iron source to melt the molten iron, so the cost of these iron sources accounts for a large proportion of the molten iron production cost.
そこで、安価な鉄源として製鉄所で発生する各種ダストを鉄源として、スクラップあるいは溶銑とともに電気炉に装入して溶鉄を製造する技術が検討されている。
たとえば、スクラップ等の固体鉄源を装入して溶解する電気炉とは異なるが、鉄鉱石または製鉄所にて発生するダスト類の鉄酸化物を予め還元して用いる技術が特許文献1に開示されている。しかしながら、この技術では、ダストを還元するための設備(たとえばロータリーキルン等)が必要となる。
Therefore, a technique for producing molten iron by using various dusts generated at steelworks as an inexpensive iron source and charging it into an electric furnace together with scrap or hot metal has been studied.
For example, Patent Document 1 discloses a technique in which iron oxides of dusts generated in iron ore or steelworks are used in advance, although they are different from an electric furnace in which a solid iron source such as scrap is charged and melted. Has been. However, this technology requires equipment for reducing dust (for example, a rotary kiln).
またスクラップ等の固体鉄源を溶解する電気炉に関連する特許文献2には、アーク式電気炉から発生するダストをカーボン微粉と混練して造粒し、他の鉄源とともに電気炉に装入する技術が提案されている。しかしながら、この技術では、ダストとカーボン微粉を混練して造粒するための設備が必要となる。
また同様にスクラップ等の固体鉄源を溶解するアーク式電気炉に関連する特許文献3には、電気炉から発生するダストと高炉から出銑した溶銑を電気炉に装入する技術が提案されている。この技術では、ダストを還元する設備やダストとカーボン微粉を混練する設備を設置する必要はない。しかしながら、ダストと溶銑を電気炉に装入するので、溶銑中の炭素によってダスト中の酸化鉄が還元される際に下記の(1),(2)式の吸熱反応が進行し、エネルギー損失が生じる。その結果、ダストの使用量が増加すると、電気炉の電力消費量が増大する。つまり特許文献3に開示された技術では、ダストを多量に使用すると、電力コストが上昇するという問題があった。
In Patent Document 2 related to an electric furnace for melting solid iron sources such as scrap, dust generated from an arc electric furnace is kneaded and granulated with carbon fine powder, and charged into the electric furnace together with other iron sources. Techniques to do this have been proposed. However, this technique requires equipment for kneading and granulating dust and carbon fine powder.
Similarly, Patent Document 3 related to an arc electric furnace for melting solid iron sources such as scrap proposes a technique for charging dust generated from an electric furnace and hot metal discharged from a blast furnace into the electric furnace. Yes. With this technique, there is no need to install equipment for reducing dust or equipment for kneading dust and carbon fines. However, since the dust and hot metal are charged into the electric furnace, when the iron oxide in the dust is reduced by the carbon in the hot metal, the endothermic reaction of the following formulas (1) and (2) proceeds, resulting in energy loss. Arise. As a result, when the amount of dust used increases, the power consumption of the electric furnace increases. In other words, the technique disclosed in Patent Document 3 has a problem that the power cost increases when a large amount of dust is used.
Fe2O3+3C=2Fe+3CO−1050kcal/kg-Fe ・・・ (1)
FeO+C=Fe+CO−680kcal/kg-Fe ・・・ (2)
FeO + C = Fe + CO-680kcal / kg-Fe (2)
本発明は、安価な製鋼ダストを電気炉で鉄源として使用するにあたって、転炉等の製鋼設備から回収した製鋼ダストに加工(たとえば還元,混練等)を加えることなく使用でき、しかも大量に使用できる電気炉操業方法を提供することを目的とする。 The present invention can use inexpensive steelmaking dust as an iron source in an electric furnace without adding processing (for example, reduction, kneading, etc.) to steelmaking dust collected from a steelmaking facility such as a converter, and is used in large quantities. It aims at providing the electric furnace operation method which can be done.
本発明者らは、電気炉で使用する安価な鉄源として、製鉄所の製鋼工程で使用する転炉等の製鋼設備から回収した製鋼ダストに着目した。そして製鋼ダストに含まれる鉄分について調査したところ、粒径の大きい粗粒ダストは、金属鉄の含有量が増加し、酸化鉄の含有量が減少することを見出した。つまり製鋼ダストのうちの粗粒ダストは、金属鉄が多量に含有されるので、酸化鉄の還元反応(すなわち(1),(2)式の吸熱反応)が抑制され、電力として供給されるエネルギー効率が向上する。 The present inventors paid attention to steelmaking dust recovered from steelmaking facilities such as converters used in steelmaking processes at steelworks as an inexpensive iron source used in electric furnaces. And when it investigated about the iron content contained in steelmaking dust, the coarse-grained dust with a large particle size discovered that content of metallic iron increased and content of iron oxide decreased. In other words, the coarse dust of steelmaking dust contains a large amount of metallic iron, so the reduction reaction of iron oxide (that is, the endothermic reaction of equations (1) and (2)) is suppressed, and the energy supplied as electric power. Efficiency is improved.
本発明は、スクラップを固体鉄源として溶解して溶鉄を溶製する電気炉操業方法において、製鋼ダストから分別して回収した粒径0.1mm以上の粗粒ダストを鉄源として加工を加えることなく電気炉に装入する電気炉操業方法である。
前記した発明においては、好適態様として、電気炉内の溶鉄の浴面下に粗粒ダストを装入することが好ましい。
The present invention relates to an electric furnace operation method in which scrap is melted as a solid iron source to produce molten iron. This is an electric furnace operation method for charging the furnace.
In the above-described invention, as a preferred embodiment, it is preferable to insert coarse dust under the molten iron bath surface in the electric furnace.
また、溶銑率が30%以上の範囲内で溶銑を電気炉内に装入することが好ましい。なお溶銑率は、電気炉内に装入される溶銑の重量と電気炉内に装入される鉄源(スクラップ,溶銑,各種ダスト等)の総重量との比率であり、下記の(3)式で表わされる。
溶銑率(%)= 100×MP/MT ・・・ (3)
MP:電気炉内に装入される溶銑の重量(ton)
MT:電気炉内に装入される鉄源の総重量(ton)
Moreover, it is preferable to insert the hot metal into the electric furnace within a range where the hot metal ratio is 30% or more. The hot metal ratio is the ratio between the weight of hot metal charged into the electric furnace and the total weight of iron sources (scraps, hot metal, various types of dust, etc.) charged into the electric furnace. It is expressed by a formula.
Hot metal ratio (%) = 100 x M P / M T (3)
M P : Weight of hot metal charged in the electric furnace (ton)
M T : Total weight of iron source charged in the electric furnace (ton)
本発明によれば、安価な製鋼ダストを電気炉で鉄源として使用するにあたって、製鋼設備から回収した製鋼ダストに加工を加えることなく使用できる。しかも大量に使用できるので、大幅なコスト削減を達成できる。 According to the present invention, when inexpensive steelmaking dust is used as an iron source in an electric furnace, it can be used without processing the steelmaking dust recovered from the steelmaking facility. Moreover, since it can be used in large quantities, a significant cost reduction can be achieved.
製鉄所の製鋼工程で使用する転炉等の製鋼設備から回収した製鋼ダストには、Feが多量に含まれている。そのFeは、金属鉄や酸化鉄として製鋼ダスト中に存在する。たとえば転炉から回収した製鋼ダストでは、金属鉄あるいは酸化鉄として存在するFeは表1に示す通りである。なお、表1に示した粗粒ダストとは、粒径0.1mm以上の製鋼ダストを指し、細粒ダストとは、粒径0.1mm未満の製鋼ダストを指す。また、金属鉄あるいは酸化鉄として存在するFeは、製鋼ダストの質量に対する比率(すなわち質量%)で示した。T.Feは、製鋼ダスト中に存在するFeの総量であり、下記の(4)式で算出される値である。 Steelmaking dust collected from steelmaking facilities such as converters used in the steelmaking process of steelworks contains a large amount of Fe. The Fe exists in the steelmaking dust as metallic iron or iron oxide. For example, in steelmaking dust recovered from a converter, Fe present as metallic iron or iron oxide is as shown in Table 1. The coarse-grained dust shown in Table 1 refers to steelmaking dust having a particle size of 0.1 mm or more, and the fine-grained dust refers to steelmaking dust having a particle size of less than 0.1 mm. Moreover, Fe which exists as metallic iron or iron oxide was shown by the ratio (namely, mass%) with respect to the mass of steelmaking dust. T.Fe is the total amount of Fe present in the steelmaking dust, and is a value calculated by the following equation (4).
T.Fe (質量%)=M.Fe +O.Fe ・・・ (4)
M.Fe:金属鉄として存在するFe(質量%)
O.Fe:酸化鉄として存在するFe(質量%)
T.Fe (mass%) = M.Fe + O.Fe (4)
M.Fe: Fe present as metallic iron (mass%)
O.Fe: Fe present as iron oxide (% by mass)
表1から明らかなように、粗粒ダストは、細粒ダストに比べてT.Feが大きくなっており、Feを多量に含有していることが分かる。しかも粗粒ダストは、金属鉄として存在するFeが著しく増大している。つまり粗粒ダストは、Feを多量に含有しているばかりでなく、酸化鉄の含有量が少ないので、鉄源として電気炉に装入した場合に還元反応(すなわち(1),(2)式の吸熱反応)が抑制され、電力として供給されるエネルギー効率が向上する。したがって粗粒ダストは、電気炉に装入する鉄源として好適な材料である。 As is clear from Table 1, it can be seen that the coarse-grained dust has a larger amount of T.Fe than the fine-grained dust and contains a large amount of Fe. In addition, the coarse dust has significantly increased Fe present as metallic iron. In other words, coarse dust not only contains a large amount of Fe, but also contains a small amount of iron oxide, so when it is charged into an electric furnace as an iron source, the reduction reaction (ie, equations (1) and (2)) Endothermic reaction) is suppressed, and energy efficiency supplied as electric power is improved. Therefore, coarse dust is a material suitable as an iron source charged in an electric furnace.
本発明では、製鋼ダストのうちの粗粒ダストを分別して回収する方法は、特定の方法に限定しない。一例として図1に、製鋼設備として転炉を用いた場合の、粗粒ダストを回収する方法の一例を示す。
転炉1内に収容した溶鋼2の脱炭精錬を行なう際に発生する製鋼ダスト(すなわち粗粒ダスト7および細粒ダスト8)は、転炉1の上方に設けられるフード4を介して排ガス6とともにサチュレーター5へ送給される。製鋼ダストは、サチュレーター5内で集塵水13によって排ガス6から分離され、さらに回収ダクト11内へ誘導される。このとき排ガス6は排ガスダクト12を介して排ガス処理設備(図示せず)等に送給される。一方、サチュレーター5内で噴霧される集塵水13は回収ダクト11に流入する。
In the present invention, the method of separating and collecting coarse dust out of steelmaking dust is not limited to a specific method. As an example, FIG. 1 shows an example of a method for recovering coarse dust when a converter is used as a steelmaking facility.
Steelmaking dust (that is, coarse dust 7 and fine dust 8) generated when decarburizing and refining the molten steel 2 accommodated in the converter 1 is exhausted through a hood 4 provided above the converter 1. At the same time, it is sent to the
製鋼ダストのうちの粗粒ダスト7は、その質量が比較的大きいので、回収ダクト11内を通過する間に比較的早く沈降する。この粗粒ダスト7を回収するために、回収ダクト11の中間の位置に粗粒ダスト排出口9を配設する。つまり回収ダクト11内で沈降し、集塵水13とともに移動する粗粒ダスト7を粗粒ダスト排出口9から回収する。
一方、 細粒ダスト8は、その質量が比較的小さいので集塵水13中を浮遊し、細粒ダスト排出口10から回収される。
The coarse dust 7 of the steelmaking dust has a relatively large mass, and thus settles relatively quickly while passing through the
On the other hand, since the
このようにして製鋼ダストから粗粒ダスト7と細粒ダスト8を分別して回収できる。なお、回収ダクト11に粗粒ダスト排出口9を配設する位置は、製鋼ダストから粗粒ダスト7として回収する粒径、あるいは転炉1やサチュレーター5の設備仕様等に応じて適宜設定する。
本発明では図1に示す方法に限定せず、他の方法で製鋼ダストから粗粒ダスト7を分別することも可能である。たとえば図1において粗粒ダスト排出口9を配設せず、回収ダクト11から排出された製鋼ダストを篩い分けして、所定の粒径を有する粗粒ダスト7を分別して回収できる。
In this way, the coarse dust 7 and the
In the present invention, the method is not limited to the method shown in FIG. For example, in FIG. 1, the coarse dust discharge port 9 is not provided, and the steelmaking dust discharged from the
このようにして回収した粗粒ダスト7は、スクラップ等の固体鉄源に比べて表面積が極めて大きいので、電気炉に装入して溶解するまでの間に、大気中の酸素によって酸化されやすい。つまり固体鉄源とともに粗粒ダスト7を鉄源として使用する場合は、粗粒ダスト7の酸化鉄含有量が少ないにも関わらず、電気炉内で粗粒ダスト7が酸化されて酸化鉄が生成するので、粗粒ダスト7を鉄源として使用する効果が十分に発揮されない。 The coarse dust 7 collected in this manner has a very large surface area compared to a solid iron source such as scrap, and is thus easily oxidized by oxygen in the atmosphere before being charged in the electric furnace and dissolved. That is, when the coarse dust 7 is used as the iron source together with the solid iron source, the coarse dust 7 is oxidized in the electric furnace to produce iron oxide, although the iron oxide content of the coarse dust 7 is small. Therefore, the effect of using coarse dust 7 as an iron source is not sufficiently exhibited.
そこで本発明では、粗粒ダスト7の装入に先立って、高炉から出銑した溶銑を予め電気炉内に装入しておく。溶銑にはCが4〜6質量%程度含有されるので、粗粒ダスト7中の酸化鉄の還元反応が促進されるばかりでなく、生成したCOガスが電気炉内を還元雰囲気にするので、粗粒ダスト7の酸化を抑制することができる。
電気炉内に溶銑を装入するにあたって、下記の(3)式で表わされる溶銑率を30%以上とするのが好ましい。その理由は、溶銑率が30%未満では、溶銑中のCによる粗粒ダスト7の酸化防止効果が十分に発揮されないからである。
Therefore, in the present invention, the hot metal discharged from the blast furnace is charged in advance in the electric furnace before the coarse dust 7 is charged. Since the hot metal contains about 4 to 6% by mass of C, not only the reduction reaction of iron oxide in the coarse dust 7 is promoted, but also the generated CO gas makes the inside of the electric furnace a reducing atmosphere. Oxidation of the coarse dust 7 can be suppressed.
When charging the hot metal into the electric furnace, the hot metal ratio expressed by the following formula (3) is preferably set to 30% or more. The reason is that when the hot metal ratio is less than 30%, the antioxidant effect of the coarse dust 7 due to C in the hot metal is not sufficiently exhibited.
溶銑率(%)= 100×MP/MT ・・・ (3)
MP:電気炉内に装入される溶銑の重量(ton )
MT:電気炉内に装入される鉄源の総重量(ton )
粗粒ダスト7を装入するにあたって、溶銑と固体鉄源とを溶解した溶鉄の浴面下に装入すると、粗粒ダスト7の酸化防止の効果がさらに向上するので好ましい。本発明では、粗粒ダスト7を溶鉄の浴面下に装入する方法は、特定の方法に限定しないが、簡便な手段で行なうのが好ましい。
Hot metal ratio (%) = 100 x M P / M T (3)
M P : Weight of hot metal charged in the electric furnace (ton)
M T : Total weight of iron source charged in electric furnace (ton)
When the coarse dust 7 is charged, it is preferable to insert the molten iron and the solid iron source under the molten iron bath surface since the effect of preventing the coarse dust 7 from being further improved. In the present invention, the method of charging the coarse dust 7 under the molten iron bath surface is not limited to a specific method, but is preferably performed by a simple means.
たとえば下記の(a)〜(c)の方法で、粗粒ダスト7を溶鉄の浴面下に装入することが可能である。
(a)スクラップバケットの下部に粗粒ダスト7を収容し、その粗粒ダスト7上にスクラップ等の固体鉄源を収容して、固体鉄源とともに粗粒ダスト7を装入することによって粗粒ダスト7を溶鉄の浴面下に沈降させる。
(b)ノズル等を介して粗粒ダスト7を溶鉄の浴面下に吹込む。
(c)粗粒ダスト7を容器内に収容して、その容器とともに電気炉内の溶鉄に装入して浴面下に沈降させる。
For example, the coarse dust 7 can be charged under the molten iron bath surface by the following methods (a) to (c).
(a) Coarse grain dust 7 is accommodated in the lower part of the scrap bucket, a solid iron source such as scrap is accommodated on the coarse grain dust 7, and coarse grain dust 7 is charged together with the solid iron source. Dust 7 is allowed to settle below the molten iron bath surface.
(b) Blow coarse dust 7 through a nozzle or the like below the molten iron bath surface.
(c) Coarse-grained dust 7 is accommodated in a container, charged together with the container into molten iron in an electric furnace, and settled below the bath surface.
上記の(a)では、スクラップ等の固体鉄源と粗粒ダスト7を同時に装入することになる。ただし(b),(c)では、粗粒ダスト7を固体鉄源と同時に装入しても良いし、あるいは固体鉄源が溶解した後で装入しても良い。
本発明では、このようにして粗粒ダスト7を電気炉に装入するにあたって、あらかじめ粗粒ダスト7に還元や混練等の加工を施す必要はない。しかも溶銑に含有されるCによって粗粒ダスト7の酸化を防止できるので、粗粒ダスト7を大量に使用できる。
In the above (a), the solid iron source such as scrap and the coarse dust 7 are charged simultaneously. However, in (b) and (c), the coarse dust 7 may be charged simultaneously with the solid iron source, or may be charged after the solid iron source is dissolved.
In the present invention, when the coarse dust 7 is charged into the electric furnace in this way, it is not necessary to subject the coarse dust 7 to processing such as reduction or kneading in advance. Moreover, since the oxidation of the coarse dust 7 can be prevented by the C contained in the hot metal, the coarse dust 7 can be used in a large amount.
図1に示す方法で製鋼ダストから粗粒ダスト7を分別して回収しておき、電気炉で溶鉄を溶製する際に鉄源として使用した。すなわち、高炉から出銑した溶銑を電気炉に装入し、次いで上記した(a)の方法でスクラップと粗粒ダスト7を装入した。粗粒ダスト7の装入量は溶鉄1tonあたり90〜180kg/tonとした。この粗粒ダスト7の使用量は、従来から行なわれている電気炉ダストの使用量(10〜40kg/ton程度)の約5倍である。 The coarse dust 7 was separated and collected from the steelmaking dust by the method shown in FIG. 1 and used as an iron source when molten iron was melted in an electric furnace. That is, the hot metal discharged from the blast furnace was charged into an electric furnace, and then the scrap and coarse dust 7 were charged by the method (a) described above. The amount of coarse dust 7 charged was 90 to 180 kg / ton per ton of molten iron. The amount of the coarse dust 7 used is about five times the amount of electric furnace dust used conventionally (about 10 to 40 kg / ton).
このようにして電気炉を30日間連続して操業した。その間、溶鉄やスラグの突沸は発生せず、しかも1チャージの精錬時間も変動せず、操業上の問題は発生しなかった。つまり粗粒ダスト7を大量に使用しても、支障なく電気炉を操業できることが確かめられた。また得られた溶鉄の成分も、通常の操業と同程度の分布を示した。
図2は、粗粒ダスト7の使用量(kg/ton)と製出鋼歩留り(%)の変化量との関係を示すグラフである。ここで製出鋼歩留りとは、電気炉内に装入された粗粒ダスト7を除く鉄源の総量に対する溶解,出鋼された溶鉄の重量の比率を指す。図2から明らかなように、粗粒ダスト7の使用量が増加すると、製出鋼歩留りも増加した。またFeの回収率は平均90%であり、粗粒ダスト7中のFeが十分回収できたことが確かめられた。なお、Feの回収率とは、装入した粗粒ダスト7中のFe重量のうち、溶解または還元され溶鉄となった比率を指す。なおFeの回収率は、下記の(6)式で表わされる。
In this way, the electric furnace was operated continuously for 30 days. During that time, molten iron or slag did not bump, and the refining time for one charge did not fluctuate, causing no operational problems. In other words, it was confirmed that the electric furnace could be operated without hindrance even when a large amount of coarse dust 7 was used. Moreover, the obtained molten iron component also showed a distribution similar to that of normal operation.
FIG. 2 is a graph showing the relationship between the amount of coarse dust 7 used (kg / ton) and the amount of change in yield (%) of steel produced. Here, the yield of steel produced refers to the ratio of the weight of molten and produced iron to the total amount of iron source excluding the coarse dust 7 charged in the electric furnace. As apparent from FIG. 2, the yield of steel produced increased as the amount of coarse dust 7 used increased. Moreover, the recovery rate of Fe was 90% on average, and it was confirmed that Fe in the coarse dust 7 was sufficiently recovered. In addition, the recovery rate of Fe refers to the ratio of dissolved or reduced molten iron in the Fe weight in the charged coarse dust 7. The recovery rate of Fe is expressed by the following formula (6).
回収率(%)=(〔製出鋼歩留り変化量(%)÷100×1000〕÷
〔粗粒ダスト使用量(kg/ton)×粗粒ダスト中T.Fe(質量%)
÷100〕)×100 ・・・ (6)
図3は、溶銑率(%)と電力原単位(kWh/ton)との関係を示すグラフである。ここで電力原単位は、溶鉄1tonあたりの電力消費量である。図3から明らかなように、粗粒ダスト7を使用しない場合と粗粒ダスト7を使用する(すなわち溶鉄1tonあたり140kg/ton)場合は、いずれも溶銑率が増加すると、電力原単位が低下した。これは、溶銑率が増加することによって、初期の熱量が増大するからである。
Recovery rate (%) = ([Steel yield change (%) / 100 x 1000] /
[Amount of coarse dust used (kg / ton) × T.Fe (mass%) in coarse dust
÷ 100]) × 100 ・ ・ ・ (6)
FIG. 3 is a graph showing the relationship between the hot metal ratio (%) and the power consumption rate (kWh / ton). Here, the power consumption is the power consumption per 1 ton of molten iron. As is clear from FIG. 3, when the coarse dust 7 is not used and when the coarse dust 7 is used (that is, 140 kg / ton per 1 ton of molten iron), the power intensity decreases as the hot metal ratio increases. . This is because the initial amount of heat increases as the hot metal ratio increases.
ただし、粗粒ダスト7を使用しない場合と粗粒ダスト7を使用する場合の電力原単位を比べると、粗粒ダスト7を使用することによって電力原単位が増加することが分かる。特に溶銑率が30%未満の範囲で、粗粒ダスト7を使用する場合の電力原単位が著しく増加した。これは、粗粒ダスト7が電気炉内で酸化されたからである。したがって、溶銑率の好適範囲は30%以上である。 However, comparing the power intensity when the coarse dust 7 is not used and when the coarse dust 7 is used, it can be seen that the power intensity increases when the coarse dust 7 is used. In particular, when the hot metal ratio is less than 30%, the power consumption rate when using coarse dust 7 is remarkably increased. This is because the coarse dust 7 is oxidized in the electric furnace. Therefore, the preferable range of the hot metal ratio is 30% or more.
ここで、粗粒ダスト7が電気炉内で全く酸化されない場合の電力原単位の増加量の理論値は、下記の(5)式で算出される。
電力原単位の増加量の理論値(kWh/ton)=
DR1×O.Fe÷100×α÷β÷(1+DR2) ・・・ (5)
DR1 :粗粒ダストの使用量(kg/ton)
O.Fe:酸化鉄として存在するFe(質量%)
α :定数680(kcal/kg)
β :定数860(kWh/kcal)
DR2 :粗粒ダストの使用量(ton/ton)
粗粒ダスト7の使用量が140kg/tonである場合、(5)式で算出される電力原単位の増加量の理論値は、11kWh/tonとなる。この理論値を図3中に点線で示す。図3から明らかなように、溶銑率が30%以上の範囲では、理論値と実測値がほぼ一致している。したがって、溶銑率が30%以上の範囲では、粗粒ダスト7の酸化が、ほぼ完全に抑制されていることが分かる。
Here, the theoretical value of the increase in the power consumption rate when the coarse dust 7 is not oxidized at all in the electric furnace is calculated by the following equation (5).
Theoretical value of increase in electricity intensity (kWh / ton) =
D R1 × O.Fe ÷ 100 × α ÷ β ÷ (1 + D R2 ) (5)
D R1 : Coarse-grain dust usage (kg / ton)
O.Fe: Fe present as iron oxide (% by mass)
α: Constant 680 (kcal / kg)
β: Constant 860 (kWh / kcal)
D R2 : Coarse dust usage (ton / ton)
When the amount of coarse dust 7 used is 140 kg / ton, the theoretical value of the increase in power consumption calculated by equation (5) is 11 kWh / ton. This theoretical value is indicated by a dotted line in FIG. As is apparent from FIG. 3, the theoretical value and the actual measurement value almost coincide with each other in the range where the hot metal ratio is 30% or more. Therefore, it can be seen that the oxidation of the coarse dust 7 is almost completely suppressed when the hot metal ratio is 30% or more.
以上のように、本発明によれば、電気炉の鉄源として安価な製鋼ダストから分別した粗粒ダスト7を使用して、電力原単位の増加を最小限に抑制しつつ、安定して電気炉を操業できる。しかも粗粒ダスト7を大量に使用できるので、原料コストを大幅に削減することによって、電力コストの上昇を補ない、溶鉄の製造コストの削減を達成できる。 As described above, according to the present invention, the coarse dust 7 separated from inexpensive steelmaking dust is used as the iron source of the electric furnace, and the electric power consumption can be stably controlled while minimizing the increase in the power consumption. The furnace can be operated. Moreover, since the coarse dust 7 can be used in a large amount, it is possible to compensate for the increase in electric power cost and to reduce the manufacturing cost of molten iron by greatly reducing the raw material cost.
1 転炉
2 溶鋼
3 ランス
4 フード
5 サチュレーター
6 排ガス
7 粗粒ダスト
8 細粒ダスト
9 粗粒ダスト排出口
10 細粒ダスト排出口
11 回収ダクト
12 排ガスダクト
13 集塵水
DESCRIPTION OF SYMBOLS 1 Converter 2 Molten steel 3 Lance 4
10 Fine dust outlet
11 Recovery duct
12 Exhaust gas duct
13 Dust collection water
Claims (2)
The electric furnace operating method according to claim 1, wherein the coarse dust is charged below the molten iron bath surface in the electric furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007214016A JP4711350B2 (en) | 2007-08-20 | 2007-08-20 | Electric furnace operation method using steelmaking dust |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007214016A JP4711350B2 (en) | 2007-08-20 | 2007-08-20 | Electric furnace operation method using steelmaking dust |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002318449A Division JP4024647B2 (en) | 2002-10-31 | 2002-10-31 | Electric furnace operation method using steelmaking dust |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008019510A true JP2008019510A (en) | 2008-01-31 |
JP4711350B2 JP4711350B2 (en) | 2011-06-29 |
Family
ID=39075686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007214016A Expired - Lifetime JP4711350B2 (en) | 2007-08-20 | 2007-08-20 | Electric furnace operation method using steelmaking dust |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4711350B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235962A (en) * | 2009-03-30 | 2010-10-21 | Nippon Steel Corp | Method for recycling electric furnace dust |
JP2011144395A (en) * | 2010-01-12 | 2011-07-28 | Sangyo Shinko Kk | Method for using granular iron |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09137213A (en) * | 1995-11-09 | 1997-05-27 | Nisshin Steel Co Ltd | Method for adjusting slag basicity in electric arc furnace |
JPH10158718A (en) * | 1996-11-29 | 1998-06-16 | Kawasaki Steel Corp | Method for recycling dust in electric furnace |
JPH10195514A (en) * | 1996-12-27 | 1998-07-28 | Nippon Steel Corp | Carburizing material for steelmaking in electric furnace, producing apparatus thereof, production thereof and conveying method therefor |
-
2007
- 2007-08-20 JP JP2007214016A patent/JP4711350B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09137213A (en) * | 1995-11-09 | 1997-05-27 | Nisshin Steel Co Ltd | Method for adjusting slag basicity in electric arc furnace |
JPH10158718A (en) * | 1996-11-29 | 1998-06-16 | Kawasaki Steel Corp | Method for recycling dust in electric furnace |
JPH10195514A (en) * | 1996-12-27 | 1998-07-28 | Nippon Steel Corp | Carburizing material for steelmaking in electric furnace, producing apparatus thereof, production thereof and conveying method therefor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235962A (en) * | 2009-03-30 | 2010-10-21 | Nippon Steel Corp | Method for recycling electric furnace dust |
JP2011144395A (en) * | 2010-01-12 | 2011-07-28 | Sangyo Shinko Kk | Method for using granular iron |
Also Published As
Publication number | Publication date |
---|---|
JP4711350B2 (en) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006232236B2 (en) | Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control | |
JP5873600B2 (en) | Nonferrous metallurgical slag processing method | |
CN104105802A (en) | Base metal recovery | |
US5431710A (en) | Method for continuously producing iron, steel or semi-steel and energy | |
Basson et al. | High carbon ferrochrome technology | |
US6831939B2 (en) | Dual use of an induction furnace to produce hot metal or pig iron while processing iron and volatile metal containing materials | |
WO2014125057A1 (en) | Process for charging a burden with high zinc content in a blast furnace installation | |
US20090229407A1 (en) | Reductant addition in a channel induction furnace | |
JPH11504985A (en) | Method for recovering metals from iron oxide containing materials | |
EP0839919B1 (en) | Process for treating of flue dusts from electric steelworks | |
JP4711350B2 (en) | Electric furnace operation method using steelmaking dust | |
AU751205B2 (en) | Method for producing directly-reduced iron, liquid pig iron and steel | |
JP3817969B2 (en) | Method for producing reduced metal | |
CN110629054A (en) | Preparation device of manganese-rich slag | |
JP4024647B2 (en) | Electric furnace operation method using steelmaking dust | |
JP5614056B2 (en) | Method of operating copper smelting furnace and copper smelting furnace | |
JPH01149912A (en) | Method for charging exhaust gas dust in smelting reduction furnace | |
Simoni et al. | Towards the Circularity of the EU Steel Industry: Modern Technologies for the Recycling of the Dusts and Recovery of Resources | |
EP0216618A2 (en) | Recovery of volatile metal values from metallurgical slags | |
JP4630031B2 (en) | Methods for reducing and dissolving iron raw materials containing iron oxide | |
JPH09268332A (en) | Apparatus for recognition zinc oxide from iron making dust | |
CN110724839A (en) | Preparation method of manganese-rich slag | |
JP3336131B2 (en) | Method for recovering zinc from zinc-containing dust | |
CN211057207U (en) | Preparation device of manganese-rich slag | |
US20240026476A1 (en) | Method and apparatus for metals, alloys, mattes, or enriched and cleaned slags production from predominantly oxide feeds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101007 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110317 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140401 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140401 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |