Nothing Special   »   [go: up one dir, main page]

JP2008014954A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2008014954A
JP2008014954A JP2007205117A JP2007205117A JP2008014954A JP 2008014954 A JP2008014954 A JP 2008014954A JP 2007205117 A JP2007205117 A JP 2007205117A JP 2007205117 A JP2007205117 A JP 2007205117A JP 2008014954 A JP2008014954 A JP 2008014954A
Authority
JP
Japan
Prior art keywords
magnetoresistive effect
effect element
magnetoresistive
magnetic sensor
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007205117A
Other languages
Japanese (ja)
Inventor
Yuichi Ubunai
雄一 生内
Ichiro Tokunaga
一郎 徳永
Seiji Kikuchi
誠二 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2007205117A priority Critical patent/JP2008014954A/en
Publication of JP2008014954A publication Critical patent/JP2008014954A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acquire a magnetic sensor having the magnetization direction easily identified when a voltage dividing circuit and a bridge circuit are assembled by combining a plurality of the magnetic sensors. <P>SOLUTION: A marking for identifying the magnetization direction of a fixed layer of a magnetoresistive effect element is indicated on a chip laid out with the magnetoresistive effect element and a plurality of connection pads connected to terminals of the magnetoresistive effect element. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気に感応して出力信号を出力する磁気抵抗効果素子を用いた磁気センサに関する。   The present invention relates to a magnetic sensor using a magnetoresistive effect element that outputs an output signal in response to magnetism.

従来、磁気に感応して出力信号を出力する磁気抵抗効果素子を用いた磁気センサが開発されている。この磁気センサに用いられる磁気抵抗効果素子は基本的には、自由層(フリー磁性層)と、非磁性層と、固定層(ピン止め磁性層)と、交換バイアス層(反強磁性層)との積層構造体から構成されている。そして、固定層に交換バイアス層からバイアス磁界が作用されて、固定層が交換バイアス層で磁化され、その磁化方向が特定方向に固定されている。一方、自由層は、外部磁界によって磁化方向が変化される。   Conventionally, a magnetic sensor using a magnetoresistive effect element that outputs an output signal in response to magnetism has been developed. The magnetoresistive element used in this magnetic sensor basically includes a free layer (free magnetic layer), a nonmagnetic layer, a fixed layer (pinned magnetic layer), an exchange bias layer (antiferromagnetic layer), It is comprised from the laminated structure of these. A bias magnetic field is applied to the fixed layer from the exchange bias layer, the fixed layer is magnetized by the exchange bias layer, and the magnetization direction is fixed in a specific direction. On the other hand, the magnetization direction of the free layer is changed by an external magnetic field.

磁気抵抗効果素子の固定層の磁化方向を固定(ピン止め)するには、交換バイアス層の格子磁化を調整する必要がある。そのために、交換異方性磁界が消失するブロッキング温度と呼ばれる温度以上に加熱した状態で交換バイアス層に所定の向きの磁界を印加しておき、この磁界を印加したままで冷却する熱処理が行なわれる(特許文献1、2)。
(特開2000-338211号公報) (特開2000-256620号公報)
In order to fix (pin) the magnetization direction of the fixed layer of the magnetoresistive element, it is necessary to adjust the lattice magnetization of the exchange bias layer. Therefore, a heat treatment is performed in which a magnetic field in a predetermined direction is applied to the exchange bias layer while being heated to a temperature called a blocking temperature at which the exchange anisotropic magnetic field disappears, and cooling is performed while the magnetic field is applied. (Patent Documents 1 and 2).
(Japanese Patent Laid-Open No. 2000-338211) (Japanese Patent Laid-Open No. 2000-256620)

この磁気抵抗効果素子を用いた磁気センサでは、固定層の磁化方向が180°をなす反対向きの磁気抵抗効果素子同士を直列接続し、これらを用いてブリッジ回路を構成している。この場合、直列接続される磁気抵抗効果素子の固定層の磁化方向が180°をなす反対向きであるため、固定層の着磁を180°をなす反対向きで行なう必要がある。   In the magnetic sensor using the magnetoresistive effect element, magnetoresistive effect elements having opposite directions in which the magnetization direction of the fixed layer forms 180 ° are connected in series, and a bridge circuit is configured using these elements. In this case, since the magnetization direction of the fixed layer of the magnetoresistive effect element connected in series is opposite to 180 °, the magnetization of the fixed layer needs to be performed in the opposite direction of 180 °.

従来、磁気抵抗効果素子の固定層を着磁するには、1枚の基板に形成された磁気抵抗効果素子に対して電流通電用の導体を設け、この導体に電流を通電し、通電電流によって発生する磁界を磁気抵抗効果素子に付与し、その固定層の着磁を行なっていた。この方法では、導体に通電する電流量に制限があるため、固定層を十分な大きさの磁界で着磁することは困難であった。そのため、交換異方性磁界を大きくすることができなく、磁気抵抗効果素子からの出力信号の絶対値を大きくすることができなかった。また、可変抵抗器に用いた場合、基準変化特性(変化量に対する出力変化特性)のズレが大きくなってしまうという問題があった。なお、これは、交換異方性磁界が小さいため、固定層の磁化方向を一定方向に向くようにするのが難しいためと予想される。   Conventionally, in order to magnetize a fixed layer of a magnetoresistive effect element, a current conducting conductor is provided for the magnetoresistive effect element formed on a single substrate, and a current is passed through the conductor. The generated magnetic field is applied to the magnetoresistive effect element, and the fixed layer is magnetized. In this method, since the amount of current to be passed through the conductor is limited, it is difficult to magnetize the fixed layer with a sufficiently large magnetic field. Therefore, the exchange anisotropic magnetic field cannot be increased, and the absolute value of the output signal from the magnetoresistive element cannot be increased. In addition, when used in a variable resistor, there has been a problem that the deviation of the reference change characteristic (output change characteristic with respect to the change amount) becomes large. This is presumably because it is difficult to make the magnetization direction of the fixed layer in a fixed direction because the exchange anisotropic magnetic field is small.

なお、この導体着磁法に代えて、外部磁界を磁気抵抗効果素子に付与し、その固定層を着磁する方法が開発されている。この方法では、外部磁界を大きくして着磁させることが可能である。しかしながら、隣接する磁気抵抗効果素子の磁化方向が180°をなす反対向きであり、一方の磁気抵抗効果素子に付与する外部磁界が他方の磁気抵抗効果素子に影響を与えてしまうため、着磁用磁界の大きさに制限が加わることとなる。このため、磁気抵抗効果素子の固定層を十分な大きさの磁界で着磁することは困難であった。そのため、磁気抵抗効果素子からの出力信号の絶対値を大きくすることができなかった。上述と同様の理由で可変抵抗器に用いた場合、基準変化特性とのズレが大きくなってしまうという問題があった。   Instead of this conductor magnetization method, a method has been developed in which an external magnetic field is applied to the magnetoresistive element and the fixed layer is magnetized. In this method, the external magnetic field can be increased and magnetized. However, the magnetization direction of adjacent magnetoresistive elements is opposite to 180 °, and the external magnetic field applied to one magnetoresistive element affects the other magnetoresistive element. This will limit the size of the magnetic field. For this reason, it has been difficult to magnetize the fixed layer of the magnetoresistive effect element with a sufficiently large magnetic field. Therefore, the absolute value of the output signal from the magnetoresistive element cannot be increased. When used for a variable resistor for the same reason as described above, there is a problem that a deviation from the reference change characteristic becomes large.

上述した従来例による固定層は一般的にα-Fe23からなり、その着磁磁界の大きさは、200(KA/m)程度であるが、最近では、固定層にPtMn等を用い、600(KA/m)程度の大きさで着磁し、交換異方性磁界を大きくすることが要求されている。しかし、上述したように従来の外部磁界着磁法でブリッジ回路を形成する場合、隣接する磁気抵抗効果素子の相互間で着磁磁界が影響するため、着磁磁界の大ききは200(KA/m)程度に抑えられ、要求されている600(KA/m)まで増大させることが事実上不可能である。したがって、磁気抵抗効果素子からの出力信号の絶対値を大きくすることができない、或いは可変抵抗器に用いた場合に基準変化特性とのズレが大きくなってしまうというのが現状である。 The fixed layer according to the above-described conventional example is generally made of α-Fe 2 O 3 and has a magnetization magnetic field of about 200 (KA / m). Recently, PtMn or the like is used for the fixed layer. , 600 (KA / m) is required to increase the exchange anisotropic magnetic field. However, as described above, when the bridge circuit is formed by the conventional external magnetic field magnetization method, the magnetization magnetic field affects between adjacent magnetoresistive elements, so the magnitude of the magnetization magnetic field is 200 (KA / m), and it is virtually impossible to increase to the required 600 (KA / m). Accordingly, the current situation is that the absolute value of the output signal from the magnetoresistive element cannot be increased, or the deviation from the reference change characteristic becomes large when used in a variable resistor.

さらに従来の磁気センサは、複数個組み合わせて分圧回路またはブリッジ回路を形成する場合、各磁気センサの磁化方向が不明瞭なため、所定の方向に磁化方向を向けて組み合わせることが困難であった。   Furthermore, when a plurality of conventional magnetic sensors are combined to form a voltage dividing circuit or a bridge circuit, the magnetization direction of each magnetic sensor is unclear, so it is difficult to combine the magnetization directions in a predetermined direction. .

本発明の目的は、十分な大きさの着磁磁界で磁気抵抗効果素子の固定層を着磁させて、磁気抵抗効果素子から大きな絶対値の出力信号を出力させる磁気センサを複数組み合わせて分圧回路、ブリッジ回路等を組み立てる際に、各磁気センサの磁化方向を容易に識別できる磁気センサを得ることにある。   An object of the present invention is to divide a voltage by combining a plurality of magnetic sensors that magnetize a fixed layer of a magnetoresistive effect element with a sufficiently large magnetizing magnetic field and output a large absolute value output signal from the magnetoresistive effect element. An object of the present invention is to obtain a magnetic sensor that can easily identify the magnetization direction of each magnetic sensor when assembling a circuit, a bridge circuit, or the like.

本発明の基本的思想は、磁気抵抗効果素子の固定層の磁化方向を識別するマーキングをチップ上に設けることで、複数のチップを所定の磁化方向を容易に識別可能とすることにより、複数のチップを組み合わせる分圧回路、ブリッジ回路の形成を容易にするものである。   The basic idea of the present invention is to provide markings for identifying the magnetization direction of the fixed layer of the magnetoresistive effect element on the chip, so that a plurality of chips can be easily identified with a predetermined magnetization direction. This facilitates the formation of a voltage dividing circuit and a bridge circuit for combining chips.

前記基本的思想に基いて、本発明に係る磁気センサは、気抵抗効果素子及び磁気抵抗効果素子の端子に接続する複数の接続用パッドが形成されたチップ上に、上記磁気抵抗効果素子の固定層の磁化方向を識別するマーキングを表示したことを特徴とする。   On the basis of the basic idea, the magnetic sensor according to the present invention is configured to fix the magnetoresistive effect element on a chip on which a plurality of connection pads connected to the air resistance effect element and the terminals of the magnetoresistive effect element are formed. The marking for identifying the magnetization direction of the layer is displayed.

上記磁気抵抗効果素子の端子、複数の接続用パッド及びマーキングを備えられる上記チップは矩形形状であることが好ましい。上記接続用パッドの形成位置は、チップの角部を形成する2辺の対称な位置で揃え、これらをワイヤーボンデイングにより接続することが好ましい。上記マーキングは、上記2辺の角部と対向する角部付近に形成できる。   It is preferable that the chip including the terminals of the magnetoresistive effect element, the plurality of connection pads, and the marking has a rectangular shape. It is preferable that the formation positions of the connection pads are aligned at symmetrical positions on two sides forming the corners of the chip, and these are connected by wire bonding. The marking can be formed in the vicinity of the corners facing the corners of the two sides.

1つのチップに1個の磁気抵抗効果素子、1組の接続用パッド及び1個のマーキング、または少なくとも2個の磁気抵抗効果素子、2組の接続用パッド及び1個のマーキングを備えることが好ましい。   It is preferable that one chip has one magnetoresistive effect element, one set of connection pads and one marking, or at least two magnetoresistive effect elements, two sets of connection pads and one marking. .

また、本発明の磁気センサにあっては、1個の磁気抵抗効果素子が形成されたチップを4個、隣接する磁気抵抗効果素子の固定層の磁化方向が同一の回転方向に90°ずつ異なるようして組合せ、固定層の磁化方向が反対向きである磁気抵抗効果素子同士を直列に接続して、1相の出力信号を出力するブリッジ回路を形成することができる。   In the magnetic sensor of the present invention, four chips each having one magnetoresistive effect element are formed, and the magnetization directions of the fixed layers of adjacent magnetoresistive effect elements are different by 90 ° in the same rotation direction. Thus, it is possible to form a bridge circuit that outputs a one-phase output signal by connecting the magnetoresistive effect elements whose magnetization directions of the fixed layers are opposite to each other in series.

またブリッジ回路に代えて、1個の磁気抵抗効果素子が形成されたチップを2個、磁気抵抗効果素子の固定層の磁化方向を180°異ならせて組合せ、磁気抵抗効果素子同士を直列に接続して分圧回路を形成することができる。   In place of the bridge circuit, two chips each having one magnetoresistive effect element formed thereon are combined by changing the magnetization direction of the fixed layer of the magnetoresistive effect element by 180 °, and the magnetoresistive effect elements are connected in series. Thus, a voltage dividing circuit can be formed.

また、1個の磁気抵抗効果素子が形成されたチップに代えて、少なくとも2個の磁気抵抗効果素子が形成されたチップを4個用い、磁気抵抗効果素子の固定層の磁化方向が同一の回転方向の90°異なるように4個のチップを組合せ、固定層の磁化方向が反対向きである磁気抵抗効果素子同士を直列に接続して、多相の出力信号を出力するブリッジ回路を形成することができる。   Further, in place of the chip on which one magnetoresistive effect element is formed, four chips on which at least two magnetoresistive effect elements are formed are used, and the magnetization direction of the fixed layer of the magnetoresistive effect element is the same. Combining four chips so that their directions differ by 90 °, and connecting magnetoresistive elements whose magnetization directions of the fixed layers are opposite to each other in series to form a bridge circuit that outputs a multiphase output signal Can do.

また、少なくとも2個の磁気抵抗効果素子が形成されたチップを組合せる場合、このチップを2個用い、磁気抵抗効果素子の固定層の磁化方向が180°異なるように2個のチップを組合せ、固定層の磁化方向が反対向きである磁気抵抗効果素子同士を直列に接続して分圧回路を形成するようにしてもよい。   In addition, when combining chips having at least two magnetoresistive elements, two chips are used and the two chips are combined so that the magnetization directions of the fixed layers of the magnetoresistive elements differ by 180 °. A voltage dividing circuit may be formed by connecting magnetoresistive elements whose magnetization directions of the fixed layer are opposite to each other in series.

本発明によれば、十分な大きさの着磁磁界で磁気抵抗効果素子の固定層を着磁させて、磁気抵抗効果素子からの出力信号の絶対値の大きなチップを、磁化方向を所定の方向に向けて容易に組み合わせることができる磁気センサが得られる。   According to the present invention, a pin having a large absolute value of an output signal from a magnetoresistive effect element is magnetized in a predetermined direction by magnetizing a fixed layer of the magnetoresistive effect element with a sufficiently large magnetizing magnetic field. Thus, a magnetic sensor can be obtained that can be easily combined.

以下、本発明の実施の形態を図示例と共に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

磁気に感応して出力信号を出力する磁気抵抗効果素子1は、基本的構成として図7に示すように、交換バイアス層(反強磁性体層)1aと、固定層(ピン止め磁性層)1bと、非磁性層1cと、自由層(フリー磁性層)1dとを基板2上に積層して形成し、巨大磁気抵抗効果を利用したGMR(Giant Magneto Resistance)素子の一種である磁気抵抗効果素子として構成されている。   As shown in FIG. 7, the magnetoresistive effect element 1 that outputs an output signal in response to magnetism has an exchange bias layer (antiferromagnetic layer) 1a and a fixed layer (pinned magnetic layer) 1b as shown in FIG. And a magnetoresistive effect element which is a kind of GMR (Giant Magneto Resistance) element using a giant magnetoresistance effect, which is formed by laminating a nonmagnetic layer 1c and a free layer (free magnetic layer) 1d on a substrate 2. It is configured as.

磁気抵抗効果素子1が巨大磁気抵抗効果を発揮するためには、例えば交換バイアス層1aがPt-Mn層、固定層1bがNiFe層、非磁性層1cがCu層、自由層1dがNiFe層から形成されるが、これらのものに限定されるものではなく、巨大磁気抵抗効果を発揮するものであれば、いずれのものであってもよい。また、磁気抵抗効果素子1は、巨大磁気抵抗効果を発揮するものであれば、上記の積層構造のものに限定されるものではない。なお、交換バイアス層1aは、X-Xn単独、或いは、それを含む合金(ただし、XはPt、Pd、Ir、Rh、Ru、Osのうち、いずれか1種または2種以上の元素である)とするのが好ましい。   In order for the magnetoresistive element 1 to exhibit a giant magnetoresistive effect, for example, the exchange bias layer 1a is a Pt-Mn layer, the fixed layer 1b is a NiFe layer, the nonmagnetic layer 1c is a Cu layer, and the free layer 1d is a NiFe layer. However, the present invention is not limited to these, and any material may be used as long as it exhibits a giant magnetoresistance effect. Further, the magnetoresistive element 1 is not limited to the one having the above laminated structure as long as it exhibits a giant magnetoresistive effect. The exchange bias layer 1a is X-Xn alone or an alloy containing the same (where X is one or more elements of Pt, Pd, Ir, Rh, Ru, and Os). ) Is preferred.

図7に示す磁気抵抗効果素子1の固定層1bは、交換バイアス層1aで磁化され、該交換バイアス層1aによって磁化方向が特定方向に固定(ピン止め)されている。自由層1dは外部磁界によって、固定層1bの磁化方向に対する磁化方向が変化する。磁気抵抗効果素子1の両端には端子層1eが接合形成される。そして、固定層1bの固定された磁化方向に対する外部磁界による自由層1dの磁化方向の向きにより、2つの端子層1e間での抵抗値の変化が出力信号として出力される。   The fixed layer 1b of the magnetoresistive effect element 1 shown in FIG. 7 is magnetized by the exchange bias layer 1a, and the magnetization direction is fixed (pinned) in a specific direction by the exchange bias layer 1a. The magnetization direction of the free layer 1d with respect to the magnetization direction of the fixed layer 1b is changed by an external magnetic field. A terminal layer 1 e is formed on both ends of the magnetoresistive element 1 by bonding. Then, a change in resistance value between the two terminal layers 1e is output as an output signal depending on the direction of the magnetization direction of the free layer 1d by the external magnetic field with respect to the fixed magnetization direction of the fixed layer 1b.

図7に示す磁気抵抗効果素子1を4個用い、この4個の磁気抵抗効果素子1を組合せることにより、図6(a)に示すブリッジ回路を形成する。図6(a)における磁気抵抗効果素子には、GMR1、GMR2、GMR3、GMR4の符号をそれぞれ付し、かつ磁気抵抗効果素子の両端に形成される一方の端子層にはE1、他方の端子層にはE2の符号をそれぞれ付して説明する。   The four magnetoresistive effect elements 1 shown in FIG. 7 are used, and the four magnetoresistive effect elements 1 are combined to form the bridge circuit shown in FIG. The magnetoresistive effect element in FIG. 6A is denoted by reference numerals GMR1, GMR2, GMR3, and GMR4, and one terminal layer formed at both ends of the magnetoresistive effect element is E1 and the other terminal layer. In the following description, E2 is attached.

4個の磁気抵抗効果素子GMR1、GMR2、GMR3、GMR4は、固定層1bの磁化方向が180°異なる2個の、磁気抵抗効果素子GMR1及びGMR2と、磁気抵抗効果素子GMR3及びGMR4が組として用いられる。さらに、隣接する磁気抵抗効果素子GMR1とGMR3の固定層1dの磁化方向が180°異なり、隣接する磁気抵抗効果素子GMR2とGMR4の固定層1dの磁化方向が180°異なっている。   The four magnetoresistive effect elements GMR1, GMR2, GMR3, and GMR4 are used as a set of two magnetoresistive effect elements GMR1 and GMR2 and magnetoresistive effect elements GMR3 and GMR4 whose magnetization directions of the fixed layer 1b differ by 180 °. It is done. Further, the magnetization directions of the pinned layers 1d of the adjacent magnetoresistive elements GMR1 and GMR3 are 180 ° different, and the magnetization directions of the pinned layers 1d of the adjacent magnetoresistive elements GMR2 and GMR4 are 180 ° different.

図6(a)では、磁気抵抗効果素子GMR1の固定層の磁化方向は右矢印で示す方向に向けて設定し、磁気抵抗効果素子GMR2の固定層の磁化方向は、左矢印で示す180°をなす反対方向に異ならせている。磁気抵抗効果素子GMR3の固定層の磁化方向は左矢印で示す方向に向けて設定し、磁気抵抗効果素子GMR4の固定層の磁化方向は、右矢印で示す180°をなす反対方向に異ならせている。   In FIG. 6A, the magnetization direction of the fixed layer of the magnetoresistive effect element GMR1 is set in the direction indicated by the right arrow, and the magnetization direction of the fixed layer of the magnetoresistive effect element GMR2 is 180 ° indicated by the left arrow. Different in the opposite direction. The magnetization direction of the fixed layer of the magnetoresistive effect element GMR3 is set in the direction indicated by the left arrow, and the magnetization direction of the fixed layer of the magnetoresistive effect element GMR4 is varied in the opposite direction of 180 ° indicated by the right arrow. Yes.

さらに隣接する2個の磁気抵抗素子GMR1、GMR3の一方の磁気抵抗効果素子GMR1の固定層の磁化方向は、右矢印で示す方向に向けて設定し、他方の磁気抵抗効果素子GMR3の固定層の磁化方向は、左矢印で示す180°をなす反対方向に異ならせている。隣接する2個の磁気抵抗素子GMR2、GMR4の一方の磁気抵抗効果素子GMR2の固定層の磁化方向は、左矢印で示す方向に向けて設定し、他方の磁気抵抗効果素子GMR4の固定層の磁化方向は、左矢印で示す180°をなす反対方向に異ならせている。   Further, the magnetization direction of the fixed layer of one magnetoresistive effect element GMR1 of two adjacent magnetoresistive elements GMR1 and GMR3 is set in the direction indicated by the right arrow, and the fixed layer of the other magnetoresistive effect element GMR3 is set. The magnetization direction is varied in the opposite direction of 180 ° indicated by the left arrow. The magnetization direction of the fixed layer of one magnetoresistive effect element GMR2 of two adjacent magnetoresistive elements GMR2 and GMR4 is set in the direction indicated by the left arrow, and the magnetization of the fixed layer of the other magnetoresistive effect element GMR4 The direction is varied in the opposite direction of 180 ° indicated by the left arrow.

この場合、4個の磁気抵抗効果素子GMR1、GMR2、GMR3、GMR4の自由層には外部磁界が作用していないため、不特定の方向に向いている。   In this case, since an external magnetic field does not act on the free layers of the four magnetoresistive elements GMR1, GMR2, GMR3, and GMR4, they are directed in an unspecified direction.

さらに、第1組の一方の磁気抵抗効果素子GMR1の端子層E2に他方の磁気抵抗効果素子GMR2の端子層E1を結合して2個の磁気抵抗効果素子GMR1、GMR2を直列に接続する。第2組の一方の磁気抵抗効果素子GMR3の端子層E2に他方の磁気抵抗効果素子GMR4の端子層E1を結合して2個の磁気抵抗効果素子GMR3、GMR4を直列に接続する。   Further, the terminal layer E1 of the other magnetoresistive effect element GMR2 is coupled to the terminal layer E2 of one magnetoresistive effect element GMR1 of the first set to connect the two magnetoresistive effect elements GMR1 and GMR2 in series. The terminal layer E1 of the other magnetoresistive effect element GMR4 is coupled to the terminal layer E2 of the second magnetoresistive effect element GMR3 to connect the two magnetoresistive effect elements GMR3 and GMR4 in series.

磁気抵抗効果素子GMR1の端子層E1と磁気抵抗効果素子GMR3の端子層E1を接続し、その接続点V1に電源Vccのプラス側を接続する。磁気抵抗効果素子GMR2の端子層E2と磁気抵抗効果素子4の端子層E2を接続し、その接続点V2に電源Vccのグランド側を接続している。そして、接続点V1と接続点V2とに入力電圧を印加する。   The terminal layer E1 of the magnetoresistive effect element GMR1 and the terminal layer E1 of the magnetoresistive effect element GMR3 are connected, and the positive side of the power source Vcc is connected to the connection point V1. The terminal layer E2 of the magnetoresistive element GMR2 and the terminal layer E2 of the magnetoresistive element 4 are connected, and the ground side of the power source Vcc is connected to the connection point V2. Then, an input voltage is applied to the connection point V1 and the connection point V2.

磁気抵抗効果素子GMR1の端子層E2と磁気抵抗効果素子GMR2の端子層E1を接続し、その接続点A+を、磁気抵抗効果素子の抵抗値変化信号を出力する出力部としている。磁気抵抗効果素子GMR3の端子層E2と磁気抵抗効果素子GMR4の端子層E1を接続し、その接続点A-を、磁気抵抗効果素子の抵抗値変化信号を出力する出力部としている。そして、2つの接続点A+と接続点A-とから磁気抵抗効果素子の抵抗値の変化信号を出力する。   The terminal layer E2 of the magnetoresistive effect element GMR1 and the terminal layer E1 of the magnetoresistive effect element GMR2 are connected, and the connection point A + is used as an output unit that outputs a resistance value change signal of the magnetoresistive effect element. The terminal layer E2 of the magnetoresistive effect element GMR3 and the terminal layer E1 of the magnetoresistive effect element GMR4 are connected, and the connection point A− is used as an output unit that outputs a resistance value change signal of the magnetoresistive effect element. And the change signal of the resistance value of a magnetoresistive effect element is output from two connection point A + and connection point A-.

このブリッジ回路をなす4個の磁気抵抗効果素子GMR1、GMR2、GMR3、GMR4の固定層の磁化方向に対して、外部磁界によって一様に自由層の磁化方向の向きが変化した場合に、その向きの変化に伴って、4個の磁気抵抗効果素子GMR1、GMR2、GMR3、GMR4に抵抗値変化が生じる。その抵抗値変化は、磁気抵抗効果素子の固定層の磁化方向と自由層の磁化方向の向きが同一方向の際に最小値を示し、反平行(180°をなす反対方向)の際に最大値を示す。したがって、磁気抵抗効果素子の自由層を磁化する外部磁界の向きに伴って、ブリッジ回路の出力端子となる2つの接続点A+、A-から図4(c)に示す正弦波形の出力信号(S1′、S2′)が出力する。そして、接続点A+、A-との間の出力電圧をとれば、図4(d)の出力信号S1が得られる。   When the direction of the magnetization direction of the free layer is uniformly changed by the external magnetic field with respect to the magnetization direction of the fixed layer of the four magnetoresistive effect elements GMR1, GMR2, GMR3, and GMR4 forming the bridge circuit, As a result of this change, resistance values change in the four magnetoresistive elements GMR1, GMR2, GMR3, and GMR4. The change in the resistance value shows the minimum value when the magnetization direction of the fixed layer and the magnetization direction of the free layer of the magnetoresistive effect element are the same direction, and the maximum value when it is antiparallel (opposite direction forming 180 °). Indicates. Accordingly, with the direction of the external magnetic field that magnetizes the free layer of the magnetoresistive element, the output signal (S1) having a sinusoidal waveform shown in FIG. 4C from the two connection points A + and A− serving as the output terminals of the bridge circuit. ', S2') is output. When the output voltage between the connection points A + and A− is taken, the output signal S1 of FIG. 4 (d) is obtained.

したがって、磁気抵抗効果素子の抵抗値変化の中間点を基準点とすると、その抵抗値変化の極性(増加する方向を+、減少する方向を-とする。)は、磁気抵抗効果素子の固定層の磁化の向きが同一方向に設定された、磁気抵抗効果素子GMR1と磁気抵抗効果素子GMR4、磁気抵抗効果素子GMR2と磁気抵抗効果素子GMR3では同極性に、磁気抵抗効果素子の固定層の磁化の向きが180°をなす反対方向(反平行)に異ならせた、磁気抵抗効果素子GMR1と磁気抵抗効果素子GMR2、磁気抵抗効果素子GMR3と磁気抵抗効果素子GMR4では逆極性になる。このため、図6(a)に示す4個の磁気抵抗効果素子GMR1、GMR2、GMR3、GMR4の接続関係と、磁気抵抗効果素子の抵抗値変化とにより、ホイートストーンブリッジ回路が形成され、磁気抵抗効果素子に外部磁界による磁気を感応させることにより、その磁気抵抗効果素子の抵抗値の変化特性に基いて所望の動作を行なう磁気センサとして機能する。   Therefore, when the intermediate point of the resistance value change of the magnetoresistive effect element is taken as a reference point, the polarity of the resistance value change (the increasing direction is + and the decreasing direction is-) is the fixed layer of the magnetoresistive effect element. The magnetization directions of the magnetoresistive effect element GMR1 and the magnetoresistive effect element GMR4, and the magnetoresistive effect element GMR2 and the magnetoresistive effect element GMR3 have the same polarity, and the magnetization direction of the fixed layer of the magnetoresistive effect element is set to the same direction. The magnetoresistive effect element GMR1 and the magnetoresistive effect element GMR2, and the magnetoresistive effect element GMR3 and the magnetoresistive effect element GMR4, which have different directions in opposite directions (antiparallel) forming 180 °, have opposite polarities. Therefore, a Wheatstone bridge circuit is formed by the connection relationship between the four magnetoresistive elements GMR1, GMR2, GMR3, and GMR4 shown in FIG. 6A and the resistance value change of the magnetoresistive elements. By causing the resistance effect element to be magnetized by an external magnetic field, the resistance effect element functions as a magnetic sensor that performs a desired operation based on the change characteristic of the resistance value of the magnetoresistance effect element.

従来例に係るブリッジ回路をなす4個の磁気抵抗効果素子は従来技術の欄で述べたように、1枚の基板(ウェハ)上に形成されるが、その同一の基板上に形成された4個の磁気抵抗効果素子の固定層の磁化方向が互いに90°(又は180°)異ならせて着磁させていた。このため、磁気抵抗効果素子の固定層の磁化方向を固定させるための着磁磁界の大きさは高々200(KA/m)程度であった。   The four magnetoresistive effect elements forming the bridge circuit according to the conventional example are formed on one substrate (wafer) as described in the section of the prior art, but 4 formed on the same substrate. The magnetization directions of the fixed layers of the magnetoresistive effect elements are different from each other by 90 ° (or 180 °) and are magnetized. For this reason, the magnitude of the magnetization magnetic field for fixing the magnetization direction of the fixed layer of the magnetoresistive effect element is about 200 (KA / m) at most.

本発明は、磁気抵抗効果素子の固定層の磁化方向を固定するための着磁磁界の大きさを600(KA/m)まで引き上げて磁化固定することを可能とするものである。その基本的構成は、同一の基板上に形成された全ての磁気抵抗効果素子の固定層の磁化方向を同一方向に揃えて着磁させ、その磁気抵抗効果素子を含むチップを基板から個々に出し、切出されたチップ上の磁気抵抗効果素子の固定層の磁化方向を選定して複数のチップを組合せて磁気センサを組立てることにより、十分な大きさの着磁磁界で磁気抵抗効果素子の固定層を着磁させて、磁気抵抗効果素子から大きな絶対値の出力信号を出力させることにある。その具体的な態様について説明する。   The present invention makes it possible to fix the magnetization by raising the magnitude of the magnetization magnetic field for fixing the magnetization direction of the fixed layer of the magnetoresistive effect element to 600 (KA / m). The basic configuration is that all the magnetoresistive elements formed on the same substrate are magnetized so that the magnetization directions of the fixed layers are aligned in the same direction, and chips including the magnetoresistive elements are individually ejected from the substrate. By selecting the magnetization direction of the pinned layer of the magnetoresistive effect element on the cut chip and assembling the magnetic sensor by combining a plurality of chips, the magnetoresistive effect element can be fixed with a sufficiently large magnetizing magnetic field. The layer is magnetized to output a large absolute value output signal from the magnetoresistive element. A specific aspect thereof will be described.

図1において、基板2に縦横に引いた1点鎖線で囲まれる矩形の部分が、1枚の基板2から個々に切出される複数のチップ3を示しており、図1の例では、1つのチップ3に2個の磁気抵抗効果素子1、1が形成される例を示している。   In FIG. 1, a rectangular portion surrounded by a one-dot chain line drawn vertically and horizontally on a substrate 2 shows a plurality of chips 3 cut out from one substrate 2. In the example of FIG. An example is shown in which two magnetoresistive elements 1, 1 are formed on a chip 3.

1枚の基板2上に縦横の1点鎖線で囲まれる各チップ3内に2個の磁気抵抗効果素子1が含まれるように複数の磁気抵抗効果素子1を縦横に整列させて同一の基板2上に形成する。同一の基板2上に複数の磁気抵抗効果素子1を形成する際、ブロッキング温度以上にした状態で外部磁界を加え、冷却して、これらの磁気抵抗効果素子1の固定層の向きを同一方向に揃える。図1に示す例では、複数の磁気抵抗効果素子1の固定層の向きを上向き(図の縦方向)に揃えている。   The same substrate 2 is formed by aligning a plurality of magnetoresistive elements 1 vertically and horizontally so that two magnetoresistive elements 1 are included in each chip 3 surrounded by an alternate long and short dashed line on one substrate 2. Form on top. When a plurality of magnetoresistive elements 1 are formed on the same substrate 2, an external magnetic field is applied in a state where the temperature is equal to or higher than the blocking temperature, and the fixed layers of these magnetoresistive elements 1 are oriented in the same direction. Align. In the example shown in FIG. 1, the directions of the fixed layers of the plurality of magnetoresistance effect elements 1 are aligned upward (vertical direction in the figure).

さらに、図6(a)に示すブリッジ回路の接続点A+、V1、A-、V2に対応する接続用パッドP1、P2、P3、P4を、矩形形状のチップ3の角部を形成する2辺の一方の辺(3a)に沿って一定間隔に形成する。また図6(a)に示すブリッジ回路の接続点A+、V1、A-、V2に対応する、接続用パッドP1、P2、P3、P4と対をなす接続用パッドP1′、P2′、P3′、P4′を備え、これらの接続用パッドP1′、P2′、P3′、P4′を矩形形状のチップ3の角部を形成する2辺の他方の辺(3b)に沿って一定間隔に形成して、これらを縦横に整列させて同一の基板2上に設ける。   Furthermore, the connection pads P1, P2, P3, and P4 corresponding to the connection points A +, V1, A−, and V2 of the bridge circuit shown in FIG. 6A are formed on the two sides that form the corners of the rectangular chip 3. Are formed at regular intervals along one side (3a). Further, connection pads P1 ', P2', and P3 'that are paired with connection pads P1, P2, P3, and P4 corresponding to connection points A +, V1, A-, and V2 of the bridge circuit shown in FIG. , P4 ', and these connection pads P1', P2 ', P3', P4 'are formed at regular intervals along the other side (3b) of the two sides forming the corners of the rectangular chip 3 Then, these are arranged on the same substrate 2 by being aligned vertically and horizontally.

この場合、対をなす接続用パッドP1、P2、P3、P4と接続用パッドP1′、P2′、P3′、P4′は図2に拡大して示すように、チップ3の角部を形成する2辺3a、3bの対称な位置に形成することができる。また、対をなす接続用パッドP1、P2、P3、P4と接続用パッドP1′、P2′、P3′、P4′は、1枚の基板2上に区画される複数のチップ3の角部をなす辺3a、3bに沿ってそれぞれ揃えられ、2個の磁気抵抗効果素子1が形成された複数のチップ3にそれぞれ形成される。   In this case, the pair of connection pads P1, P2, P3, P4 and the connection pads P1 ′, P2 ′, P3 ′, P4 ′ form the corners of the chip 3 as shown in an enlarged view in FIG. They can be formed at symmetrical positions on the two sides 3a and 3b. The connecting pads P 1, P 2, P 3 and P 4 and the connecting pads P 1 ′, P 2 ′, P 3 ′ and P 4 ′ that form a pair are the corners of a plurality of chips 3 that are partitioned on one substrate 2. Each of the chips 3 is formed along a plurality of chips 3 on which two magnetoresistive effect elements 1 are formed.

図1、図2に示すように、チップ3に形成される一方の磁気抵抗効果素子1の端子E1が接続用パッドP1と接続用パッドP1′に回路パターンによりそれぞれ接続され、その端子E2が接続用パッドP2と接続用パッドP2′に回路パターンによりそれぞれ接続される。   As shown in FIGS. 1 and 2, the terminal E1 of one magnetoresistive effect element 1 formed on the chip 3 is connected to the connection pad P1 and the connection pad P1 ′ by a circuit pattern, and the terminal E2 is connected. The circuit pads are connected to the connection pads P2 and the connection pads P2 ′, respectively.

また、チップ3に形成される他方の磁気抵抗効果素子1の端子E1が接続用パッドP3と接続用パッドP3′に回路パターンによりそれぞれ接続され、その端子E2が接続用パッドP4と接続用パッドP4′に回路パターンによりそれぞれ接続される。   Further, the terminal E1 of the other magnetoresistive element 1 formed on the chip 3 is connected to the connection pad P3 and the connection pad P3 ′ by a circuit pattern, and the terminal E2 is connected to the connection pad P4 and the connection pad P4. 'Is connected to each by a circuit pattern.

なお、図1では、2個の磁気抵抗効果素子1が形成されたチップ3を基板2上に16個形成するように図示したが、この形成個数は16個に限定されるものではない。また、チップ3を縦横に均等に配置したが、縦横に不均一に配列してもよく、また横、縦1列で形成してもよく、この配置形状に限定されるものではない。   Although FIG. 1 shows that 16 chips 3 on which two magnetoresistive elements 1 are formed are formed on the substrate 2, the number of formed chips is not limited to 16. Further, although the chips 3 are arranged uniformly in the vertical and horizontal directions, they may be arranged non-uniformly in the vertical and horizontal directions, or they may be formed in a horizontal and vertical row, and are not limited to this arrangement shape.

また、2個の磁気抵抗効果素子1を形成する際、これらの磁気抵抗効果素子1の固定層の向きを示すマーキングMをチップ3にそれぞれ形成する。図1では、マーキングMは、接続用パッドP1の横方向の延長線と接続用パッドP1′の縦方向の延長線との交わるチップ3の左上の角部付近に揃えて形成している。   Further, when forming the two magnetoresistive effect elements 1, markings M indicating the directions of the fixed layers of the magnetoresistive effect elements 1 are respectively formed on the chip 3. In FIG. 1, the marking M is formed in the vicinity of the upper left corner of the chip 3 where the horizontal extension line of the connection pad P1 and the vertical extension line of the connection pad P1 ′ intersect.

その後、2個の磁気抵抗効果素子1と8個の接続用パッドP1、P2、P3、P4、P1′、P2′、P3′、P4′とを組とする複数のチップ3を図1に示す縦横の1点鎖線に沿って個々に基板2から切出す。この個々に切出したチップ3を拡大して図2に示す。   Thereafter, a plurality of chips 3 each including two magnetoresistive effect elements 1 and eight connection pads P1, P2, P3, P4, P1 ′, P2 ′, P3 ′, and P4 ′ are shown in FIG. Cut out from the substrate 2 individually along vertical and horizontal alternate long and short dash lines. The individually cut chips 3 are enlarged and shown in FIG.

次に図4(a)に示すように、切出されたチップ3上の磁気抵抗効果素子1の固定層の磁化方向の向きを選定して、4個のチップ3を組合せる。図4(a)では、磁気抵抗効果素子1の固定層の磁化方向が同一の回転方向に90°ずつ異なるようにして、4個のチップ4を組合せる。なお、図4(a)では、互いのチップ3の間にスペースがあるように図示しているが、チップ3を組立てるには、互いのチップ3同士を隙間なく突き合わせることにより、磁気抵抗効果素子1が互いに隣接するようにする。この組合せにより、4個の磁気抵抗効果素子1の外部磁界に対する磁気感応度を均一化し、正確な出力信号を出力することができる。   Next, as shown in FIG. 4A, the direction of the magnetization direction of the fixed layer of the magnetoresistive effect element 1 on the cut chip 3 is selected, and the four chips 3 are combined. In FIG. 4A, four chips 4 are combined such that the magnetization direction of the fixed layer of the magnetoresistive effect element 1 is different by 90 ° in the same rotation direction. In FIG. 4 (a), there is shown a space between the chips 3. However, in order to assemble the chips 3, the magnetoresistive effect is obtained by abutting the chips 3 together without any gaps. The elements 1 are adjacent to each other. With this combination, the magnetic sensitivity of the four magnetoresistive elements 1 with respect to the external magnetic field can be made uniform, and an accurate output signal can be output.

この実施形態では、同一の基板2上に形成される複数の磁気抵抗効果素子1の固定層の磁化方向が同一方向に揃えて着磁するため、隣接する磁気抵抗効果素子に付与する着磁磁界が相互に影響しても問題がなく、磁気抵抗効果素子1の固定層を着磁する磁界の大きさを600(KA/m)まで大きくすることができ、その増大させた着磁磁界で磁気抵抗効果素子の固定層を磁化固定することができる。したがって、磁気抵抗効果素子の磁気感応度を高めることにより、その出力信号の絶対値を大きくすることができ、正確な磁界検出を行なうことができる。また、出力精度を高めることができる。また、チップ3は、その外形が矩形状に形成され、チップ3には、磁気抵抗効果素子1の向きと接続用パッドP1、P2、P3、P4、P1′、P2′、P3′、P4′の位置とが同一の基板2上で縦横に揃えられて形成されているため、磁気抵抗効果素子1の固定層の磁化方向が同一の回転方向に90°ずつ異なるようにして、4個のチップ3を並べても、チップ同士を隙間なく配置することができ、取付け精度を向上させることができる。   In this embodiment, since the magnetization directions of the fixed layers of the plurality of magnetoresistive effect elements 1 formed on the same substrate 2 are magnetized in the same direction, the magnetizing magnetic field applied to the adjacent magnetoresistive effect elements Can affect each other, and the magnitude of the magnetic field for magnetizing the fixed layer of the magnetoresistive effect element 1 can be increased to 600 (KA / m). The fixed layer of the resistance effect element can be fixed by magnetization. Therefore, by increasing the magnetic sensitivity of the magnetoresistive effect element, the absolute value of the output signal can be increased, and accurate magnetic field detection can be performed. Also, the output accuracy can be increased. Further, the outer shape of the chip 3 is formed in a rectangular shape, and the direction of the magnetoresistive effect element 1 and connection pads P1, P2, P3, P4, P1 ′, P2 ′, P3 ′, P4 ′ are formed on the chip 3. Are aligned in the vertical and horizontal directions on the same substrate 2, so that the magnetization direction of the fixed layer of the magnetoresistive effect element 1 differs by 90 ° in the same rotational direction by four chips. Even if 3 are arranged, chips can be arranged without gaps, and the mounting accuracy can be improved.

図4(a)に示す磁気抵抗効果素子と図6(a)に示すブリッジ回路の磁気抵抗効果素子との関係を明確にするため、図4(a)では、図4(d)の第1相の出力信号S1を出力させる磁気抵抗効果素子に、GMR1、GMR2、GMR3、GMR4の符号を付し、図4(d)の第2相の出力信号S2を出力させる磁気抵抗効果素子に、GMR1′、GMR2′、GMR3′、GMR4′の符号を付して説明する。図4(d)の信号S1、S2は、4個の磁気抵抗効果素子の磁化方向が互いに90°の向きにあるため、位相が90°ずれている。   In order to clarify the relationship between the magnetoresistive effect element shown in FIG. 4A and the magnetoresistive effect element of the bridge circuit shown in FIG. 6A, FIG. 4A shows the first of FIG. Reference numerals GMR1, GMR2, GMR3, and GMR4 are attached to the magnetoresistive effect element that outputs the phase output signal S1, and the magnetoresistive effect element that outputs the second phase output signal S2 in FIG. ', GMR2', GMR3 ', GMR4' will be described with reference numerals. The signals S1 and S2 in FIG. 4D are out of phase by 90 ° because the magnetization directions of the four magnetoresistive elements are 90 °.

図4(a)では、磁気抵抗効果素子GMR1、GMR4の固定層の磁化方向H3は上方向に向けて設定し、磁気抵抗効果素子GMR2、GMR3の固定層の磁化方向H4は下矢印で示す180°をなす下方向(反平行)に異ならせる。また、2相の出力信号S1、S2を出力させるために、前記4個の磁気抵抗効果素子GMR1、GMR2、GMR3、GMR4に加えて、4個の磁気抵抗効果素子GMR1′、GMR2′、GMR3′、GMR4′を備えている。この場合、磁気抵抗効果素子GMR1′、GMR4′の固定層の磁化方向H5は左横方向に向けて設定し、磁気抵抗効果素子GMR2′、GMR3′の固定層の磁化方向H6は右矢印で示す180°をなす右横方向(反平行)に異ならせる。   In FIG. 4A, the magnetization direction H3 of the fixed layers of the magnetoresistive effect elements GMR1 and GMR4 is set upward, and the magnetization direction H4 of the fixed layer of the magnetoresistive effect elements GMR2 and GMR3 is 180 indicated by a down arrow. Different downward direction (anti-parallel). In addition to the four magnetoresistive elements GMR1, GMR2, GMR3, and GMR4, four magnetoresistive elements GMR1 ′, GMR2 ′, and GMR3 ′ are provided to output two-phase output signals S1 and S2. , GMR4 '. In this case, the magnetization direction H5 of the fixed layer of the magnetoresistive elements GMR1 'and GMR4' is set to the left lateral direction, and the magnetization direction H6 of the fixed layer of the magnetoresistive elements GMR2 'and GMR3' is indicated by a right arrow. Different in the right lateral direction (anti-parallel) at 180 °.

まず、図4(d)に示す第1相の出力信号(正弦波形)S1を出力させるためのブリッジ回路の構成について説明する。磁気抵抗効果素子GMR1の接続用パッドP1と磁気抵抗効果素子GMR2の接続用パッドP3とをワイヤボンデイングで接続し、2個の磁気抵抗効果素子GMR1、GMR2を直列に接続する。磁気抵抗効果素子GMR3の接続用パッドP2と磁気抵抗効果素子GMR4の接続用パッドP3とをワイヤボンデイングで接続し、2個の磁気抵抗効果素子GMR3、GMR4を直列に接続する。   First, the configuration of the bridge circuit for outputting the first-phase output signal (sine waveform) S1 shown in FIG. The connection pad P1 of the magnetoresistive effect element GMR1 and the connection pad P3 of the magnetoresistive effect element GMR2 are connected by wire bonding, and the two magnetoresistive effect elements GMR1 and GMR2 are connected in series. The connection pad P2 of the magnetoresistive effect element GMR3 and the connection pad P3 of the magnetoresistive effect element GMR4 are connected by wire bonding, and the two magnetoresistive effect elements GMR3 and GMR4 are connected in series.

次に磁気抵抗効果素子GMR1の接続用パッドP2と磁気抵抗効果素子GMR3の接続用パッドP2とをワイヤボンデイングで接続し、その接続点(V1)に電源Vccのプラス側を接続する。磁気抵抗効果素子GMR2の接続用パッドP4と磁気抵抗効果素子GMR4の接続用パッドP4とをワイヤボンデイングで接続し、その接続点(V2)に電源Vccのグランド側を接続する。そして、2つの接続点(V1、V2)を、出力電圧を印加するための端子として用いる。そして、図6で示す回路を構成する。   Next, the connection pad P2 of the magnetoresistive effect element GMR1 and the connection pad P2 of the magnetoresistive effect element GMR3 are connected by wire bonding, and the positive side of the power supply Vcc is connected to the connection point (V1). The connection pad P4 of the magnetoresistive effect element GMR2 and the connection pad P4 of the magnetoresistive effect element GMR4 are connected by wire bonding, and the ground side of the power supply Vcc is connected to the connection point (V2). The two connection points (V1, V2) are used as terminals for applying the output voltage. Then, the circuit shown in FIG. 6 is configured.

さらに、磁気抵抗効果素子GMR1の接続用パッドP1′と磁気抵抗効果素子GMR2の接続用パッドP3′とをワイヤボンデイングで接続し、その接続点(A+)を、磁気抵抗効果素子の抵抗値変化を出力するための出力部とする。磁気抵抗効果素子GMR3の接続用パッドP1と磁気抵抗効果素子GMR4の接続用パッドP3′とをワイヤボンデイングで接続し、その接続点A-を、磁気抵抗効果素子の抵抗値変化を出力するための出力部とする。そして、2つの接続点(A+、A-)を、磁気抵抗効果素子の抵抗値の変化信号を出力するための端子として用いる。   Further, the connection pad P1 'of the magnetoresistive effect element GMR1 and the connection pad P3' of the magnetoresistive effect element GMR2 are connected by wire bonding, and the connection point (A +) is used to change the resistance value of the magnetoresistive effect element. An output unit for outputting. The connection pad P1 of the magnetoresistive effect element GMR3 and the connection pad P3 'of the magnetoresistive effect element GMR4 are connected by wire bonding, and the connection point A- is used to output a change in the resistance value of the magnetoresistive effect element. The output section. The two connection points (A +, A−) are used as terminals for outputting a change signal of the resistance value of the magnetoresistive element.

次に、図4(d)に示す第2相の出力信号(正弦波形)S2を出力させるブリッジ回路の構成について説明する。磁気抵抗効果素子GMR1′の接続用パッドP1と磁気抵抗効果素子GMR2′の接続用パッドP3とをワイヤボンデイングで接続し、2個の磁気抵抗効果素子GMR1′、GMR2′を直列に接続する。磁気抵抗効果素子GMR3′の接続用パッドP2と磁気抵抗効果素子GMR4′の接続用パッドP3とをワイヤボンデイングで接続し、2個の磁気抵抗効果素子GMR3′、GMR4′を直列に接続する。   Next, the configuration of the bridge circuit that outputs the second-phase output signal (sine waveform) S2 shown in FIG. The connection pad P1 of the magnetoresistive effect element GMR1 ′ and the connection pad P3 of the magnetoresistive effect element GMR2 ′ are connected by wire bonding, and the two magnetoresistive effect elements GMR1 ′ and GMR2 ′ are connected in series. The connection pad P2 of the magnetoresistive effect element GMR3 ′ and the connection pad P3 of the magnetoresistive effect element GMR4 ′ are connected by wire bonding, and the two magnetoresistive effect elements GMR3 ′ and GMR4 ′ are connected in series.

次に磁気抵抗効果素子GMR1′の接続用パッドP2と磁気抵抗効果素子GMR3′の接続用パッドP2とをワイヤボンデイングで接続し、その接続点(V1)に電源Vccのプラス側を接続する。磁気抵抗効果素子GMR2′の接続用パッドP4と磁気抵抗効果素子GMR4′の接続用パッドP4とをワイヤボンデイングで接続し、その接続点(V2)に電源Vccのグランド側を接続する。そして、2つの接続点(V1、V2)を、出力電圧を印加するための端子として用いる。そして、図6で示す回路と同様な回路を構成する。   Next, the connection pad P2 of the magnetoresistive effect element GMR1 ′ and the connection pad P2 of the magnetoresistive effect element GMR3 ′ are connected by wire bonding, and the positive side of the power source Vcc is connected to the connection point (V1). The connection pad P4 of the magnetoresistive effect element GMR2 'and the connection pad P4 of the magnetoresistive effect element GMR4' are connected by wire bonding, and the ground side of the power supply Vcc is connected to the connection point (V2). The two connection points (V1, V2) are used as terminals for applying the output voltage. Then, a circuit similar to the circuit shown in FIG. 6 is configured.

さらに、磁気抵抗効果素子GMR1′の接続用パッドP1′と磁気抵抗効果素子GMR2′の接続用パッドP3′とをワイヤボンデイングで接続し、その接続点(A+)を、磁気抵抗効果素子の抵抗値変化を出力するための出力部とする。磁気抵抗効果素子GMR3′の接続用パッドP1と磁気抵抗効果素子GMR4′の接続用パッドP3′とをワイヤボンデイングで接続し、その接続点(A-)を、磁気抵抗効果素子の抵抗値変化を出力するための出力部とする。そして、2つの接続点(A+、A-)を、磁気抵抗効果素子の抵抗値の変化信号を出力するための端子として用いる。上述した複数の接続用パッドは、矩形形状のチップの角部を形成する2辺の対称な位置に形成されているため、これらをワイヤーボンデイングする場合、接続用パッドの位置データを既設のワイヤーボンデイング装置にインプットして機械的に接続作業を行なうことができ、チップの組立てを容易に行うことができる。   Further, the connection pad P1 ′ of the magnetoresistive effect element GMR1 ′ and the connection pad P3 ′ of the magnetoresistive effect element GMR2 ′ are connected by wire bonding, and the connection point (A +) is set to the resistance value of the magnetoresistive effect element. An output unit for outputting changes. The connection pad P1 of the magnetoresistive effect element GMR3 'and the connection pad P3' of the magnetoresistive effect element GMR4 'are connected by wire bonding, and the connection point (A-) is used to change the resistance value of the magnetoresistive effect element. An output unit for outputting. The two connection points (A +, A−) are used as terminals for outputting a change signal of the resistance value of the magnetoresistive element. Since the plurality of connection pads described above are formed at symmetrical positions on the two sides forming the corners of the rectangular chip, when these are wire bonded, the position data of the connection pads is used as the existing wire bonding. The connection work can be performed mechanically by inputting to the apparatus, and the chip can be easily assembled.

図4(d)の第1相の出力信号S1を出力する第1のブリッジ回路をなす4個の磁気抵抗効果素子GMR1、GMR2、GMR3、GMR4、及び図4(d)の第2相の出力信号S2を出力する第2のブリッジ回路をなす4個の磁気抵抗効果素子GMR1′、GMR2′、GMR3′、GMR4′は、互いの磁化方向が同一の回転方向に90°異なるようにして配置される。   Four magnetoresistive elements GMR1, GMR2, GMR3, and GMR4 forming a first bridge circuit that outputs the first-phase output signal S1 of FIG. 4D, and the second-phase output of FIG. 4D. The four magnetoresistive elements GMR1 ′, GMR2 ′, GMR3 ′, and GMR4 ′ forming the second bridge circuit that outputs the signal S2 are arranged so that their magnetization directions are different from each other by 90 ° in the same rotation direction. The

これらの磁気抵抗効果素子の自由層に外部磁界が作用し、この自由層の磁化方向が外部磁界の向きに応じて固定層の固定磁化方向に対して回転すると、その自由層の磁化方向の回転に応じた抵抗値変化が生じる。その抵抗値変化は、磁気抵抗効果素子の固定層の磁化方向と自由層の磁化方向が同一方向の際に最小値を示し、反平行(180°をなす反対方向)の際に最大値を示し、外部磁界の向きにより図4(c)に示すサインカーブ(正弦波形)であって位相が90°ずれた2相の出力信号S1、S2が第1のブリッジ回路及び第2のブリッジ回路の各々の接続点A+、A-から出力される。   When an external magnetic field acts on the free layer of these magnetoresistive effect elements and the magnetization direction of the free layer rotates with respect to the fixed magnetization direction of the fixed layer according to the direction of the external magnetic field, the magnetization direction of the free layer rotates. The resistance value changes in accordance with. The change in resistance value shows a minimum value when the magnetization direction of the fixed layer of the magnetoresistive effect element and the magnetization direction of the free layer are the same direction, and shows a maximum value when it is antiparallel (opposite direction forming 180 °). The two-phase output signals S1 and S2 having a sine curve (sinusoidal waveform) shown in FIG. 4C and shifted in phase by 90 ° depending on the direction of the external magnetic field are respectively the first bridge circuit and the second bridge circuit. Are output from the connection points A + and A−.

したがって、磁気抵抗効果素子の抵抗値変化の中間点を基準点とすると、その抵抗値変化の極性(増加する方向を+、減少する方向を-とする。)は、固定層の磁化の向きが同一方向に設定された、磁気抵抗効果素子GMR1と磁気抵抗効果素子GMR4、磁気抵抗効果素子GMR1′と磁気抵抗効果素子GMR4′磁気抵抗効果素子GMR2と磁気抵抗効果素子GMR3、磁気抵抗効果素子GMR2′と磁気抵抗効果素子GMR3′では同極性になる。固定層の磁化の向きが180°をなす反対方向に異ならせた、磁気抵抗効果素子GMR1と磁気抵抗効果素子GMR2、磁気抵抗効果素子GMR1′と磁気抵抗効果素子GMR2′、磁気抵抗効果素子GMR3と磁気抵抗効果素子GMR4、磁気抵抗効果素子GMR3′と磁気抵抗効果素子GMR4′では逆極性になる。   Therefore, when the intermediate point of the resistance value change of the magnetoresistive effect element is used as a reference point, the polarity of the resistance value change (the increasing direction is + and the decreasing direction is-) is the magnetization direction of the fixed layer. Magnetoresistive element GMR1 and magnetoresistive element GMR4, magnetoresistive element GMR1 ′, magnetoresistive element GMR4 ′, magnetoresistive element GMR2, magnetoresistive element GMR3, magnetoresistive element GMR2 ′ set in the same direction And the magnetoresistive effect element GMR3 ′ have the same polarity. The magnetoresistive effect element GMR1 and the magnetoresistive effect element GMR2, the magnetoresistive effect element GMR1 ′, the magnetoresistive effect element GMR2 ′, and the magnetoresistive effect element GMR3 are different from each other in the direction of magnetization of the fixed layer being 180 °. The magnetoresistive effect element GMR4, the magnetoresistive effect element GMR3 ', and the magnetoresistive effect element GMR4' have opposite polarities.

このため、図4(a)に示す磁気抵抗効果素子GMR1、GMR2、GMR3、GMR4、GMR1′、GMR2′、GMR3′、GMR4′の接続関係と、磁気抵抗効果素子の抵抗値変化とにより、2つのホイートストーンブリッジ回路が形成され、磁気抵抗効果素子に外部磁界による磁気を感応させることにより、磁気センサとして機能する。   Therefore, the magnetoresistive effect elements GMR1, GMR2, GMR3, GMR4, GMR1 ′, GMR2 ′, GMR3 ′, GMR4 ′ shown in FIG. Two Wheatstone bridge circuits are formed and function as a magnetic sensor by making the magnetoresistive effect element sensitive to magnetism by an external magnetic field.

また、図4(b)に示すように、4個のチップ3を図示しないリードフレームに搭載し、4個のチップ3に形成された磁気抵抗効果素子の共通する接続用パッド同士を、リードフレームに形成した16本の端子Tにワイヤーボンデングにより接続する。その後、4個のチップ3を封止用樹脂4で気密封止し、ICチップ87として構成することができる。この場合、磁気抵抗効果素子の固定層の磁化方向が同一の回転方向に90°ずつ異なるようにして組合せたチップ3上の磁気抵抗効果素子の起点となる端子Tに対応する位置の封止用樹脂4にマーキングM′を付けることが望ましい。   Also, as shown in FIG. 4B, four chips 3 are mounted on a lead frame (not shown), and the connection pads common to the magnetoresistive effect elements formed on the four chips 3 are connected to the lead frame. The 16 terminals T formed in the above are connected by wire bonding. Thereafter, the four chips 3 can be hermetically sealed with the sealing resin 4 to form an IC chip 87. In this case, for sealing at a position corresponding to the terminal T serving as the starting point of the magnetoresistive effect element on the chip 3 combined so that the magnetization directions of the fixed layers of the magnetoresistive effect element are different by 90 ° in the same rotation direction. It is desirable to add a marking M ′ to the resin 4.

図4では、2個の磁気抵抗効果素子を備えた4個のチップ3を組合せたが、2個の磁気抵抗効果素子を備えたN/2(N=2、4、6、8〜2n)個のチップ3を所定の角度ずらして組合せ円周上に配置することにより、N/2相(N=2、4、6、8〜2n)の出力信号(正弦波形)を出力することができる。   In FIG. 4, four chips 3 having two magnetoresistive elements are combined, but N / 2 having two magnetoresistive elements (N = 2, 4, 6, 8 to 2n). By disposing the chips 3 on the combination circumference with a predetermined angle shift, an output signal (sine waveform) of N / 2 phase (N = 2, 4, 6, 8 to 2n) can be output. .

図9、図10は、上述した磁気センサを用いて可変抵抗器を構成した例を示す。図9に示すポテンショメータM1は、回転軸80と、この回転軸80を軸周りに回転自在に支持する軸受部材81と、この軸受部材81の裏面側に装着され該軸受部材81に取り付けられるキャップ状のカバー部材82と、このカバー部材82で覆われた軸受部材81の裏面側に回転軸80と一体的に設けられた磁気コード部材83と、前述したICチップ87等の回路部品、外部へ信号を出力するためのコネクタを実装した取付基板86と、取付基板86を軸受部材81に取り付けるホルダー部材85を有する。   9 and 10 show examples in which a variable resistor is configured using the magnetic sensor described above. The potentiometer M1 shown in FIG. 9 includes a rotating shaft 80, a bearing member 81 that supports the rotating shaft 80 so as to be rotatable about the shaft, and a cap-like shape that is attached to the back surface side of the bearing member 81 and attached to the bearing member 81. Cover member 82, magnetic code member 83 integrally provided with rotating shaft 80 on the back side of bearing member 81 covered with cover member 82, circuit components such as IC chip 87 described above, and signal to the outside And a holder member 85 for attaching the attachment substrate 86 to the bearing member 81.

前記軸受部材81は例えば黄銅を切削して形成し、前記カバー部材82は例えば金属板を絞り加工して得られるものから形成される。前記回転軸80は、樹脂あるいは非磁性ステンレス鋼などの非磁性体からなる棒状のもので、回転軸80の一端部側が軸受部材81を貫通して裏面側に突出され、その一端部に円盤状の磁気コード部材83が回転軸80と直角向きに取り付けられている。この磁気コード部材83は、その一面の中心磁気Oを通過する1本の中性点84を境界として一側(図10では左側)がS極、他側(図10では右側)がN極に着磁された磁石板から形成されている。   The bearing member 81 is formed, for example, by cutting brass, and the cover member 82 is formed, for example, from a member obtained by drawing a metal plate. The rotary shaft 80 is a rod-shaped member made of a non-magnetic material such as resin or nonmagnetic stainless steel, and one end portion side of the rotary shaft 80 penetrates the bearing member 81 and protrudes to the back surface side, and a disc shape is formed at one end portion thereof. The magnetic cord member 83 is attached to the rotary shaft 80 at a right angle. The magnetic cord member 83 has one neutral point 84 passing through the central magnetism O on one surface as a boundary, and one side (left side in FIG. 10) is an S pole and the other side (right side in FIG. 10) is an N pole. It is formed from a magnetized magnet plate.

ここで、回転軸80は、軟磁性材の鉄から形成されるものでも良いし、磁気コード部材83、ICチップ87との距離が十分に離れている場合は、強磁性体から形成されるものでもよい。なお、前記ICチップ87と前記磁気コード部材83とは平行になるようにし、ギャップを空けて設けられる。この磁気コード部材83と基板86との間の距離(ギャップ)は、磁気コード部材83が発生させる磁界によって巨大磁気抵抗効果素子26、27が飽和する領域で使用されるための距離として設定され、通常数mmから10数mm程度とされる。また回転軸80の回転中心Oが、図4のαで示す4つのチップの中心と一致するように配置され、磁石の大きさに比べて、ICチップ87は十分に小さく、また磁石は2極なので、図10に示すように、一方向に向いた平行磁界MがICチップ87に加わり、回転軸80の回転に伴って該磁界方向に回転するように変化し、上述したように動作して、図4(d)で示すように90°位相がずれた正弦波が出力される。   Here, the rotating shaft 80 may be formed of soft magnetic iron, or formed of a ferromagnetic material when the magnetic code member 83 and the IC chip 87 are sufficiently separated from each other. But you can. The IC chip 87 and the magnetic code member 83 are provided in parallel with a gap. The distance (gap) between the magnetic code member 83 and the substrate 86 is set as a distance for use in a region where the giant magnetoresistive elements 26 and 27 are saturated by the magnetic field generated by the magnetic code member 83, Usually, it is about several millimeters to several tens of millimeters. Further, the rotation center O of the rotary shaft 80 is arranged so as to coincide with the centers of the four chips indicated by α in FIG. 4, the IC chip 87 is sufficiently small compared to the size of the magnet, and the magnet has two poles. Therefore, as shown in FIG. 10, a parallel magnetic field M directed in one direction is applied to the IC chip 87 and changes so as to rotate in the direction of the magnetic field in accordance with the rotation of the rotary shaft 80, and operates as described above. As shown in FIG. 4D, a sine wave whose phase is shifted by 90 ° is output.

図4及び図6(a)では、4個の磁気抵抗効果素子を用いてブリッジ回路を形成したが、図6(b)のように2個の磁気抵抗効果素子GMR1、GMR2を用いて分圧回路を形成してもよい。この図6(b)に示す分圧回路は、2個の磁気抵抗効果素子GMR1、GMR2を直列接続し、磁気抵抗効果素子GMR1の端子E1に電源Vccのプラス側を接続(接続点V1)し、磁気抵抗効果素子GMR2の端子E2に電源Vccのグランド側を接続する(接続点V2)。また磁気抵抗効果素子GMR1の端子E2と磁気抵抗効果素子GMR2の端子E1とを接続し、その接続点Aを出力端子とする。この場合、2個の磁気抵抗効果素子GMR1と磁気抵抗効果素子GMR2との固定層の磁化方向は、180°をなす反対方向(反平行)に異ならせる。   4 and 6A, a bridge circuit is formed using four magnetoresistive elements, but voltage is divided using two magnetoresistive elements GMR1 and GMR2 as shown in FIG. 6B. A circuit may be formed. In the voltage dividing circuit shown in FIG. 6B, two magnetoresistive elements GMR1 and GMR2 are connected in series, and the positive side of the power supply Vcc is connected to the terminal E1 of the magnetoresistive element GMR1 (connection point V1). The ground side of the power source Vcc is connected to the terminal E2 of the magnetoresistive effect element GMR2 (connection point V2). The terminal E2 of the magnetoresistive effect element GMR1 and the terminal E1 of the magnetoresistive effect element GMR2 are connected, and the connection point A is used as an output terminal. In this case, the magnetization directions of the fixed layers of the two magnetoresistive elements GMR1 and GMR2 are made different in opposite directions (antiparallel) of 180 °.

そして、直列接続した2個の磁気抵抗効果素子GMR1、GMR2の接続点V1、V2に電圧を印加し、その接続点Aから、2個の磁気抵抗効果素子GMR1、GMR2の抵抗値変化に応じて変動する分圧電圧を出力し、その出力値の変化に基いて磁気抵抗効果素子の外部磁界による磁気の感応を検知する。   A voltage is applied to the connection points V1 and V2 of the two magnetoresistive elements GMR1 and GMR2 connected in series, and from the connection point A, the resistance values of the two magnetoresistive elements GMR1 and GMR2 are changed. A fluctuating divided voltage is output, and the magnetic sensitivity due to the external magnetic field of the magnetoresistive element is detected based on the change in the output value.

各磁気抵抗効果素子GMR1、GMR2は図3及び図5(a)に示すように、その端子に接続される接続用パッドP1、P2、P1′、P2′と組をなしてチップ3上に形成される。   Each magnetoresistive effect element GMR1, GMR2 is formed on the chip 3 in pairs with connection pads P1, P2, P1 ', P2' connected to its terminals, as shown in FIGS. Is done.

図5及び図6(b)の例に用いる、1個の磁気抵抗効果素子を1つのチップ内に形成する場合について説明する。図3に示すように、1つのチップ3内に、1個の磁気抵抗効果素子1と、この磁気抵抗効果素子1の端子E1、E2に接続される対をなす接続用パッドP1、P2、P1′、P2′とが組をなして形成される。このチップ3は、図1に示す基板2上に複数形成される。図3に示すチップ3の場合は、図1に示す接続用パッドP3、P4、P3′、P4′を備えた磁気抵抗効果素子1を取除いた状態のチップとなる。また、複数の磁気抵抗効果素子1を同一の基板2上に縦横に整列させて形成する際、ブロッキング温度以上にした状態で外部磁界を加え、冷却して、これらの磁気抵抗効果素子1の固定層の向きを同一方向に揃える。   A case where one magnetoresistive element used in the example of FIGS. 5 and 6B is formed in one chip will be described. As shown in FIG. 3, in one chip 3, one magnetoresistive effect element 1 and connection pads P1, P2, and P1 forming a pair connected to terminals E1 and E2 of the magnetoresistive effect element 1 are provided. 'And P2' are formed in pairs. A plurality of chips 3 are formed on the substrate 2 shown in FIG. In the case of the chip 3 shown in FIG. 3, the chip is in a state in which the magnetoresistive effect element 1 having the connection pads P3, P4, P3 ′, and P4 ′ shown in FIG. 1 is removed. When a plurality of magnetoresistive elements 1 are formed on the same substrate 2 by being aligned vertically and horizontally, an external magnetic field is applied in a state where the temperature is equal to or higher than the blocking temperature, and the magnetoresistive elements 1 are fixed by cooling. Align layers in the same direction.

さらに図3に拡大して示すように、図6(b)の分圧回路の接続点V1(V2)、Aに対応する接続用パッドP1、P2を、矩形形状のチップ3の角部を形成する2辺の一方の辺3aに沿って一定間隔に形成する。図6(b)の分圧回路の接続点V1(V2)、Aに対応させて接続用パッドP1、P2と対をなす接続用パッドP1′、P2′を備え、これらの接続用パッドP1′、P2′を矩形形状のチップ3の角部を形成する2辺の他方の辺3bに沿って一定間隔に形成する。対をなす接続用パッドP1、P2と接続用パッドP1′、P2′とは、1枚の基板2上に区画されるチップ3の角部をなす2辺3a、3bに沿って揃えられ、各チップ3に形成された1個の磁気抵抗効果素子1の周縁部に設けられる。   Further, as shown in an enlarged view in FIG. 3, the connection pads P1 and P2 corresponding to the connection points V1 (V2) and A of the voltage dividing circuit in FIG. 6B are formed at the corners of the rectangular chip 3. Are formed at regular intervals along one of the two sides 3a. Corresponding to the connection points V1 (V2) and A of the voltage dividing circuit of FIG. 6B, connection pads P1 'and P2' paired with the connection pads P1 and P2 are provided, and these connection pads P1 ' , P2 ′ are formed at regular intervals along the other side 3b of the two sides that form the corners of the rectangular chip 3. The connection pads P1 and P2 and the connection pads P1 ′ and P2 ′ forming a pair are aligned along the two sides 3a and 3b forming the corners of the chip 3 partitioned on one substrate 2. It is provided at the peripheral edge of one magnetoresistive element 1 formed on the chip 3.

磁気抵抗効果素子1の端子E1が接続用パッドP1と接続用パッドP1′とに回路パターンによりそれぞれ接続され、その端子E2が接続用パッドP2と接続用パッドP2′とに回路パターンによりそれぞれ接続される。   The terminal E1 of the magnetoresistive effect element 1 is connected to the connection pad P1 and the connection pad P1 ′ by a circuit pattern, and the terminal E2 is connected to the connection pad P2 and the connection pad P2 ′ by a circuit pattern. The

磁気抵抗効果素子1を形成する際、これらの磁気抵抗効果素子1の向きを示すマーキングMをチップ3にそれぞれ形成する。図3では、マーキングMは、接続用パッドP1の横方向の延長線と接続用パッドP1′の縦方向の延長線との交わるチップ3の左上の角部付近に揃えて形成している。   When the magnetoresistive effect element 1 is formed, markings M indicating the direction of the magnetoresistive effect element 1 are formed on the chip 3 respectively. In FIG. 3, the marking M is formed in the vicinity of the upper left corner of the chip 3 where the horizontal extension line of the connection pad P1 and the vertical extension line of the connection pad P1 ′ intersect.

前記着磁が終了した後、1個の磁気抵抗効果素子1と4個の接続用パッドP1、P2、P1′、P2′とを組とする複数のチップ3を図1に示すのと同様に縦横の1点鎖線に沿って個々に基板2から切出す。この個々に切出したチップ3を拡大して図3に示す。   After the completion of the magnetization, a plurality of chips 3 each composed of one magnetoresistive effect element 1 and four connection pads P1, P2, P1 ′, P2 ′ are the same as shown in FIG. Cut out from the substrate 2 individually along vertical and horizontal alternate long and short dash lines. The individually cut chips 3 are enlarged and shown in FIG.

次に図5(a)に示すように、切出したチップ3上の磁気抵抗効果素子1の固定層の磁化方向の向きを選定して、2個のチップ3を組合せる。図5(a)では、磁気抵抗効果素子1の磁化方向H8、H9を180°をなす反対方向(反平行)に異ならせて、2個のチップ3を組合せている。図5(a)では、互いのチップ3の間にスペースがあるように図示しているが、チップ3を組立てるには、互いのチップ3同士を隙間なく突き合わせることにより、磁気抵抗効果素子1が互いに隣接するようにする。この組合せにより、2個の磁気抵抗効果素子1の外部磁界に対する磁気感応度を均一化し、正確な出力信号を出力することが可能となる。   Next, as shown in FIG. 5A, the direction of the magnetization direction of the fixed layer of the magnetoresistive effect element 1 on the cut chip 3 is selected, and the two chips 3 are combined. In FIG. 5A, the two chips 3 are combined by changing the magnetization directions H8 and H9 of the magnetoresistive effect element 1 in opposite directions (antiparallel) of 180 °. Although FIG. 5A shows that there is a space between the chips 3, in order to assemble the chips 3, the magnetoresistive effect element 1 is obtained by abutting the chips 3 with each other without a gap. Are adjacent to each other. This combination makes it possible to equalize the magnetic sensitivity of the two magnetoresistive elements 1 to the external magnetic field and output an accurate output signal.

この実施形態では、1つのチップ3に1個の磁気抵抗効果素子1を形成するが、基板2上に形成する際に複数の磁気抵抗効果素子1の固定層の磁化方向を同一方向に揃えて着磁して固定(ピン止め)するため、隣接する磁気抵抗効果素子に付与する着磁磁界が相互に影響しても問題がなく、磁気抵抗効果素子1の固定層を着磁する磁界を例えば600(KA/m)まで大きくすることができ、その増大させた着磁磁界で磁気抵抗効果素子の固定層を磁化固定することができる。したがって、磁気抵抗効果素子の磁気感応度を高めることにより、その出力信号の絶対値を大きくすることができ、正確な磁界検出を行なうことができる。また出力精度を高めることができる。   In this embodiment, one magnetoresistive element 1 is formed on one chip 3, but when forming on the substrate 2, the magnetization directions of the fixed layers of the plurality of magnetoresistive elements 1 are aligned in the same direction. Since it is magnetized and fixed (pinned), there is no problem even if magnetized magnetic fields applied to adjacent magnetoresistive elements influence each other, and the magnetic field that magnetizes the fixed layer of the magnetoresistive element 1 is, for example, It can be increased to 600 (KA / m), and the pinned layer of the magnetoresistive effect element can be fixed by magnetization with the increased magnetization magnetic field. Therefore, by increasing the magnetic sensitivity of the magnetoresistive effect element, the absolute value of the output signal can be increased, and accurate magnetic field detection can be performed. Also, the output accuracy can be increased.

図5(a)に示す磁気抵抗効果素子と図6(b)に示すブリッジ回路の磁気抵抗効果素子との関係を明確にするため、図5(a)では、磁気抵抗効果素子に、GMR1、GMR2の符号を付して説明する。この場合、磁気抵抗効果素子GMR1の固定層の磁化方向H8は下方向に向けて設定し、磁気抵抗効果素子GMR2の固定層の磁化方向H9は上矢印で示す180°をなす上方向(反平行)に異ならせている。図5(a)に示す、1個の磁気抵抗効果素子が形成されたチップ3を2個用いて形成した分圧回路は図6(b)の回路構成となる。   In order to clarify the relationship between the magnetoresistive effect element shown in FIG. 5A and the magnetoresistive effect element of the bridge circuit shown in FIG. 6B, in FIG. A description will be given with reference to GMR2. In this case, the magnetization direction H8 of the fixed layer of the magnetoresistive effect element GMR1 is set downward, and the magnetization direction H9 of the fixed layer of the magnetoresistive effect element GMR2 is 180 degrees upward (antiparallel) indicated by the up arrow. ). A voltage dividing circuit shown in FIG. 5A formed by using two chips 3 on which one magnetoresistive effect element is formed has the circuit configuration shown in FIG.

図3に示すように、1つのチップ3に1個の磁気抵抗効果素子が形成された場合においても、磁気抵抗効果素子の固定層の磁化方向に対して、その自由層に外部磁界が作用して自由層の磁化の回転に応じた抵抗値変化が生じる。その抵抗値変化は、磁気抵抗効果素子の固定層の磁化方向と自由層の磁化方向の向きが同一方向の際に最小値を示し、反平行(180°をなす反対方向)の際に最大値を示す。   As shown in FIG. 3, even when one magnetoresistive element is formed on one chip 3, an external magnetic field acts on the free layer with respect to the magnetization direction of the fixed layer of the magnetoresistive element. Thus, the resistance value changes according to the rotation of the magnetization of the free layer. The change in the resistance value shows the minimum value when the magnetization direction of the fixed layer and the magnetization direction of the free layer of the magnetoresistive effect element are the same direction, and the maximum value when it is antiparallel (opposite direction forming 180 °). Indicates.

また、図5(b)に示すように、2個のチップ3を図示しないリードフレームに搭載し、2個のチップ3の磁気抵抗効果素子の共通する接続用パッド同士を、リードフレームに形成した8本の端子Tに接続し、2個のチップ3を封止用樹脂4で気密封止し、ICチップ87として構成することができる。この場合、180°の方向に異ならせた磁気抵抗効果素子の起点となる端子Tに対応する位置にマーキングM′を付けることが望ましい。   Further, as shown in FIG. 5B, the two chips 3 are mounted on a lead frame (not shown), and the connection pads common to the magnetoresistive effect elements of the two chips 3 are formed on the lead frame. The IC chip 87 can be configured by connecting to the eight terminals T and hermetically sealing the two chips 3 with the sealing resin 4. In this case, it is desirable to place a marking M ′ at a position corresponding to the terminal T that is the starting point of the magnetoresistive effect element that is varied in the direction of 180 °.

図8(a)、(b)は、本発明の磁気センサを用いて、スイッチ動作(接点のON、OFF)を非接触式で行なう磁気スイッチを構成した場合の例を示す図である。この磁気スイッチは、スイッチの切替動作(ON、OFF)に対応して、磁界の向きが反対でかつ大きさが異なる第1の磁石5と第2の磁石6の磁界を外部磁界として磁気抵抗効果素子1に選択的に作用させることにより、該磁気抵抗効果素子1からスイッチ動作の切替信号を出力する。具体的に説明すると、図8(a)、(b)に示すように、磁気スイッチのホルダー7は、ベース8の両端部に対をなすアーム9、10を平行に対向して設けたU字型形状に形成されている。そして、対をなす一方のアーム9には磁気抵抗効果素子1及び第2の永久磁石(以下、第2の磁石という)6が、他方のアーム10には第1の永久磁石(以下、第1の磁石という)4がそれぞれ設けられている。   FIGS. 8A and 8B are diagrams showing an example in which a magnetic switch that performs a switch operation (contact ON / OFF) in a non-contact manner using the magnetic sensor of the present invention is shown. In response to the switching operation (ON, OFF) of this magnetic switch, the magnetic resistance of the first magnet 5 and the second magnet 6 having opposite magnetic field directions and different magnitudes is used as an external magnetic field. By selectively acting on the element 1, a switching signal for switching operation is output from the magnetoresistive effect element 1. More specifically, as shown in FIGS. 8A and 8B, the magnetic switch holder 7 has a U-shape in which arms 9 and 10 that are paired at both ends of the base 8 are provided in parallel to face each other. It is formed in a mold shape. A pair of arms 9 has a magnetoresistive element 1 and a second permanent magnet (hereinafter referred to as a second magnet) 6, and the other arm 10 has a first permanent magnet (hereinafter referred to as a first magnet). 4) (referred to as magnets).

この場合、チップ3としては図3に示すように、1つのチップ3に1個の磁気抵抗効果素子1が形成されたものを用いる。このチップ3を2個用い、その2個の磁気抵抗効果素子1を図6(a)に示すブリッジ回路の磁気抵抗効果素子GMR1、GMR2として組込み、図6(a)に示すブリッジ回路の磁気抵抗効果素子GMR3、GMR4を固定抵抗に置きかえる。この2個のチップ3は、2個の磁気抵抗効果素子1の磁化方向が図6(a)に示すブリッジ回路の磁気抵抗効果素子GMR1、GMR2のように180°をなす反対方向(反平行)に異ならせる。このチップ3は基板12上に搭載され、基板12を介して一方のアーム9の内側面に取付けられる。なお、図8(a)、(b)では、チップ3を図示せずに、図6(a)に示すブリッジ回路の2個の磁気抵抗効果素子GMR1、GMR2を代表して、磁気抵抗効果素子1として表記する。   In this case, as the chip 3, as shown in FIG. 3, a chip in which one magnetoresistive element 1 is formed on one chip 3 is used. Two chips 3 are used, and the two magnetoresistive effect elements 1 are incorporated as magnetoresistive effect elements GMR1 and GMR2 of the bridge circuit shown in FIG. 6A, and the magnetoresistance of the bridge circuit shown in FIG. The effect elements GMR3 and GMR4 are replaced with fixed resistors. The two chips 3 have opposite directions (antiparallel) in which the magnetization directions of the two magnetoresistive elements 1 form 180 ° as in the magnetoresistive elements GMR1 and GMR2 of the bridge circuit shown in FIG. To be different. The chip 3 is mounted on the substrate 12 and attached to the inner surface of one arm 9 via the substrate 12. In FIGS. 8A and 8B, the chip 3 is not shown, and the magnetoresistive effect element GMR1 and GMR2 of the bridge circuit shown in FIG. Indicated as 1.

第2の磁石6は、磁気抵抗効果素子1の自由層1d(図7参照)を磁界で磁化する磁界作用位置で一方のアーム9に取付けられている。ここに、磁界作用位置は、第2の磁石6の磁力線6aが磁気抵抗効果素子1の自由層1dに作用し、第2の磁石6の磁界(外部磁界)で磁気抵抗効果素子1の自由層1dを磁化可能な位置に設定される。   The second magnet 6 is attached to one arm 9 at a magnetic field action position that magnetizes the free layer 1d (see FIG. 7) of the magnetoresistive element 1 with a magnetic field. Here, the magnetic field action position is such that the magnetic force lines 6a of the second magnet 6 act on the free layer 1d of the magnetoresistive effect element 1, and the free layer of the magnetoresistive effect element 1 by the magnetic field of the second magnet 6 (external magnetic field). 1d is set to a magnetizable position.

第1の磁石5は、その磁界(外部磁界)が磁気抵抗効果素子1の自由層1d(図7参照)に作用して、該自由層1dを磁化可能な位置(磁界作用位置)に配置し、かつ磁力線(磁界の向き)5aを第2の磁石6の磁力線(磁界の向き)6aと180°をなす反対方向(反平行)に異ならせて他方のアーム10に取付けている。第1の磁石5には、第2の磁石6の磁力より数百ガウス大きな磁力をもつ磁石を用いている。   The first magnet 5 is disposed at a position where the magnetic layer (external magnetic field) acts on the free layer 1d (see FIG. 7) of the magnetoresistive effect element 1 and the free layer 1d can be magnetized (magnetic field acting position). In addition, the magnetic field lines (direction of magnetic field) 5a are attached to the other arm 10 so as to be different from the magnetic field lines (direction of magnetic field) 6a of the second magnet 6 in the opposite direction (antiparallel) of 180 °. As the first magnet 5, a magnet having a magnetic force several hundred gauss larger than the magnetic force of the second magnet 6 is used.

さらに、第1、第2の磁石5、6に対する相対位置が変化する、強磁性体からなる磁界遮閉部材11を有している。この磁界遮閉部材11は、第1、第2の磁石5、6の磁界の双方を磁気抵抗効果素子1に作用させて自由層1dの磁化方向を第1の方向とする第1の位置と、第1、第2の磁石5、6の磁界の一方を磁気抵抗効果素子1に作用させて自由層1dの磁化方向を第1の方向と反対の第2の方向とする第2の位置とに移動する。図8(a)に示すように前記第1の位置は、磁界遮蔽部材11が第1の磁石5と磁気抵抗効果素子1との間から退出した位置に設定している。一方、図8(b)に示すように第2の位置は、磁界遮蔽部材11が第1の磁石5と磁気抵抗効果素子1との間に進入した位置に設定している。   Furthermore, it has the magnetic field shielding member 11 which consists of a ferromagnetic material from which the relative position with respect to the 1st, 2nd magnets 5 and 6 changes. The magnetic field shielding member 11 has a first position in which both the magnetic fields of the first and second magnets 5 and 6 act on the magnetoresistive effect element 1 so that the magnetization direction of the free layer 1d is the first direction. A second position in which one of the magnetic fields of the first and second magnets 5 and 6 acts on the magnetoresistive element 1 so that the magnetization direction of the free layer 1d is a second direction opposite to the first direction; Move to. As shown in FIG. 8A, the first position is set to a position where the magnetic shielding member 11 is retracted from between the first magnet 5 and the magnetoresistive element 1. On the other hand, as shown in FIG. 8B, the second position is set to a position where the magnetic field shielding member 11 enters between the first magnet 5 and the magnetoresistive element 1.

磁界遮蔽部材11が図示しない駆動手段により第2の位置まで移動されると、図8(b)に示すように第2の位置に移動した磁界遮蔽部材11は、第1の磁石5の磁力線5aを磁気抵抗効果素子1の自由層1dから引離して第1の磁石5の磁界を遮蔽し、第2の磁石6の磁界のみを外部磁界として磁気抵抗効果素子1に作用させる。したがって、磁気抵抗効果素子1の自由層1dには、第1の磁石5よりも磁力が小さい第2の磁石6の磁界のみが外部磁界として磁気抵抗効果素子1に作用する。   When the magnetic shielding member 11 is moved to the second position by the driving means (not shown), the magnetic shielding member 11 moved to the second position as shown in FIG. Is separated from the free layer 1d of the magnetoresistive effect element 1 to shield the magnetic field of the first magnet 5, and only the magnetic field of the second magnet 6 acts on the magnetoresistive effect element 1 as an external magnetic field. Therefore, only the magnetic field of the second magnet 6 having a smaller magnetic force than the first magnet 5 acts on the magnetoresistive element 1 as an external magnetic field in the free layer 1 d of the magnetoresistive element 1.

一方、図8(a)に示すように磁界遮蔽部材11が第1の位置に移動すると、磁気抵抗効果素子1には、第1、第2の磁石5、6の磁界の双方が外部磁界として作用する。この場合、第1の磁石5の磁力は第2の磁石6よりも大きく、しかも磁気抵抗効果素子1の自由層1dに対する第1の磁石5と第2の磁石6とによる磁化方向が180°をなす反対方向に異ならせている。   On the other hand, when the magnetic field shielding member 11 moves to the first position as shown in FIG. 8A, both the magnetic fields of the first and second magnets 5 and 6 are external magnetic fields in the magnetoresistive effect element 1. Works. In this case, the magnetic force of the first magnet 5 is greater than that of the second magnet 6, and the magnetization direction of the first magnet 5 and the second magnet 6 with respect to the free layer 1 d of the magnetoresistive effect element 1 is 180 °. Different in the opposite direction.

したがって、第2の磁石6による磁力が第1の磁石5による磁力で打消され、磁気抵抗効果素子1の自由層1dに第1の磁石5の磁界が作用し、該磁気抵抗効果素子1の自由層1dの磁化方向が第2の磁石6による磁化方向と180°をなす反対方向に反転切替えられる。   Accordingly, the magnetic force generated by the second magnet 6 is canceled out by the magnetic force generated by the first magnet 5, and the magnetic field of the first magnet 5 acts on the free layer 1 d of the magnetoresistive effect element 1. The magnetization direction of the layer 1d is reversed and switched to the opposite direction that forms 180 ° with the magnetization direction of the second magnet 6.

この第1の磁石5と第2の磁石6とによる磁気抵抗効果素子1の自由層1dの磁化方向の反転切替に基いて、磁気抵抗効果素子1の抵抗値が変化する。さらに2つの磁石5、6による磁気抵抗効果素子1の自由層1dの磁化方向が磁気抵抗効果素子の固定層の磁化方向に対して180°をなす反対方向に異ならせているため、その抵抗値の変化が瞬時に行なわれる。   Based on the reversal switching of the magnetization direction of the free layer 1 d of the magnetoresistive effect element 1 by the first magnet 5 and the second magnet 6, the resistance value of the magnetoresistive effect element 1 changes. Furthermore, since the magnetization direction of the free layer 1d of the magnetoresistive effect element 1 by the two magnets 5 and 6 is different from the magnetization direction of the fixed layer of the magnetoresistive effect element at 180 °, its resistance value Changes are made instantaneously.

スイッチオフの場合、図8(a)に示すように磁界遮蔽部材11が磁気抵抗効果素子1と第1の磁石5との間から退出するため、第1の磁石5からの磁界が磁気抵抗効果素子1に作用する。この場合、第1の磁石5の磁力線5aの向きと、2個の磁気抵抗効果素子1の一方の磁気抵抗効果素子1の自由層の磁化方向が同一方向であるため、その磁化方向が180°をなす反対方向に異ならせた他方の磁気抵抗効果素子1の抵抗値が大きくなる。   In the case of switching off, as shown in FIG. 8A, the magnetic field shielding member 11 retreats from between the magnetoresistive effect element 1 and the first magnet 5, so that the magnetic field from the first magnet 5 is magnetoresistive. Acts on the element 1. In this case, since the direction of the magnetic force line 5a of the first magnet 5 and the magnetization direction of the free layer of one of the two magnetoresistive effect elements 1 are the same, the magnetization direction is 180 °. The resistance value of the other magnetoresistive effect element 1 made different in the opposite direction is increased.

スイッチオンの場合、図8(b)に示すように磁界遮蔽部材11が磁気抵抗効果素子1と第1の磁石5との間に進入するため、第1の磁石5から磁気抵抗効果素子1への磁界が遮断され、第2の磁石6のみの磁界が磁気抵抗効果素子1に作用する。この場合、第2の磁石6の磁力線6aの向きと磁化方向の向きが反対向きの磁気抵抗効果素子1の抵抗値の変化が大きくなる。   When the switch is turned on, the magnetic field shielding member 11 enters between the magnetoresistive effect element 1 and the first magnet 5 as shown in FIG. 8B, so that the first magnet 5 moves to the magnetoresistive effect element 1. The magnetic field of only the second magnet 6 acts on the magnetoresistive effect element 1. In this case, a change in the resistance value of the magnetoresistive effect element 1 in which the direction of the magnetic force lines 6a of the second magnet 6 and the direction of the magnetization direction are opposite to each other becomes large.

上述した磁気抵抗効果素子1の抵抗値の変化をブリッジ回路から出力して、スイッチ動作の切替信号を出力する。   A change in the resistance value of the magnetoresistive effect element 1 described above is output from the bridge circuit, and a switch operation switching signal is output.

この磁気スイッチによれば、スイッチの切替動作に対応して、磁界の向きが反対でかつ大きさが異なる第1の磁石5と第2の磁石6の磁界を外部磁界として磁気抵抗効果素子1に選択的に作用し、該磁気抵抗効果素子1からスイッチ動作の切替信号を出力し、その出力信号に基いてスイッチの切替を行なうものであり、磁界遮蔽部材11の移動により磁気抵抗効果素子1に対する磁界の向き(磁気抵抗効果素子の磁化方向)を180°をなす反対方向に変化させることができる。したがって、磁界の強さが徐々に変化する構成であっても、磁気抵抗効果素子の抵抗値を急激に変化させることができ、その急激な抵抗値の変化に基いてスイッチ動作を迅速に行なうことができる。   According to this magnetic switch, in response to the switching operation of the switch, the magnetic field of the first magnet 5 and the second magnet 6 having opposite magnetic fields and different magnitudes is applied to the magnetoresistive effect element 1 as an external magnetic field. Acting selectively, the switch signal of the switch operation is output from the magnetoresistive effect element 1, and the switch is switched based on the output signal. The direction of the magnetic field (the magnetization direction of the magnetoresistive effect element) can be changed to the opposite direction of 180 °. Therefore, even if the magnetic field strength gradually changes, the resistance value of the magnetoresistive element can be changed abruptly, and the switch operation can be quickly performed based on the abrupt change in resistance value. Can do.

以上の説明では、磁気センサを用いて磁気スイッチを構成したが、これに限定されるものではなく、磁界遮閉作用を有する被検知部材を検知する、外部磁界によって磁化方向が変化する自由層を有する磁気抵抗効果素子を用いた物体検知センサとしても構成することができる。この実施形態では、被検出部材の移動に対応して、磁界の向きが反対でかつ大きさが異なる第1の磁石と第2の磁石の磁界を外部磁界として磁気抵抗効果素子に選択的に作用させることにより、該磁気抵抗効果素子から被検出部材の検知信号を出力させることができる。   In the above description, the magnetic switch is configured using a magnetic sensor, but the present invention is not limited to this, and a free layer whose magnetization direction is changed by an external magnetic field that detects a detected member having a magnetic field shielding action is provided. It can also be configured as an object detection sensor using the magnetoresistive effect element. In this embodiment, in response to the movement of the member to be detected, the magnetic field of the first magnet and the second magnet having different magnetic field directions and different magnitudes is selectively applied to the magnetoresistive effect element as an external magnetic field. By doing so, the detection signal of the member to be detected can be output from the magnetoresistive effect element.

この検知センサは、図8に示す磁気スイッチの磁界遮蔽部材11を、磁界遮閉作用を有する被検知部材として用い、この被検知部材(11)を検知するようにした構成が磁気スイッチと相違している。その他の構成は図8に示す磁気スイッチと同様である。   This detection sensor uses a magnetic field shielding member 11 of the magnetic switch shown in FIG. 8 as a detected member having a magnetic field shielding action, and is different from the magnetic switch in that the detected member (11) is detected. ing. Other configurations are the same as those of the magnetic switch shown in FIG.

上記被検知部材(11)は、第1、第2の磁石5、6に対する相対位置が変化するように移動する。この被検知部材(11)の第1、第2の磁石5、6に対する相対位置の変化によって、第1、第2の磁石5、6の磁界(外部磁界)の双方を磁気抵抗効果素子1に作用させる第1の状態と、第1、第2の磁石5、6の磁界(外部磁界)の一方を磁気抵抗効果素子1に作用させる第2の状態とを生じさせて被検知部材(11)を検知する。   The detected member (11) moves so that the relative position with respect to the first and second magnets 5 and 6 changes. By changing the relative position of the detected member (11) with respect to the first and second magnets 5 and 6, both the magnetic fields (external magnetic fields) of the first and second magnets 5 and 6 are applied to the magnetoresistive effect element 1. The first member to be actuated and the second state in which one of the magnetic fields (external magnetic fields) of the first and second magnets 5 and 6 is caused to act on the magnetoresistive effect element 1 are generated, and the member to be detected (11). Is detected.

前記第1の状態は、磁界遮蔽部材11が第1の磁石5と磁気抵抗効果素子1との間から退出した状態に設定する(図8(a)参照)。一方、第2の状態は、磁界遮蔽部材11が第1の磁石5と磁気抵抗効果素子1との間に進入した状態に設定する(図8(b)参照)。そして、第2の状態での被検知部材11は、第2の磁石6よりも磁力が大きい第1の磁石5の磁界を遮蔽し、第2の磁石6の磁界のみが外部磁界として磁気抵抗効果素子1に作用する。   The first state is set to a state in which the magnetic field shielding member 11 is withdrawn from between the first magnet 5 and the magnetoresistive effect element 1 (see FIG. 8A). On the other hand, a 2nd state is set to the state which the magnetic field shielding member 11 approached between the 1st magnet 5 and the magnetoresistive effect element 1 (refer FIG.8 (b)). And the to-be-detected member 11 in a 2nd state shields the magnetic field of the 1st magnet 5 with a larger magnetic force than the 2nd magnet 6, and only the magnetic field of the 2nd magnet 6 becomes a magnetoresistive effect as an external magnetic field. Acts on the element 1.

この物体検知センサによれば、被検出部材(11)の移動に対応して、磁界の向きが反対でかつ大きさが異なる第1の磁石5と第2の磁石6の磁界を外部磁界として磁気抵抗効果素子1に選択的に作用し、該磁気抵抗効果素子5から被検出部材(11)の検知信号を出力し、その出力信号に基いて被検出部材(11)を検知するものであり、被検知部材(11)の移動により磁気抵抗効果素子1に対する磁界の向き(磁気抵抗効果素子の磁化方向)を180°をなす反対方向に変化させることができる。   According to this object detection sensor, in response to the movement of the member to be detected (11), the magnetic fields of the first magnet 5 and the second magnet 6 having opposite directions and different magnitudes are used as external magnetic fields. Selectively acting on the resistive effect element 1, outputting a detection signal of the detected member (11) from the magnetoresistive effect element 5, and detecting the detected member (11) based on the output signal; The direction of the magnetic field with respect to the magnetoresistive effect element 1 (the magnetization direction of the magnetoresistive effect element) can be changed to the opposite direction of 180 ° by the movement of the member to be detected (11).

図11は、上述した磁気センサを用いて可変抵抗器を構成した例を示す。この可変抵抗器は、回転軸80と、この回転軸80を軸周りに回転自在に支持する軸受部材81と、この軸受部材81の裏面側に装着され該軸受部材81に取り付けられるカバー部材82と、軸受部材81の裏面側に回転軸80と一体的に設けられた遮蔽板90及び磁気コード部材13a、13bと、図4(b)に示すICチップ87等の回路部品、外部へ信号を出力するためのコネクタを実装しカバー部材82に取り付けられる取付基板86とを有する。   FIG. 11 shows an example in which a variable resistor is configured using the magnetic sensor described above. The variable resistor includes a rotating shaft 80, a bearing member 81 that supports the rotating shaft 80 so as to be rotatable about the axis, and a cover member 82 that is attached to the bearing member 81 and attached to the back surface side of the bearing member 81. The shield plate 90 and magnetic code members 13a and 13b provided integrally with the rotary shaft 80 on the back side of the bearing member 81, circuit components such as the IC chip 87 shown in FIG. And a mounting board 86 mounted on the cover member 82.

前記回転軸80は、樹脂あるいは非磁性ステンレス鋼などの非磁性体からなる棒状のもので、回転軸80の一端部側が軸受部材81を貫通して裏面側に突出され、その一端部に、磁界を遮蔽する鋼板等で形成される皿状の遮蔽部材90が一体的に設けられている。また遮蔽部材90の内面にはN極とS極の2極の永久磁石からなる磁気コード部材13a、13bが、回転軸Oを挟んで対向する位置に一対取付けられ、該磁気コード部材13a、13bによってGMR素子(巨大磁気抵抗効果素子)が飽和するのに十分な磁界が加えられる。   The rotary shaft 80 is a rod-shaped member made of a non-magnetic material such as resin or nonmagnetic stainless steel, and one end portion side of the rotary shaft 80 penetrates the bearing member 81 and protrudes to the back surface side. A dish-shaped shielding member 90 formed of a steel plate or the like that shields is integrally provided. A pair of magnetic cord members 13a and 13b made of two-pole permanent magnets of N and S poles are attached to the inner surface of the shielding member 90 at positions facing each other across the rotation axis O, and the magnetic cord members 13a and 13b. Thus, a magnetic field sufficient to saturate the GMR element (giant magnetoresistive element) is applied.

またICチップ87は磁気コード部材13a、13bの軸線方向の中間位置を結ぶ線上に位置するように取付基板86に取付けられ、回転軸80の回転中心Oが、図4のαで示す4つのチップの中心と一致するように配置される。なお、磁石の長さに比べて、ICチップ87は十分に小さく、図10に示すように一方向に向いた平行磁界MがICチップ87に加わり、回転軸の回転に伴って該磁界方向も回転するように変化し、前述したのと同様に動作して図4(d)で示すように90°位相がずれた正弦波が出力される。   Further, the IC chip 87 is mounted on the mounting substrate 86 so as to be positioned on a line connecting the intermediate positions of the magnetic cord members 13a and 13b in the axial direction, and the rotation center O of the rotating shaft 80 is four chips indicated by α in FIG. It arrange | positions so that it may correspond with the center of. The IC chip 87 is sufficiently smaller than the magnet length, and a parallel magnetic field M directed in one direction is applied to the IC chip 87 as shown in FIG. It changes so as to rotate and operates in the same manner as described above to output a sine wave whose phase is shifted by 90 ° as shown in FIG.

なお、図9、図10で示す可変抵抗器においては、磁気コード部材83が発する磁力線の多少湾曲した部分が、ICチップ87に加わるが、この実施形態においては、磁気コード部材13a、13bを対向して配置し、両者が配置されている面上にICチップ87を設けて、磁石の長さより短い範囲にGMR素子(巨大抵抗効果素子)を配置しているので、ICチップ87内のGMR素子には、より直線に近い平行磁界が加わることとなり、したがって、より正弦波に近い出力とすることが可能となる。   In the variable resistor shown in FIGS. 9 and 10, a slightly curved portion of the magnetic lines of force generated by the magnetic code member 83 is added to the IC chip 87. In this embodiment, the magnetic code members 13a and 13b are opposed to each other. Since the IC chip 87 is provided on the surface where both are arranged, and the GMR element (giant resistance effect element) is arranged in a range shorter than the length of the magnet, the GMR element in the IC chip 87 is arranged. Is applied with a parallel magnetic field that is closer to a straight line, and therefore, an output that is closer to a sine wave can be achieved.

図8及び図9、図10、図11では、本発明の磁気センサを磁気スイッチ、物体検知センサ或いは可変抵抗器に応用した場合を説明したが、本発明の磁気センサの応用範囲は、図8及び図9、図10、図11のものに限定されるものではない。   8, 9, 10, and 11, the case where the magnetic sensor of the present invention is applied to a magnetic switch, an object detection sensor, or a variable resistor has been described. The application range of the magnetic sensor of the present invention is illustrated in FIG. 8. And it is not limited to the thing of FIG. 9, FIG. 10, FIG.

本発明において、基板上に複数の磁気抵抗効果素子を形成する場合を示す平面図である。In this invention, it is a top view which shows the case where a several magnetoresistive effect element is formed on a board | substrate. 1つのチップに2個の磁気抵抗効果素子を形成した場合を示す平面図である。It is a top view which shows the case where two magnetoresistive effect elements are formed in one chip | tip. 1つのチップに1個の磁気抵抗効果素子を形成した場合を示す平面図である。It is a top view which shows the case where one magnetoresistive effect element is formed in one chip | tip. (a)は、4個のチップを組合せてブリッジ回路を形成した場合を示す平面図、(b)は、ICチップ化した場合を示す平面図、(c)、(d)は、2相の出力信号を示す特性図である。(A) is a plan view showing a case where a bridge circuit is formed by combining four chips, (b) is a plan view showing a case where an IC chip is formed, and (c) and (d) are two-phase circuits. It is a characteristic view which shows an output signal. (a)は、2個のチップを組合せて分圧回路を形成した場合を示す平面図、(b)は、ICチップ化した場合を示す平面図、(c)は、1相の出力信号を示す特性図である。(A) is a plan view showing a case where a voltage dividing circuit is formed by combining two chips, (b) is a plan view showing a case where an IC chip is formed, and (c) is a one-phase output signal. FIG. (a)は、ブリッジ回路図、(b)は分圧回路図である。(A) is a bridge circuit diagram, (b) is a voltage dividing circuit diagram. 磁気抵抗効果素子を示す断面図である。It is sectional drawing which shows a magnetoresistive effect element. (a)、(b)は、本発明の磁気センサを用いて磁気スイッチを構成した図である。(A), (b) is the figure which comprised the magnetic switch using the magnetic sensor of this invention. 本発明の磁気センサを用いて可変抵抗器を構成した断面図である。It is sectional drawing which comprised the variable resistor using the magnetic sensor of this invention. 図9に示す可変抵抗器の要部を示す断面図である。It is sectional drawing which shows the principal part of the variable resistor shown in FIG. 本発明の可変抵抗器の他の例を示す図であり、(a)は要部断面図、(b)は断面図である。It is a figure which shows the other example of the variable resistor of this invention, (a) is principal part sectional drawing, (b) is sectional drawing.

符号の説明Explanation of symbols

1 磁気抵抗効果素子(GMR1 GMR2 GMR3 GMR4 GMR1′
GMR2′ GMR3′ GMR4′)
2 基板
3 チップ
4 封止用樹脂
5 第1の磁石
6 第2の磁石
11 磁界遮蔽部材(被検出部材)
13 回転磁界
13a 磁気コード部材
13b 磁気コード部材
M マーキング
1 magnetoresistive effect element (GMR1, GMR2, GMR3, GMR4, GMR1 ′
GMR2 'GMR3' GMR4 ')
2 Substrate 3 Chip 4 Sealing resin 5 First magnet 6 Second magnet 11 Magnetic field shielding member (detected member)
13 Rotating magnetic field 13a Magnetic code member 13b Magnetic code member M Marking

Claims (10)

磁気抵抗効果素子及び磁気抵抗効果素子の端子に接続する複数の接続用パッドが形成されたチップ上に、
上記磁気抵抗効果素子の固定層の磁化方向を識別するマーキングを表示したことを特徴とする磁気センサ。
On the chip on which a plurality of connection pads connected to the magnetoresistive effect element and the terminals of the magnetoresistive effect element are formed,
A magnetic sensor characterized by displaying markings for identifying the magnetization direction of the fixed layer of the magnetoresistive element.
請求項1記載の磁気センサにおいて、上記磁気抵抗効果素子の端子、複数の接続用パッド及びマーキングを備えた上記チップは矩形形状である磁気センサ。 The magnetic sensor according to claim 1, wherein the chip including a terminal of the magnetoresistive effect element, a plurality of connection pads, and a marking has a rectangular shape. 請求項2記載の磁気センサにおいて、上記接続用パッドの形成位置は、チップの角部を形成する2辺の対称な位置で揃えられている磁気センサ。 3. The magnetic sensor according to claim 2, wherein the connection pad is formed at a symmetrical position on two sides forming a corner of the chip. 請求項3記載の磁気センサにおいて、上記マーキングは、上記2辺の角部と対向する角部付近に形成されている磁気センサ。 4. The magnetic sensor according to claim 3, wherein the marking is formed in the vicinity of a corner facing the corners of the two sides. 請求項1乃至4のいずれか一項記載の磁気センサにおいて、上記チップ上には、1個の磁気抵抗効果素子、1組の接続用パッド及び1個のマーキングを備えている磁気センサ。 5. The magnetic sensor according to claim 1, wherein one magnetoresistive element, one set of connection pads, and one marking are provided on the chip. 請求項1乃至4のいずれか一項記載の磁気センサにおいて、上記チップ上には、少なくとも2個の磁気抵抗効果素子、2組の接続用パッド及び1個のマーキングを備えている磁気センサ。 5. The magnetic sensor according to claim 1, wherein the chip includes at least two magnetoresistive elements, two sets of connection pads, and one marking on the chip. 請求項5記載の磁気センサにおいて、1個の磁気抵抗効果素子が形成されたチップが4個、隣接する磁気抵抗効果素子の固定層の磁化方向が同一の回転方向に90°ずつ異なるようして組合せられ、固定層の磁化方向が反対向きである磁気抵抗効果素子同士が直列に接続されて、1相の出力信号を出力するブリッジ回路が形成されていることを特徴とする磁気センサ。 6. The magnetic sensor according to claim 5, wherein four chips each having one magnetoresistive effect element are formed, and the magnetization directions of the fixed layers of adjacent magnetoresistive effect elements are different by 90 degrees in the same rotation direction. A magnetic sensor comprising a combination of magnetoresistive elements whose fixed layers have opposite magnetization directions connected in series to form a bridge circuit that outputs a one-phase output signal. 請求項5記載の磁気センサにおいて、1個の磁気抵抗効果素子が形成されたチップが2個、磁気抵抗効果素子の固定層の磁化方向を180°異ならせて組合せられ、磁気抵抗効果素子同士が直列に接続されて分圧回路が形成されていることを特徴とする磁気センサ。 6. The magnetic sensor according to claim 5, wherein two chips each having one magnetoresistive effect element are combined with the magnetization direction of the fixed layer of the magnetoresistive effect element being 180 degrees different from each other. A magnetic sensor comprising a voltage dividing circuit connected in series. 請求項6記載の磁気センサにおいて、少なくとも2個の磁気抵抗効果素子が形成されたチップが4個、隣接する磁気抵抗効果素子の固定層の磁化方向が同一の回転方向に90°ずつ異なるようして組合せられ、固定層の磁化方向が反対向きである磁気抵抗効果素子同士が直列に接続されて、多相の出力信号を出力するブリッジ回路が形成されていることを特徴とする磁気センサ。 7. The magnetic sensor according to claim 6, wherein four chips each having at least two magnetoresistive elements are formed, and the magnetization directions of the fixed layers of adjacent magnetoresistive elements are different by 90 degrees in the same rotational direction. And a magnetoresistive effect element in which the magnetization directions of the fixed layers are opposite to each other is connected in series to form a bridge circuit that outputs a multiphase output signal. 請求項6記載の磁気センサにおいて、少なくとも2個の磁気抵抗効果素子が形成されたチップが2個、磁気抵抗効果素子の固定層の磁化方向を180°異ならせて組合せられ、固定層の磁化方向が反対向きである磁気抵抗効果素子同士が直列に接続されて分圧回路が形成されていることを特徴とする磁気センサ。 7. The magnetic sensor according to claim 6, wherein two chips each having at least two magnetoresistive effect elements formed thereon are combined with the magnetization direction of the fixed layer of the magnetoresistive effect element being different from each other by 180 degrees. A magnetic sensor, wherein magnetoresistive elements having opposite directions are connected in series to form a voltage dividing circuit.
JP2007205117A 2007-08-07 2007-08-07 Magnetic sensor Withdrawn JP2008014954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205117A JP2008014954A (en) 2007-08-07 2007-08-07 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205117A JP2008014954A (en) 2007-08-07 2007-08-07 Magnetic sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001258048A Division JP4028971B2 (en) 2001-08-28 2001-08-28 Assembling method of magnetic sensor

Publications (1)

Publication Number Publication Date
JP2008014954A true JP2008014954A (en) 2008-01-24

Family

ID=39072077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205117A Withdrawn JP2008014954A (en) 2007-08-07 2007-08-07 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP2008014954A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507001A (en) * 2011-03-03 2014-03-20 ジャンス マルチディメンショナル テクノロジー シーオー., エルティーディー Single package magnetoresistive angle sensor
JP2014507000A (en) * 2011-03-03 2014-03-20 ジャンス マルチディメンショナル テクノロジー シーオー., エルティーディー Single package bridge type magnetic angle sensor
JP2016523008A (en) * 2013-04-01 2016-08-04 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Push-pull flip chip half-bridge magnetoresistive switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507001A (en) * 2011-03-03 2014-03-20 ジャンス マルチディメンショナル テクノロジー シーオー., エルティーディー Single package magnetoresistive angle sensor
JP2014507000A (en) * 2011-03-03 2014-03-20 ジャンス マルチディメンショナル テクノロジー シーオー., エルティーディー Single package bridge type magnetic angle sensor
JP2016523008A (en) * 2013-04-01 2016-08-04 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Push-pull flip chip half-bridge magnetoresistive switch

Similar Documents

Publication Publication Date Title
JP5409088B2 (en) Measuring method of gear rotation speed and gear rotation speed detector
JP4028971B2 (en) Assembling method of magnetic sensor
US10989769B2 (en) Magneto-resistive structured device having spontaneously generated in-plane closed flux magnetization pattern
JP6220971B2 (en) Multi-component magnetic field sensor
CN107534083A (en) Magnetic field sensor with the increased linearity
JP6320515B2 (en) Magnetic field sensor device
CN106154189A (en) Tunneling magnetoresistance device for magnetic field sensing
JP2016223894A (en) Magnetic sensor
US9464919B2 (en) Magnetic position detecting apparatus
JP2000035343A (en) Encoder provided with gigantic magnetic resistance effect element
JPH08178937A (en) Magnetism detecting device
JP2001159542A (en) Rotation angle sensor and rotation angle sensor unit
JP2008014954A (en) Magnetic sensor
JP5143714B2 (en) Position sensor element and position detection device
JP5175350B2 (en) Magnetic detector
JP2015133377A (en) Magnetic detection element and rotation detection device
JP4737371B2 (en) Rotation angle detector
JP4506960B2 (en) Moving body position detection device
JP2008157844A (en) Magnetic sensor and rotation angle detector
JP2012233905A (en) Magnetic sensor and rotation angle detector
JP7341454B2 (en) magnetic sensor
JP2008170273A (en) Position detector using magnetoresistance effect element
JP4900857B2 (en) Rotation angle sensor and rotation angle sensor unit
JP4773066B2 (en) Gear sensor
WO2016056179A1 (en) Magnetic sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091216