Nothing Special   »   [go: up one dir, main page]

JP2008008165A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2008008165A
JP2008008165A JP2006177635A JP2006177635A JP2008008165A JP 2008008165 A JP2008008165 A JP 2008008165A JP 2006177635 A JP2006177635 A JP 2006177635A JP 2006177635 A JP2006177635 A JP 2006177635A JP 2008008165 A JP2008008165 A JP 2008008165A
Authority
JP
Japan
Prior art keywords
oil
expansion mechanism
compressor
expansion
mechanism portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006177635A
Other languages
Japanese (ja)
Inventor
Atsushi Sakuta
作田  淳
Takashi Morimoto
敬 森本
Akira Ikeda
明 池田
Akira Iwashida
鶸田  晃
Masaru Shiotani
優 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006177635A priority Critical patent/JP2008008165A/en
Publication of JP2008008165A publication Critical patent/JP2008008165A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/04Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor having an expansion mechanism part with a little heat transfer loss. <P>SOLUTION: An oil pump 55 is provided between the expansion mechanism part 200 and a compression mechanism part 100. An oil supply channel 53 leading oil from an oil pocket 51 in a hermetic vessel 1 to the oil pump 55 and a suction opening part 52 thereof are arranged at surfaces upper than the expansion mechanism part 200. Consequently, oil around the expansion mechanism part 200 resides and the expansion mechanism part 200 is always soaked in low temperature oil. As a result, the oil is not replaced with oil after lubrication of the compression mechanism part 100 and the motor part 300, and heat transfer can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、1つの密閉容器内に膨張機構部と圧縮機構部の両方を有する圧縮機に関するものである。   The present invention relates to a compressor having both an expansion mechanism part and a compression mechanism part in one sealed container.

現在、冷凍装置の作動流体として二酸化炭素を用いることが検討されているが、エネルギー効率の面から、膨張装置として膨張機を用いることが検討されている。膨張機構部と圧縮機構部とは、構造的には共通するため、従来圧縮機構部として用いられてきた構造を膨張機構部として利用することができる(例えば、特許文献1参照)。   Currently, the use of carbon dioxide as the working fluid of the refrigeration apparatus is being studied, but from the viewpoint of energy efficiency, the use of an expander as the expansion apparatus is being studied. Since the expansion mechanism part and the compression mechanism part are common in structure, the structure conventionally used as the compression mechanism part can be used as the expansion mechanism part (see, for example, Patent Document 1).

図2は特許文献1に記載された従来の圧縮機である。膨張機構部501と圧縮機構部502を密閉容器510内に収納し、各機構部のシャフトを連結することで圧縮機と膨張機の一体化を実現している。膨張機構部501もしくは圧縮機構部502のどちらか一方のシャフトには、オイルポンプ505が設けられており、密閉容器510内のオイル溜まり506からオイルを吸い上げ、各摺動部を潤滑した後に、再びオイル溜まり506に戻る構成となっている。
特開平9−126171号公報
FIG. 2 shows a conventional compressor described in Patent Document 1. The expansion mechanism unit 501 and the compression mechanism unit 502 are housed in a sealed container 510, and the shafts of the mechanism units are connected to realize integration of the compressor and the expander. An oil pump 505 is provided on one of the shafts of the expansion mechanism portion 501 and the compression mechanism portion 502, and after sucking up oil from the oil reservoir 506 in the sealed container 510 and lubricating each sliding portion, again, The configuration returns to the oil reservoir 506.
JP-A-9-126171

しかしながら前記従来の構成では、オイル溜まりのオイルによって、膨張機構部と圧縮機構部で熱移動が発生してしまう。圧縮機構部は作動流体を圧縮するので、圧縮機構部を構成する部材の温度は作動流体の圧縮動作と共に上昇していく。一方、膨張機構部は作動流体を膨張させるので、膨張機構部を構成する部材の温度が作動流体の膨張動作と共に低下していく。したがって、圧縮機構部と膨張機構部を単純に一体化し、密閉容器内に共用のオイル溜まりを設けると、オイルが常に流動するので、オイルを介して圧縮機構部の熱が膨張機構部に移動することとなり、膨張機構部において作動流体が加熱されてしまう。その結果、冷凍サイクルの効率が低下するという問題を有していた。   However, in the conventional configuration, heat transfer occurs between the expansion mechanism portion and the compression mechanism portion due to the oil in the oil reservoir. Since the compression mechanism unit compresses the working fluid, the temperature of the members constituting the compression mechanism unit increases with the compression operation of the working fluid. On the other hand, since the expansion mechanism section expands the working fluid, the temperature of the members constituting the expansion mechanism section decreases with the expansion operation of the working fluid. Accordingly, when the compression mechanism and the expansion mechanism are simply integrated and a common oil reservoir is provided in the sealed container, the oil always flows, so that the heat of the compression mechanism moves to the expansion mechanism via the oil. As a result, the working fluid is heated in the expansion mechanism. As a result, there has been a problem that the efficiency of the refrigeration cycle is lowered.

本発明は、膨張機構部と圧縮機構部とを備えた圧縮機において、膨張機構部と圧縮機構部との間の熱移動を抑制しながら、同時に潤滑経路を確保して、高性能と高い信頼性を両立した圧縮機を提供することを目的とする。   The present invention provides a compressor having an expansion mechanism portion and a compression mechanism portion, which simultaneously suppresses heat transfer between the expansion mechanism portion and the compression mechanism portion, and at the same time secures a lubrication path to achieve high performance and high reliability. It aims at providing the compressor which was compatible.

前記従来の課題を解決するために、本発明の圧縮機は、鉛直方向の上部に圧縮機構部、下部に膨張機構部、中央部に電動機部を収納する密閉容器からなる圧縮機であって、膨張機構部と圧縮機構部の間にオイルポンプを設け、密閉容器内のオイル溜まりからオイルポンプまでオイルを導くオイル供給経路とその吸込開口部を膨張機構部より上面に配置したものである。   In order to solve the above-mentioned conventional problems, the compressor of the present invention is a compressor composed of a sealed container that houses a compression mechanism part in the upper part in the vertical direction, an expansion mechanism part in the lower part, and an electric motor part in the center part, An oil pump is provided between the expansion mechanism portion and the compression mechanism portion, and an oil supply path for guiding oil from an oil reservoir in the hermetic container to the oil pump and its suction opening are arranged on the upper surface from the expansion mechanism portion.

かかる構成によれば、オイル溜まりから吸い込まれたオイルは膨張機構部、圧縮機構部、電動機部を潤滑することで加熱され、オイル溜まりに戻ってくるが、オイル吸込口が膨張機構部より上面に位置しているため、戻ってきた熱いオイルを再度吸い込むこととなる。すわなち、膨張機構部周辺のオイルは滞留し、常に低い温度のオイルに浸ることとなる。その結果、圧縮機構部や電動機部を潤滑した後のオイルと入れ替わることがなく、熱移動が低減できる。   According to such a configuration, the oil sucked from the oil reservoir is heated by lubricating the expansion mechanism portion, the compression mechanism portion, and the electric motor portion, and returns to the oil reservoir, but the oil suction port is located above the expansion mechanism portion. Since it is located, it will suck in the hot oil that has returned. In other words, the oil around the expansion mechanism part stays and is always immersed in oil at a low temperature. As a result, the heat transfer can be reduced without replacing the oil after lubricating the compression mechanism and the electric motor.

本発明の圧縮機は、密閉容器内に膨張機構部と圧縮機構部を備えつつ、オイル溜まりにあるオイルの流動を抑えることで、圧縮機構部から膨張機構部への熱移動を抑制することができ、高性能を実現することができる。   The compressor of the present invention suppresses the heat transfer from the compression mechanism to the expansion mechanism by suppressing the flow of oil in the oil reservoir while including the expansion mechanism and the compression mechanism in the sealed container. And high performance can be realized.

請求項1に記載の本発明では、鉛直方向の上部に圧縮機構部、下部に膨張機構部、中央部に電動機部を収納する密閉容器からなる圧縮機であって、膨張機構部と圧縮機構部の間にオイルポンプを設け、密閉容器内のオイル溜まりからオイルポンプまでオイルを導くオイル供給経路とその吸込開口部を膨張機構部より上面に配置しものである。そしてこの構成によれば、オイル溜まりから吸い込まれたオイルは膨張機構部、圧縮機構部、電動機部を潤滑することで加熱され、オイル溜まりに戻ってくるが、オイル吸込口が膨張機構部より上面に位置しているため、戻ってきた熱いオイルを再度吸い込むこととなる。すわなち、膨張機構部周辺のオイルは滞留し、常に低い温度のオイルに浸ることとなる。その結果、圧縮機構部や電動機部を潤滑した後のオイルと入れ替わることがなく、熱移動が低減できる。   According to the first aspect of the present invention, the compressor includes a compression mechanism portion in the upper part in the vertical direction, an expansion mechanism portion in the lower portion, and an airtight container that houses the electric motor portion in the central portion, the expansion mechanism portion and the compression mechanism portion. An oil pump is provided between them, and an oil supply path for guiding oil from the oil reservoir in the sealed container to the oil pump and its suction opening are arranged on the upper surface from the expansion mechanism. According to this configuration, the oil sucked from the oil reservoir is heated by lubricating the expansion mechanism portion, the compression mechanism portion, and the electric motor portion, and returns to the oil reservoir, but the oil suction port is located above the expansion mechanism portion. The hot oil that has returned has to be sucked in again. In other words, the oil around the expansion mechanism part stays and is always immersed in oil at a low temperature. As a result, the heat transfer can be reduced without replacing the oil after lubricating the compression mechanism and the electric motor.

請求項2に記載の本発明では、特に請求項1に記載のオイルポンプとして、例えばトロコイドポンプやロータリーピストンポンプのような容積型オイルポンプとしたものである。そしてこの構成によれば、常に安定したオイルを供給できるだけでなく、遠心式等とは異なりオイルの攪拌がほとんどない。その結果、密閉容器内での温度分布を乱すことなく、吸い上げることができ、オイルを介した積極的な熱移動を抑制することができる。   In the present invention described in claim 2, the oil pump described in claim 1 is a positive displacement oil pump such as a trochoid pump or a rotary piston pump. In addition, according to this configuration, not only can a stable oil be supplied at all times, but there is almost no oil agitation unlike a centrifugal type or the like. As a result, it can be sucked up without disturbing the temperature distribution in the sealed container, and the positive heat transfer through the oil can be suppressed.

請求項3に記載の本発明では、特に請求項1または2に記載の圧縮機構部を構成する第1のシャフトにモータロータを取り付け、2つ以上の軸受部で支承し、膨張機構部を構成する第2のシャフトと第1のシャフトを、継手によって連結したものである。そしてこの構成によれば、第1のシャフトと第2のシャフトの内部にオイル経路を設けることができ、シャフト内部を通して密閉容器上部に配置された圧縮機構部を潤滑することが可能となる。   According to the third aspect of the present invention, a motor rotor is mounted on the first shaft that constitutes the compression mechanism portion according to the first or second aspect, and is supported by two or more bearing portions to constitute the expansion mechanism portion. The second shaft and the first shaft are connected by a joint. According to this configuration, the oil path can be provided inside the first shaft and the second shaft, and it is possible to lubricate the compression mechanism portion disposed in the upper portion of the sealed container through the shaft.

請求項4に記載の本発明では、特に請求項1から3に記載の膨張機構部として、鏡板から渦巻状のラップが立ち上がる固定スクロール及び旋回スクロールを噛み合わせて双方間に膨張室を形成し、旋回スクロールを自転規制機構による自転の規制のもとに円軌道に沿って旋回させたとき膨張室が容積を変えながら移動することで、吸入、吐出を行うスクロールタイプとしたものである。そしてこの構成によれば、例えばベーンを用いたロータリ系の方式とは異なり、オイル溜まりから直接オイルを供給する必要性がない。すなわち膨張機構部の周辺のオイルは滞留するため、膨張機構部への加熱量が低減できる。   In the present invention described in claim 4, in particular, as the expansion mechanism portion according to claims 1 to 3, an expansion chamber is formed between the fixed scroll and the orbiting scroll in which a spiral wrap rises from the end plate, When the orbiting scroll is swung along a circular orbit under the rotation restriction by the rotation restriction mechanism, the expansion chamber moves while changing the volume, and the scroll type performs suction and discharge. According to this configuration, unlike the rotary system using vanes, for example, there is no need to supply oil directly from the oil reservoir. That is, since the oil around the expansion mechanism part stays, the heating amount to the expansion mechanism part can be reduced.

請求項5に記載の本発明では、特に請求項1から4の圧縮機において、作動流体を、高圧冷媒、例えば二酸化炭素としたものである。そしてこの場合、特に圧縮機構部と膨張機構部の温度差が大きくなり、オイルを介して移動する熱量も増加するので、本発明の効果が顕著に現れ、性能低下を防止することができる。   In the fifth aspect of the present invention, particularly in the compressor of the first to fourth aspects, the working fluid is a high-pressure refrigerant, for example, carbon dioxide. In this case, in particular, the temperature difference between the compression mechanism portion and the expansion mechanism portion increases, and the amount of heat that moves through the oil also increases, so that the effects of the present invention are remarkably exhibited and performance degradation can be prevented.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
以下本発明の一実施例による圧縮機について説明する。図1は、本発明の一実施例の圧縮機における側断面図である。
(Embodiment 1)
A compressor according to an embodiment of the present invention will be described below. FIG. 1 is a side sectional view of a compressor according to an embodiment of the present invention.

まず構成について説明する。図1に示すように、密閉容器1内には、上部に圧縮機構部100、下部に膨張機構部200、中央部に電動機部300が配置されている。これらは溶接などによって密閉容器1に固定されている。各部の中心にはシャフトが配置されており、圧縮機構部100には第1のシャフト11、膨張機構部200には第2のシャフト21が配置されている。本実施の形態では第1のシャフト11と第2のシャフト21の2本シャフトにて説明するが、1本化が可能であれば1本化する方が望ましい。クランク部などが必要となる場合には本実施の形態のようにシャフトを分割し、継手などで結合する必要がある。   First, the configuration will be described. As shown in FIG. 1, in the sealed container 1, a compression mechanism unit 100 is disposed in the upper part, an expansion mechanism part 200 is disposed in the lower part, and an electric motor part 300 is disposed in the central part. These are fixed to the sealed container 1 by welding or the like. A shaft is arranged at the center of each part, and the first shaft 11 is arranged in the compression mechanism unit 100 and the second shaft 21 is arranged in the expansion mechanism unit 200. In the present embodiment, the first shaft 11 and the second shaft 21 will be described as two shafts. When a crank portion or the like is required, it is necessary to divide the shaft as in the present embodiment and connect it with a joint or the like.

密閉容器1の底にはオイル溜まり51を設けている。この部分に溜まったオイルをオイルポンプ55で吸い上げ、圧縮機構部100や膨張機構部200における摺動部に供給し、潤滑を行う。摺動部を潤滑したオイルは再びオイル溜まり51に戻ってくる。   An oil reservoir 51 is provided at the bottom of the sealed container 1. The oil accumulated in this portion is sucked up by the oil pump 55 and supplied to the sliding portions in the compression mechanism portion 100 and the expansion mechanism portion 200 for lubrication. The oil that has lubricated the sliding portion returns to the oil reservoir 51 again.

次に動作について説明する。この種の圧縮機は、放熱器や蒸発器とともに冷凍サイクル装置を構成し、冷暖房や給湯機の用途として利用される。作動流体を圧縮機構部100の吸入管2から圧縮機構部100の内部へと取り込み、圧縮した後、吐出管3から外部の放熱器に送り出す。放熱器で放熱した作動流体は、膨張機構部200の吸入管4から膨張機構部200の内部へと取り込まれ、膨張した後、吐出管5から蒸発器に送り込まれる。蒸発器で蒸発した作動流体は再度圧縮機構部100で圧縮され、この一連のサイクルによって熱の搬送を行うものである。   Next, the operation will be described. This type of compressor constitutes a refrigeration cycle apparatus together with a radiator and an evaporator, and is used for applications such as air conditioning and hot water heaters. The working fluid is taken from the suction pipe 2 of the compression mechanism unit 100 into the compression mechanism unit 100, compressed, and then sent out from the discharge pipe 3 to an external radiator. The working fluid radiated by the radiator is taken from the suction pipe 4 of the expansion mechanism section 200 into the expansion mechanism section 200 and expanded, and then sent from the discharge pipe 5 to the evaporator. The working fluid evaporated in the evaporator is compressed again by the compression mechanism 100, and heat is transferred by this series of cycles.

圧縮機内部の動作については、電動機部300のステータ91の巻線に電流を流すことで磁界を発生させ、その磁力によってモータロータ92に回転力を与える。モータロータ92は第1のシャフト11(もしくは第2のシャフト21)に固定されているため、モータロータ92の回転と同期して第1のシャフト11(もしくは第2のシャフト21)も回転する。第1のシャフト11は圧縮機構部100において旋回スクロール12を駆動する役割を果たす。旋回スクロール12は固定スクロール13と噛み合うことで複数の圧縮室14を形成し、第1のシャフト11の回転とともに、作動流体を吸込んで圧縮を行う。作動流体は所定の圧力に到達した時点で吐出バルブ15を経て、圧縮機構部100の外部に送り出される。その後、作動流体はマフラー16により強制的に下方へと導かれ、モータロータ92の内部を経て、電動機部300の下端に到達する。作動流体はここで折り返して、ステータ91の外周切り欠き部を経て上部へと進み、吐出管3から外部へと、例えば放熱器へと送り出される。なお、本実施の形態では圧縮機構部100としてスクロール方式を例にとって説明したが、これに限ったものではない。   Regarding the internal operation of the compressor, a magnetic field is generated by passing a current through the winding of the stator 91 of the electric motor unit 300, and a rotational force is applied to the motor rotor 92 by the magnetic force. Since the motor rotor 92 is fixed to the first shaft 11 (or the second shaft 21), the first shaft 11 (or the second shaft 21) also rotates in synchronization with the rotation of the motor rotor 92. The first shaft 11 serves to drive the orbiting scroll 12 in the compression mechanism unit 100. The orbiting scroll 12 meshes with the fixed scroll 13 to form a plurality of compression chambers 14, and compresses by sucking the working fluid as the first shaft 11 rotates. When the working fluid reaches a predetermined pressure, it passes through the discharge valve 15 and is sent out of the compression mechanism 100. Thereafter, the working fluid is forcibly guided downward by the muffler 16 and reaches the lower end of the electric motor unit 300 through the motor rotor 92. The working fluid is turned back here, proceeds to the upper part through the outer peripheral notch portion of the stator 91, and is sent out from the discharge pipe 3 to the outside, for example, to a radiator. In the present embodiment, the scroll mechanism has been described as an example of the compression mechanism unit 100, but the present invention is not limited to this.

放熱器で放熱した作動流体は、膨張機構部200の吸入管4から膨張室24へと流れ込む。作動流体は膨張することで、エンタルピが低下し、その時に動力が回収される。この回収された動力は、第2のシャフト21から第1のシャフト11に伝達され、圧縮機構部100の動力の一部として使われる。
膨張した作動流体は吐出管5から外部へと、例えば蒸発器へと送り出される。
The working fluid radiated by the radiator flows into the expansion chamber 24 from the suction pipe 4 of the expansion mechanism unit 200. As the working fluid expands, the enthalpy decreases and power is recovered. The recovered power is transmitted from the second shaft 21 to the first shaft 11 and used as part of the power of the compression mechanism unit 100.
The expanded working fluid is sent out from the discharge pipe 5 to the outside, for example, to the evaporator.

以上のように本発明の圧縮機は、膨張機構部200を備えているので、低消費電力を図ることが可能となる。しかし同一密閉容器内に圧縮機構部100と膨張機構部200を共存させるには課題がある。そのひとつとして、熱の移動が挙げられる。   As described above, since the compressor of the present invention includes the expansion mechanism unit 200, low power consumption can be achieved. However, there is a problem in making the compression mechanism unit 100 and the expansion mechanism unit 200 coexist in the same sealed container. One of these is the transfer of heat.

上記課題の熱移動について説明する。圧縮機構部100では圧縮を行うため、作動流体は高温となる。一方、膨張機構部200では放熱器を通過した作動流体が入り、さらに膨張を行うため、作動流体は低温となる。これらが密閉容器1内で熱交換を行い、冷凍サイクルの性能低下を引き起こす。この熱交換の主要因は、密閉容器1内のオイルである。オイル自体は高温となっているため、オイルと膨張機構部200をいかに熱交換させないか
がポイントとなる。
The heat transfer of the above problem will be described. Since the compression mechanism 100 performs compression, the working fluid becomes high temperature. On the other hand, since the working fluid that has passed through the radiator enters the expansion mechanism 200 and further expands, the working fluid has a low temperature. These perform heat exchange in the sealed container 1 and cause performance deterioration of the refrigeration cycle. The main factor of this heat exchange is the oil in the sealed container 1. Since the oil itself is at a high temperature, the point is how heat is not exchanged between the oil and the expansion mechanism 200.

そこで、膨張機構部200と圧縮機構部100の間にオイルポンプ55を設け、密閉容器1内のオイル溜まり51からオイルポンプ55までオイルを導くオイル供給経路53とその吸込開口部52を膨張機構部200より上面に配置してやる。これによりオイル溜まりから吸い込まれたオイルは膨張機構部200、圧縮機構部100、電動機部300を潤滑することで加熱され、オイル溜まり51に戻ってくるが、吸込開口部52が膨張機構部200より上面に位置しているため、戻ってきた熱いオイルを再度吸い込むこととなる。すわなち、膨張機構部200の周辺のオイルは滞留し、常に低い温度のオイルに浸ることとなる。その結果、圧縮機構部100や電動機部300を潤滑した後のオイルと入れ替わることがなく、熱移動が低減できる。   Therefore, an oil pump 55 is provided between the expansion mechanism unit 200 and the compression mechanism unit 100, and the oil supply path 53 for guiding oil from the oil reservoir 51 in the sealed container 1 to the oil pump 55 and its suction opening 52 are connected to the expansion mechanism unit. It is arranged on the upper surface from 200. As a result, the oil sucked from the oil reservoir is heated by lubricating the expansion mechanism unit 200, the compression mechanism unit 100, and the electric motor unit 300, and returns to the oil reservoir 51. However, the suction opening 52 is formed by the expansion mechanism unit 200. Since it is located on the upper surface, the hot oil that has returned is sucked again. That is, the oil around the expansion mechanism unit 200 stays and is always immersed in the oil having a low temperature. As a result, the heat transfer can be reduced without replacing the oil after lubricating the compression mechanism unit 100 and the electric motor unit 300.

またオイルポンプ55としては、例えばトロコイドポンプやロータリーピストンポンプのような容積型オイルポンプが望ましい。容積型ポンプであれば、常に安定したオイルを供給できるだけでなく、遠心式等とは異なりオイルの攪拌がほとんどない。その結果、密閉容器1内での温度分布を乱すことなく、吸い上げることができ、オイルを介した積極的な熱移動を抑制することができる。   The oil pump 55 is preferably a positive displacement oil pump such as a trochoid pump or a rotary piston pump. If it is a positive displacement pump, it can not only always supply a stable oil, but unlike a centrifugal type etc., there is almost no oil agitation. As a result, it can be sucked up without disturbing the temperature distribution in the sealed container 1, and the positive heat transfer through the oil can be suppressed.

またモータロータ92は圧縮機構部100を構成する第1のシャフト11に取り付け、第1のシャフト11は2つ以上の軸受で支承し、第2のシャフト21と継手によって連結することが望ましい。本実施の形態では、軸受17と軸受31で第1のシャフト11を支承し、第1のシャフト11と第2のシャフト21にはスプライン加工を施し、専用の継手32を用いて連結している。これにより、第1のシャフト11と第2のシャフト21の内部にオイル経路56を設けることができ、シャフト内部を通して密閉容器1の上部に配置された圧縮機構部100を潤滑することが可能となる。   The motor rotor 92 is preferably attached to the first shaft 11 constituting the compression mechanism unit 100, and the first shaft 11 is supported by two or more bearings and is connected to the second shaft 21 by a joint. In the present embodiment, the first shaft 11 is supported by the bearing 17 and the bearing 31, and the first shaft 11 and the second shaft 21 are splined and connected using a dedicated joint 32. . As a result, the oil path 56 can be provided inside the first shaft 11 and the second shaft 21, and the compression mechanism portion 100 disposed at the upper part of the hermetic container 1 can be lubricated through the shaft. .

また膨張機構部200としてはスクロール方式が望ましい。これにより、例えばベーンを用いたロータリ系の方式とは異なり、オイル溜まり51から直接オイルを供給する必要性がない。すなわち膨張機構部200の周辺のオイルは滞留するため、膨張機構部200への加熱量が低減できる。   The expansion mechanism 200 is preferably a scroll method. Thus, unlike the rotary system using vanes, for example, there is no need to supply oil directly from the oil reservoir 51. That is, since the oil around the expansion mechanism unit 200 stays, the heating amount to the expansion mechanism unit 200 can be reduced.

また作動流体としては、高圧冷媒、例えば二酸化炭素とすることも可能である。作動流体が高圧冷媒になれば、特に圧縮機構部100と膨張機構部200の温度差が大きくなり、オイルを介して移動する熱量も増加するので、本発明の効果が顕著に現れ、性能低下を防止することができる。   The working fluid can also be a high-pressure refrigerant, such as carbon dioxide. If the working fluid becomes a high-pressure refrigerant, the temperature difference between the compression mechanism unit 100 and the expansion mechanism unit 200 increases, and the amount of heat that moves through the oil also increases. Can be prevented.

本実施例の圧縮機は、膨張機構部を備えているため動力回収が可能となり、また圧縮機構部と膨張機構部の熱移動も抑制することができるので、冷凍サイクル、特に給湯システムを構成する圧縮機として特に有用である。   Since the compressor of the present embodiment includes an expansion mechanism portion, power recovery is possible and heat transfer between the compression mechanism portion and the expansion mechanism portion can be suppressed, so that a refrigeration cycle, particularly a hot water supply system is configured. It is particularly useful as a compressor.

本発明の一実施例における圧縮機の断面図Sectional drawing of the compressor in one Example of this invention 従来の圧縮機の断面図Cross section of a conventional compressor

符号の説明Explanation of symbols

1 密閉容器
11 第1のシャフト
17 軸受
21 第2のシャフト
22 旋回スクロール
23 固定スクロール
24 膨張室
28 自転規制機構
31 軸受
32 継手
51 オイル溜まり
52 吸込開口部
53 オイル供給経路
55 オイルポンプ
100 圧縮機構部
200 膨張機構部
300 電動機部
DESCRIPTION OF SYMBOLS 1 Airtight container 11 1st shaft 17 Bearing 21 2nd shaft 22 Orbiting scroll 23 Fixed scroll 24 Expansion chamber 28 Rotation restriction mechanism 31 Bearing 32 Joint 51 Oil reservoir 52 Suction opening 53 Oil supply path 55 Oil pump 100 Compression mechanism part 200 Expansion mechanism part 300 Electric motor part

Claims (5)

鉛直方向の上部に圧縮機構部、下部に膨張機構部、中央部に電動機部を収納する密閉容器からなる圧縮機であって、
前記膨張機構部と前記圧縮機構部の間にオイルポンプを設け、前記密閉容器内のオイル溜まりから前記オイルポンプまでオイルを導くオイル供給経路とその吸込開口部を前記膨張機構部より上面に配置してなる圧縮機。
A compressor consisting of a compression mechanism part in the upper part in the vertical direction, an expansion mechanism part in the lower part, and a sealed container that houses the electric motor part in the center part,
An oil pump is provided between the expansion mechanism portion and the compression mechanism portion, and an oil supply path for guiding oil from the oil reservoir in the sealed container to the oil pump and its suction opening are arranged on the upper surface from the expansion mechanism portion. Compressor.
前記オイルポンプとして、例えばトロコイドポンプやロータリーピストンポンプのような容積型オイルポンプとしてなる請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the oil pump is a positive displacement oil pump such as a trochoid pump or a rotary piston pump. 前記圧縮機構部を構成する第1のシャフトにモータロータを取り付け、2つ以上の軸受部で支承し、前記膨張機構部を構成する第2のシャフトと前記第1のシャフトを継手によって連結してなる請求項1または2に記載の圧縮機。 A motor rotor is attached to a first shaft that constitutes the compression mechanism portion, and is supported by two or more bearing portions, and the second shaft that constitutes the expansion mechanism portion and the first shaft are connected by a joint. The compressor according to claim 1 or 2. 前記膨張機構部として、鏡板から渦巻状のラップが立ち上がる固定スクロール及び旋回スクロールを噛み合わせて双方間に膨張室を形成し、前記旋回スクロールを自転規制機構による自転の規制のもとに円軌道に沿って旋回させたとき膨張室が容積を変えながら移動することで、吸入、吐出を行うスクロールタイプとしてなる請求項1から3に記載の圧縮機。 As the expansion mechanism portion, a fixed scroll and a turning scroll that rises from the end plate in a spiral shape are meshed to form an expansion chamber between the two, and the turning scroll is made into a circular orbit under the restriction of rotation by the rotation restriction mechanism. The compressor according to any one of claims 1 to 3, wherein the compressor is a scroll type that performs suction and discharge by moving the expansion chamber while changing its volume when swung along. 作動流体を、高圧冷媒、例えば二酸化炭素としてなる請求項1から4に記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein the working fluid is a high-pressure refrigerant, for example, carbon dioxide.
JP2006177635A 2006-06-28 2006-06-28 Compressor Pending JP2008008165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177635A JP2008008165A (en) 2006-06-28 2006-06-28 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177635A JP2008008165A (en) 2006-06-28 2006-06-28 Compressor

Publications (1)

Publication Number Publication Date
JP2008008165A true JP2008008165A (en) 2008-01-17

Family

ID=39066604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177635A Pending JP2008008165A (en) 2006-06-28 2006-06-28 Compressor

Country Status (1)

Country Link
JP (1) JP2008008165A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066416A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Compressor integral with expander
WO2009066413A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Compressor integral with expander
WO2009066410A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Compressor integral with expander
US8186179B2 (en) 2006-05-17 2012-05-29 Panasonic Corporation Expander-compressor unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8186179B2 (en) 2006-05-17 2012-05-29 Panasonic Corporation Expander-compressor unit
WO2009066416A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Compressor integral with expander
WO2009066413A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Compressor integral with expander
WO2009066410A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Compressor integral with expander
EP2224093A1 (en) * 2007-11-21 2010-09-01 Panasonic Corporation Compressor integral with expander
US8182251B2 (en) 2007-11-21 2012-05-22 Panasonic Corporation Expander-compressor unit
US8192185B2 (en) 2007-11-21 2012-06-05 Panasonic Corporation Expander-compressor unit
EP2224093A4 (en) * 2007-11-21 2012-08-29 Panasonic Corp Compressor integral with expander
US8323010B2 (en) 2007-11-21 2012-12-04 Panasonic Corporation Expander-compressor unit

Similar Documents

Publication Publication Date Title
JP4837049B2 (en) Fluid machinery and refrigeration cycle equipment
JP4074886B2 (en) Expander integrated compressor
JP4875484B2 (en) Multistage compressor
KR100944147B1 (en) Scroll compressor with vapor injection
JP4837094B2 (en) Refrigeration cycle apparatus and fluid machine used therefor
EP2392827B1 (en) Scroll compressor
WO2009142023A1 (en) Fluid machine and refrigeration cycle device
JP4969646B2 (en) Fluid machine and refrigeration cycle apparatus including the same
JP4804437B2 (en) Expander integrated compressor
JP2008008165A (en) Compressor
JP6464006B2 (en) Hermetic scroll compressor and refrigeration air conditioner
JP4696530B2 (en) Fluid machinery
US9435337B2 (en) Scroll compressor
JP2011012630A (en) Scroll compressor
JP2008215212A (en) Expander integrated type compressor and refrigerating cycle device
JP6118702B2 (en) Scroll compressor and refrigeration equipment
JP2008169816A (en) Compressor
JP4306771B2 (en) Compressor
JP4626635B2 (en) Fluid machinery
JP4811200B2 (en) Electric compressor
JP2007032291A (en) Scroll expansion machine
JP5791760B2 (en) Refrigerant compressor
JP2009007992A (en) Compressor
JP2013238191A (en) Compressor
JP2006132332A (en) Fluid machine