Nothing Special   »   [go: up one dir, main page]

JP2008002452A - Linear compressor - Google Patents

Linear compressor Download PDF

Info

Publication number
JP2008002452A
JP2008002452A JP2006314954A JP2006314954A JP2008002452A JP 2008002452 A JP2008002452 A JP 2008002452A JP 2006314954 A JP2006314954 A JP 2006314954A JP 2006314954 A JP2006314954 A JP 2006314954A JP 2008002452 A JP2008002452 A JP 2008002452A
Authority
JP
Japan
Prior art keywords
pressure vessel
movable member
linear compressor
electromagnet
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006314954A
Other languages
Japanese (ja)
Inventor
Hideki Inagaki
秀城 稲垣
Hideo Misawa
秀雄 三澤
Akira Hirano
明良 平野
Masahiro Ichikawa
正浩 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2006314954A priority Critical patent/JP2008002452A/en
Publication of JP2008002452A publication Critical patent/JP2008002452A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear compressor reduced in size. <P>SOLUTION: The linear compressor includes a linear motor 20 comprising a cylindrical pressure vessel 4; a pair of electromagnets 21 each disposed outside of the pressure vessel 4; a pair of moving members 10 moving back and forth in the pressure vessel 4 with magnetic fields generated by the electromagnets 21; and a pair of permanent magnets for keeping positions of the moving members 10 in the pressure vessel 4 when the electromagnets 21 are not energized. The linear compressor has a pair of slide members 14 on the respective moving members 10. The slide members 14 slide on an inner circumferential surface 4c of the pressure vessel 4 when the moving members 10 move back and forth in the pressure vessel 4, and define a compression space 2 for compressing an operation gas between the moving members 10 and the pressure vessel 4. The linear compressor also has a pair of thrust generation units 11 disposed in the respective moving members 10. The thrust generation units 11 are made of magnetic material and provide the moving members 10 with thrust using magnetic fields of the electromagnets 21 and the permanent magnets 12. The slide members 14 are disposed outside of the thrust generation units 11 with respect to a radial direction of the pressure vessel 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スターリング冷凍機、パルス管冷凍機等の蓄冷型冷凍機や蒸気圧縮式の冷凍機に適用されるリニア圧縮機に関するものである。   The present invention relates to a linear compressor applied to a regenerative refrigerator such as a Stirling refrigerator or a pulse tube refrigerator or a vapor compression refrigerator.

ピストンをリニアモータで駆動するリニア圧縮機は、圧縮効率が高いことから、近年、スターリング冷凍機、パルス管冷凍機等で用いられている。本発明に関する公知のリニア圧縮機が、後述の特許文献1に記載されている。   In recent years, linear compressors that drive pistons with linear motors have high compression efficiency, and have recently been used in Stirling refrigerators, pulse tube refrigerators, and the like. A known linear compressor relating to the present invention is described in Patent Document 1 described later.

図10は、特許文献1に記載のリニア圧縮機の模式図である。リニア圧縮機100は、一対のリニアモータ130で駆動される。各々のリニアモータ130は、第1電磁石131と、第2電磁石132と、可動部材120から構成されている。第1電磁石131及び第2電磁石132は、筒状の圧力容器110の外部に設けられている。可動部材120は、圧力容器110の内部に収納されている。可動部材120の長手方向一端側には、非磁性体からなるピストン部121が設けられる。ピストン部121は、圧力容器110の内壁上を摺動する。ピストン部121は、可動部材120と圧力容器110との間に作動ガスの圧縮室101を規定する。圧縮室101の流路102は、図示されていない蓄冷型冷凍機に接続される。可動部材120の長手方向他端側には、永久磁石122が固定(埋設)される非磁性材からなるプランジャ部123が設けられる。永久磁石122の両極側(N極・S極)には、ヨーク124が設けられる。可動部材120と、第1電磁石131と、第2電磁石132とで、磁気回路が形成される。なお、可動部材120は、複数の薄板バネ141から成る支持部材140によって支持される。支持部材140は、丸パイプ状に形成された支持ケース142に収納される。   FIG. 10 is a schematic diagram of a linear compressor described in Patent Document 1. The linear compressor 100 is driven by a pair of linear motors 130. Each linear motor 130 includes a first electromagnet 131, a second electromagnet 132, and a movable member 120. The first electromagnet 131 and the second electromagnet 132 are provided outside the cylindrical pressure vessel 110. The movable member 120 is housed inside the pressure vessel 110. A piston portion 121 made of a non-magnetic material is provided on one end side of the movable member 120 in the longitudinal direction. The piston part 121 slides on the inner wall of the pressure vessel 110. The piston 121 defines a working gas compression chamber 101 between the movable member 120 and the pressure vessel 110. The flow path 102 of the compression chamber 101 is connected to a cold storage type refrigerator not shown. On the other end side in the longitudinal direction of the movable member 120, a plunger portion 123 made of a nonmagnetic material to which the permanent magnet 122 is fixed (embedded) is provided. A yoke 124 is provided on both pole sides (N pole / S pole) of the permanent magnet 122. The movable member 120, the first electromagnet 131, and the second electromagnet 132 form a magnetic circuit. The movable member 120 is supported by a support member 140 composed of a plurality of thin plate springs 141. The support member 140 is accommodated in a support case 142 formed in a round pipe shape.

可動部材120、支持部材140、及び圧力容器110内の作動ガスの弾性特性を考慮した振動系の固有振動数にほぼ近い周波数の交流電流を第1電磁石131、第2電磁石132に通電し、電磁石の極性を周期的に変化させることにより、第1電磁石131及び第2電磁石132と可動部材120に埋設された永久磁石122との間に発生する引力及び斥力の方向を周期的に反転させて可動部材120を往復運動させる。この往復運動によって、圧縮室101内の作動ガスの圧縮、膨張が行われる。
特許第3173492号公報
The first electromagnet 131 and the second electromagnet 132 are energized with an alternating current having a frequency close to the natural frequency of the vibration system considering the elastic characteristics of the working gas in the movable member 120, the support member 140, and the pressure vessel 110, and the electromagnet. The direction of attractive and repulsive forces generated between the first electromagnet 131 and the second electromagnet 132 and the permanent magnet 122 embedded in the movable member 120 is periodically reversed to move. The member 120 is reciprocated. By this reciprocation, the working gas in the compression chamber 101 is compressed and expanded.
Japanese Patent No. 3173492

上述したリニア圧縮機100において、リニアモータ130の可動部材120は、圧力容器110の内壁上を摺動して作動ガスを圧縮するピストン部121(摺動部)と、第1電磁石131及び第2電磁石132と永久磁石122の磁界により可動部材120に推力を発生させるプランジャ部123(推力発生部)とが、圧力容器110の軸方向に並んで配置される。このため、圧力容器110の軸方向に関して、可動部材120の小型化を図り難く、ひいては、可動部材120を収容する圧力容器110、及びリニア圧縮機100全体の小型化が困難であった。   In the linear compressor 100 described above, the movable member 120 of the linear motor 130 includes a piston part 121 (sliding part) that slides on the inner wall of the pressure vessel 110 to compress the working gas, the first electromagnet 131, and the second electromagnet 131. Plunger portions 123 (thrust generating portions) for generating a thrust on the movable member 120 by the magnetic fields of the electromagnet 132 and the permanent magnet 122 are arranged side by side in the axial direction of the pressure vessel 110. For this reason, it is difficult to reduce the size of the movable member 120 with respect to the axial direction of the pressure vessel 110. As a result, it is difficult to reduce the size of the pressure vessel 110 that houses the movable member 120 and the entire linear compressor 100.

よって、本発明は上記の問題点に鑑みてなされたものであり、小型化を実現できるリニア圧縮機を提供することを課題とする。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a linear compressor that can realize downsizing.

上記課題を解決するために、本発明にて講じた技術的手段は、請求項1に記載の様に、筒状をなす圧力容器と、前記圧力容器の外側に設けられる電磁石と、該電磁石が発生させる磁界により該圧力容器の内部で該圧力容器の軸方向に往復運動する可動部材と、該電磁石の非通電時に該圧力容器における該可動部材の位置を保持する永久磁石とから構成されるリニアモータと、前記可動部材に設けられ、該可動部材が前記圧力容器内で往復運動する場合に該圧力容器の内周面上を摺動し、該可動部材と該圧力容器との間に作動ガスを圧縮するための圧縮室を規定する摺動部と、前記可動部材に設けられ、磁性材から成り前記電磁石及び前記永久磁石の磁界によって該可動部材に推力を発生させる推力発生部と、を備え、前記摺動部は、前記圧力容器の径方向に関して、前記推力発生部の外方に設けられる構成としたことである。   In order to solve the above-mentioned problem, the technical means taken in the present invention is, as described in claim 1, a cylindrical pressure vessel, an electromagnet provided outside the pressure vessel, and the electromagnet A linear member composed of a movable member that reciprocates in the axial direction of the pressure vessel inside the pressure vessel by a generated magnetic field, and a permanent magnet that holds the position of the movable member in the pressure vessel when the electromagnet is not energized. A motor and a movable gas provided on the movable member, which slides on the inner peripheral surface of the pressure vessel when the movable member reciprocates in the pressure vessel, and that operates between the movable member and the pressure vessel. And a sliding portion that defines a compression chamber for compressing the thrust member, and a thrust generating portion that is provided on the movable member and is made of a magnetic material and generates thrust on the movable member by the magnetic field of the electromagnet and the permanent magnet. , The sliding part is the pressure With respect to the radial direction of the vessel, it is that where the structure is provided on the outer side of the thrust generating unit.

好ましくは、請求項2に記載の様に、前記永久磁石が前記可動部材に設けられると良い。   Preferably, as described in claim 2, the permanent magnet is provided on the movable member.

好ましくは、請求項3に記載の様に、前記永久磁石が前記圧力容器の外部に設けられるとい。   Preferably, as described in claim 3, the permanent magnet is provided outside the pressure vessel.

好ましくは、請求項4に記載の様に、前記可動部材は、前記摺動部を介して前記圧力容器の内周面に摺動自在に支持され、前記圧縮室内の作動ガスを圧縮すべく前記電磁石及び前記永久磁石が発生させる磁界により該圧力容器内で往復運動すると良い。   Preferably, as described in claim 4, the movable member is slidably supported on the inner peripheral surface of the pressure vessel via the sliding portion, and the working gas in the compression chamber is compressed. The electromagnet and the permanent magnet may be reciprocated in the pressure vessel by a magnetic field generated by the magnet.

好ましくは、請求項5に記載の様に、前記圧力容器の内部に設けられ、前記可動部材が前記推力の発生範囲外に移動するのを前記可動部材と軸方向に接触することで規制する移動規制部材を備えると良い。この場合、移動規制部材は、圧力容器の鏡板近くに圧入固定されるのが良い。   Preferably, as described in claim 5, the movement is provided inside the pressure vessel and restricts movement of the movable member outside the generation range of the thrust by contacting the movable member in the axial direction. A restriction member may be provided. In this case, the movement restricting member is preferably press-fitted and fixed near the end plate of the pressure vessel.

本発明によれば、リニアモータの可動部材には、可動部材が圧力容器内で往復運動する場合に圧力容器の内周面上を摺動し、可動部材と圧力容器との間に作動ガスを圧縮するための圧縮室を規定する摺動部と、磁性材から成り電磁石及び永久磁石の磁界によって可動部材に推力を発生させる推力発生部とが設けられている。可動部材において、摺動部は、圧力容器の径方向に関して、推力発生部の外方に設けられる。   According to the present invention, the movable member of the linear motor slides on the inner peripheral surface of the pressure vessel when the movable member reciprocates within the pressure vessel, and the working gas is supplied between the movable member and the pressure vessel. A sliding portion that defines a compression chamber for compression and a thrust generating portion that is made of a magnetic material and generates a thrust force on the movable member by the magnetic field of the electromagnet and the permanent magnet are provided. In the movable member, the sliding portion is provided outside the thrust generating portion with respect to the radial direction of the pressure vessel.

以上の構造によれば、リニアモータの可動部材において、作動ガスを圧縮するための部分(摺動部)と、電磁石及び永久磁石の磁界により推力を発生するための部分(推力発生部)とが、圧力容器の径方向に並んで配置される。したがって、これらの部分が圧力容器の軸方向に並んで配置される場合に比べて、可動部材の寸法を圧力容器の軸方向に関して小さくできる。その結果、可動部材を収容する圧力容器においても軸方向の寸法を小さくでき、リニア圧縮機全体の小型化が実現可能となる。   According to the above structure, in the movable member of the linear motor, the portion for compressing the working gas (sliding portion) and the portion for generating thrust by the magnetic field of the electromagnet and permanent magnet (thrust generating portion) are provided. These are arranged side by side in the radial direction of the pressure vessel. Therefore, the dimension of the movable member can be reduced with respect to the axial direction of the pressure vessel as compared with the case where these portions are arranged side by side in the axial direction of the pressure vessel. As a result, the axial dimension of the pressure vessel that houses the movable member can also be reduced, and the entire linear compressor can be downsized.

(第1実施例)
図1は、本発明に係るリニア圧縮機1の第1実施例を示す図、図2は、図1のMM断面を示す図である。図1に示す様に、リニア圧縮機1の圧縮室2は、圧力容器4内に設けられる。圧力容器4は、筒状のシリンダー部4aと、シリンダー部4aの両端部に固定された鏡板4bとから構成される。圧力容器4の内部には、バッファ室5が設けられている。2つのバッファ室5は、配管6を介してバッファタンク7に連通する。バッファタンク7は、圧力容器4の外側で、圧力容器4の軸方向(長手方向)の全長以内の範囲に設けられている。圧力容器4内の圧縮室2は、配管3を介してスターリングサイクルの低温発生部30の圧縮室31に接続される。リニア圧縮機1は、一対のリニアモータ20を駆動することにより、圧縮室2内の作動ガス(ヘリウムガス等)の圧縮、膨張を行う。
(First embodiment)
FIG. 1 is a view showing a first embodiment of a linear compressor 1 according to the present invention, and FIG. 2 is a view showing a MM cross section of FIG. As shown in FIG. 1, the compression chamber 2 of the linear compressor 1 is provided in a pressure vessel 4. The pressure vessel 4 includes a cylindrical cylinder part 4a and end plates 4b fixed to both ends of the cylinder part 4a. A buffer chamber 5 is provided inside the pressure vessel 4. The two buffer chambers 5 communicate with the buffer tank 7 via the pipe 6. The buffer tank 7 is provided outside the pressure vessel 4 in a range within the total length in the axial direction (longitudinal direction) of the pressure vessel 4. The compression chamber 2 in the pressure vessel 4 is connected to the compression chamber 31 of the low temperature generating unit 30 of the Stirling cycle via the pipe 3. The linear compressor 1 compresses and expands the working gas (such as helium gas) in the compression chamber 2 by driving a pair of linear motors 20.

リニアモータ20は、固定子である電磁石21と、ピストンの機能を有する円柱状の可動部材10とから構成される。   The linear motor 20 includes an electromagnet 21 as a stator and a columnar movable member 10 having a piston function.

電磁石21は、圧力容器4の外部に設けられており、銅線の巻かれたコイル22と、磁性材からなるヨーク24、25とから構成される。ヨーク24、25は、外周部24a、25aと内周部24b、25bをそれぞれ有する。外周部24aと内周部24b、外周部25aと内周部25bは、A軸を通る断面が略コ字形状になるように、放射部24c、25cを介してそれぞれ接続される。内周部24b、25bのA軸方向の長さは、外周部24a、25aのA軸方向長さより短い。コイル22は、内周部24b、25bの外周側に銅線が巻かれるように、外ヨーク24と外ヨーク25で形成される空間に配置される。コイル22は、その通電時に磁束が外ヨーク24の内周部24bと外ヨーク25の内周部25bを流れるように配置される。   The electromagnet 21 is provided outside the pressure vessel 4 and includes a coil 22 wound with a copper wire and yokes 24 and 25 made of a magnetic material. The yokes 24 and 25 have outer peripheral portions 24a and 25a and inner peripheral portions 24b and 25b, respectively. The outer peripheral portion 24a and the inner peripheral portion 24b, and the outer peripheral portion 25a and the inner peripheral portion 25b are connected via the radiating portions 24c and 25c, respectively, so that the cross section passing through the A axis is substantially U-shaped. The length in the A-axis direction of the inner peripheral portions 24b and 25b is shorter than the length in the A-axis direction of the outer peripheral portions 24a and 25a. The coil 22 is disposed in a space formed by the outer yoke 24 and the outer yoke 25 so that a copper wire is wound around the outer peripheral sides of the inner peripheral portions 24b and 25b. The coil 22 is arranged so that the magnetic flux flows through the inner peripheral portion 24b of the outer yoke 24 and the inner peripheral portion 25b of the outer yoke 25 when the coil 22 is energized.

可動部材10は、圧力容器4に収容されており、電磁石21が発生させる磁界により、圧力容器4の内部でA軸方向に往復運動する。可動部材10は、推力発生部11と、永久磁石12と、調整部材13と、摺動部14とから構成される。推力発生部11は、磁性材からなる段付き円柱状のコア11aと、コア11aの小径部の端部に固着された磁性材からなるコア11bとから構成される。永久磁石12は、円筒状を成すもので、コア11aの小径部に挿入される。永久磁石12は、例えば、外周面がN極、内周面がS極に磁化される(外周がS極、内周がN極でもよい)。調整部材13は、非磁性材からなり、コア11bの端面に固定され、一対の可動部材10、10間のヘッドクリアランスを調整するために設けられている。尚、可動部材10と電磁石21の各々の軸方向長さと、電磁石21の軸方向の取り付け位置を正確に決めておけば、調整部材13は設けなくてもよい。   The movable member 10 is accommodated in the pressure vessel 4 and reciprocates in the A-axis direction inside the pressure vessel 4 by a magnetic field generated by the electromagnet 21. The movable member 10 includes a thrust generating part 11, a permanent magnet 12, an adjusting member 13, and a sliding part 14. The thrust generating portion 11 includes a stepped columnar core 11a made of a magnetic material and a core 11b made of a magnetic material fixed to the end of the small diameter portion of the core 11a. The permanent magnet 12 has a cylindrical shape and is inserted into the small diameter portion of the core 11a. For example, the permanent magnet 12 is magnetized such that the outer peripheral surface is an N pole and the inner peripheral surface is an S pole (the outer periphery may be an S pole and the inner periphery may be an N pole). The adjustment member 13 is made of a non-magnetic material, is fixed to the end surface of the core 11b, and is provided to adjust the head clearance between the pair of movable members 10 and 10. If the axial lengths of the movable member 10 and the electromagnet 21 and the mounting position of the electromagnet 21 in the axial direction are accurately determined, the adjusting member 13 may not be provided.

摺動部14は、圧力容器4の径方向に関して、推力発生部11の外方に設けられる。摺動部14は、可動部材10が圧力容器4内で往復運動する場合に圧力容器4の内周面4c上を摺動し、可動部材10と圧力容器4との間に作動ガスを圧縮するための圧縮室2を規定する。摺動部14としては、例えば、PTFEに添加剤の入った樹脂材からなる摺動材14aをコア11aの大径部外周面とコア11bの外周面に接着したものや、焼付けやコーティング等をコア11aの大径部外周面とコア11bの外周面に施したものが適用可能である。本実施形態では、前者のものが図示されている。   The sliding portion 14 is provided outside the thrust generating portion 11 with respect to the radial direction of the pressure vessel 4. The sliding portion 14 slides on the inner peripheral surface 4 c of the pressure vessel 4 when the movable member 10 reciprocates in the pressure vessel 4, and compresses the working gas between the movable member 10 and the pressure vessel 4. A compression chamber 2 is defined. As the sliding portion 14, for example, a sliding material 14a made of a resin material containing an additive in PTFE is bonded to the outer peripheral surface of the large diameter portion of the core 11a and the outer peripheral surface of the core 11b, or is baked or coated. Those applied to the outer peripheral surface of the large-diameter portion of the core 11a and the outer peripheral surface of the core 11b are applicable. In the present embodiment, the former is illustrated.

摺動部14の外径は、圧力容器4のシリンダー部4aの内径より僅かに小さく、摺動部14の外周面と圧力容器4の内周面4cとの間には、微小間隙が設けられる。この微小間隙は、圧縮部2における作動ガスの圧縮、膨張時の漏れを微少量に抑えるクリアランスシールの役割をはたすとともに、可動部材10を圧力容器4内でスムーズに摺動させる役割もはたす。   The outer diameter of the sliding portion 14 is slightly smaller than the inner diameter of the cylinder portion 4 a of the pressure vessel 4, and a minute gap is provided between the outer peripheral surface of the sliding portion 14 and the inner peripheral surface 4 c of the pressure vessel 4. . The minute gap functions as a clearance seal that suppresses leakage during compression and expansion of the working gas in the compression unit 2 to a very small amount, and also serves to smoothly slide the movable member 10 in the pressure vessel 4.

次に、電磁石21と推力発生部11との関係について説明する。   Next, the relationship between the electromagnet 21 and the thrust generator 11 will be described.

コイル22が通電されていない時(非通電時)は、永久磁石12の磁力により、外ヨーク24、25の内周部24b、25b間のA軸方向のほぼ中央と永久磁石12のA軸方向のほぼ中央とが一致する。この場合、図3(a)に示すように、永久磁石12の外周側がN、内周がS極とすると、永久磁石12の外周側(N極)から出た磁束は、外ヨーク24の内周部24b(25b)、推力発生部11のコア11aの大径部及び小径部を通って、永久磁石12の内周側(S極)に入り、閉ループB(閉ループC)を形成する。閉ループBの磁束と閉ループCの磁束の大きさと流れ方向は略等しく、推力発生部11に作用する磁力がバランスし、中立点に位置する。   When the coil 22 is not energized (non-energized), the center of the A-axis direction between the inner peripheral portions 24 b and 25 b of the outer yokes 24 and 25 and the A-axis direction of the permanent magnet 12 are generated by the magnetic force of the permanent magnet 12. Is almost the same as the center. In this case, as shown in FIG. 3A, when the outer peripheral side of the permanent magnet 12 is N and the inner periphery is S pole, the magnetic flux emitted from the outer peripheral side (N pole) of the permanent magnet 12 Through the peripheral portion 24b (25b) and the large diameter portion and the small diameter portion of the core 11a of the thrust generating portion 11, the permanent magnet 12 enters the inner peripheral side (S pole) to form a closed loop B (closed loop C). The magnitudes and flow directions of the magnetic fluxes in the closed loop B and the closed loop C are substantially equal, and the magnetic forces acting on the thrust generating unit 11 are balanced and positioned at the neutral point.

図3(a)の非通電状態でコイル22が通電されると、図3(b)に示すように、コイル22に発生する磁束は、永久磁石12が発生する磁束の影響を受け、推力発生部11のコア11aの小径部、永久磁石12、電磁石21の外ヨーク24の内周部24b、放射部24c、外周部24a、電磁石21の外ヨーク25の外周部25a、放射部25c、内周部25b、推力発生部11のコア11bを通って、コア11aの小径部に戻り、閉ループDを形成する。図3(a)に示した閉ループBの磁束は、コイル22が発生する磁束(閉ループD)の影響を受け、図3(b)に示すように、流れ方向は閉ループBと同一な閉ループB1のようになる。一方、図3(a)に示した閉ループCの磁束も、コイル22が発生する磁束(閉ループD)の影響を受け、流れ方向は閉ループCと同一な閉ループC1のようになる。   When the coil 22 is energized in the non-energized state of FIG. 3A, the magnetic flux generated in the coil 22 is affected by the magnetic flux generated by the permanent magnet 12 as shown in FIG. Small diameter part of the core 11a of the part 11, the permanent magnet 12, the inner peripheral part 24b of the outer yoke 24 of the electromagnet 21, the radiating part 24c, the outer peripheral part 24a, the outer peripheral part 25a of the outer yoke 25 of the electromagnet 21, the radiating part 25c, the inner peripheral part The portion 25b passes through the core 11b of the thrust generating portion 11 and returns to the small diameter portion of the core 11a to form a closed loop D. The magnetic flux of the closed loop B shown in FIG. 3A is affected by the magnetic flux generated by the coil 22 (closed loop D), and the flow direction of the closed loop B1 is the same as that of the closed loop B as shown in FIG. It becomes like this. On the other hand, the magnetic flux in the closed loop C shown in FIG. 3A is also affected by the magnetic flux generated by the coil 22 (closed loop D), and the flow direction is the same as the closed loop C1 as in the closed loop C.

推力発生部11と外ヨーク24、25の内周部24b、25bの間のギャップに生じる磁束の軸方向成分の方向が、推力発生部11に生じる推力の方向である。図3(b)から分かるように、磁束B1、磁束C1の外ヨーク24、25の内周部24b、25bのギャップ部の軸方向成分は略0であり、磁束Dの外ヨーク24、25の内周部24b、25bのギャップ部の軸方向成分は下死点方向であるので、推力発生部11には、下死点方向、即ち、圧縮室2から離れる方向の推力Rが発生する。   The direction of the axial component of the magnetic flux generated in the gap between the thrust generating portion 11 and the inner peripheral portions 24 b and 25 b of the outer yokes 24 and 25 is the direction of the thrust generated in the thrust generating portion 11. As can be seen from FIG. 3B, the axial components of the gaps of the inner peripheral portions 24b and 25b of the outer yokes 24 and 25 of the magnetic flux B1 and the magnetic flux C1 are substantially zero, and the outer yokes 24 and 25 of the magnetic flux D Since the axial component of the gap portions of the inner peripheral portions 24 b and 25 b is the bottom dead center direction, the thrust generating portion 11 generates a thrust R in the bottom dead center direction, that is, the direction away from the compression chamber 2.

図3(a)の非通電状態でコイル22に図3(b)とは反対方向に通電されると、図3(c)に示すように、コイル22に発生する磁束は、図3(b)に示した閉ループDとは反対方向の閉ループEを形成する。図3(a)における閉ループBと閉ループCの磁束は、図3(c)に示すように、図3(a)と流れ方向は同一な閉ループB2、閉ループC2のようになる。   When the coil 22 is energized in the opposite direction to FIG. 3B in the non-energized state of FIG. 3A, the magnetic flux generated in the coil 22 is changed to that shown in FIG. 3B as shown in FIG. A closed loop E in the opposite direction to the closed loop D shown in FIG. As shown in FIG. 3C, the magnetic fluxes in the closed loop B and the closed loop C in FIG. 3A are the same as the closed loop B2 and the closed loop C2 in the flow direction.

図3(c)から分かるように、磁束B2、磁束C2の外ヨーク24、25の内周部24b、25bのギャップ部の軸方向成分は、略0であり、磁束Eの外ヨーク24、25の内周部24b、25bのギャップ部の軸方向成分は、上死点方向であるので、推力発生部11には、上死点方向、即ち、圧縮室2に向かう方向の推力Sが発生する。   As can be seen from FIG. 3 (c), the axial components of the gap portions of the inner peripheral portions 24b and 25b of the outer yokes 24 and 25 of the magnetic flux B2 and the magnetic flux C2 are substantially zero, and the outer yokes 24 and 25 of the magnetic flux E. Since the axial component of the gap portions of the inner peripheral portions 24b and 25b is the top dead center direction, the thrust generating portion 11 generates a thrust S in the top dead center direction, that is, the direction toward the compression chamber 2. .

従って、コイル22にプラスマイナスの交番電流を通電することにより、可動部材10が圧力容器4内で往復運動し、圧縮室2の作動ガスが圧縮、膨張される。   Accordingly, when a plus / minus alternating current is applied to the coil 22, the movable member 10 reciprocates in the pressure vessel 4, and the working gas in the compression chamber 2 is compressed and expanded.

次に、スターリングサイクルの低温発生部30について、図1を参照して説明する。   Next, the low temperature generating part 30 of the Stirling cycle will be described with reference to FIG.

ディスプレーサ35の背面側に形成される圧縮室31は、順次、放熱器32、蓄冷器33、そして膨張室34に連通する。蓄冷器33の内周側にはディスプレーサ35が挿入されるシリンダー38が設けられ、シリンダー38の内周面とディスプレーサ35の外周面との間には、微少間隙が設けられる。この微少間隙は膨張室34と圧縮室31の作動ガスをシールする。ディスプレーサ35の背面側にはロッド36の一端が固着される。ロッド36はバネ39を収納しているケース40の内部に突き出ており、ケース40に設けられるロッドシール(図示していない)により、圧縮室31とケース40の作動ガスは、摺動可能にシールされる。ロッド36の他端は、バネ39の端面を受ける部材37が固着される。   The compression chamber 31 formed on the back side of the displacer 35 is in communication with the radiator 32, the regenerator 33, and the expansion chamber 34 in order. A cylinder 38 into which the displacer 35 is inserted is provided on the inner peripheral side of the regenerator 33, and a minute gap is provided between the inner peripheral surface of the cylinder 38 and the outer peripheral surface of the displacer 35. This minute gap seals the working gas in the expansion chamber 34 and the compression chamber 31. One end of a rod 36 is fixed to the back side of the displacer 35. The rod 36 protrudes into the case 40 housing the spring 39, and the working gas in the compression chamber 31 and the case 40 is slidably sealed by a rod seal (not shown) provided in the case 40. Is done. A member 37 that receives the end surface of the spring 39 is fixed to the other end of the rod 36.

リニア圧縮機1の圧縮室2とスターリングサイクルの低温発生部30の圧縮室31とにおいて、可動部材10とディスプレーサ35によって圧縮された作動ガスは、放熱器32によって冷却され蓄冷器33に流入するとそこで金網等の蓄冷材によって冷却され、膨張室34に流入し、ディスプレーサ35の下方向の移動によって作動ガスが略等温膨張し、さらに低い温度の冷凍を発生する。そしてディスプレーサ34の上方向の移動によって、膨張室34の作動ガスは蓄冷器33に流入し、そこで蓄冷材により加温され、昇温して放熱器32を通り、可動部材10とディスプレーサ35によって圧縮室2と圧縮室31に吸い込まれ1サイクルを完了する。   In the compression chamber 2 of the linear compressor 1 and the compression chamber 31 of the low temperature generating unit 30 of the Stirling cycle, the working gas compressed by the movable member 10 and the displacer 35 is cooled by the radiator 32 and flows into the regenerator 33. Cooled by a regenerator material such as a wire mesh, flows into the expansion chamber 34, and the downward movement of the displacer 35 causes the working gas to expand substantially isothermally to generate refrigeration at a lower temperature. As the displacer 34 moves upward, the working gas in the expansion chamber 34 flows into the regenerator 33, where it is heated by the regenerator material, heated up, passed through the radiator 32, and compressed by the movable member 10 and the displacer 35. Suctioned into chamber 2 and compression chamber 31 completes one cycle.

ディスプレーサ35とバネ39とによる共振周波数は、リニア圧縮機1のリニアモータ20に通電する電流の周波数にほぼ一致するようディスプレーサ35の質量とバネ39のバネ定数とで調整する。これにより、ディスプレーサ35のストロークを大きく得ることが出来る。   The resonance frequency of the displacer 35 and the spring 39 is adjusted by the mass of the displacer 35 and the spring constant of the spring 39 so as to substantially match the frequency of the current supplied to the linear motor 20 of the linear compressor 1. Thereby, a large stroke of the displacer 35 can be obtained.

リニアモータ20に通電する電流の周波数は、リニア圧縮機1の可動部材10、リニアモータ20の磁力による磁気バネ定数、そして圧力容器4内の作動ガスのガスバネ定数を考慮した振動系の固有振動数にほぼ近い周波数に設定する。この設定により、可動部材10は少ない電流で、大きなストロークを得ることができる。   The frequency of the current applied to the linear motor 20 is the natural frequency of the vibration system in consideration of the movable member 10 of the linear compressor 1, the magnetic spring constant due to the magnetic force of the linear motor 20, and the gas spring constant of the working gas in the pressure vessel 4. Set to a frequency close to. With this setting, the movable member 10 can obtain a large stroke with a small current.

一般的に、ガスバネ定数は磁気バネ定数より大きく、リニア圧縮機1の振動系の固有振動数は、ガスバネ定数と可動部材10の質量によってほぼ決まる。このガスバネ定数は、可動部材10に作用する圧縮室2の圧力変動幅とバッファ室5の圧力変動幅、そして可動部材10のストロークとによって決まる。バッファ室5は、配管6を介してバッファタンク7に連通しており、バッファタンク7の容積を変えるとバッファ室5の圧力変動幅も変化するので、ガスバネ定数を変えること出来る。即ち、バッファタンク7の容積を大きくするとバッファ室5の圧力変動幅が小さくなり、ガスバネ定数も小さくなり、リニア圧縮機1の振動系の固有振動数は小さくなる。バッファタンク7の容積を小さくするとバッファ室5の圧力変動幅が大きくなり、ガスバネ定数も大きくなり、リニア圧縮機1の振動系の固有振動数は大きくなる。従って、バッファタンク7は圧力容器4の外側に配備されるので、バッファタンク7の容積を変えることによって、リニア圧縮機1の振動系の固有振動数を簡単に変えられ、良好な運転周波数を簡単に調整することが出来る。   In general, the gas spring constant is larger than the magnetic spring constant, and the natural frequency of the vibration system of the linear compressor 1 is substantially determined by the gas spring constant and the mass of the movable member 10. This gas spring constant is determined by the pressure fluctuation width of the compression chamber 2 acting on the movable member 10, the pressure fluctuation width of the buffer chamber 5, and the stroke of the movable member 10. The buffer chamber 5 communicates with the buffer tank 7 via the pipe 6, and when the volume of the buffer tank 7 is changed, the pressure fluctuation width of the buffer chamber 5 also changes, so that the gas spring constant can be changed. That is, when the volume of the buffer tank 7 is increased, the pressure fluctuation range of the buffer chamber 5 is reduced, the gas spring constant is also reduced, and the natural frequency of the vibration system of the linear compressor 1 is reduced. When the volume of the buffer tank 7 is reduced, the pressure fluctuation range of the buffer chamber 5 is increased, the gas spring constant is increased, and the natural frequency of the vibration system of the linear compressor 1 is increased. Accordingly, since the buffer tank 7 is disposed outside the pressure vessel 4, the natural frequency of the vibration system of the linear compressor 1 can be easily changed by changing the volume of the buffer tank 7, and a good operating frequency can be easily set. Can be adjusted.

なお、図11に示す様に、可動部材10がリニアモータ20の推力範囲(可動部材10に推力が発生する範囲)外に移動するのを規制するため、圧力容器4の内部に移動規制部材4dを設けることも可能である。可動部材10は、圧力容器4の内部のうち、リニアモータ20の推力範囲内に位置する。移動規制部材4dは、樹脂材等より製作され、圧力容器4のシリンダー部4aの内周面4cに圧入固定される。圧入固定のため、接着材やネジ等の締結材や、複雑な締結構造をとる必要がなく、コストも抑えられる。移動規制部材4dは、圧力容器4への圧入時にシリンダー部4aに歪みを生じさせないように、鏡板4b近くで締結力が発生するような形状、例えば、鏡板4bに近い部分の径が他の部分よりも大きい形状に形成されている。   As shown in FIG. 11, in order to restrict the movable member 10 from moving outside the thrust range of the linear motor 20 (the range in which thrust is generated in the movable member 10), the movement restricting member 4 d is provided inside the pressure vessel 4. It is also possible to provide. The movable member 10 is located within the thrust range of the linear motor 20 in the pressure vessel 4. The movement restricting member 4d is made of a resin material or the like, and is press-fitted and fixed to the inner peripheral surface 4c of the cylinder portion 4a of the pressure vessel 4. For press-fitting and fixing, it is not necessary to use a fastening material such as an adhesive or a screw or a complicated fastening structure, and the cost can be reduced. The movement restricting member 4d has such a shape that a fastening force is generated near the end plate 4b so as not to cause distortion in the cylinder portion 4a when being pressed into the pressure vessel 4, for example, the diameter of the portion close to the end plate 4b is the other portion. It is formed in a larger shape.

図12は、移動規制部材4dの作用を説明するための模式図である。ガス置換、真空引き等が終了した段階で、可動部材10は、移動規制部材4dと軸方向に接触して停止している(復帰前の状態)。可動部材10はリニアモータ20の磁力範囲内にあるが、リニアモータ20に通電されない時は可動部材10を中央位置(基準位置、図11での可動部材10の位置)に戻す磁力(磁気バネ)が弱く、摩擦等の力も抵抗として働くので、自然に戻ってこられない。移動規制部材4dを中央位置にある可動部材10に対してより近い位置に設置すれば、可動部材10を磁力によって自然に中央位置に戻すことも可能である。しかし、リニア圧縮機1の通常運転時に可動部材10と移動規制部材4dとが接触する確率を少なくするため、移動規制部材4dを中央位置にある可動部材10に対してできるだけ遠くに設置した方が、低振動、低騒音の観点で有利である。   FIG. 12 is a schematic diagram for explaining the operation of the movement restricting member 4d. At the stage where gas replacement, evacuation, and the like have been completed, the movable member 10 stops in contact with the movement restricting member 4d in the axial direction (the state before return). The movable member 10 is within the magnetic force range of the linear motor 20, but when the linear motor 20 is not energized, the magnetic force (magnetic spring) returns the movable member 10 to the center position (reference position, position of the movable member 10 in FIG. 11). However, it is weak and the frictional force works as resistance, so it cannot return naturally. If the movement restricting member 4d is installed at a position closer to the movable member 10 at the central position, the movable member 10 can be naturally returned to the central position by a magnetic force. However, in order to reduce the probability of contact between the movable member 10 and the movement restricting member 4d during normal operation of the linear compressor 1, the movement restricting member 4d should be installed as far as possible with respect to the movable member 10 at the central position. It is advantageous in terms of low vibration and low noise.

ここで、リニア圧縮機1を運転するためリニアモータ20に電流を印加すると、初期の数秒間は移動規制部材4dと可動部材10が接触するが、やがて、可動部材10はリニアモータ20の磁力によって動作し、中央位置を中心に振動するように復帰する(復帰後の状態)。   Here, when a current is applied to the linear motor 20 to operate the linear compressor 1, the movement restricting member 4 d and the movable member 10 come into contact with each other for a few seconds in the initial period. Operates and returns to vibrate around the center position (state after return).

また、移動規制部材4dに樹脂材料を用いているため、ガス置換時、初期電流印加時に移動規制部材4dと可動部材10が接触する場合があっても、可動部材10に加わる衝撃は緩和される。   Further, since a resin material is used for the movement restricting member 4d, even if the movement restricting member 4d and the movable member 10 may come into contact with each other during gas replacement or initial current application, the impact applied to the movable member 10 is reduced. .

上述した様に、移動規制部材4dが設けられた図11示のリニア圧縮機1では、可動部材10がリニアモータ20の推力範囲外に移動することがなくなるので、ガス置換、真空引き等に係る時間が大幅に短縮でき、これらの作業での生産性が向上する。また、リニア圧縮機1の故障の原因の一つがなくなり、リニア圧縮機1の信頼性が向上する。   As described above, in the linear compressor 1 shown in FIG. 11 in which the movement restricting member 4d is provided, the movable member 10 does not move out of the thrust range of the linear motor 20, so that it relates to gas replacement, evacuation, etc. Time can be significantly reduced and productivity in these operations is improved. Moreover, one of the causes of the failure of the linear compressor 1 is eliminated, and the reliability of the linear compressor 1 is improved.

(第2実施例)
図4は、本発明に係るリニア圧縮機1の第2実施例を示す図である。本実施例は、図1における可動部材10の変形例(可動部材45)である。図5(a)は、可動部材45の拡大図である。なお、第1実施例における部材と同一な構造・作用の部材には、同一の名称とし、同一の符号を付している。
(Second embodiment)
FIG. 4 is a diagram showing a second embodiment of the linear compressor 1 according to the present invention. A present Example is a modification (movable member 45) of the movable member 10 in FIG. FIG. 5A is an enlarged view of the movable member 45. Members having the same structure and action as the members in the first embodiment have the same names and the same reference numerals.

可動部材45は、圧力容器4に収容されており、電磁石21が発生させる磁界により、圧力容器4の内部で軸方向に往復運動する。可動部材45は、推力発生部46と、永久磁石12と、調整部材13と、摺動部23とから構成される。推力発生部46は、磁性材からなる段付き円柱状のコア46aと、コア46aの小径部の端部に固着された磁性材からなるコア46bとから構成される。永久磁石12及び調整部材13は、実施例1のものと同様な構造・作用を有する。   The movable member 45 is accommodated in the pressure vessel 4 and reciprocates in the axial direction inside the pressure vessel 4 by the magnetic field generated by the electromagnet 21. The movable member 45 includes a thrust generating portion 46, the permanent magnet 12, the adjusting member 13, and the sliding portion 23. The thrust generating portion 46 includes a stepped columnar core 46a made of a magnetic material, and a core 46b made of a magnetic material fixed to the end of the small diameter portion of the core 46a. The permanent magnet 12 and the adjustment member 13 have the same structure / action as that of the first embodiment.

摺動部23は、圧力容器4の径方向に関して、推力発生部46の外方に設けられる。摺動部23は、可動部材45が圧力容器4内で往復運動する場合に圧力容器4の内周面4c上を摺動し、可動部材45と圧力容器4との間に作動ガスを圧縮するための圧縮室2を規定する。   The sliding portion 23 is provided outside the thrust generating portion 46 with respect to the radial direction of the pressure vessel 4. The sliding portion 23 slides on the inner peripheral surface 4 c of the pressure vessel 4 when the movable member 45 reciprocates in the pressure vessel 4, and compresses the working gas between the movable member 45 and the pressure vessel 4. A compression chamber 2 is defined.

摺動部23は、ピストンリング23aと、ライダーリング23bとから構成される。ピストンリング23aは、充填剤入りPTFE等の摺動材料からなり、例えばステップカット等が成されたリング状のものである。ピストンリング23aは、コア46aの大径側に形成された凹状の溝47aと、コア46bに形成された凹状の溝48aとにそれぞれ装着される(はめこまれる)。ピストンリング23aの外周面は、圧力容器4のシリンダー部4aの内周面に内接しているが、ピストンリング23aの内周面と溝47a、溝48aの底面との間にはスキマが設けられる。従って、ピストンリング23aは、作動ガスをシールする機能は有するが、可動部材45をシリンダー部4aの内周面に対して支持する機能はない。圧力容器4において、圧縮室2とバッファ室5との間のシール性は、ピストンリング23aによって保たれる。尚、本実施例では、ピストンリング23aが溝47aと溝48aの両方に装着されているが、これらのうち一方だけに装着してもよい。   The sliding part 23 includes a piston ring 23a and a rider ring 23b. The piston ring 23a is made of a sliding material such as PTFE containing filler, and has a ring shape with step cuts, for example. The piston ring 23a is attached (fitted) to a concave groove 47a formed on the large diameter side of the core 46a and a concave groove 48a formed on the core 46b. The outer peripheral surface of the piston ring 23a is inscribed in the inner peripheral surface of the cylinder portion 4a of the pressure vessel 4, but a gap is provided between the inner peripheral surface of the piston ring 23a and the bottom surfaces of the grooves 47a and 48a. . Therefore, the piston ring 23a has a function of sealing the working gas, but does not have a function of supporting the movable member 45 with respect to the inner peripheral surface of the cylinder portion 4a. In the pressure vessel 4, the sealing performance between the compression chamber 2 and the buffer chamber 5 is maintained by the piston ring 23a. In this embodiment, the piston ring 23a is attached to both the groove 47a and the groove 48a, but it may be attached to only one of them.

ライダーリング23bは、例えば、充填剤入りPTFE等の摺動材料からなるほぼ円筒状(リング状)のものである。ライダーリング23bは、コア46aの大径側に形成された凹状の溝47bとコア46bに形成された凹状の溝48bとにそれぞれ装着される(はめこまれる)。ライダーリング23bの内周面は、溝47b、溝48bの底面に外接し、ライダーリング23bの外周面と圧力容器4のシリンダー部4aの内周面4cとの間には微小間隙が設けられる。ライダーリング23bの外周面には、図5(b)に示すように、作動ガスが流れる溝(切り欠き)23cが設けられる。従って、ライダーリング23bは、可動部材45をシリンダー部4aの内周面4cに対して摺動自在に支持する軸受の機能を有するが、作動ガスをシールする機能はない。可動部材45は、摺動部23のライダーリング23bを介して、圧力容器4におけるシリンダー部4aの内周面4c上をスムーズに摺動する。   The rider ring 23b has a substantially cylindrical shape (ring shape) made of a sliding material such as PTFE containing filler. The rider ring 23b is attached to (inserted into) a concave groove 47b formed on the large diameter side of the core 46a and a concave groove 48b formed on the core 46b. The inner peripheral surface of the rider ring 23b circumscribes the bottom surfaces of the grooves 47b and 48b, and a minute gap is provided between the outer peripheral surface of the rider ring 23b and the inner peripheral surface 4c of the cylinder portion 4a of the pressure vessel 4. As shown in FIG. 5B, a groove (notch) 23c through which the working gas flows is provided on the outer peripheral surface of the rider ring 23b. Therefore, the rider ring 23b has a function of a bearing that slidably supports the movable member 45 with respect to the inner peripheral surface 4c of the cylinder portion 4a, but does not have a function of sealing the working gas. The movable member 45 smoothly slides on the inner peripheral surface 4c of the cylinder portion 4a of the pressure vessel 4 via the rider ring 23b of the sliding portion 23.

第2実施例の構成によれば、第1実施例における作用・効果に加え、リニア圧縮機1の長時間運転によってピストンリング23a及びライダーリング23bの外周面の摩耗量が大きくなった場合に、これらの部品を簡単に交換できるという効果がある。   According to the configuration of the second embodiment, in addition to the operations and effects of the first embodiment, when the wear amount of the outer peripheral surfaces of the piston ring 23a and the rider ring 23b increases due to the long-time operation of the linear compressor 1, There is an effect that these parts can be easily replaced.

(第3実施例)
図6は、本発明に係るリニア圧縮機の第3実施例を示す図である。同図は、1つのリニアモータ20と、1つの電磁石21と、1つの可動部材10とから構成されたリニア圧縮機50を示す。なお、第1実施例における部材と同一な構造・作用の部材には、同一の名称とし、同一の符号を付している。
(Third embodiment)
FIG. 6 is a diagram showing a third embodiment of the linear compressor according to the present invention. The figure shows a linear compressor 50 including one linear motor 20, one electromagnet 21, and one movable member 10. Members having the same structure and action as the members in the first embodiment have the same names and the same reference numerals.

リニア圧縮機50において、リニアモータ20の電磁石21は、圧力容器54の外周面に固定され、リニアモータ20の可動部材10は、圧力容器54のシリンダー部54aの内周面に収納される。圧縮室52は、圧力容器54の一端側と可動部材10とで囲まれている。圧縮室52内の作動ガスのシール性は、可動部材10の摺動部14によって確保される。圧力容器54の他端側には、バッファ室5が設けられる。リニア圧縮機50の圧縮室52は、配管53を介してスターリングサイクルの低温発生部30の圧縮室31に接続される。バッファ室5は、配管6を介して、圧力容器54の外部にて圧力容器54の軸方向(長手方向)の全長以内の範囲に設けたバッファタンク7に連通される。   In the linear compressor 50, the electromagnet 21 of the linear motor 20 is fixed to the outer peripheral surface of the pressure vessel 54, and the movable member 10 of the linear motor 20 is stored on the inner peripheral surface of the cylinder portion 54 a of the pressure vessel 54. The compression chamber 52 is surrounded by one end side of the pressure vessel 54 and the movable member 10. The sealing property of the working gas in the compression chamber 52 is ensured by the sliding portion 14 of the movable member 10. A buffer chamber 5 is provided on the other end side of the pressure vessel 54. The compression chamber 52 of the linear compressor 50 is connected to the compression chamber 31 of the low temperature generating unit 30 of the Stirling cycle via a pipe 53. The buffer chamber 5 communicates with the buffer tank 7 provided within the range of the axial length (longitudinal direction) of the pressure vessel 54 outside the pressure vessel 54 via the pipe 6.

(第4実施例)
図7は、本発明に係るリニア圧縮機の第4実施例(リニア圧縮機80)を示す図、図8は、図7のNN断面図である。
(Fourth embodiment)
FIG. 7 is a view showing a fourth embodiment (linear compressor 80) of the linear compressor according to the present invention, and FIG. 8 is an NN cross-sectional view of FIG.

リニア圧縮機80において、リニアモータ90は、電磁石91と、永久磁石93a、93bと、永久磁石94a、94bと、可動部材96と、から構成される。電磁石91は、筒状の圧力容器81の外部に設けられている。電磁石91は、磁性材からなるヨーク92と、ヨーク92のティース部92a、92bにそれぞれ巻かれるコイル95a、95bと、から構成される。ティース部92a、92bの端面には、それぞれ永久磁石93a、93bと94a、94bが固着される。ティース部92aとティース部92bは、圧力容器81のA軸(図7に図示)に関して対称の位置に設けられ、永久磁石93a、94aと永久磁石93b、94bも、圧力容器81のA軸に関して対称の位置に設けられる。永久磁石93a、93bと永久磁石94a、94bは、圧力容器81の外部に設けられる。永久磁石93aと永久磁石94bは、外周側がN極、内周側がS極に磁化され、永久磁石94aと永久磁石93bは、外周側がS極、内周側がN極に磁化される。   In the linear compressor 80, the linear motor 90 includes an electromagnet 91, permanent magnets 93a and 93b, permanent magnets 94a and 94b, and a movable member 96. The electromagnet 91 is provided outside the cylindrical pressure vessel 81. The electromagnet 91 includes a yoke 92 made of a magnetic material, and coils 95a and 95b wound around the tooth portions 92a and 92b of the yoke 92, respectively. Permanent magnets 93a, 93b and 94a, 94b are fixed to the end surfaces of the teeth portions 92a, 92b, respectively. The teeth portion 92a and the teeth portion 92b are provided at symmetrical positions with respect to the A axis (shown in FIG. 7) of the pressure vessel 81, and the permanent magnets 93a, 94a and the permanent magnets 93b, 94b are also symmetrical with respect to the A axis of the pressure vessel 81. It is provided in the position. The permanent magnets 93 a and 93 b and the permanent magnets 94 a and 94 b are provided outside the pressure vessel 81. Permanent magnet 93a and permanent magnet 94b are magnetized to N pole on the outer peripheral side and S pole on the inner peripheral side, and permanent magnet 94a and permanent magnet 93b are magnetized to S pole on the outer peripheral side and N pole on the inner peripheral side.

可動部材96は、圧力容器81に収容されており、電磁石91が発生させる磁界により、圧力容器81の内部でA軸方向に往復運動する。可動部材96は、推力発生部96aと、調整部材96bと、摺動部96cと、から構成される。推力発生部96aは、磁性材から成る円柱状の部材(コア96a)である。調整部材96bは、非磁性材からなり、コア96a(推力発生部96a)の圧縮室82側の端面に固定され、一対の可動部材96、96間のヘッドクリアランスを調整するために設けられる。第1実施例と同様に、可動部材96と電磁石91の各々の軸方向長さと、電磁石91の軸方向の取り付け位置を正確に決めておけば、調整部材96bは設けなくてもよい。   The movable member 96 is accommodated in the pressure vessel 81 and reciprocates in the A-axis direction inside the pressure vessel 81 by a magnetic field generated by the electromagnet 91. The movable member 96 includes a thrust generating part 96a, an adjusting member 96b, and a sliding part 96c. The thrust generating part 96a is a columnar member (core 96a) made of a magnetic material. The adjusting member 96b is made of a nonmagnetic material, is fixed to the end surface of the core 96a (thrust generating portion 96a) on the compression chamber 82 side, and is provided to adjust the head clearance between the pair of movable members 96, 96. As in the first embodiment, if the axial lengths of the movable member 96 and the electromagnet 91 and the axial mounting position of the electromagnet 91 are accurately determined, the adjusting member 96b may not be provided.

摺動部96cは、圧力容器81の径方向に関して、推力発生部96aの外方に設けられる。摺動部96cは、可動部材96が圧力容器81内で往復運動する場合に圧力容器81の内周面81b上を摺動し、可動部材96と圧力容器81との間に作動ガスを圧縮するための圧縮室82を規定する。摺動部96cとしては、例えば、PTFEベースに添加剤の入った樹脂材からなる摺動材96dをコア96aの外周面に接着したものや、焼付けやコーティング等をコア96aの外周面に施したものが適用可能である。本実施形態では、前者のものが図示されている。   The sliding part 96 c is provided outside the thrust generating part 96 a with respect to the radial direction of the pressure vessel 81. The sliding portion 96 c slides on the inner peripheral surface 81 b of the pressure vessel 81 when the movable member 96 reciprocates within the pressure vessel 81, and compresses the working gas between the movable member 96 and the pressure vessel 81. A compression chamber 82 is defined. As the sliding portion 96c, for example, a sliding material 96d made of a resin material containing an additive in a PTFE base is bonded to the outer peripheral surface of the core 96a, or baking or coating is applied to the outer peripheral surface of the core 96a. Things are applicable. In the present embodiment, the former is illustrated.

摺動部96cの外周面と圧力容器81のシリンダー部81aの内周面81bとの間には、微少間隙が設けられる。したがって、第1実施例と同様の理由によって、摺動部96cは作動ガスのシール機能を果たすとともに、可動部材96を圧力容器81内でスムーズに摺動させる機能を果たす。   A minute gap is provided between the outer peripheral surface of the sliding portion 96 c and the inner peripheral surface 81 b of the cylinder portion 81 a of the pressure vessel 81. Therefore, for the same reason as in the first embodiment, the sliding portion 96c performs a function of sealing the working gas and smoothly sliding the movable member 96 within the pressure vessel 81.

一対の電磁石91は、圧力容器81の圧縮室82を形成するシリンダー部81aに設けられる流路孔82aに対し、ほぼ対称の位置で、圧力容器81の外周側に固定される。これに対応して、一対の可動部材96は、シリンダー部81aに設けられる流路孔82aに対し対称の位置に互いに対向するように収納され、非通電時、一対の電磁石91に対応する位置で、永久磁石93a、94aと永久磁石93b、94bの磁力により、A軸方向に関して保持される。また、圧力容器81の径方向に関して、一対の可動部材96は、圧力容器81の内周面81bで支持される。   The pair of electromagnets 91 is fixed to the outer peripheral side of the pressure vessel 81 at a position that is substantially symmetrical with respect to the flow passage hole 82 a provided in the cylinder portion 81 a that forms the compression chamber 82 of the pressure vessel 81. Correspondingly, the pair of movable members 96 are housed so as to face each other at symmetrical positions with respect to the flow passage hole 82a provided in the cylinder portion 81a, and at positions corresponding to the pair of electromagnets 91 when not energized. The permanent magnets 93a and 94a and the permanent magnets 93b and 94b are held in the A-axis direction by the magnetic force. Further, with respect to the radial direction of the pressure vessel 81, the pair of movable members 96 are supported by the inner peripheral surface 81 b of the pressure vessel 81.

前述の構成によれば、永久磁石93a、93bと94a、94bは圧力容器81の外周面に設けられるので、永久磁石93a、93bと94a、94bを可動部材96に設けた場合と比較して、永久磁石の厚み分、リニアモータ90のX軸に直交する方向の寸法が僅か増えるが、A軸方向に関してリニアモータ90の寸法は変わらず、永久磁石93a、93bと94a、94bの体積は大きくなるので、磁気エネルギーも大きくなる。従って、リニアモータ90が発生する推力が増大し、リニア圧縮機80の封入圧力を増大させることができ、冷凍発生部30で発生する冷凍量が増大する。また、リニア圧縮機80の占有体積の関点から見ると、永久磁石を可動部材96に設けた場合と比較して冷凍能力が増大するので、冷凍能力当りの圧縮機占有体積が小さくなり、リニア圧縮機80の小型化が実現できる。   According to the above-described configuration, since the permanent magnets 93a, 93b and 94a, 94b are provided on the outer peripheral surface of the pressure vessel 81, compared to the case where the permanent magnets 93a, 93b and 94a, 94b are provided on the movable member 96, Although the dimension of the linear motor 90 in the direction orthogonal to the X axis increases slightly by the thickness of the permanent magnet, the dimension of the linear motor 90 does not change in the A axis direction, and the volumes of the permanent magnets 93a, 93b and 94a, 94b increase. As a result, the magnetic energy also increases. Therefore, the thrust generated by the linear motor 90 is increased, the sealed pressure of the linear compressor 80 can be increased, and the amount of refrigeration generated by the refrigeration generating unit 30 is increased. Further, from the viewpoint of the occupied volume of the linear compressor 80, the refrigeration capacity increases as compared with the case where the permanent magnet is provided on the movable member 96. Therefore, the compressor occupancy volume per refrigeration capacity is reduced and linear The compressor 80 can be downsized.

(第5実施例)
図9は、本発明に係るリニア圧縮機の第5実施例を示す図である。なお、第1実施例における部材と同一な構造・作用の部材には、同一の名称とし、同一の符号を付している。
(5th Example)
FIG. 9 is a diagram showing a fifth embodiment of the linear compressor according to the present invention. Members having the same structure and action as the members in the first embodiment have the same names and the same reference numerals.

リニア圧縮機60において、ほぼ円筒形状の可動部材70の内周面には、樹脂等の摺動材からなるロッド61が挿入され、ロッド61の外周面と可動部材70の内周面との間には、微少間隙が設けられる。この微少間隙は、圧縮室62内の作動ガスの漏れをシールする。ロッド61は、圧力容器64の両端に設けられた鏡板64bによって軸方向には動かず、軸に直交する方向のみ自在にスライド出来るように配設する。   In the linear compressor 60, a rod 61 made of a sliding material such as resin is inserted into the inner peripheral surface of the substantially cylindrical movable member 70, and between the outer peripheral surface of the rod 61 and the inner peripheral surface of the movable member 70. Is provided with a minute gap. This minute gap seals the leakage of working gas in the compression chamber 62. The rod 61 is disposed so as to be slidable only in the direction orthogonal to the axis without moving in the axial direction by the end plates 64b provided at both ends of the pressure vessel 64.

可動部材70は、圧力容器64に収容され、電磁石21が発生させる磁界により、圧力容器64の内部でA軸方向に往復運動する。可動部材70は、推力発生部71と、永久磁石72と、調整部材73と、摺動部74と、から構成される。推力発生部71は、磁性材からなる段付き円筒状のコア71aと、コア71aの小径側の端面に固着された磁性材からなる円筒状のコア71bと、から構成されている。コア71a、71bの中心部には、ロッド61が挿入される孔71c、71dが設けられている。コア71aの小径側の外周面には、円筒状を成す永久磁石72が挿入される。調整部材73は、非磁性材からなり、ロッド61が通る孔73aが設けられる。調整部材73は、第1実施例と同様に、一対の可動部材70、70間のヘッドクリアランスを調整するために設けられる。   The movable member 70 is accommodated in the pressure vessel 64 and reciprocates in the A-axis direction inside the pressure vessel 64 by a magnetic field generated by the electromagnet 21. The movable member 70 includes a thrust generating part 71, a permanent magnet 72, an adjusting member 73, and a sliding part 74. The thrust generating portion 71 includes a stepped cylindrical core 71a made of a magnetic material, and a cylindrical core 71b made of a magnetic material fixed to the end surface on the small diameter side of the core 71a. At the center of the cores 71a and 71b, holes 71c and 71d into which the rod 61 is inserted are provided. A cylindrical permanent magnet 72 is inserted into the outer peripheral surface on the small diameter side of the core 71a. The adjustment member 73 is made of a non-magnetic material and is provided with a hole 73a through which the rod 61 passes. The adjustment member 73 is provided to adjust the head clearance between the pair of movable members 70 and 70 as in the first embodiment.

摺動部74は、圧力容器64の径方向に関して、推力発生部71の外方に設けられる。摺動部74は、可動部材70が圧力容器64内で往復運動する場合に圧力容器64の内周面64c上を摺動し、可動部材70と圧力容器64との間に作動ガスを圧縮するための圧縮室62を規定する。摺動部74としては、例えば、PTFEベースに添加剤の入った樹脂材からなる摺動材74aをコア71aの大径部外周面とコア71bの外周面に接着したものや、焼付けやコーティング等をコア71aの大径部外周面とコア71bの外周面にほどこしたものが適用可能である。本実施形態では、前者のものが図示されている。   The sliding portion 74 is provided outside the thrust generating portion 71 with respect to the radial direction of the pressure vessel 64. The sliding portion 74 slides on the inner peripheral surface 64 c of the pressure vessel 64 when the movable member 70 reciprocates within the pressure vessel 64, and compresses the working gas between the movable member 70 and the pressure vessel 64. A compression chamber 62 is defined. As the sliding portion 74, for example, a sliding material 74a made of a resin material containing an additive in a PTFE base is bonded to the outer peripheral surface of the large-diameter portion of the core 71a and the outer peripheral surface of the core 71b, or is baked or coated. Can be applied to the outer peripheral surface of the large-diameter portion of the core 71a and the outer peripheral surface of the core 71b. In the present embodiment, the former is illustrated.

摺動部74の外周面と圧力容器64のシリンダー部64aの内周面64cとの間には、第1実施例と同様に微小間隙が設けられ、作動ガスのシール機能と可動部材70をシリンダー64aの内周面64c上でスムーズに摺動させる機能を有する。圧縮室62内の作動ガスは、摺動部74によって、バッファ室65に対してシールされる。可動部材70は、摺動部74を介して、圧力容器64のシリンダー64aの内周面64c上をスムーズに摺動する。   As in the first embodiment, a minute gap is provided between the outer peripheral surface of the sliding portion 74 and the inner peripheral surface 64c of the cylinder portion 64a of the pressure vessel 64, so that the working gas sealing function and the movable member 70 are connected to the cylinder. It has a function of sliding smoothly on the inner peripheral surface 64c of 64a. The working gas in the compression chamber 62 is sealed against the buffer chamber 65 by the sliding portion 74. The movable member 70 slides smoothly on the inner peripheral surface 64 c of the cylinder 64 a of the pressure vessel 64 via the sliding portion 74.

上記の構成によれば、圧縮室62の最大容積と可動部材70のストロークを第1実施例と同一にすると、可動部材70の中心部にロッド61を配置しているので可動部材70の外径が第1実施例の可動部材10の外径より大きくなり、永久磁石72の外径も第1実施例より大きくなる。この結果、永久磁石72の体積、表面積が増大し、磁気エネルギーの増加と磁気抵抗の減少により、リニアモータ20の推力が大きくなり、リニア圧縮機60の封入圧力を高くすることができ、冷凍能力が増大する。   According to the above configuration, when the maximum volume of the compression chamber 62 and the stroke of the movable member 70 are the same as those in the first embodiment, the outer diameter of the movable member 70 is provided because the rod 61 is disposed at the center of the movable member 70. Is larger than the outer diameter of the movable member 10 of the first embodiment, and the outer diameter of the permanent magnet 72 is also larger than that of the first embodiment. As a result, the volume and surface area of the permanent magnet 72 increase, the magnetic energy increases and the magnetic resistance decreases, the thrust of the linear motor 20 increases, the sealed pressure of the linear compressor 60 can be increased, and the refrigerating capacity Will increase.

尚、第1実施例乃至第5実施例では、本発明のリニア圧縮機をスターリングサイクルの低温発生部に適用したが、蒸気圧縮式の冷凍機に適用しても良い。   In the first to fifth embodiments, the linear compressor of the present invention is applied to the low temperature generating part of the Stirling cycle. However, the linear compressor may be applied to a vapor compression refrigerator.

以上説明した様に、本発明のリニア圧縮機によれば(特にスターリングサイクルの低温発生部、パルス管冷凍機及び蒸気圧縮式の冷凍機に用いた場合)、リニアモータの可動部材には、可動部材が圧力容器内で往復運動する場合に圧力容器の内周面上を摺動し、可動部材と圧力容器との間に作動ガスを圧縮するための圧縮室を規定する摺動部と、磁性材から成り電磁石及び永久磁石の磁界によって可動部材に推力を発生させる推力発生部とが設けられている。リニアモータの可動部材において、摺動部は、圧力容器の径方向に関して、推力発生部の外方に設けられる。   As described above, according to the linear compressor of the present invention (especially when used in a low temperature generating part of a Stirling cycle, a pulse tube refrigerator, and a vapor compression refrigerator), the movable member of the linear motor is movable. When the member reciprocates in the pressure vessel, it slides on the inner peripheral surface of the pressure vessel, and a sliding part that defines a compression chamber for compressing the working gas between the movable member and the pressure vessel, and magnetic There is provided a thrust generating section that is made of a material and generates a thrust on the movable member by the magnetic field of the electromagnet and the permanent magnet. In the movable member of the linear motor, the sliding portion is provided outside the thrust generating portion with respect to the radial direction of the pressure vessel.

以上の構造によれば、リニアモータの可動部材において、作動ガスを圧縮するための部分(摺動部)と、電磁石及び永久磁石の磁界により推力を発生するための部分(推力発生部)とが、圧力容器の径方向に並んで配置される。したがって、これらの部分が圧力容器の軸方向に並んで配置される場合に比べて、可動部材の寸法を圧力容器の軸方向に関して小さくできる。その結果、可動部材を収容する圧力容器においても軸方向の寸法を小さくでき、リニア圧縮機全体の小型化が実現可能となる。   According to the above structure, in the movable member of the linear motor, the portion for compressing the working gas (sliding portion) and the portion for generating thrust by the magnetic field of the electromagnet and permanent magnet (thrust generating portion) are provided. These are arranged side by side in the radial direction of the pressure vessel. Therefore, the dimension of the movable member can be reduced with respect to the axial direction of the pressure vessel as compared with the case where these portions are arranged side by side in the axial direction of the pressure vessel. As a result, the axial dimension of the pressure vessel that accommodates the movable member can be reduced, and the entire linear compressor can be downsized.

また、移動規制部材を備えることにより、ガス置換等の時間が短縮でき、生産性が向上し、信頼性も向上する。   Moreover, by providing the movement restricting member, the time for gas replacement or the like can be shortened, productivity is improved, and reliability is improved.

本発明に係るリニア圧縮機1の第1実施例を示す図。The figure which shows 1st Example of the linear compressor 1 which concerns on this invention. 図1のMM断面図。MM sectional drawing of FIG. 図1のリニアモータ20における磁束線図。The magnetic flux line diagram in the linear motor 20 of FIG. 本発明に係るリニア圧縮機1の第2実施例を示す図。The figure which shows 2nd Example of the linear compressor 1 which concerns on this invention. 本発明に係るリニア圧縮機1の第2実施例を示す図。The figure which shows 2nd Example of the linear compressor 1 which concerns on this invention. 本発明に係るリニア圧縮機の第3実施例を示す図。The figure which shows 3rd Example of the linear compressor which concerns on this invention. 本発明に係るリニア圧縮機の第4実施例を示す図。The figure which shows 4th Example of the linear compressor which concerns on this invention. 図7のNN断面図。NN sectional drawing of FIG. 本発明に係るリニア圧縮機の第5実施例を示す図。The figure which shows 5th Example of the linear compressor which concerns on this invention. 公知のリニア圧縮機の模式図。The schematic diagram of a well-known linear compressor. 移動規制部材4dが設けられたリニア圧縮機1を示す図。The figure which shows the linear compressor 1 in which the movement control member 4d was provided. 移動規制部材4dの作用を説明するための模式図。The schematic diagram for demonstrating the effect | action of the movement control member 4d.

符号の説明Explanation of symbols

1、80 リニア圧縮機
2、82 圧縮室
4、81 圧力容器
4c、81b 内周面
4d 移動規制部材
10、45、96 可動部材
11、46、96a 推力発生部
12 永久磁石
14、23、96c 摺動部
20、90 リニアモータ
21、91 電磁石
93a、93b 永久磁石
94a、94b 永久磁石
DESCRIPTION OF SYMBOLS 1,80 Linear compressor 2,82 Compression chamber 4,81 Pressure vessel 4c, 81b Inner peripheral surface 4d Movement control member 10,45,96 Movable member 11,46,96a Thrust generating part 12 Permanent magnet 14,23,96c Sliding Moving part 20, 90 Linear motor 21, 91 Electromagnet 93a, 93b Permanent magnet 94a, 94b Permanent magnet

Claims (6)

筒状をなす圧力容器と、
前記圧力容器の外側に設けられる電磁石と、該電磁石が発生させる磁界により該圧力容器の内部で該圧力容器の軸方向に往復運動する可動部材と、該電磁石の非通電時に該圧力容器における該可動部材の位置を保持する永久磁石とから構成されるリニアモータと、
前記可動部材に設けられ、該可動部材が前記圧力容器内で往復運動する場合に該圧力容器の内周面上を摺動し、該可動部材と該圧力容器との間に作動ガスを圧縮するための圧縮室を規定する摺動部と、
前記可動部材に設けられ、磁性材から成り前記電磁石及び前記永久磁石の磁界によって該可動部材に推力を発生させる推力発生部と、
を備え、
前記摺動部は、前記圧力容器の径方向に関して、前記推力発生部の外方に設けられることを特徴とするリニア圧縮機。
A cylindrical pressure vessel;
An electromagnet provided outside the pressure vessel; a movable member that reciprocates in the axial direction of the pressure vessel inside the pressure vessel by a magnetic field generated by the electromagnet; and the movable in the pressure vessel when the electromagnet is not energized. A linear motor composed of a permanent magnet that holds the position of the member;
Provided on the movable member, when the movable member reciprocates within the pressure vessel, it slides on the inner peripheral surface of the pressure vessel and compresses the working gas between the movable member and the pressure vessel. A sliding part defining a compression chamber for
A thrust generating section provided on the movable member, made of a magnetic material, and generating a thrust on the movable member by a magnetic field of the electromagnet and the permanent magnet;
With
The linear compressor according to claim 1, wherein the sliding portion is provided outside the thrust generating portion with respect to a radial direction of the pressure vessel.
前記永久磁石が前記可動部材に設けられることを特徴とする請求項1に記載のリニア圧縮機。   The linear compressor according to claim 1, wherein the permanent magnet is provided on the movable member. 前記永久磁石が前記圧力容器の外部に設けられることを特徴とする請求項1に記載のリニア圧縮機。   The linear compressor according to claim 1, wherein the permanent magnet is provided outside the pressure vessel. 前記可動部材は、前記摺動部を介して前記圧力容器の内周面に摺動自在に支持され、前記圧縮室内の作動ガスを圧縮すべく前記電磁石及び前記永久磁石が発生させる磁界により該圧力容器内で往復運動することを特徴とする請求項1に記載のリニア圧縮機。   The movable member is slidably supported on the inner peripheral surface of the pressure vessel via the sliding portion, and the pressure is generated by a magnetic field generated by the electromagnet and the permanent magnet to compress the working gas in the compression chamber. The linear compressor according to claim 1, wherein the linear compressor reciprocates within the container. 前記圧力容器の内部に設けられ、前記可動部材が前記推力の発生範囲外に移動するのを前記可動部材と軸方向に接触することで規制する移動規制部材を備えることを特徴とする請求項1に記載のリニア圧縮機。   2. A movement restricting member that is provided inside the pressure vessel and restricts the movable member from moving outside the thrust generation range by contacting the movable member in an axial direction. The linear compressor described in 1. 前記移動規制部材は、前記圧力容器の鏡板近傍に圧入固定されることを特徴とする請求項5に記載のリニア圧縮機。   The linear compressor according to claim 5, wherein the movement restricting member is press-fitted and fixed near the end plate of the pressure vessel.
JP2006314954A 2006-05-25 2006-11-22 Linear compressor Pending JP2008002452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314954A JP2008002452A (en) 2006-05-25 2006-11-22 Linear compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006145589 2006-05-25
JP2006314954A JP2008002452A (en) 2006-05-25 2006-11-22 Linear compressor

Publications (1)

Publication Number Publication Date
JP2008002452A true JP2008002452A (en) 2008-01-10

Family

ID=39007027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314954A Pending JP2008002452A (en) 2006-05-25 2006-11-22 Linear compressor

Country Status (1)

Country Link
JP (1) JP2008002452A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200522A (en) * 2009-02-26 2010-09-09 Aisin Seiki Co Ltd Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor
WO2011027713A1 (en) * 2009-09-04 2011-03-10 株式会社 豊田自動織機 Linear electric compressor
WO2011027736A1 (en) * 2009-09-04 2011-03-10 株式会社 豊田自動織機 Linear, electric compressor
CN104929803A (en) * 2015-05-22 2015-09-23 南京航空航天大学 Free piston stirling engine with magnetofluid for power generation and work method
CN111059019A (en) * 2019-12-21 2020-04-24 杭州电子科技大学 Linear compressor adopting labyrinth clearance sealing piston

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693504U (en) * 1979-12-21 1981-07-25
JPS5737134U (en) * 1980-08-13 1982-02-26
JPH02223685A (en) * 1989-02-27 1990-09-06 Mitsubishi Electric Corp Linear electric motor drive compressor
JPH03104188U (en) * 1990-02-09 1991-10-29
JPH03294669A (en) * 1990-04-09 1991-12-25 Mitsubishi Electric Corp Linear motor driven compressor
JPH10131855A (en) * 1996-10-29 1998-05-19 Matsushita Refrig Co Ltd Oscillating compressor
JPH1151116A (en) * 1997-07-31 1999-02-23 Toyo Tire & Rubber Co Ltd Bound stopper and manufacture thereof
JP2000166209A (en) * 1998-11-25 2000-06-16 Kenji Masuda Linear motor
JP2001090660A (en) * 1999-09-28 2001-04-03 Matsushita Electric Ind Co Ltd Linear compressor
JP3173492B2 (en) * 1999-02-05 2001-06-04 株式会社移動体通信先端技術研究所 Linear compressor
JP2002078310A (en) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd Linear actuator
JP2005016666A (en) * 2003-06-27 2005-01-20 Toyota Industries Corp Lift cylinder device and its fabricating method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693504U (en) * 1979-12-21 1981-07-25
JPS5737134U (en) * 1980-08-13 1982-02-26
JPH02223685A (en) * 1989-02-27 1990-09-06 Mitsubishi Electric Corp Linear electric motor drive compressor
JPH03104188U (en) * 1990-02-09 1991-10-29
JPH03294669A (en) * 1990-04-09 1991-12-25 Mitsubishi Electric Corp Linear motor driven compressor
JPH10131855A (en) * 1996-10-29 1998-05-19 Matsushita Refrig Co Ltd Oscillating compressor
JPH1151116A (en) * 1997-07-31 1999-02-23 Toyo Tire & Rubber Co Ltd Bound stopper and manufacture thereof
JP2000166209A (en) * 1998-11-25 2000-06-16 Kenji Masuda Linear motor
JP3173492B2 (en) * 1999-02-05 2001-06-04 株式会社移動体通信先端技術研究所 Linear compressor
JP2001090660A (en) * 1999-09-28 2001-04-03 Matsushita Electric Ind Co Ltd Linear compressor
JP2002078310A (en) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd Linear actuator
JP2005016666A (en) * 2003-06-27 2005-01-20 Toyota Industries Corp Lift cylinder device and its fabricating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200522A (en) * 2009-02-26 2010-09-09 Aisin Seiki Co Ltd Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor
WO2011027713A1 (en) * 2009-09-04 2011-03-10 株式会社 豊田自動織機 Linear electric compressor
WO2011027736A1 (en) * 2009-09-04 2011-03-10 株式会社 豊田自動織機 Linear, electric compressor
CN104929803A (en) * 2015-05-22 2015-09-23 南京航空航天大学 Free piston stirling engine with magnetofluid for power generation and work method
CN111059019A (en) * 2019-12-21 2020-04-24 杭州电子科技大学 Linear compressor adopting labyrinth clearance sealing piston

Similar Documents

Publication Publication Date Title
JP3619965B1 (en) Stirling agency
EP2402607B1 (en) Long life seal and alignment system for small cryocoolers
JP2010200522A (en) Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor
JP2008002452A (en) Linear compressor
JP3540727B2 (en) Linear compressor
JP5098499B2 (en) Linear compressor for regenerative refrigerator
JP6054079B2 (en) Stirling refrigerator
JPH04347460A (en) Linear motor compressor
JP2009022087A (en) Linear motor, and stirling freezer equipped with the same
JP2006275352A (en) Pulse pipe-type heat storage engine
KR100512002B1 (en) Stirling refrigerator&#39;s Linear motor mounting
JP2002339863A (en) Linear compressor
JP2009052866A (en) Cold storage type refrigerator
JP4760421B2 (en) Vibration type compressor
JP2950308B2 (en) Stirling refrigerator
JP2005037118A (en) Sterling engine
JP5657479B2 (en) Regenerative refrigerator
JP3989874B2 (en) Linear compressor and Stirling engine equipped with the same
JP2001289525A (en) Vibration-type compressor
JP2009257625A (en) Pulse tube refrigerating machine
JPH1183220A (en) Linear compressor and stirling refrigerating machine using the same
JPH116660A (en) Reciprocating movement-type refrigerator
JP2815030B2 (en) Reverse Stirling cycle refrigerator
JP2004092618A (en) Compressor
JP2013185750A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091015

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A02 Decision of refusal

Effective date: 20120410

Free format text: JAPANESE INTERMEDIATE CODE: A02