Nothing Special   »   [go: up one dir, main page]

JP2008088930A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2008088930A
JP2008088930A JP2006272851A JP2006272851A JP2008088930A JP 2008088930 A JP2008088930 A JP 2008088930A JP 2006272851 A JP2006272851 A JP 2006272851A JP 2006272851 A JP2006272851 A JP 2006272851A JP 2008088930 A JP2008088930 A JP 2008088930A
Authority
JP
Japan
Prior art keywords
lubricating oil
rotor
rotating shaft
discharge
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006272851A
Other languages
Japanese (ja)
Inventor
Akiyoshi Higashiyama
彰良 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006272851A priority Critical patent/JP2008088930A/en
Priority to EP20070019353 priority patent/EP1911975B1/en
Priority to DE200760001653 priority patent/DE602007001653D1/en
Publication of JP2008088930A publication Critical patent/JP2008088930A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1027CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1072Oxygen (O2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hermetic compressor, which is more reduced in size and weight with a simple mechanism. <P>SOLUTION: The compressor is provided with a rotary shaft 12 extending in a body 3 of a hermetic vessel 2 and rotatably supported via bearings 16, 28, a motor 6 driving the rotary shaft by electricity supply and including a rotor 7 and a stator 8, a compression mechanism 30 stored in an upper side of the motor, and a frame member 14 arranged between the compression mechanism and the motor to fix the compression mechanism and supporting the rotary shaft via the bearings. The frame member includes a flow direction change means 80 including a seal member 82 changing a direction of lubricating oil supplied to the bearing from an oil storage chamber 23 flowing down from the compression mechanism side to the motor side and cutting off the flowing-down lubricating oil to avoid the same from flowing into the rotor, and a discharge path 84 formed on an upper position of the seal member and orienting the flowing-down lubricating oil toward the stator. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、密閉型圧縮機に係り、詳しくは、密閉容器の下側に潤滑油を貯留する密閉型圧縮機に関する。   The present invention relates to a hermetic compressor, and more particularly to a hermetic compressor that stores lubricating oil below a hermetic container.

この種の圧縮機は冷凍空調機器などに用いられ、作動流体としての冷媒を圧縮する。この冷媒には通常、潤滑油が含まれている。この潤滑油は圧縮機内の摺動面や軸受等の潤滑のみならず、摺動面のシールとしての機能を有する。
しかしながら、この潤滑油が摺動面等に供給されない場合には圧縮機の故障を招くことになる。そこで、潤滑油の枯渇に起因する問題の解決を図る圧縮機が知られている(例えば、特許文献1参照)。
特開平10−47269号公報
This type of compressor is used in a refrigeration air conditioner or the like, and compresses a refrigerant as a working fluid. This refrigerant usually contains lubricating oil. This lubricating oil not only lubricates the sliding surfaces and bearings in the compressor, but also functions as a seal for the sliding surfaces.
However, if this lubricating oil is not supplied to the sliding surface or the like, the compressor will be damaged. Then, the compressor which aims at solution of the problem resulting from exhaustion of lubricating oil is known (for example, refer to patent documents 1).
Japanese Patent Laid-Open No. 10-47269

ところで、上述した従来の技術では電動機をバイパスして圧縮機構と貯油室とを接続するパイプが設けられており、このパイプは電動機の外周側に配設されている。
ここで、上記潤滑油の枯渇に起因する問題の解決を図る際には、圧縮機の大型化を避ける点にも留意しなければならない。なぜならば、上記冷凍空調機器などに用いられ、密閉容器の下側に潤滑油を貯留する圧縮機においては、近年、一般家庭にも容易に配置させるべくより一層の小型・軽量化が求められているからである。
By the way, in the prior art mentioned above, the pipe which bypasses an electric motor and connects a compression mechanism and an oil storage chamber is provided, and this pipe is arrange | positioned at the outer peripheral side of the electric motor.
Here, when trying to solve the problem caused by the depletion of the lubricating oil, it should be noted that the size of the compressor is avoided. This is because, in compressors that are used in the above-described refrigeration and air-conditioning equipment and the like and store the lubricating oil below the hermetic container, in recent years, there has been a demand for further reduction in size and weight in order to easily arrange it in ordinary households. Because.

本発明は、このような課題に鑑みてなされたもので、簡単な機構で圧縮機のより一層の小型・軽量化を図る密閉型圧縮機を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a hermetic compressor that further reduces the size and weight of the compressor with a simple mechanism.

上記の目的を達成すべく、請求項1記載の密閉型圧縮機は、筒状の胴部、及び胴部の上側に形成される吐出室、並びに胴部の下側に形成される潤滑油の貯油室を有し、胴部内に吐出圧が作用する密閉容器と、胴部内を延び、軸受を介して回転自在に支持された回転軸と、胴部内に収容され、回転軸を通電により駆動させるとともに、回転軸の周囲にて回転軸と一体に回転されるロータ、及びロータの周囲にてロータを回転させる電機子巻線を含むステータを有する電動機と、電動機の上側にて胴部内に収容され、回転軸に駆動されて作動流体の吸入、圧縮及び吐出の一連のプロセスを実施する圧縮機構と、圧縮機構と電動機との間に配設され、圧縮機構を固定するとともに、軸受を介して回転軸を支持するフレーム部材とを具備し、フレーム部材は、貯油室から軸受に供された潤滑油が圧縮機構側から電動機側に流下する方向を変更する流れ方向変更手段を有し、流れ方向変更手段は、ロータへの流入を回避すべく、流下する潤滑油を遮断するシール部材と、シール部材の上方位置に形成され、流下する潤滑油をステータに向かわせる排出路とを含むことを特徴としている。   In order to achieve the above object, a hermetic compressor according to claim 1 includes a cylindrical body, a discharge chamber formed above the body, and a lubricating oil formed below the body. A sealed container having an oil storage chamber in which discharge pressure acts in the body, a rotating shaft extending through the body and supported rotatably via a bearing, and housed in the body, and driving the rotating shaft by energization And an electric motor having a rotor that rotates integrally with the rotating shaft around the rotating shaft, and a stator that includes an armature winding that rotates the rotor around the rotor, and is housed in the body on the upper side of the electric motor. A compression mechanism that is driven by a rotating shaft to perform a series of processes of suction, compression, and discharge of the working fluid, and is disposed between the compression mechanism and the motor, and fixes the compression mechanism and rotates through a bearing. A frame member supporting the shaft, and a frame The material has a flow direction changing means for changing the direction in which the lubricating oil provided to the bearing from the oil storage chamber flows down from the compression mechanism side to the electric motor side, and the flow direction changing means avoids inflow to the rotor, It includes a seal member for blocking the lubricant flowing down, and a discharge passage formed at a position above the seal member and directing the lubricant flowing down to the stator.

また、請求項2記載の発明では、流れ方向変更手段は、排出路と貯油室とを接続し、流下する潤滑油がロータに流入するのを回避する接続部材を更に含むことを特徴とし、更に、請求項3記載の発明では、接続部材は、電機子巻線の間隙に通されていることを特徴としている。
更にまた、請求項4記載の発明では、作動流体が二酸化炭素からなる冷媒であることを特徴としている。
Further, in the invention according to claim 2, the flow direction changing means further includes a connection member that connects the discharge passage and the oil storage chamber, and prevents the lubricating oil flowing down from flowing into the rotor. The invention according to claim 3 is characterized in that the connecting member is passed through the gap of the armature winding.
Furthermore, the invention according to claim 4 is characterized in that the working fluid is a refrigerant made of carbon dioxide.

従って、請求項1記載の本発明の密閉型圧縮機によれば、貯油室内の潤滑油は軸受に供給され、その潤滑や冷却として機能するが、フレーム部材は、この潤滑油が圧縮機構側から電動機側に流下する方向を変更する流れ方向変更手段を有しており、この方向変更手段は、流下する潤滑油を遮断するシール部材と、シール部材の上方位置に形成され、流下する潤滑油をステータに向かわせる排出路とを有し、流下する潤滑油がロータに流入するのを回避する。よって、この潤滑油はロータで撹拌されることなく、ステータを経由して総て貯油室に導かれて蓄えられる。この結果、潤滑油の供給不足によって圧縮機の故障を招くおそれが確実に防止され、圧縮機の信頼性向上に寄与する。   Therefore, according to the hermetic compressor according to the first aspect of the present invention, the lubricating oil in the oil storage chamber is supplied to the bearing and functions as lubrication and cooling. However, the frame member has the lubricating oil from the compression mechanism side. It has a flow direction changing means for changing the flow direction to the electric motor side, and this direction change means is formed at a position above the seal member for blocking the lubricating oil flowing down, and for the lubricating oil flowing down. It has a discharge path directed to the stator, and avoids flowing lubricating oil into the rotor. Therefore, all of this lubricating oil is guided and stored in the oil storage chamber via the stator without being stirred by the rotor. As a result, it is possible to reliably prevent a failure of the compressor due to insufficient supply of lubricating oil, and contribute to improving the reliability of the compressor.

また、簡単な機構で圧縮機外に流れる潤滑油率(OCR)が抑制可能となり、圧縮機のより一層の小型・軽量化が図られるし、圧縮機の製造コストの低廉化も達成可能となる。
しかも、この潤滑油率の抑制により、冷凍システムの各熱交換器の効率が向上し、冷凍システムの省エネルギー化にも寄与する。
また、請求項2,3記載の発明によれば、流下する潤滑油は接続部材を通じて排出路から貯油室に直接に排出されるので、潤滑油の供給不足によって圧縮機の故障を招くおそれがより一層確実に防止される。
In addition, the rate of lubricating oil (OCR) flowing out of the compressor can be suppressed with a simple mechanism, the compressor can be further reduced in size and weight, and the manufacturing cost of the compressor can be reduced. .
In addition, the suppression of the lubricating oil ratio improves the efficiency of each heat exchanger of the refrigeration system, contributing to energy saving of the refrigeration system.
Further, according to the second and third aspects of the present invention, since the lubricating oil flowing down is directly discharged from the discharge path to the oil storage chamber through the connecting member, there is a risk that the compressor may be damaged due to insufficient supply of the lubricating oil. It is prevented more reliably.

更に、請求項4記載の発明によれば、作動流体として高圧に圧縮される二酸化炭素からなる冷媒が用いられ、密閉容器の板厚が増大した場合であっても、上記構成によれば十分な量の潤滑油が確保可能となる。   Furthermore, according to the invention described in claim 4, even when the refrigerant made of carbon dioxide compressed to high pressure is used as the working fluid and the plate thickness of the sealed container is increased, the above configuration is sufficient. An amount of lubricating oil can be secured.

以下、図面により本発明の実施形態について説明する。
図1は、本実施例に係る密閉型圧縮機を示す。この圧縮機1は冷凍空調装置やヒートポンプ式給湯機などの冷凍回路に組み込まれている。当該回路は、作動流体の一例であるCO冷媒(以下、冷媒と称する)が循環する経路を備え、圧縮機1は経路から冷媒を吸入し、圧縮して経路に向けて供出する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a hermetic compressor according to the present embodiment. The compressor 1 is incorporated in a refrigeration circuit such as a refrigeration air conditioner or a heat pump type hot water heater. The circuit includes a path through which a CO 2 refrigerant (hereinafter referred to as a refrigerant) that is an example of a working fluid circulates, and the compressor 1 sucks the refrigerant from the path, compresses the refrigerant, and delivers the refrigerant toward the path.

この圧縮機1はハウジング(密閉容器)2を備えており、ハウジング2の胴部3は、その上側及び下側が上蓋4及び下蓋5によってそれぞれ気密に嵌合されており、胴部3の内部が密閉され、吐出圧が作用している。
胴部3内には電動モータ(電動機)6が収容され、このモータ6内には回転軸12が配置されている。詳しくは、モータ6は、永久磁石を有するロータ7が回転軸12の外周側に固着され、このロータ7の外周側には電機子巻線9を有するステータ8が配置されている。なお、ステータ8の外周側の一部分が胴部3に圧入固定される。そして、電機子巻線9が通電されると、ロータ7は電機子巻線9で発生した磁界の回転に伴って回転し、回転軸12と一体的に回転する。また、回転軸12の上端側は軸受16を介して主軸フレーム(フレーム部材)14に回転自在に支持されている。
The compressor 1 includes a housing (sealed container) 2, and the body 3 of the housing 2 is airtightly fitted on the upper and lower sides by an upper lid 4 and a lower lid 5, respectively. Is sealed and discharge pressure is acting.
An electric motor (electric motor) 6 is accommodated in the body 3, and a rotating shaft 12 is disposed in the motor 6. Specifically, in the motor 6, a rotor 7 having a permanent magnet is fixed to the outer peripheral side of the rotating shaft 12, and a stator 8 having an armature winding 9 is disposed on the outer peripheral side of the rotor 7. A part of the outer peripheral side of the stator 8 is press-fitted and fixed to the body 3. When the armature winding 9 is energized, the rotor 7 rotates with the rotation of the magnetic field generated in the armature winding 9 and rotates integrally with the rotating shaft 12. Further, the upper end side of the rotary shaft 12 is rotatably supported by a main shaft frame (frame member) 14 via a bearing 16.

一方、回転軸12の下端側は軸受20を介して副軸フレーム18に回転自在に支持されている。また、回転軸12の下端側にはオイルポンプ22が装着されており、ポンプ22は下蓋5の内側に形成された貯油室23内の潤滑油を吸引する。この潤滑油は回転軸12の油路24を経て回転軸12の上端からモータ6やスクロールユニット(圧縮機構)30等に供給され、各摺動部分や軸受等の潤滑、並びに、摺動面のシールとして機能する。更に、このフレーム18の適宜位置には潤滑油の導入口19が形成されており、圧縮機1内の各摺動部分に供給された潤滑油は、後述の如く導入口19を介して貯油室23に貯留される。   On the other hand, the lower end side of the rotating shaft 12 is rotatably supported by the countershaft frame 18 via the bearing 20. An oil pump 22 is attached to the lower end side of the rotary shaft 12, and the pump 22 sucks lubricating oil in an oil storage chamber 23 formed inside the lower lid 5. This lubricating oil is supplied to the motor 6 and the scroll unit (compression mechanism) 30 from the upper end of the rotating shaft 12 through the oil passage 24 of the rotating shaft 12, and lubricates each sliding portion and bearing, and the sliding surface. Acts as a seal. Further, an inlet 19 for lubricating oil is formed at an appropriate position of the frame 18, and the lubricating oil supplied to each sliding portion in the compressor 1 is stored in the oil storage chamber via the inlet 19 as will be described later. 23 is stored.

上記ユニット30は胴部3内においてモータ6の上方に配置され、冷媒の吸入、圧縮及び吐出の一連のプロセスを実施する。より詳しくは、このユニット30は、可動渦巻体52及び固定渦巻体32から構成されており、可動渦巻体52は鏡板54を備え、この鏡板54には固定渦巻体32の鏡板34に向けて延びた渦巻きラップが一体形成されている。これに対し、固定渦巻体32の鏡板34にも鏡板54に向けて延びる渦巻きラップが一体形成されている。そして、これら各渦巻きラップが互いに協働して圧縮室を形成し、この圧縮室は固定渦巻体32に対する可動渦巻体52の旋回運動により、渦巻きラップの径方向外周側から中心に向けて移動し、この際、その容積が減少される。   The unit 30 is disposed above the motor 6 in the body 3, and performs a series of processes of refrigerant suction, compression, and discharge. More specifically, the unit 30 includes a movable spiral body 52 and a fixed spiral body 32, and the movable spiral body 52 includes an end plate 54, and the end plate 54 extends toward the end plate 34 of the fixed spiral body 32. A spiral wrap is integrally formed. On the other hand, a spiral wrap extending toward the end plate 54 is also integrally formed on the end plate 34 of the fixed spiral body 32. These spiral wraps cooperate with each other to form a compression chamber, and the compression chamber moves from the radially outer peripheral side of the spiral wrap toward the center by the swirling motion of the movable spiral body 52 with respect to the fixed spiral body 32. In this case, the volume is reduced.

上述した可動渦巻体52に旋回運動を付与するため、鏡板54の下面側にはボス66が形成され、このボス66は軸受28を介して偏心軸26に回転自在に支持される。この偏心軸26は回転軸12の上端側に一体形成されている。なお、可動渦巻体52の自転は自転阻止ピン68により阻止されている。
一方、固定渦巻体32は主軸フレーム14に固定されており、鏡板34が圧縮室側と吐出室60側とを仕切っている。固定渦巻体32の中央部分の適宜位置には、圧縮室側に連通する吐出孔が鏡板34を貫通して穿設されており、この吐出孔は、固定渦巻体32の反スクロール側に配置された吐出弁62により開閉される。また、吐出弁62を含む固定渦巻体32の反スクロール側は吐出ヘッド64で覆われており、この吐出ヘッド64により、吐出弁62の開弁時における音が抑制される。
In order to impart a swiveling motion to the movable spiral body 52 described above, a boss 66 is formed on the lower surface side of the end plate 54, and this boss 66 is rotatably supported by the eccentric shaft 26 via a bearing 28. The eccentric shaft 26 is integrally formed on the upper end side of the rotary shaft 12. The rotation of the movable spiral body 52 is blocked by a rotation blocking pin 68.
On the other hand, the fixed spiral body 32 is fixed to the spindle frame 14, and the end plate 34 partitions the compression chamber side and the discharge chamber 60 side. A discharge hole communicating with the compression chamber side is formed at an appropriate position in the central portion of the fixed spiral body 32 through the end plate 34, and this discharge hole is disposed on the anti-scroll side of the fixed spiral body 32. The discharge valve 62 is opened and closed. Further, the anti-scroll side of the fixed spiral body 32 including the discharge valve 62 is covered with a discharge head 64, and the sound when the discharge valve 62 is opened is suppressed by the discharge head 64.

ところで、貯油室23内の潤滑油は、オイルポンプ22及び油路24を介して軸受16,28等に供されているが、本実施例の主軸フレーム14は潤滑油の流れ方向変更手段80を有しており、ユニット30や軸受16,28等に供された潤滑油がユニット30側からモータ6側に流下するにあたり、その流れ方向が変更されて貯油室23に向けて戻されている。   By the way, the lubricating oil in the oil storage chamber 23 is provided to the bearings 16, 28, etc. via the oil pump 22 and the oil passage 24, but the spindle frame 14 of this embodiment has the lubricating oil flow direction changing means 80. The lubricating oil supplied to the unit 30 and the bearings 16, 28, etc. flows down from the unit 30 side to the motor 6 side, and its flow direction is changed and returned toward the oil storage chamber 23.

具体的には、図2にも示されるように、主軸フレーム14の下端はロータ7の幅に略等しく形成され、ロータ7の適宜位置に配設されたバランスウエイト10の幅よりも若干大きな幅を有している。そして、この主軸フレーム14の下端には、流れ方向変更手段80としてオイルシール(シール部材)82及びオイル排出路(排出路)84が配設されている。   Specifically, as shown in FIG. 2, the lower end of the spindle frame 14 is formed to be substantially equal to the width of the rotor 7, and is slightly larger than the width of the balance weight 10 disposed at an appropriate position of the rotor 7. have. An oil seal (seal member) 82 and an oil discharge path (discharge path) 84 are arranged as flow direction changing means 80 at the lower end of the spindle frame 14.

より詳しくは、オイルシール82は環状に形成され、回転軸12を囲繞して主軸フレーム14の下端部分に嵌合されており、これにより、軸受16からモータ6に向けて流下する潤滑油はその流れが遮断され、ロータ7への流入が阻止される。
また、オイル排出路84は、オイルシール82の上方位置にて主軸フレーム14に穿設され、ロータ7の幅方向に沿って形成されている。これにより、オイルシール82にて遮断された潤滑油はステータ8に向かい、ロータ7への流入が阻止される。
More specifically, the oil seal 82 is formed in an annular shape and is fitted to the lower end portion of the main spindle frame 14 so as to surround the rotary shaft 12, so that the lubricating oil flowing down from the bearing 16 toward the motor 6 is The flow is interrupted and the flow into the rotor 7 is prevented.
The oil discharge passage 84 is formed in the spindle frame 14 at a position above the oil seal 82 and is formed along the width direction of the rotor 7. As a result, the lubricating oil blocked by the oil seal 82 goes to the stator 8 and is prevented from flowing into the rotor 7.

上述した圧縮機1によれば、回転軸12の回転に伴い、可動渦巻体52が自転することなく旋回運動する。この可動渦巻体52の旋回運動は、吸入パイプ70を介して胴部3内に取り込んだ冷媒をスクロールユニット30の外周側からその内部に向けて吸入させる。
そして、圧縮室の容積が縮小すると、高圧の圧縮冷媒は吐出室60に至り、ハウジング2内を循環して吐出パイプ72を通じて圧縮機外へ送出される。
According to the compressor 1 described above, as the rotary shaft 12 rotates, the movable spiral body 52 rotates without rotating. The swiveling motion of the movable spiral body 52 causes the refrigerant taken into the body 3 through the suction pipe 70 to be sucked from the outer peripheral side of the scroll unit 30 toward the inside thereof.
When the volume of the compression chamber is reduced, the high-pressure compressed refrigerant reaches the discharge chamber 60, circulates in the housing 2, and is sent out of the compressor through the discharge pipe 72.

一方、ユニット30や軸受16,28等に供された潤滑油は、オイルシール82及びオイル排出路84によってその流れが略直交方向に向けて変更され、ステータ8内、例えば電機子巻線9内の間隙を介して流下し、導入口19を通じて貯油室23に導かれて蓄えられる。
次に、図3は第2実施例を示すものである。当該第2実施例では、潤滑油の流れ方向変更手段の構成を除き、上記実施例と同一の構成をなす。よって、この流れ方向変更手段を中心に説明する。
On the other hand, the flow of the lubricating oil supplied to the unit 30 and the bearings 16, 28, etc. is changed in a substantially orthogonal direction by the oil seal 82 and the oil discharge passage 84, and the inside of the stator 8, for example, the armature winding 9 is changed. The oil flows down through the gap and is guided and stored in the oil storage chamber 23 through the inlet 19.
Next, FIG. 3 shows a second embodiment. The second embodiment has the same configuration as the above embodiment except for the configuration of the lubricating oil flow direction changing means. Therefore, this flow direction changing means will be mainly described.

本実施例の流れ方向変更手段80Aは、主軸フレーム14の下端に配設されたオイルシール(シール部材)82及びオイル排出路(排出路)84の他、オイル排出路84と貯油室23とを直接に接続するオイル排出チューブ(接続部材)86を更に備えている。
より具体的には、オイル排出チューブ86の一端はオイル排出路84の開口に接続され、続いて、このチューブ86は屈曲して下方に向かい、電機子巻線9内の間隙に通されて導入口19に達している。そして、このチューブ86の他端の開口88は貯油室23内に配置されており、ユニット30や軸受16,28等に供された潤滑油は、オイルシール82及びオイル排出路84によってその流れが略直交方向に向けて変更され、更に、チューブ86によってその流れが再び下方に向けて変更され、ステータ8内の間隙を介して流下し、導入口19を通じて貯油室23に導かれて蓄えられる。
The flow direction changing means 80A of the present embodiment includes an oil discharge path 84 and an oil storage chamber 23 in addition to an oil seal (seal member) 82 and an oil discharge path (discharge path) 84 disposed at the lower end of the spindle frame 14. An oil discharge tube (connecting member) 86 that is directly connected is further provided.
More specifically, one end of the oil discharge tube 86 is connected to the opening of the oil discharge passage 84. Subsequently, the tube 86 is bent and directed downward, and is passed through the gap in the armature winding 9 to be introduced. Mouth 19 is reached. The opening 88 at the other end of the tube 86 is disposed in the oil storage chamber 23, and the lubricating oil supplied to the unit 30, the bearings 16, 28, and the like flows through the oil seal 82 and the oil discharge path 84. Further, the flow is changed downward by the tube 86 again, flows down through the gap in the stator 8, and is guided to the oil storage chamber 23 through the inlet 19 and stored.

以上のように、各実施例によれば、貯油室23内の潤滑油はオイルポンプ22及び油路24を介してユニット30の摺動部分や軸受16,28に供給され、その潤滑や冷却の他、摺動面のシールとして機能するが、主軸フレーム14は、この潤滑油がユニット30側からモータ6側に流下する方向を変更する流れ方向変更手段80,80Aを有している。
そして、まず、方向変更手段80は、流下する潤滑油を遮断するオイルシール82と、このオイルシール82の上方位置に形成され、ロータ7の幅を超える長さに形成されて流下する潤滑油をステータ8に向かわせるオイル排出路84とを有し、流下する潤滑油がロータ7に流入するのを回避する。つまり、この潤滑油はロータ7のバランスウエイト10で撹拌されることなく、ステータ8を経由して総て貯油室23に蓄えられる。この結果、潤滑油の供給不足によって圧縮機の故障を招くおそれ、例えば、潤滑油の枯渇による摺動部分や軸受の焼き付き等の不具合が確実に防止され、圧縮機の信頼性向上に寄与する。
As described above, according to each embodiment, the lubricating oil in the oil storage chamber 23 is supplied to the sliding portion of the unit 30 and the bearings 16 and 28 via the oil pump 22 and the oil passage 24, and the lubrication and cooling are performed. In addition, although functioning as a seal for the sliding surface, the spindle frame 14 has flow direction changing means 80 and 80A for changing the direction in which this lubricating oil flows down from the unit 30 side to the motor 6 side.
First, the direction changing means 80 is provided with an oil seal 82 that blocks the flowing down lubricating oil, and the lubricating oil that is formed at a position above the oil seal 82 and that has a length exceeding the width of the rotor 7 and flows down. An oil discharge path 84 directed to the stator 8 is provided to prevent the lubricant flowing down from flowing into the rotor 7. That is, all of this lubricating oil is stored in the oil storage chamber 23 via the stator 8 without being stirred by the balance weight 10 of the rotor 7. As a result, the failure of the compressor due to insufficient supply of lubricating oil, for example, problems such as sliding parts and bearing seizure due to exhaustion of the lubricating oil can be reliably prevented, contributing to improved reliability of the compressor.

また、撹拌に伴うミスト状のオイルが冷媒とともに圧縮機外に流出せず、簡単な機構で圧縮機外に流れる潤滑油率(OCR)が抑制可能となるので、圧縮機のより一層の小型・軽量化が図られるし、圧縮機の製造コストの低廉化も達成可能となる。
しかも、この潤滑油率の抑制により、冷凍システムの各熱交換器の効率が向上し、冷凍システムの省エネルギー化にも寄与する。
In addition, mist-like oil that accompanies agitation does not flow out of the compressor together with the refrigerant, and the rate of lubricating oil (OCR) that flows out of the compressor can be suppressed with a simple mechanism. The weight can be reduced and the manufacturing cost of the compressor can be reduced.
In addition, the suppression of the lubricating oil ratio improves the efficiency of each heat exchanger of the refrigeration system, contributing to energy saving of the refrigeration system.

更に、方向変更手段80Aによれば、流下する潤滑油がオイル排出チューブ86を通じてオイル排出路84から貯油室23に直接に排出されるので、潤滑油の供給不足によって圧縮機の故障を招くおそれがより一層確実に防止される。
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
Furthermore, according to the direction changing means 80A, since the lubricating oil flowing down is directly discharged from the oil discharge passage 84 to the oil storage chamber 23 through the oil discharge tube 86, there is a possibility that the compressor may be damaged due to insufficient supply of the lubricating oil. It is prevented more reliably.
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施例ではスクロールユニットを用いているが、冷媒の吸入、圧縮及び吐出の一連のプロセスを実施する以上、他の圧縮機構を用いても良い。   For example, although the scroll unit is used in the above embodiment, other compression mechanisms may be used as long as a series of refrigerant suction, compression, and discharge processes are performed.

本発明の一実施形態に係る密閉型圧縮機を示した縦断面図である。1 is a longitudinal sectional view showing a hermetic compressor according to an embodiment of the present invention. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 他の実施例に係る密閉型圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the hermetic type compressor concerning other examples.

符号の説明Explanation of symbols

1 密閉型圧縮機
2 ハウジング(密閉容器)
3 胴部
6 電動モータ(電動機)
7 ロータ
8 ステータ
9 電機子巻線
12 回転軸
14 主軸フレーム(フレーム部材)
16 軸受
23 貯油室
28 軸受
30 スクロールユニット(圧縮機構)
60 吐出室
80,80A 流れ方向変更手段
82 オイルシール(シール部材)
84 オイル排出路(排出路)
86 オイル排出チューブ(接続部材)
1 Hermetic compressor 2 Housing (sealed container)
3 Body 6 Electric motor (electric motor)
7 Rotor 8 Stator 9 Armature winding 12 Rotating shaft 14 Spindle frame (frame member)
16 Bearing 23 Oil storage chamber 28 Bearing 30 Scroll unit (compression mechanism)
60 Discharge chamber 80, 80A Flow direction changing means 82 Oil seal (seal member)
84 Oil discharge path (discharge path)
86 Oil drain tube (connecting member)

Claims (4)

筒状の胴部、及び該胴部の上側に形成される吐出室、並びに前記胴部の下側に形成される潤滑油の貯油室を有し、前記胴部内に吐出圧が作用する密閉容器と、
前記胴部内を延び、軸受を介して回転自在に支持された回転軸と、
前記胴部内に収容され、前記回転軸を通電により駆動させるとともに、該回転軸の周囲にて該回転軸と一体に回転されるロータ、及び該ロータの周囲にて該ロータを回転させる電機子巻線を含むステータを有する電動機と、
該電動機の上側にて前記胴部内に収容され、前記回転軸に駆動されて作動流体の吸入、圧縮及び吐出の一連のプロセスを実施する圧縮機構と、
該圧縮機構と前記電動機との間に配設され、前記圧縮機構を固定するとともに、前記軸受を介して前記回転軸を支持するフレーム部材とを具備し、
該フレーム部材は、前記貯油室から前記軸受に供された潤滑油が前記圧縮機構側から前記電動機側に流下する方向を変更する流れ方向変更手段を有し、
該流れ方向変更手段は、前記ロータへの流入を回避すべく、流下する潤滑油を遮断するシール部材と、該シール部材の上方位置に形成され、前記流下する潤滑油を前記ステータに向かわせる排出路とを含むことを特徴とする密閉型圧縮機。
A sealed container having a cylindrical body, a discharge chamber formed above the body, and a lubricating oil storage chamber formed below the body, and a discharge pressure acts in the body When,
A rotating shaft extending through the body and rotatably supported through a bearing;
A rotor that is housed in the body, drives the rotating shaft by energization, and rotates integrally with the rotating shaft around the rotating shaft, and an armature winding that rotates the rotor around the rotor An electric motor having a stator including a wire;
A compression mechanism that is housed in the barrel on the upper side of the electric motor and driven by the rotating shaft to perform a series of processes of suction, compression, and discharge of working fluid;
A frame member disposed between the compression mechanism and the electric motor to fix the compression mechanism and to support the rotating shaft via the bearing;
The frame member has flow direction changing means for changing a direction in which lubricating oil provided to the bearing from the oil storage chamber flows down from the compression mechanism side to the electric motor side,
The flow direction changing means is formed at a position above the seal member for blocking the lubricant flowing down in order to avoid inflow into the rotor, and a discharge for directing the lubricant flowing down to the stator. A hermetic compressor including a road.
前記流れ方向変更手段は、前記排出路と前記貯油室とを接続し、前記流下する潤滑油が前記ロータに流入するのを回避する接続部材を更に含むことを特徴とする請求項1に記載の密閉型圧縮機。   The said flow direction change means connects the said discharge path and the said oil storage chamber, and further contains the connection member which avoids that the lubricating oil which flows down flows in into the said rotor. Hermetic compressor. 前記接続部材は、前記電機子巻線の間隙に通されていることを特徴とする請求項2に記載の密閉型圧縮機。   The hermetic compressor according to claim 2, wherein the connecting member is passed through a gap between the armature windings. 前記作動流体が二酸化炭素からなる冷媒であることを特徴とする請求項1から3のいずれか一項に記載の密閉型圧縮機。   The hermetic compressor according to any one of claims 1 to 3, wherein the working fluid is a refrigerant made of carbon dioxide.
JP2006272851A 2006-10-04 2006-10-04 Hermetic compressor Pending JP2008088930A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006272851A JP2008088930A (en) 2006-10-04 2006-10-04 Hermetic compressor
EP20070019353 EP1911975B1 (en) 2006-10-04 2007-10-02 Sealed electric compressor
DE200760001653 DE602007001653D1 (en) 2006-10-04 2007-10-02 Sealed electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272851A JP2008088930A (en) 2006-10-04 2006-10-04 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2008088930A true JP2008088930A (en) 2008-04-17

Family

ID=38963096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272851A Pending JP2008088930A (en) 2006-10-04 2006-10-04 Hermetic compressor

Country Status (3)

Country Link
EP (1) EP1911975B1 (en)
JP (1) JP2008088930A (en)
DE (1) DE602007001653D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131061A1 (en) * 2009-05-12 2010-11-18 JENSEN, Söby, Stefan Hermetically closed compressor and related methods
WO2014097453A1 (en) * 2012-12-20 2014-06-26 三菱電機株式会社 Sealed rotary compressor
US10132317B2 (en) 2015-12-15 2018-11-20 Bitzer Kuehlmaschinenbau Gmbh Oil return with non-circular tube

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064070Y2 (en) * 1984-11-06 1994-02-02 株式会社東芝 Rotary compressor
JP2820179B2 (en) * 1992-06-30 1998-11-05 三菱電機株式会社 Scroll compressor
JPH1047269A (en) * 1996-08-01 1998-02-17 Mitsubishi Electric Corp Scroll compressor
JP2984640B2 (en) * 1997-12-18 1999-11-29 三菱重工業株式会社 Hermetic scroll compressor
US6386840B1 (en) * 2000-02-04 2002-05-14 Scroll Technologies Oil return for reduced height scroll compressor

Also Published As

Publication number Publication date
EP1911975B1 (en) 2009-07-22
DE602007001653D1 (en) 2009-09-03
EP1911975A1 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP4799437B2 (en) Fluid machinery
JP4841536B2 (en) Motor and refrigerant compressor provided with the same
JP5897117B2 (en) Refrigerant compressor and refrigeration cycle equipment
JP2008088929A (en) Hermetic compressor
JP2006083754A (en) Closed type compressor and refrigerating cycle device
JP2010043627A (en) Compressor
JP2007024037A (en) Hermetic compressor
JP2008088930A (en) Hermetic compressor
JP3992071B1 (en) Compressor
WO2010029956A2 (en) Hermetic compressor
JP2008082224A (en) Hermetic compressor
JP2008082223A (en) Hermetic compressor
KR19980080998A (en) Shroud Type Compressor
JP5493958B2 (en) Compressor
JP2005147071A (en) Horizontal type multi-stage compression rotary compressor, and air conditioner having the same for automobile
JP2005344658A (en) Electric gas compressor
JP2006144771A (en) Compressor
JP2005282550A (en) Electric compressor
JPWO2020170886A1 (en) Sealed compressor
JP5791760B2 (en) Refrigerant compressor
JP5304679B2 (en) Compressor
JP2013238191A (en) Compressor
JP5641801B2 (en) Refrigerant compressor
JP2010084707A (en) Compressor
KR100279607B1 (en) Turbo compressor