Nothing Special   »   [go: up one dir, main page]

JP2008082633A - Hot water supply device and plate type heat exchanger - Google Patents

Hot water supply device and plate type heat exchanger Download PDF

Info

Publication number
JP2008082633A
JP2008082633A JP2006264048A JP2006264048A JP2008082633A JP 2008082633 A JP2008082633 A JP 2008082633A JP 2006264048 A JP2006264048 A JP 2006264048A JP 2006264048 A JP2006264048 A JP 2006264048A JP 2008082633 A JP2008082633 A JP 2008082633A
Authority
JP
Japan
Prior art keywords
hot water
bath
heat exchanger
water supply
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006264048A
Other languages
Japanese (ja)
Inventor
Hiroto Fukui
浩人 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006264048A priority Critical patent/JP2008082633A/en
Publication of JP2008082633A publication Critical patent/JP2008082633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control For Baths (AREA)
  • Details Of Fluid Heaters (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To construct a service side heat exchanger having a plurality of heat output functions in a single unit with secondary side flow paths arranged in parallel to a single primary side flow path, resulting in equipment being smaller, lighter and highly efficient. <P>SOLUTION: This hot water supply device comprises a hot water supply heat exchanger 23 wherein a hot water supply circuit 2 is formed as the primary side flow path for circulating hot water, and the secondary side flow paths for the service side heat exchangers having the plurality of heat output functions are connected in parallel to the hot water supply circuit 2. Thus, hot water flowing in the primary side flow path for the service side heat exchangers has almost the same temperature to improve the efficiency of heat exchange with the secondary side flow paths. The service side heat exchanger 24 is formed as such a plate type heat exchanger in a single unit that a partition is provided on a heat transfer plate forming the secondary side flow paths, e.g., to partition the secondary side flow paths into rooms depending on the plurality of heat output functions, resulting in equipment being smaller and lighter. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃焼バーナの燃焼熱等により加熱する給湯用熱交換器を供えた給湯装置に関し、特に、前記給湯用熱交換器で加熱された一次側としての高温の温水を循環ポンプによって循環させる給湯循環回路中に、二次側流路に熱を供給させるための利用側熱交換器を設けた構成において、前記利用側熱交換器の熱出力機能を複数設ける場合、一次側である単一の前記給湯循環回路に対して、前記利用側熱交換器の二次側の複数流路を各々並列に接続し、複数の利用側熱交換器としての機能を単一ユニットとして形成する給湯装置と利用側熱交換器に使用するプレート式熱交換器に関するものである。   The present invention relates to a hot water supply apparatus provided with a hot water supply heat exchanger that is heated by combustion heat of a combustion burner, and in particular, circulates hot water as a primary side heated by the hot water heat exchanger by a circulation pump. In a configuration in which a use side heat exchanger for supplying heat to the secondary side flow path is provided in the hot water supply circulation circuit, when a plurality of heat output functions of the use side heat exchanger are provided, a single primary side is provided. A hot water supply apparatus for connecting a plurality of secondary-side flow paths of the use-side heat exchanger in parallel to the hot-water supply circulation circuit, and forming a function as a plurality of use-side heat exchangers as a single unit; The present invention relates to a plate heat exchanger used for a use side heat exchanger.

従来この種の給湯装置としては、特許文献1のように、給湯暖房用風呂装置等の給湯複合装置を想定しており、温水を循環する第一の循環回路に温水搬送手段としての耐圧循環ポンプを設け、暖房用の強制対流型熱交換器としての第一の二重管熱交換器を上流側に設け、風呂追い焚き用の強制対流型熱交換器としての第二の二重管熱交換器を下流側に設けている。   Conventionally, as this type of hot water supply device, as in Patent Document 1, a hot water supply composite device such as a hot water supply and heating bath device is assumed, and a pressure-resistant circulation pump as hot water transfer means is provided in a first circulation circuit for circulating hot water. The first double-tube heat exchanger as a forced convection heat exchanger for heating is installed upstream, and the second double-tube heat exchange as a forced convection heat exchanger for bathing A vessel is provided on the downstream side.

従って、第一の循環回路の経路を短くできるため耐圧循環ポンプを小型にでき、第一と第二の二重管熱交換器も小型化できることから、装置を大幅に小さくできる。また高温の湯を循環させる際には、熱損失を抑制でき、低ランニングコストを実現できるという効果について述べられている。なお、強制対流型熱交換器としては特許文献1に記載の二重管熱交換器や、特許文献2に記載のプレート式熱交換器などが考えられる。
特開2005−164236号公報 特開2000−258085号公報
Accordingly, since the path of the first circulation circuit can be shortened, the pressure-resistant circulation pump can be reduced in size, and the first and second double pipe heat exchangers can also be reduced in size, so that the apparatus can be greatly reduced. Moreover, when circulating hot water, the effect that heat loss can be suppressed and low running cost can be realized is described. In addition, as a forced convection type heat exchanger, the double-pipe heat exchanger described in Patent Document 1, the plate type heat exchanger described in Patent Document 2, and the like are conceivable.
JP 2005-164236 A Japanese Patent Laid-Open No. 2000-258085

しかしながら、前記従来の給湯装置は、暖房用および風呂追い焚き用の強制対流型熱交換器を各々一個ずつ設ける必要があった。また第一の循環回路に対して、直列に上流側に暖房用の強制対流型熱交換器を、下流側に風呂追い焚き用の強制対流型熱交換器を設けているため、暖房運転と風呂追い焚き運転を同時に行う場合、上流側の暖房用の強制対流型熱交換器で二次側に多くの熱量が吸収された場合、下流側の風呂追い焚き用の強制対流型熱交換器では一次側に十分高温の温水を供給することができないため、風呂追い焚き用の強制対流型熱交換器での熱出力が十分に確保できないという課題があった。   However, the conventional hot water supply apparatus has to be provided with one forced convection heat exchanger for heating and for bathing. In addition, a forced convection heat exchanger for heating is provided on the upstream side in series with the first circulation circuit, and a forced convection heat exchanger for replenishing the bath is provided on the downstream side. When reheating operation is performed at the same time, if a large amount of heat is absorbed in the secondary side by the upstream forced convection heat exchanger, the primary side in the downstream forced air convection heat exchanger There was a problem that sufficient heat output could not be secured in the forced convection heat exchanger for chasing the bath, because hot water of sufficiently high temperature could not be supplied to the side.

前記従来の技術の課題に鑑み、本発明が解決しようとする課題は、風呂追い焚き用強制対流型熱交換器での熱出力を十分に確保するとともに、本体構成の簡素化、器具の小型化、器具の軽量化を実現し、さらに放熱ロスを軽減し、そして低ランニングコスト化を実現する給湯装置を提供することにある。   In view of the problems of the prior art, the problem to be solved by the present invention is to ensure sufficient heat output in the forced convection heat exchanger for bathing, simplifying the main body configuration, and reducing the size of the appliance An object of the present invention is to provide a hot water supply device that realizes weight reduction of appliances, further reduces heat dissipation loss, and realizes low running cost.

前記課題を解決するために、本発明の給湯装置は、給水路より供給される水を加熱する給湯用熱交換器を備え、前記給湯用熱交換器で加熱された一次側としての高温の温水を循環ポンプによって循環させる給湯循環回路中に、二次側流路に熱を供給させるための利用側熱交換器を設けた構成にあって、前記利用側熱交換器の熱出力機能を複数設ける場合、一次側である高温側温水が流れる単一の前記給湯循環回路に対して、前記利用側熱交換器の二次側の複数流路を各々並列に接続し、複数の利用側熱交換器としての機能を単一ユニットとして形成したものである。   In order to solve the above-described problems, a hot water supply apparatus of the present invention includes a hot water supply heat exchanger that heats water supplied from a water supply channel, and hot water as a primary side heated by the hot water supply heat exchanger. In a hot water supply circuit that circulates the water by a circulation pump, and a use side heat exchanger for supplying heat to the secondary side flow path is provided, and a plurality of heat output functions of the use side heat exchanger are provided. In this case, a plurality of use side heat exchangers are connected in parallel to a plurality of secondary side flow paths of the use side heat exchangers to the single hot water supply circulation circuit through which the high temperature side hot water that is the primary side flows. Are formed as a single unit.

また本発明のプレート式熱交換器は、利用側熱交換器を単一ユニットとして形成するプレート式熱交換器にあって、複数の二次側流路を形成する伝熱プレートは、複数の熱出力機能に応じた二次側流路を成す各部屋に隔離するための仕切りを設けることで実現することができる。   The plate heat exchanger of the present invention is a plate heat exchanger in which the use side heat exchanger is formed as a single unit, and the heat transfer plate forming the plurality of secondary side flow paths has a plurality of heat transfer plates. This can be realized by providing a partition for isolation in each room forming the secondary flow path according to the output function.

これによって、従来の給湯装置のように暖房用および風呂追い焚き用の各々の強制対流型熱交換器を別個に設けることが不要となり、本体構成の簡素化、器具の小型化、器具の軽量化を実現することができる。   This eliminates the need to provide separate forced convection heat exchangers for heating and bathing as in conventional hot water supply devices, simplifying the main body configuration, reducing the size of the appliance, and reducing the weight of the appliance Can be realized.

本発明の給湯装置は、本体構成の簡素化により器具の小型化、軽量化を実現するとともに、利用側熱交換器での放熱ロスを軽減し、二次側流路との熱交換効率向上を図ることができる。   The hot water supply apparatus of the present invention realizes downsizing and weight reduction of the appliance by simplifying the main body configuration, reducing heat dissipation loss in the use side heat exchanger, and improving heat exchange efficiency with the secondary side flow path. Can be planned.

本発明のプレート式熱交換器は、放熱ロスを軽減でき二次側流路との熱交換効率向上を図ることが可能となり、本体構成の簡素化、器具の小型化、器具の軽量化と低ランニングコスト化を実現できる。   The plate heat exchanger of the present invention can reduce heat dissipation loss and improve the efficiency of heat exchange with the secondary side flow path, simplify the main body configuration, reduce the size of the instrument, reduce the weight of the instrument, and reduce it. Running costs can be reduced.

第1の発明は、給水路より供給される水を加熱し出湯路に湯水を供給する給湯用熱交換器を備え、循環ポンプを介して前記給湯用熱交換器から利用側熱交換器に至る給湯循環回路を形成するとともに、前記給湯循環回路から分岐し出湯路に至る給湯回路を形成し、前記給湯循環回路と前記給湯回路のどちらか一方を利用するか、または、前記給湯循環回路と前記給湯回路を同時に利用するかを選択できるようにし、前記利用側熱交換器の熱出力機能として複数設ける場合、前記給湯用熱交換器から供給される一次側の高温側温水が流れる単一の前記給湯循環回路に対して、前記利用側熱交換器の二次側の複数流路を各々並列に接続し、複数の熱出力機能を有する前記利用側熱交換器を単一ユニットとして形成することで、本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記利用側熱交換器での放熱ロスを軽減し、二次側回路との熱交換効率の向上を図ることができる。   1st invention is equipped with the heat exchanger for hot water supply which heats the water supplied from a water supply channel, and supplies hot water to a hot water supply channel, and reaches from a heat exchanger for hot water supply to a utilization side heat exchanger via a circulation pump Forming a hot water supply circulation circuit, forming a hot water supply circuit branching from the hot water supply circulation circuit to a hot water supply path, using either the hot water supply circulation circuit or the hot water supply circuit, or the hot water supply circulation circuit and the When it is possible to select whether to use the hot water supply circuit at the same time, and when providing a plurality of heat output functions of the use side heat exchanger, the single high temperature side hot water supplied from the hot water heat exchanger flows through the single A plurality of secondary side flow paths of the use side heat exchanger are connected in parallel to the hot water supply circulation circuit, and the use side heat exchanger having a plurality of heat output functions is formed as a single unit. , For simplified body configuration Miniaturization of Ri instruments, as well as lighter, to reduce the heat radiation loss in the use side heat exchanger, we are possible to improve the heat exchange efficiency of the secondary circuit.

第2の発明は、特に第1の発明の出湯路の給湯循環回路からの分岐部を、利用側熱交換器の上流側に配置したことを特徴とするもので、分岐部を給湯用熱交換器のすぐ下流に配置させることで、給湯回路を単独で利用する場合には、出湯路の流路圧力損失を小さくでき、かつ早く出湯路に湯を供給することができる。   The second invention is characterized in that, in particular, the branch portion from the hot water supply circulation circuit of the hot water outlet of the first invention is arranged upstream of the use side heat exchanger, and the branch portion is heat exchange for hot water supply. When the hot water supply circuit is used alone, it is possible to reduce the flow pressure pressure loss of the hot water supply passage and to supply hot water to the hot water supply passage quickly by arranging the hot water supply circuit immediately downstream of the apparatus.

第3の発明は、特に第1の発明の出湯路の給湯循環回路からの分岐部を、利用側熱交換器の下流側に配置したことを特徴とするもので、分岐部を利用側熱交換器の下流に配置させることで、給湯回路と給湯循環回路を同時に利用する場合には、前記第2の発明に比べて給湯循環回路により大流量を供給することができるので、利用側熱交換器により多くの熱量を供給することができる。   The third invention is characterized in that, in particular, the branch part from the hot water supply circulation circuit of the hot water outlet of the first invention is arranged on the downstream side of the use side heat exchanger, and the branch part is used on the use side heat exchange. When the hot water supply circuit and the hot water supply circulation circuit are used at the same time by arranging them at the downstream side of the heater, a larger flow rate can be supplied by the hot water supply circulation circuit than in the second aspect of the invention. More heat can be supplied.

第4の発明は、特に第1〜第3のいずれか1つの発明の利用側熱交換器で複数の熱出力機能の内、二次側流路は浴槽に接続される風呂回路として形成される風呂用熱交換器として用い、また出湯路より分岐して前記風呂回路に接続された注湯流路から浴槽へ所定温度の湯を所定量供給する風呂お湯はり運転を実現する回路系を構成する場合、前記風呂回路中に前記風呂用熱交換器を通過して浴槽に供給される湯温を検出するための風呂往きサーミスタを設け、前記風呂お湯はり運転時には、浴槽水の温度を所定温度とするための前記注湯流路に供給するべき湯温を決定する動作制御を行う制御手段を有し、一方は前記注湯
流路から供給された湯がそのまま浴槽へ、他方は前記注湯流路から供給された湯が前記風呂用熱交換器を通過してから浴槽へと二方向から注湯動作を行う機能を有することを特徴としたもので、制御手段は浴槽水の温度を所定温度とするために注湯流路に供給するべき湯の制御温度を計算することができる。
4th invention is the utilization side heat exchanger of any one of 1st-3rd invention especially, and a secondary side flow path is formed as a bath circuit connected to a bathtub among several heat output functions. Used as a heat exchanger for baths, and constitutes a circuit system that realizes bath hot water operation that supplies a predetermined amount of hot water at a predetermined temperature to a bathtub from a pouring channel that branches off from a hot water supply path and is connected to the bath circuit A bath thermistor is provided in the bath circuit to detect the temperature of the hot water supplied to the bathtub through the bath heat exchanger, and the bath water temperature is set to a predetermined temperature during the bath hot water operation. Control means for performing operation control for determining the temperature of the hot water to be supplied to the pouring flow path for the hot water supplied to the bathtub as one is supplied to the bath as it is, After the hot water supplied from the passage passes through the bath heat exchanger, The control means calculates the control temperature of hot water to be supplied to the pouring channel so that the temperature of the bath water is a predetermined temperature. be able to.

第5の発明は、特に第1〜第3のいずれか1つの発明の利用側熱交換器で複数の熱出力機能の内、二次側流路は浴槽に接続される風呂回路として形成される風呂用熱交換器として用い、また出湯路より分岐して前記風呂回路に接続された注湯流路から浴槽へ所定温度の湯を所定量供給する風呂お湯はり運転を実現する回路系を構成する場合、前記風呂回路中に流路開閉手段を設け、前記風呂お湯はり運転時には、制御手段は前記流路開閉手段を閉として前記風呂用熱交換器を通過させず、前記注湯流路から供給された湯がそのまま浴槽へと一方向から注湯動作を行う機能を有することを特徴としたもので、注湯動作時に前記風呂用熱交換器を通過させない構成とすることで、制御手段は注湯流路を流れる湯の温度をそのまま所定の浴槽水温度とでき注湯湯温制御を精度良く行うことができる。   5th invention is the utilization side heat exchanger of any one of 1st-3rd invention especially, and a secondary side flow path is formed as a bath circuit connected to a bathtub among several heat output functions. Used as a heat exchanger for baths, and constitutes a circuit system that realizes bath hot water operation that supplies a predetermined amount of hot water at a predetermined temperature to a bathtub from a pouring channel that branches off from a hot water supply path and is connected to the bath circuit A bath opening / closing means is provided in the bath circuit, and the control means closes the channel opening / closing means and does not pass through the bath heat exchanger and is supplied from the pouring channel during the bath hot water operation. The hot water used has a function of pouring into the bathtub as it is from one direction, and the control means is configured to prevent the bath heat exchanger from passing during the pouring operation. The temperature of the hot water flowing through the hot water flow path is the same as the predetermined bath water temperature. It can Note the hot water hot water temperature control can be performed accurately.

第6の発明は、特に第1〜第3のいずれか1つの発明の利用側熱交換器で複数の熱出力機能の内、二次側流路は浴槽に接続される風呂回路として形成される風呂用熱交換器として用い、また出湯路より分岐して前記風呂回路に接続された注湯流路から浴槽へ所定温度の湯を所定量供給する風呂お湯はり運転を実現する回路系を構成する場合、前記風呂回路中に前記風呂用熱交換器を迂回する風呂バイパス流路と、前記風呂用熱交換器を通過するか前記風呂バイパス流路を通過するかの流路切り替えを行う風呂回路流路切替手段とを設け、前記風呂お湯はり運転時には、制御手段は前記風呂回路流路切替手段を駆動して一方は前記注湯流路から供給された湯が流路切り替えされた前記風呂バイパス流路を通過して浴槽へ、他方は前記注湯流路から供給された湯がそのまま浴槽へと二方向から注湯を行う機能を有することを特徴としたもので、前記第5の発明と同様に、制御手段は注湯流路を流れる湯の温度をそのまま所定の浴槽水温度とでき注湯湯温制御を精度良く行えることに加え、二方向より注湯動作を行うので前記第5の発明よりも風呂お湯はり運転動作にかかる時間を短縮させることができる。   6th invention is the utilization side heat exchanger of any one of 1st-3rd invention especially, and a secondary side flow path is formed as a bath circuit connected to a bathtub among several heat output functions. Used as a heat exchanger for baths, and constitutes a circuit system that realizes bath hot water operation that supplies a predetermined amount of hot water at a predetermined temperature to a bathtub from a pouring channel that branches off from a hot water supply path and is connected to the bath circuit A bath bypass flow path for bypassing the bath heat exchanger in the bath circuit, and a bath circuit flow for switching the flow path between passing through the bath heat exchanger or passing through the bath bypass flow path The bath switching flow is provided, and during the bath hot water operation, the control means drives the bath circuit flow path switching means, and one of the bath bypass flows in which the hot water supplied from the pouring flow path is switched. Pass the road to the bathtub, the other is the pouring channel The supplied hot water has a function of pouring hot water into the bathtub as it is from two directions. As in the fifth aspect, the control means keeps the temperature of the hot water flowing through the hot water flow path as it is. In addition to being able to achieve a predetermined bath water temperature and accurately performing the pouring hot water temperature control, since the pouring operation is performed from two directions, the time required for the bath hot water operation operation can be shortened compared to the fifth invention. .

第7の発明は、複数の熱出力機能を有する単一ユニット化された利用側熱交換器にあって、一次側流路と二次側流路が交互に積層されて構成されるプレート式熱交換器を用い、二次側流路を形成する伝熱プレートは、複数の熱出力機能に応じた各二次側流路に隔離するための仕切りを形成したたことを特徴とするもので、二次側流路を形成する伝熱プレートに仕切りを設けることで、単一の一次側流路に対して複数の二次側流路が並列接続された単一ユニットとしての利用側熱交換器を、単一のプレート式熱交換器の形状として、熱交換効率が高く小型化された形状で実現することができる。   A seventh aspect of the present invention is a use-side heat exchanger that is a single unit having a plurality of heat output functions, and includes a plate-type heat configured by alternately laminating primary side flow paths and secondary side flow paths. Using the exchanger, the heat transfer plate forming the secondary side flow path is characterized by forming a partition for isolating each secondary side flow path according to a plurality of heat output functions, Use side heat exchanger as a single unit in which a plurality of secondary flow paths are connected in parallel to a single primary flow path by providing a partition on the heat transfer plate forming the secondary flow path Can be realized as a single plate heat exchanger in a shape that has high heat exchange efficiency and is miniaturized.

第8の発明は、特に第7の発明の仕切りを、所定の温度および所定の流量の高温側温水が一次側流路に流入した時に、熱出力機能の目的に応じて各々の二次側流路で得られる定格の熱出力が得られるように伝熱面積を最適化した場所に形成したことを特徴とするもので、伝熱面積を最適化して規定することで、複数の二次側流路で同時に熱交換が行われる場合には、各々の二次側流路を流れる流体の温度および流量条件によって、一次側から供給される熱量が一方の二次側流路に偏らないようにすることができる。   The eighth aspect of the invention relates to the partition of the seventh aspect of the invention, in particular, when each of the secondary side flows according to the purpose of the heat output function when high temperature side hot water having a predetermined temperature and a predetermined flow rate flows into the primary side flow path. It is characterized in that it is formed in a place where the heat transfer area is optimized so that the rated heat output obtained by the road can be obtained, and by specifying and defining the heat transfer area, multiple secondary side flows When heat exchange is performed at the same time in the channel, the amount of heat supplied from the primary side is not biased to one of the secondary side channels depending on the temperature and flow rate conditions of the fluid flowing through each secondary channel. be able to.

第9の発明は、特に第1発明〜第6の発明のいずれか1つの発明に記載の利用側熱交換器に、第7または第8の発明に記載のプレート式熱交換器を使用したもので、給湯装置として本体構成の簡素化、器具の小型化、器具の軽量化を実現することができる。   In the ninth aspect of the invention, the plate-type heat exchanger described in the seventh or eighth invention is used in the utilization side heat exchanger described in any one of the first to sixth inventions. As a hot water supply device, it is possible to simplify the main body configuration, downsize the appliance, and reduce the weight of the appliance.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本発明の第1、第3、第4、第5、および第6の各実施例における給湯装置の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a block diagram of a hot water supply apparatus in each of the first, third, fourth, fifth and sixth embodiments of the present invention.

図1において、給水路1より供給される水を燃焼バーナ34の燃焼により加熱し、所定の温度に上昇させた後、出湯路3に供給し、前記給水路1と前記出湯路3を連通して形成したバイパス通路4から前記給水路1より供給される水の一部をバイパス制御弁9を介して供給することで所望温度の温水に調整し、出湯栓13より出湯する給湯回路を構成している。   In FIG. 1, the water supplied from the water supply path 1 is heated by the combustion of the combustion burner 34, raised to a predetermined temperature, then supplied to the hot water supply path 3, and the water supply path 1 and the hot water supply path 3 communicate with each other. A hot water supply circuit that adjusts to a desired temperature of hot water by supplying a part of the water supplied from the water supply path 1 from the bypass passage 4 formed through the above-described configuration through the bypass control valve 9 and discharges the hot water from the hot water tap 13 is configured. ing.

そして、出湯栓13が開かれて入水流量センサ5で所定流量(例えば2.8L/min)以上の入水流量が検出されると、燃焼バーナ34は燃料ガス元弁32、燃料ガス比例制御弁27が配設された燃料ガス供給路21より燃料ガスが供給され、燃焼用ファン31により燃焼用空気が供給されて、予め定められたシーケンスに従い燃焼動作が行われる。   When the hot water tap 13 is opened and the incoming water flow rate sensor 5 detects an incoming water flow rate equal to or higher than a predetermined flow rate (for example, 2.8 L / min), the combustion burner 34 has the fuel gas main valve 32 and the fuel gas proportional control valve 27. The fuel gas is supplied from the fuel gas supply path 21 in which is disposed, the combustion air is supplied by the combustion fan 31, and the combustion operation is performed according to a predetermined sequence.

ここで、前記入水流量センサ5としては、例えば通水流量に応じて流路中に設けた羽根車が回転し、その回転数に応じた出力パルスで実流量を検出する流量センサの構造が考えられる。そして、燃焼バーナ34の燃焼により発生する燃焼ガスは給湯用熱交換器23を内部に有する燃焼室22aを通って排気口22から装置外に排出される。   Here, as the incoming water flow rate sensor 5, for example, a structure of a flow rate sensor that detects an actual flow rate with an output pulse according to the rotation speed of an impeller provided in the flow path according to the flow rate of water flow. Conceivable. The combustion gas generated by the combustion of the combustion burner 34 passes through the combustion chamber 22a having the hot water supply heat exchanger 23 inside and is discharged from the exhaust port 22 to the outside of the apparatus.

また、循環ポンプ7を介して利用側熱交換器24の一次側流路に、給湯用熱交換器23で加熱された高温水を供給した後、給湯用熱交換器23の上流側の給水路1に戻し、そして給湯用熱交換器23を通り循環ポンプ7を介して利用側熱交換器24に至る給湯循環回路2を構成している。この給湯循環回路2は、利用側熱交換器24の一次側流路として高温水を供給することで利用側熱交換器24の二次側流路に接続された負荷に熱量を供給することが可能である。   In addition, after supplying high temperature water heated by the hot water supply heat exchanger 23 to the primary flow path of the use side heat exchanger 24 via the circulation pump 7, the upstream water supply path of the hot water supply heat exchanger 23 is supplied. 1, and the hot water supply circulation circuit 2 is constituted which passes through the hot water supply heat exchanger 23 and reaches the use side heat exchanger 24 via the circulation pump 7. The hot water supply circulation circuit 2 can supply heat to a load connected to the secondary side flow path of the usage side heat exchanger 24 by supplying high temperature water as a primary side flow path of the usage side heat exchanger 24. Is possible.

ここでは利用側熱交換器24の機能として、暖房や浴室乾燥等を行う暖房端末機に温水を供給するための暖房回路42を二次側流路とする暖房用熱交換器25と、浴槽69の浴槽水68を加熱する風呂回路62を二次側流路とする風呂用熱交換器26との2つの熱出力機能を設けた場合を示している。   Here, as functions of the use-side heat exchanger 24, a heating heat exchanger 25 having a heating circuit 42 for supplying hot water to a heating terminal that performs heating, bathroom drying, and the like as a secondary-side flow path, and a bathtub 69 This shows a case where two heat output functions are provided for the bath heat exchanger 26 having the bath circuit 62 for heating the bath water 68 as a secondary side flow path.

特に本実施の形態では、暖房用熱交換器25と風呂用熱交換器26の2つの熱出力機能を実現するために、単一の一次側流路である給湯循環回路2に対して各々の二次側流路である暖房回路42および風呂回路62を並列に接続し、単一ユニットとして利用側熱交換器24を形成することで、本体構成の簡素化により器具の小型化、軽量化を実現するとともに、一次側流路を単一で形成できるので、その分だけ放熱面積を小さく構成でき、放熱ロスを軽減し、二次側流路との熱交換効率の向上を図ることができる。   In particular, in the present embodiment, in order to realize two heat output functions of the heat exchanger 25 for heating and the heat exchanger 26 for bath, each of the hot water supply circulation circuits 2 which are a single primary side flow path is provided. By connecting the heating circuit 42 and the bath circuit 62, which are secondary flow paths, in parallel and forming the use-side heat exchanger 24 as a single unit, it is possible to reduce the size and weight of the appliance by simplifying the main body configuration. In addition, since a single primary side flow path can be formed, the heat radiation area can be reduced by that amount, heat loss can be reduced, and the efficiency of heat exchange with the secondary side flow path can be improved.

ここで単一ユニットとして複数の熱出力機能を単一ユニットとして形成した利用側熱交換器24の具体的な構成について述べる。   Here, a specific configuration of the use side heat exchanger 24 in which a plurality of heat output functions are formed as a single unit as a single unit will be described.

図2−1は、本発明の実施の形態におけるプレート式熱交換器の構造図の一例を示すものである。プレート式熱交換器の詳細な構造および製造方法については、例えば特許文献2では、凹凸を有する一次側流路を形成する伝熱プレートと二次側流路を形成する伝熱プレートとをロー材を介して重ね合わせ、真空炉で加熱することで加熱ロー接し、製造や組み立てが簡易にできてコストを軽減することができるという内容が述べられている。   FIG. 2-1 shows an example of a structural diagram of the plate heat exchanger in the embodiment of the present invention. As for the detailed structure and manufacturing method of the plate heat exchanger, for example, in Patent Document 2, a heat transfer plate that forms a primary flow path having irregularities and a heat transfer plate that forms a secondary flow path are used as a brazing material. The contents are described that they can be stacked together and heated in a vacuum furnace to be in contact with a heating wire, making manufacture and assembly simple and reducing costs.

図2−1においては、各伝熱プレートが有する凹凸、ロー材、製造方法などの詳細は、
例えば特許文献2に記載された内容を適用するものとして省略し、本発明に関する構造のみを簡略化して示している。図2−1において、天板103には二次側流路継手101と一次側流路継手102が接続されている。一次側流路継手102は図1における給湯循環回路2が、二次側流路Aの二次側流路継手101には図1における暖房回路42が、二次側流路Bの二次側流路継手101には図1における風呂回路62が、それぞれ接続される。
In FIG. 2-1, the details of the unevenness, brazing material, manufacturing method, etc. of each heat transfer plate are as follows:
For example, the contents described in Patent Document 2 are omitted as applied, and only the structure related to the present invention is shown in a simplified manner. In FIG. 2A, the secondary channel joint 101 and the primary channel joint 102 are connected to the top plate 103. The primary side channel joint 102 is the hot water supply circulation circuit 2 in FIG. 1, the secondary side channel joint 101 of the secondary side channel A is the heating circuit 42 in FIG. 1, the secondary side of the secondary side channel B The bath circuit 62 in FIG. 1 is connected to the flow path joint 101.

一次側流路と二次側流路Aおよび二次側流路Bの温水の流れ方向は、図2−1に示すように互いに逆向きで対向させている。図2−1のA−A線断面またはB−B線断面は、二次側流路継手101と一次側流路継手102の部分を垂直に切断した形状を示している。天板103から底板104に至るまで、一次側流路と二次側流路の各部屋は二次側伝熱プレート106と一次側伝熱プレート105とを隔てて交互に配置されている。二次側流路はさらに図2−1のC−C線断面のように、仕切り107で二次側流路Aと二次側流路Bの二つの部屋に分割されている。   The flow directions of the hot water in the primary side flow path, the secondary side flow path A, and the secondary side flow path B are opposite to each other as shown in FIG. The cross section along the line AA or the line BB in FIG. 2A shows a shape obtained by cutting the secondary channel joint 101 and the primary channel joint 102 vertically. From the top plate 103 to the bottom plate 104, the primary flow path and the secondary flow path are alternately arranged with the secondary heat transfer plate 106 and the primary heat transfer plate 105 interposed therebetween. The secondary side flow path is further divided into two chambers, a secondary side flow path A and a secondary side flow path B, by a partition 107 as shown in the cross section along line CC in FIG. 2-1.

図2−2は、一次側伝熱プレート105の構造を示したものである。図2−2のD−D線断面またはE−E線断面において、一次側流路継手穴109は一次側流路継手102につながり、一次側流路を形成する。二次側流路継手穴108には一次側流路と二次側流路を隔離する必要があるため、二次側流路閉塞折り返し部110が設けられている。   FIG. 2-2 shows the structure of the primary side heat transfer plate 105. In the DD line cross section or the EE line cross section of FIG. 2-2, the primary side flow path joint hole 109 is connected to the primary side flow path joint 102 and forms the primary side flow path. Since it is necessary to isolate the primary side flow path and the secondary side flow path in the secondary side flow path joint hole 108, a secondary side flow path closing folded portion 110 is provided.

図2−3は、二次側伝熱プレート106の構造を示したものである。F−F線断面またはG−G線断面において、二次側流路継手穴111は二次側流路継手101につながり、二次側流路を形成する。一次側流路継手穴112には一次側流路と二次側流路を隔離する必要があるため、一次側流路閉塞折り返し部113が設けられている。さらに二次側流路を二つの部屋に分離させるため、仕切り107が設けられている。   FIG. 2-3 shows the structure of the secondary heat transfer plate 106. In the FF line cross section or the GG line cross section, the secondary side flow path joint hole 111 is connected to the secondary side flow path joint 101 to form a secondary side flow path. Since the primary side flow path joint hole 112 needs to isolate the primary side flow path and the secondary side flow path, a primary side flow path closing folded portion 113 is provided. Further, a partition 107 is provided to separate the secondary side flow path into two rooms.

例えば、仕切り107は二次側伝熱プレート106の製造過程で曲げ工程を入れることで一体に形成することができる。二次側伝熱プレート106に設ける仕切り107の位置を、利用側熱交換器24の複数の熱出力機能に応じて決定することで利用側熱交換器24での二次側流路への熱交換効率を最適化することができる。   For example, the partition 107 can be integrally formed by inserting a bending step in the manufacturing process of the secondary heat transfer plate 106. The position of the partition 107 provided on the secondary side heat transfer plate 106 is determined according to a plurality of heat output functions of the usage side heat exchanger 24, whereby the heat to the secondary side flow path in the usage side heat exchanger 24 is determined. Exchange efficiency can be optimized.

例えば、暖房用熱交換器25の定格時の熱出力を12500kcal/h、風呂用熱交換器26の定格時の熱出力を7500kcal/hとすると、二次側伝熱プレート106において、面積比で5:3となる部分に仕切り107を一体に設け、それぞれ二次側流路Aと二次側流路Bに対応させるとすると、二次側流路Aを暖房用熱交換器25の二次側流路として、二次側流路Bを風呂用熱交換器26の二次側流路として用いることができる。   For example, if the heat output at the time of rating of the heat exchanger 25 for heating is 12500 kcal / h, and the heat output at the time of rating of the heat exchanger 26 for bath is 7500 kcal / h, the secondary heat transfer plate 106 has an area ratio. When the partition 107 is integrally provided in the part that becomes 5: 3 and is made to correspond to the secondary side flow path A and the secondary side flow path B, respectively, the secondary side flow path A is the secondary of the heat exchanger 25 for heating. As the side channel, the secondary side channel B can be used as the secondary channel of the heat exchanger 26 for bath.

これらの一次側伝熱プレート105と二次側伝熱プレート106とをロー材を介して、底板104と天板103の間に交互に重ね、特許文献2に記載のように真空炉で加熱ロー接させることで、比較的製造や組立てが簡易にできる。   The primary side heat transfer plate 105 and the secondary side heat transfer plate 106 are alternately stacked between the bottom plate 104 and the top plate 103 via a brazing material, and heated in a vacuum furnace as described in Patent Document 2. By making contact, manufacturing and assembly can be relatively simplified.

以上のように、図2−1に示したプレート式熱交換器を単一ユニット化された利用側熱交換器24として用いると、単一の一次側流路(給湯循環回路2)に対し、二次側流路A(暖房回路42)と二次側流路B(風呂回路62)は各々並列に配置されるため、一次側流路を流れる温水温度は略同一とすることができる。すなわち、単一の一次側である給湯循環回路に対して、複数の利用側熱交換器の二次側流路を各々並列に接続した構成となるので、各々の利用側熱交換器の一次側流路を流れる温水温度は略同一とすることができるため、放熱ロスを軽減でき二次側流路との熱交換効率向上を図ることが可能となり、低ランニングコスト化を実現する給湯装置を提供することができる。   As described above, when the plate-type heat exchanger shown in FIG. 2-1 is used as a single-unit use-side heat exchanger 24, for a single primary flow path (hot water supply circulation circuit 2), Since the secondary side flow path A (heating circuit 42) and the secondary side flow path B (bath circuit 62) are arranged in parallel, the temperature of the hot water flowing through the primary side flow path can be made substantially the same. That is, since the secondary side flow paths of the plurality of usage side heat exchangers are connected in parallel to the single hot water supply circulation circuit that is the primary side, the primary side of each usage side heat exchanger Since the temperature of the hot water flowing through the flow path can be made substantially the same, it is possible to reduce heat dissipation loss, improve the heat exchange efficiency with the secondary flow path, and provide a hot water supply device that realizes low running costs can do.

また、伝熱面積を最適化して規定でき、複数の二次側流路で同時に熱交換が行われる場合には、各々の二次側流路を流れる流体の温度および流量条件によって、一次側流路から供給される熱量がどちらか一方の二次側流路に偏らないようにすることができる。   In addition, the heat transfer area can be optimized and defined, and when heat exchange is performed simultaneously in a plurality of secondary flow paths, the primary side flow depends on the temperature and flow rate conditions of the fluid flowing in each secondary flow path. It is possible to prevent the amount of heat supplied from the path from being biased to one of the secondary flow paths.

さて、再び図1において、前記出湯路3は、前記給湯循環回路2において、複数の熱出力機能を単一ユニットとして形成された利用側熱交換器24の下流側から分岐した状態としている。   Now, in FIG. 1 again, in the hot water supply circulation circuit 2, the hot water supply passage 3 is in a state where a plurality of heat output functions are branched from the downstream side of the use side heat exchanger 24 formed as a single unit.

このように給湯回路としての前記出湯路3の前記給湯循環回路2からの分岐部を単一ユニット化された前記利用側熱交換器24の下流に配置させることで、前記給湯回路と前記給湯循環回路2を同時に使用する場合には、前記給湯循環回路2において前記利用側熱交換器24の一次側流路により多くの高温水を供給することができるので、前記利用側熱交換器24の二次側流路により多くの熱量を供給することができるという特徴を有する。   Thus, the hot water supply circuit and the hot water supply circulation are arranged by disposing the branch portion from the hot water supply circulation circuit 2 of the hot water supply path 3 as a hot water supply circuit downstream of the use side heat exchanger 24 which is formed as a single unit. When the circuit 2 is used at the same time, a large amount of high-temperature water can be supplied to the primary-side flow path of the usage-side heat exchanger 24 in the hot-water supply circulation circuit 2. It has a feature that a large amount of heat can be supplied to the secondary channel.

一方、図3は、本発明の第1、第2、第4、第5、および第6の各実施例における給湯装置の構成図を示すものである。   On the other hand, FIG. 3 shows the block diagram of the hot water supply apparatus in each of the first, second, fourth, fifth and sixth embodiments of the present invention.

図3において、本実施例は、図1に示す第1、第3、第4、第5、および第6の実施例における給湯装置と異なるところは、前記出湯路3を前記給湯循環回路2において、複数の熱出力機能を単一ユニットとして形成された利用側熱交換器24の上流側から分岐した構成であり、それ以外の同一の構成並びに作用効果を奏するところには同一符号を付して詳細な説明を省略し、異なるところを中心に説明する。   In FIG. 3, the present embodiment differs from the hot water supply apparatus in the first, third, fourth, fifth, and sixth embodiments shown in FIG. A configuration in which a plurality of heat output functions are branched from the upstream side of the use-side heat exchanger 24 formed as a single unit, and the other components having the same configuration and effects are denoted by the same reference numerals. Detailed description will be omitted, and different points will be mainly described.

このように前記出湯路3の前記給湯循環回路2からの分岐部を単一ユニット化された前記利用側熱交換器24の上流に配置させることで、給湯回路を単独で利用する場合には、前記出湯路3は前記利用側熱交換器24の一次側流路を通過することなく、給湯用熱交換器23を出た後の直ぐの高温水を得ることができるので、流路圧力損失を小さくでき、その分早く出湯栓13に所望の湯を供給することができる。   When the hot water supply circuit is used alone by arranging the branch portion from the hot water supply circulation circuit 2 of the hot water supply passage 3 upstream of the use side heat exchanger 24 that is made into a single unit in this way, The hot water supply passage 3 can obtain the high-temperature water immediately after leaving the hot water supply heat exchanger 23 without passing through the primary flow path of the use side heat exchanger 24. The desired hot water can be supplied to the tap 13 as soon as possible.

図1または図3において、暖房回路42は、単一ユニット化された前記利用側熱交換器24のうちの前記暖房用熱交換器25の二次側流路として形成され、浴室乾燥機などの暖房端末機の負荷を接続して閉回路を形成し暖房ポンプ50で二次側温水を循環させることにより、前記暖房用熱交換器25において一次側流路である前記給湯循環回路2を流れる高温水から熱量を供給される。   In FIG. 1 or FIG. 3, the heating circuit 42 is formed as a secondary flow path of the heating heat exchanger 25 in the use-side heat exchanger 24 that is made into a single unit, such as a bathroom dryer. By connecting the load of the heating terminal to form a closed circuit and circulating the secondary side hot water by the heating pump 50, the high temperature flowing through the hot water supply circulation circuit 2 which is the primary side flow path in the heating heat exchanger 25 Heat is supplied from water.

図1または図3において、風呂回路62は、単一ユニット化された前記利用側熱交換器24のうちの前記風呂用熱交換器26の二次側流路として形成され、風呂ポンプ75で浴槽水68を循環させることにより、前記風呂用熱交換器26において一次側流路である前記給湯循環回路2を流れる高温水から熱量を供給され、浴槽水68を所望の温度まで沸き上げる風呂追い焚き運転を行うことができる。また、浴槽69へ所定温度の湯を所定量供給する風呂お湯はり運転を行う注湯流路61として、バイパス通路4の下流部の前記出湯路3から分岐し、風呂回路62に連通する回路系を形成している。   In FIG. 1 or FIG. 3, the bath circuit 62 is formed as a secondary flow path of the bath heat exchanger 26 in the use side heat exchanger 24 that is formed as a single unit. By circulating the water 68, the bath heat exchanger 26 is supplied with heat from the high-temperature water flowing through the hot water supply circuit 2, which is the primary flow path, and reheats the bath water 68 to a desired temperature. You can drive. In addition, as a pouring channel 61 for performing bath hot water supply operation for supplying a predetermined amount of hot water of a predetermined temperature to the bathtub 69, a circuit system that branches from the hot water supply passage 3 downstream of the bypass passage 4 and communicates with the bath circuit 62. Is forming.

以上のように構成された給湯装置について、以下その動作、作用を説明する。まず、給湯回路を用いる給湯単独運転時には、図1または図3において、シャワーやカランなどの出湯栓13を開くと給水路1に配設した入水流量センサ5が通水を検知し、この通水信号で燃焼用ファン31が動作し、同時に燃料ガス元弁32、燃料ガス比例制御弁27が開き、燃焼バーナ34に燃料ガスと燃焼用空気が供給され、点火器28による点火プラグ29の火花放電により着火し、フレームロッド30による着火認識動作によって燃焼が開始する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. First, at the time of hot water supply single operation using the hot water supply circuit, when the hot water tap 13 such as a shower or a currant is opened in FIG. 1 or FIG. 3, the incoming flow rate sensor 5 disposed in the water supply path 1 detects water flow. The combustion fan 31 operates in response to the signal, and at the same time, the fuel gas main valve 32 and the fuel gas proportional control valve 27 are opened, fuel gas and combustion air are supplied to the combustion burner 34, and spark discharge of the spark plug 29 by the igniter 28 is performed. The combustion is started by the ignition recognition operation by the frame rod 30.

また、燃焼負荷に応じた燃焼バーナ34での燃焼量は、燃料ガス切替弁33を開閉することで燃焼バーナ34の燃焼部分を切替えることと、予め定められた燃料ガス比例制御弁27の開度を調整することでの燃料ガス供給量と燃焼用ファン31の回転数を調整することでの燃焼用空気供給量との組み合わせとで調整される。この燃焼ガスの排気動作過程において、給湯用熱交換器23により給水路1より供給される水が加熱される。   The amount of combustion in the combustion burner 34 according to the combustion load is determined by switching the combustion portion of the combustion burner 34 by opening and closing the fuel gas switching valve 33 and the predetermined opening degree of the fuel gas proportional control valve 27. Is adjusted by a combination of the fuel gas supply amount by adjusting the amount of combustion and the combustion air supply amount by adjusting the rotational speed of the combustion fan 31. In the process of exhausting the combustion gas, the water supplied from the water supply path 1 is heated by the hot water supply heat exchanger 23.

給湯用熱交換器23で加熱された湯水は、給湯用熱交換器23を迂回するように給水路1と出湯路3を連通して設けたバイパス通路4に配設したバイパス制御弁9の開度を調整することで給水路1より供給される一部の水と混合される。諸動作制御を行う制御手段91は、混合された湯を、浴室用リモートコントローラ92や台所用リモートコントローラ93などの遠隔操作用リモートコントローラで設定した所望設定温度になるように、出湯サーミスタ17からの混合後の湯温を検出しながら、バイパス制御弁9の開度を調節し、出湯栓13へと供給する。   The hot water heated by the hot water supply heat exchanger 23 opens the bypass control valve 9 disposed in the bypass passage 4 provided by connecting the hot water supply path 1 and the hot water supply path 3 so as to bypass the hot water supply heat exchanger 23. The water is mixed with a part of the water supplied from the water supply channel 1 by adjusting the degree. The control means 91 for controlling the various operations controls the hot water from the hot water thermistor 17 so that the mixed hot water has a desired set temperature set by a remote controller for remote operation such as a remote controller for bathroom 92 or a remote controller for kitchen 93. While detecting the hot water temperature after mixing, the opening degree of the bypass control valve 9 is adjusted and supplied to the hot water tap 13.

具体的に出湯栓13へ供給する湯の温度としては、35℃〜60℃程度である。図1において、出湯路3の給湯循環回路2からの分岐部が単一ユニット化された利用側熱交換器24の下流側に配置される構成において、例えば出湯栓13に42℃の湯を供給する場合、例えば制御手段91は給湯戻りサーミスタ16で検出される湯の温度が70℃になるように燃焼バーナ34の燃焼量を調整し、出湯サーミスタ17で検出される湯の温度が42℃となるようにバイパス制御弁9の開度を調整する動作制御を行う。   Specifically, the temperature of hot water supplied to the tap tap 13 is about 35 ° C to 60 ° C. In FIG. 1, for example, 42 ° C. hot water is supplied to the hot water tap 13 in a configuration in which the branching portion from the hot water supply circulation circuit 2 of the hot water supply passage 3 is arranged on the downstream side of the use-side heat exchanger 24 formed as a single unit. In this case, for example, the control means 91 adjusts the combustion amount of the combustion burner 34 so that the hot water temperature detected by the hot water return thermistor 16 becomes 70 ° C., and the hot water temperature detected by the hot water thermistor 17 becomes 42 ° C. The operation control for adjusting the opening degree of the bypass control valve 9 is performed.

一方、図3において出湯路3の給湯循環回路2からの分岐部が、単一ユニット化された利用側熱交換器24の上流側に配置される構成において、例えば出湯栓13に42℃の湯を供給する場合、例えば制御手段91は給湯往きサーミスタ15で検出される湯の温度が70℃になるように燃焼バーナ34の燃焼量を調整し、出湯サーミスタ17で検出される湯の温度が42℃となるようにバイパス制御弁9の開度を調整する動作制御を行う。   On the other hand, in the configuration in which the branching portion from the hot water supply circulation circuit 2 of the hot water supply passage 3 in FIG. 3 is arranged on the upstream side of the use-side heat exchanger 24 formed as a single unit, For example, the control means 91 adjusts the amount of combustion of the combustion burner 34 so that the temperature of hot water detected by the hot water supply thermistor 15 is 70 ° C., and the temperature of hot water detected by the hot water thermistor 17 is 42. Operation control is performed to adjust the opening degree of the bypass control valve 9 so that the temperature becomes ° C.

図3の構成においては、出湯路3の給湯循環回路2からの分岐部を単一ユニット化された利用側熱交換器24の上流側に配置されているので、図1の構成の場合よりも流路圧力損失を小さくでき、出湯路3により早く高温の湯を供給することができる。   In the configuration of FIG. 3, the branch portion from the hot water supply circulation circuit 2 of the hot water supply passage 3 is arranged upstream of the use side heat exchanger 24 that is made into a single unit. The flow path pressure loss can be reduced, and hot water can be supplied to the hot water outlet 3 quickly.

このように、給湯回路を用いる給湯単独運転を選択する場合は、遠隔操作用リモートコントローラで所望温度を設定し、出湯栓13を開くことで自動的に設定された所望温度の給湯温水を確保することができる。   Thus, when selecting the hot water supply independent operation using the hot water supply circuit, the desired temperature is set by the remote controller for remote operation, and the hot water supply hot water having the desired temperature set automatically is secured by opening the tap tap 13. be able to.

次に、図1または図3においては、単一ユニットとして形成される利用側熱交換器24として、暖房や浴室乾燥等を行う暖房端末機に温水を供給するための暖房回路42を二次側流路とする暖房用熱交換器25と、浴槽69の浴槽水68を加熱する風呂回路62を二次側流路とする風呂用熱交換器26との2つの熱出力機能を設けた場合を示しているので、以下、給湯循環回路2を用いる運転として暖房運転と風呂追い焚き運転を行う場合について説明する。   Next, in FIG. 1 or FIG. 3, as the use side heat exchanger 24 formed as a single unit, a heating circuit 42 for supplying hot water to a heating terminal that performs heating, bathroom drying or the like is provided on the secondary side. A case where two heat output functions are provided, that is, a heating heat exchanger 25 that is a flow path and a bath heat exchanger 26 that has a bath circuit 62 that heats the bathtub water 68 of the bathtub 69 as a secondary flow path. Therefore, the case where the heating operation and the bath reheating operation are performed as the operation using the hot water supply circulation circuit 2 will be described below.

暖房運転時には、浴室乾燥機などの暖房端末機に内蔵された制御器(図示せず)や床暖房用リモートコントローラ94からの運転指令で、水量制御弁8が閉止されて給湯循環回路2のみの閉回路が形成され、暖房回路42に設けた暖房ポンプ50が駆動し、この運転指令に連動して給湯循環回路2の温水を循環させる循環ポンプ7が駆動し、同時に燃焼バーナ34の着火動作により燃焼が開始する。給湯用熱交換器23で加熱された高温水は循環ポンプ7で利用側熱交換器24の一次側に供給され、水−水熱交換構成により熱交換され暖房用熱交換器25の二次側である暖房回路42へ伝熱される。   During the heating operation, the water amount control valve 8 is closed by the operation command from the controller (not shown) built in the heating terminal such as a bathroom dryer or the remote controller 94 for floor heating, and only the hot water supply circulation circuit 2 is A closed circuit is formed, the heating pump 50 provided in the heating circuit 42 is driven, the circulation pump 7 that circulates the hot water in the hot water supply circulation circuit 2 is driven in conjunction with this operation command, and at the same time by the ignition operation of the combustion burner 34 Combustion starts. The high-temperature water heated by the hot water supply heat exchanger 23 is supplied to the primary side of the use side heat exchanger 24 by the circulation pump 7 and is heat-exchanged by the water-water heat exchange configuration, and the secondary side of the heating heat exchanger 25. The heat is transferred to the heating circuit 42.

図1または図3の暖房回路42は、2種類の異なる温度の温水を暖房端末機に供給することができる2温度タイプの構成を示している。暖房用熱交換器25で加熱された暖房回路42の温水は、浴室乾燥機などの高温端末機に用いる場合には暖房往き流路43を通ってそのまま供給される。また、床暖房温水マットなどの低温端末機に用いる場合には、暖房戻り流路45を通って暖房タンク49に蓄えられた各暖房端末機からの戻り温水が、逆止弁53を有する暖房往き流路43より分岐した低温バイパス流路46を流れる高温水と混合され、低温暖房往き流路44を通って供給される。   The heating circuit 42 of FIG. 1 or 3 shows a two-temperature type configuration that can supply hot water of two different temperatures to the heating terminal. The hot water in the heating circuit 42 heated by the heating heat exchanger 25 is supplied as it is through the heating forward flow path 43 when used in a high-temperature terminal such as a bathroom dryer. When used in a low temperature terminal such as a floor heating hot water mat, the return warm water from each heating terminal stored in the heating tank 49 through the heating return flow path 45 is used as a heating forward having the check valve 53. It is mixed with high-temperature water flowing through a low-temperature bypass flow path 46 branched from the flow path 43 and supplied through a low-temperature heating forward flow path 44.

暖房タンク49は、大気開放されており、前記暖房タンク49には蒸発等によって減少した暖房回路42内の保有水量を検知する減水電極52と、保有満水量を検知する満水電極51とが備えられ、給水路1から分岐し補給水弁55を有する補給水路41が接続されている。減水電極52がOFFし、暖房タンク49の保有水量が減水電極54未満となると、補給水弁55が開となり、満水電極51がONするまで補給水路41から水が暖房タンク49に供給される仕組みになっている。   The heating tank 49 is open to the atmosphere, and the heating tank 49 is provided with a water reducing electrode 52 that detects the amount of retained water in the heating circuit 42 that has decreased due to evaporation or the like, and a full water electrode 51 that detects the amount of retained water. A replenishment water channel 41 branched from the water supply channel 1 and having a replenishment water valve 55 is connected. When the water reducing electrode 52 is turned off and the amount of water held in the heating tank 49 becomes less than the water reducing electrode 54, the makeup water valve 55 is opened, and water is supplied from the makeup water channel 41 to the heating tank 49 until the full water electrode 51 is turned on. It has become.

暖房用熱交換器25で熱交換された一次側流路の高温水は給湯用熱交換器23の上流側の給水路1に戻り、給湯循環回路2を形成し暖房端末機からの暖房運転指令が発せられている間、所定の温度に維持して高温水循環を継続する。   The high-temperature water in the primary flow path heat-exchanged by the heating heat exchanger 25 returns to the water supply path 1 upstream of the hot water supply heat exchanger 23 to form a hot water supply circulation circuit 2 and a heating operation command from the heating terminal. Is kept at a predetermined temperature while hot water circulation is continued.

次に風呂追い焚き運転時には、図1または図3において、浴室用リモートコントローラ92で使用者が風呂追い焚き運転の指示を行うと、風呂回路62に設けた風呂ポンプ75が駆動し、水流スイッチ76で浴槽水68の循環が検知されると、その検知信号で水量制御弁8が閉止されて給湯循環回路2のみの閉回路が形成され、給湯循環回路2を循環させる循環ポンプ7が駆動し、同時に燃焼バーナ34の着火動作により燃焼が開始される。ここで前記水流スイッチ76としては、例えば流路中に設けられマグネットが取り付けられたバタフライ部が、所定(例えば2.8L/min)以上の通水流量で押し上げられ電気導通することで流水を検知する流量スイッチの構造が考えられる。   Next, at the time of bathing operation, in FIG. 1 or FIG. 3, when the user gives an instruction for bathing operation by the bathroom remote controller 92, the bath pump 75 provided in the bath circuit 62 is driven, and the water flow switch 76. When the circulation of the bath water 68 is detected, the water amount control valve 8 is closed by the detection signal to form a closed circuit of only the hot water supply circulation circuit 2, and the circulation pump 7 for circulating the hot water supply circulation circuit 2 is driven. At the same time, combustion is started by the ignition operation of the combustion burner 34. Here, as the water flow switch 76, for example, a butterfly portion provided in a flow path and attached with a magnet is pushed up at a water flow rate of a predetermined (for example, 2.8 L / min) or more and is electrically connected to detect water flow. The structure of the flow rate switch is considered.

給湯用熱交換器23で加熱された高温水は循環ポンプ7で、利用側熱交換器24の1次側に供給され、水−水熱交換構成により熱交換され風呂用熱交換器26の二次側である風呂回路62へ伝熱される。風呂用熱交換器26で受熱した風呂回路62の熱は、浴槽69の浴槽水68の温度を上昇させ所定の追い焚き湯温を確保する。そして、利用側熱交換器24で熱交換された高温水は、給湯用熱交換器23の上流側の給水路1に戻り、給湯循環回路2を形成し、浴室用リモートコントローラ92で設定された所定の追い焚き温度を風呂戻りサーミスタ83で検知するまで所定の湯温に維持して循環を継続する。   The high-temperature water heated by the hot water supply heat exchanger 23 is supplied to the primary side of the use side heat exchanger 24 by the circulation pump 7 and is heat-exchanged by the water-water heat exchange configuration. Heat is transferred to the bath circuit 62 which is the next side. The heat of the bath circuit 62 received by the bath heat exchanger 26 increases the temperature of the bathtub water 68 of the bathtub 69 to ensure a predetermined reheating water temperature. And the high temperature water heat-exchanged by the use side heat exchanger 24 returns to the water supply path 1 upstream of the hot water supply heat exchanger 23, forms a hot water supply circulation circuit 2, and is set by the bathroom remote controller 92. Circulation is continued while maintaining a predetermined hot water temperature until a predetermined reheating temperature is detected by the bath return thermistor 83.

なお、図1または図3において、給湯循環回路2中には、入水流量センサ5と同様な流量センサの構造を有する循環流量センサ6を設けている。前記循環流量センサ6を給湯循環回路2に設けることで、給湯循環回路2の循環流量を検出することが可能である。そこで、循環ポンプ7を駆動負荷に応じて出力可変である直流駆動ポンプ(以下、DCポンプという)の構成とした場合、暖房運転時、風呂追い焚き運転時、あるいはそれらの同時運転時に、各利用側熱交換器の二次側負荷に応じて、循環ポンプの駆動負荷を変化させ、給湯循環回路2に最適流量の高温水を搬送することができる。   In FIG. 1 or FIG. 3, a circulating flow rate sensor 6 having a flow rate sensor structure similar to the incoming water flow rate sensor 5 is provided in the hot water supply circulation circuit 2. By providing the circulation flow rate sensor 6 in the hot water supply circulation circuit 2, it is possible to detect the circulation flow rate of the hot water supply circulation circuit 2. Therefore, when the circulation pump 7 is configured as a direct current drive pump (hereinafter referred to as a DC pump) whose output is variable according to the drive load, each use is performed during heating operation, bath reheating operation, or simultaneous operation thereof. Depending on the secondary side load of the side heat exchanger, the driving load of the circulation pump can be changed, and hot water with an optimum flow rate can be conveyed to the hot water supply circulation circuit 2.

また、過圧逃がし弁79と過圧逃がし開閉弁78を有する過圧逃がし流路72を、出湯路3より分岐した注湯流路61と平行して設けている。暖房運転や風呂追い焚き運転で給湯循環回路2を用いる運転においては、給湯循環回路2が閉回路となって給湯用熱交換器23で加熱されるため、給湯循環回路2内の水は急激に膨張し内圧が上昇する。   Further, an overpressure relief flow path 72 having an overpressure relief valve 79 and an overpressure relief open / close valve 78 is provided in parallel with the pouring flow path 61 branched from the hot water discharge path 3. In the operation using the hot water supply circulation circuit 2 in the heating operation or the bath reheating operation, the hot water supply circulation circuit 2 becomes a closed circuit and is heated by the heat exchanger 23 for hot water supply. It expands and the internal pressure rises.

したがって、給湯循環回路2を用いる運転時には過圧逃がし開閉弁78を開としておき、給湯循環回路2内の内圧上昇時には過圧逃がし弁79が作動して圧力を風呂回路62に開放して所定の圧力以下となるようにしている。ここで、過圧逃がし弁79は、例えば1.0MPaで開となり0.7MPaで閉となるようにバネ力で設定されるような構造である。   Accordingly, during operation using the hot water supply circulation circuit 2, the overpressure relief valve 78 is opened, and when the internal pressure in the hot water circulation circuit 2 rises, the overpressure relief valve 79 is actuated to release the pressure to the bath circuit 62, and the predetermined pressure is reached. It is made to become below the pressure. Here, the overpressure relief valve 79 has a structure that is set by a spring force so as to be opened at 1.0 MPa and closed at 0.7 MPa, for example.

給湯循環回路2を利用する運転の場合に、利用側熱交換器24の一次側流路に供給する湯の温度としては、浴室乾燥機などの高温端末機を運転する場合には暖房往き流路43に供給する湯の温度として80℃が必要であるので、その温度よりも高い85℃程度が必要であり、制御手段91は給湯往きサーミスタ15で検出される湯の温度が85℃となるように燃焼バーナ34での燃焼量を調整する。   In the case of operation using the hot water supply circulation circuit 2, the temperature of hot water supplied to the primary side flow path of the use side heat exchanger 24 is the heating forward flow path when operating a high temperature terminal such as a bathroom dryer. Since 80 ° C. is required as the temperature of the hot water supplied to 43, about 85 ° C., which is higher than that temperature, is required, and the control means 91 causes the hot water temperature detected by the hot water supply thermistor 15 to be 85 ° C. The amount of combustion in the combustion burner 34 is adjusted.

暖房運転時、制御手段91は給湯往きサーミスタ15で検出される湯の温度が85℃となるように、暖房往きサーミスタ54で検出される湯の温度が80℃となるように、直流駆動(以下、DC駆動という)される循環ポンプ7の駆動負荷を調整しながら燃焼バーナ34の燃焼量を調整する動作制御を行う。   During the heating operation, the control means 91 is driven by direct current so that the temperature of hot water detected by the heating thermistor 54 is 80 ° C. and the temperature of hot water detected by the heating thermistor 54 is 80 ° C. The operation control is performed to adjust the combustion amount of the combustion burner 34 while adjusting the driving load of the circulating pump 7 (referred to as DC driving).

風呂追い焚き運転時、制御手段91は給湯往きサーミスタ15で検出される湯の温度が85℃となるように、DC駆動される循環ポンプ7の駆動負荷を、例えば最大の駆動負荷量とするなどのある所定の駆動負荷量としながら燃焼バーナ34の燃焼量を調整する動作制御を行い、浴室用リモートコントローラ92で設定された所定の追い焚き温度(例えば42℃)を風呂戻りサーミスタ83で検知するまで風呂追い焚き運転動作を継続する。   At the time of bathing operation, the control means 91 sets the driving load of the DC-driven circulation pump 7 to, for example, the maximum driving load amount so that the hot water temperature detected by the hot water supply thermistor 15 becomes 85 ° C. The operation control is performed to adjust the combustion amount of the combustion burner 34 while maintaining a predetermined driving load amount, and a predetermined reheating temperature (for example, 42 ° C.) set by the bathroom remote controller 92 is detected by the bath return thermistor 83. Continue the bath chasing operation.

以上のように本実施の形態においては、暖房運転および風呂追い焚き運転の複数の熱出力機能に対し、それぞれの二次側流路である暖房回路42および風呂回路62が暖房用熱交換器25および風呂用熱交換器26に接続されているが、図2−1のような構造のプレート式熱交換器を単一ユニット化された利用側熱交換器24として用いた場合、暖房用熱交換器25および風呂用熱交換器26の一次側流路は単一の給湯循環回路2で簡素化されて形成され、暖房用熱交換器25および風呂用熱交換器26は、単一の利用側熱交換器24として形成されており、器具の小型化、軽量化を実現することができる。   As described above, in the present embodiment, the heating circuit 42 and the bath circuit 62, which are the secondary flow paths, are used for the heating heat exchanger 25 for the plurality of heat output functions of the heating operation and the bath reheating operation. When the plate-type heat exchanger having the structure as shown in FIG. 2-1 is used as the use-side heat exchanger 24 as a single unit, the heat exchange for heating is performed. The primary flow paths of the heater 25 and the bath heat exchanger 26 are simplified and formed by the single hot water supply circulation circuit 2, and the heating heat exchanger 25 and the bath heat exchanger 26 are arranged on a single use side. It is formed as a heat exchanger 24, and it is possible to realize a reduction in size and weight of the instrument.

また、複数の熱出力機能を有する利用側熱交換器24の一次側流路を単一とすることで、一次側流路を流れる高温水の放熱ロスを軽減し、二次側流路との熱交換効率向上を図ることができる。   In addition, by using a single primary side flow path of the use side heat exchanger 24 having a plurality of heat output functions, heat dissipation loss of high temperature water flowing through the primary side flow path is reduced, and The heat exchange efficiency can be improved.

上記では、給湯回路と給湯循環回路2のどちらか一方を利用する運転方法について説明したが、次に給湯回路と給湯循環回路2を同時に利用する場合の運転方法について述べる。   The operation method using either the hot water supply circuit or the hot water supply circulation circuit 2 has been described above. Next, the operation method when the hot water supply circuit and the hot water supply circulation circuit 2 are used simultaneously will be described.

給湯回路と給湯循環回路2を同時に利用する場合、利用側熱交換器24で二次側流路に熱交換させる必要があるので、制御手段91は給湯往きサーミスタ15で検出される温度が利用側熱交換器24の二次側流路で必要な温度(例えば暖房回路42の場合ならば80℃)より高い所定制御温度(例えば85℃)となるように動作制御する必要がある。   When the hot water supply circuit and the hot water supply circulation circuit 2 are used at the same time, it is necessary to exchange heat with the secondary side flow path by the use side heat exchanger 24, so that the control means 91 detects that the temperature detected by the hot water supply thermistor 15 is It is necessary to control the operation so that a predetermined control temperature (for example, 85 ° C.) is higher than a temperature required for the secondary side flow path of the heat exchanger 24 (for example, 80 ° C. in the case of the heating circuit 42).

この時、給湯回路側の動作制御は、出湯路3の給湯循環回路2からの分岐部の位置が異なる図1の場合と図3の場合とで異なる。なお、給湯循環回路2側の動作制御は図1の場合も図3の場合も、所定制御温度(例えば85℃)が給湯循環回路2に供給されるため、前記暖房運転や前記風呂追い焚き運転の給湯循環回路2を単独に用いる動作制御と同様であり、給湯回路が利用されたことによる温度制御面での直接的な影響はない。   At this time, the operation control on the side of the hot water supply circuit is different between the case of FIG. 1 and the case of FIG. The operation control on the hot water supply circuit 2 side is performed in the heating operation and the bath reheating operation because a predetermined control temperature (for example, 85 ° C.) is supplied to the hot water supply circuit 2 in both FIG. 1 and FIG. This is the same as the operation control using the hot water supply circulation circuit 2 alone, and there is no direct influence on the temperature control due to the use of the hot water supply circuit.

出湯路3の給湯循環回路2からの分岐部が利用側熱交換器24の下流側に配置された図1の構成においては、利用側熱交換器24の二次側流路への熱交換状態によって給湯戻りサーミスタ16で検出される湯の温度が異なるので、制御手段91は給湯戻りサーミスタ16で検出される温度を監視しながら、出湯サーミスタ17で検出される湯の温度が所望温度(例えば42℃)となるようにバイパス制御弁9の開度を調整する動作制御を行う。   In the configuration of FIG. 1 in which the branch portion from the hot water supply circulation circuit 2 of the hot water supply passage 3 is arranged on the downstream side of the use side heat exchanger 24, the heat exchange state to the secondary side flow path of the use side heat exchanger 24 is performed. Since the hot water temperature detected by the hot water return thermistor 16 varies depending on the temperature of the hot water return thermistor 16, the controller 91 monitors the temperature detected by the hot water return thermistor 16, while the hot water temperature detected by the hot water return thermistor 17 is the desired temperature (for example, 42 The operation control for adjusting the opening degree of the bypass control valve 9 is performed so that

このように出湯路3の分岐部が利用側熱交換器24の下流に存在する構成においては、利用側熱交換器24の一次側流路により多くの高温水を供給できるので、利用側熱交換器24の二次側流路を流れる温水加熱の立ち上がり特性が有利である。しかし、利用側熱交換器24の熱交換状態によって出湯路3に供給される湯の温度が変動することがあるので、バイパス制御弁9を頻繁に動作させることが多く、出湯温度が図3の構成と比べて変動しやすくなる可能性がある。   As described above, in the configuration in which the branch portion of the hot water outlet 3 exists downstream of the use side heat exchanger 24, a large amount of high-temperature water can be supplied to the primary side flow path of the use side heat exchanger 24. The rising characteristics of the hot water heating that flows through the secondary flow path of the vessel 24 are advantageous. However, since the temperature of hot water supplied to the hot water supply passage 3 may vary depending on the heat exchange state of the use side heat exchanger 24, the bypass control valve 9 is frequently operated, and the hot water temperature is as shown in FIG. There is a possibility that it will be more variable than the configuration.

また、利用側熱交換器24の熱交換状態によって、給湯戻り温度が低くなる場合、高温設定温度の給湯温度(例えば、設定温度60℃の場合)を供給できない可能性がある。この時、循環ポンプ7を駆動負荷可変であるDCポンプの構成とした場合、制御手段91は循環ポンプ7を最大回転数で駆動させ、給湯戻りサーミスタ16で検出される湯の温度を、可能な限り要求される出湯温度(例えば60℃)を超える温度とさせる動作制御を行う。   Further, when the hot water return temperature is lowered due to the heat exchange state of the use side heat exchanger 24, there is a possibility that the hot water supply temperature at the high temperature set temperature (for example, at the set temperature of 60 ° C.) cannot be supplied. At this time, when the circulation pump 7 is configured as a DC pump having a variable drive load, the control means 91 drives the circulation pump 7 at the maximum number of rotations, and the temperature of hot water detected by the hot water supply return thermistor 16 is possible. Operation control is performed so that the temperature exceeds the required hot water temperature (for example, 60 ° C.).

一方、出湯路3の給湯循環回路2からの分岐部が利用側熱交換器24の上流側に配置された図3の構成においては、図1の構成と異なり利用側熱交換器24の二次側流路への熱交換状態の影響はなく、制御手段91は給湯往きサーミスタ15の一定の所定制御温度(例えば85℃)に対して、出湯サーミスタ17で検出される湯の温度が所望温度(例えば42℃)となるようにバイパス制御弁9の開度を調整する動作制御を行う。   On the other hand, in the configuration of FIG. 3 in which the branch portion from the hot water supply circulation circuit 2 of the hot water supply passage 3 is arranged on the upstream side of the use side heat exchanger 24, the secondary side of the use side heat exchanger 24 is different from the configuration of FIG. There is no influence of the heat exchange state on the side flow path, and the control means 91 determines that the temperature of the hot water detected by the hot water thermistor 17 is the desired temperature (for example, 85 ° C.) with respect to a predetermined predetermined control temperature (for example, 85 ° C.) For example, operation control is performed to adjust the opening degree of the bypass control valve 9 so as to be 42 ° C.

このように出湯路3の分岐部が利用側熱交換器24の上流に存在する構成においては、出湯路3に供給される湯温が一定制御温度である給湯往き温度(例えば給湯回路のみを利用する場合の給湯単独運転時には70℃、給湯回路と給湯循環回路2を同時に利用する場合には85℃)が供給されるため、図1の構成と比べてバイパス制御弁9を頻繁に動作させることも少なく安定した出湯温度制御を行うことができる。   Thus, in the configuration in which the branch portion of the hot water supply passage 3 exists upstream of the use side heat exchanger 24, the hot water supply temperature at which the hot water temperature supplied to the hot water supply passage 3 is a constant control temperature (for example, only the hot water supply circuit is used). When the hot water supply single operation is performed, the bypass control valve 9 is operated more frequently than the configuration of FIG. 1 because 70 ° C. is supplied when the hot water supply circuit and the hot water circulation circuit 2 are used simultaneously. Therefore, stable and stable tapping temperature control can be performed.

また、出湯路3は利用側熱交換器24の一次側流路を通過することなく、給湯用熱交換器23を出た後のすぐの高温水を得ることができるので流路圧力損失を小さくでき、その分早く出湯栓13に所望の湯を供給することができる。しかし、利用側熱交換器24の給湯循環回路2に搬送されるべき高温湯の一部が出湯路3に流れるので、利用側熱交換器24の二次側流路を流れる温水に多くの交換熱量要求がある場合、二次側流路を流れる温水加熱の立ち上がり特性が図1の構成と比べて劣る可能性がある。   Further, since the hot water outlet 3 can obtain hot water immediately after leaving the hot water supply heat exchanger 23 without passing through the primary flow path of the use side heat exchanger 24, the flow pressure loss is reduced. The desired hot water can be supplied to the tap tap 13 as soon as possible. However, since a part of the high temperature hot water to be transported to the hot water supply circulation circuit 2 of the use side heat exchanger 24 flows into the hot water outlet 3, a large amount of hot water flowing through the secondary side flow path of the use side heat exchanger 24 is exchanged. When there is a demand for heat, the rising characteristics of hot water heating that flows through the secondary side flow path may be inferior to the configuration of FIG.

この時、循環ポンプ7を駆動負荷可変であるDCポンプの構成とした場合、制御手段91は循環ポンプ7を最大回転数で駆動させ、給湯循環回路2に可能な限り多くの高温水を供給することで、二次側流路を流れる温水加熱の立ち上がり特性を改善させる動作制御を行う。   At this time, when the circulation pump 7 is configured as a DC pump whose drive load is variable, the control means 91 drives the circulation pump 7 at the maximum number of revolutions to supply as much hot water as possible to the hot water supply circulation circuit 2. Thus, the operation control is performed to improve the rising characteristics of the hot water heating that flows through the secondary side flow path.

図1および図3の燃焼バーナ34での燃焼量は、制御手段91が給湯用熱交換器23に供給される水温と、供給するべき水温と、供給流量とから必要な燃焼負荷を計算し、燃焼ガス切替弁33を開閉することで燃焼バーナ34の燃焼部分を切替えることと、予め定められた燃料ガス比例制御弁27の開度を調整することでの燃料ガス供給量と燃焼用ファン31の回転数を調整することでの燃焼用空気供給量との組み合わせとで調整される。   The amount of combustion in the combustion burner 34 of FIGS. 1 and 3 is calculated by calculating the required combustion load from the water temperature supplied to the heat exchanger 23 for hot water supply, the water temperature to be supplied, and the supply flow rate. By switching the combustion portion of the combustion burner 34 by opening and closing the combustion gas switching valve 33, and adjusting the opening of the fuel gas proportional control valve 27, the fuel gas supply amount and the combustion fan 31 It adjusts by the combination with the combustion air supply amount by adjusting a rotation speed.

具体的には、給湯回路のみを利用する給湯単独運転時には、給湯用熱交換器23に供給される水温は入水サーミスタ14で、供給するべき出力制御水温は給湯往きサーミスタ15で、供給流量は循環流量センサ6でそれぞれ検出され燃焼負荷を計算することができる。給湯循環回路2のみを利用する暖房運転時や風呂追い焚き運転時には、給湯用熱交換器23に供給される水温は給湯戻りサーミスタ16で、供給するべき出力制御水温は給湯往きサーミスタ15で、循環ポンプ7の駆動による供給流量は循環流量センサ6でそれぞれ検出され燃焼負荷を計算することができる。   Specifically, during a single hot water supply operation using only a hot water supply circuit, the water temperature supplied to the hot water heat exchanger 23 is the incoming water thermistor 14, the output control water temperature to be supplied is the hot water supply thermistor 15, and the supply flow rate is circulated. The combustion load detected by the flow sensor 6 can be calculated. At the time of heating operation using only the hot water supply circulation circuit 2 or bath reheating operation, the water temperature supplied to the hot water supply heat exchanger 23 is circulated by the hot water supply return thermistor 16, and the output control water temperature to be supplied is circulated by the hot water supply thermistor 15. The supply flow rate by driving the pump 7 is detected by the circulation flow rate sensor 6 and the combustion load can be calculated.

一方、給湯回路と給湯循環回路2を同時に利用する運転時には、上記の給湯回路または給湯循環回路2のどちらか一方を利用する運転時と同様に、給湯用熱交換器23の供給するべき出力制御水温は給湯往きサーミスタ15で、供給流量は循環流量センサ6でそれぞれ直接検出することができるが、給湯用熱交換器23に供給される水温は、給湯用熱交換器23の入口部にサーミスタ等の検出手段を設けていないため直接検出することができないので、制御手段91で次のように図1の構成の場合と図3の構成の場合とのそれぞれにおいて計算される。   On the other hand, at the time of operation using the hot water supply circuit and the hot water supply circulation circuit 2 at the same time, as in the operation using either the hot water supply circuit or the hot water supply circulation circuit 2, output control to be supplied by the hot water supply heat exchanger 23 is performed. The water temperature can be directly detected by the hot water supply thermistor 15 and the supply flow rate can be directly detected by the circulation flow sensor 6. The water temperature supplied to the hot water heat exchanger 23 can be detected at the inlet of the hot water heat exchanger 23 by a thermistor or the like. Since the detection means is not provided, it cannot be detected directly. Therefore, the control means 91 calculates in the case of the configuration of FIG. 1 and the case of the configuration of FIG. 3 as follows.

まず、図1において、給湯用熱交換器23に供給される水温をTx(℃)、循環流量センサ6で検出される出湯路3と分岐する前の給湯循環回路2を流れる流量をq(L/min)、給湯戻りサーミスタ16で検出される温水の温度をT(℃)、給湯循環回路2から分岐して出湯路3に入ってバイパス通路4を流れる水と混合される前の流量をq(L/min)、入水サーミスタ14で検出される供給水の温度をT(℃)、入水流量センサ5で検出される供給水量をq(L/min)、給水路1から分岐しバイパス通路4を流れる水量をq(L/min)とすると、給湯循環回路2と給水路1との合流点において熱量の関係から、(1)式が成り立つ。 First, in FIG. 1, the water temperature supplied to the hot water supply heat exchanger 23 is Tx (° C.), and the flow rate flowing through the hot water supply circulation circuit 2 before branching from the hot water supply passage 3 detected by the circulation flow rate sensor 6 is q 2 ( L / min), the temperature of the hot water detected by the hot water supply return thermistor T 2 (° C.), the flow rate before being mixed with the water flowing through the bypass passage 4 after branching from the hot water supply circulation circuit 2 and entering the hot water supply passage 3 Q 3 (L / min), the temperature of the feed water detected by the incoming water thermistor 14 is T 4 (° C.), the amount of supplied water detected by the incoming water flow rate sensor 5 is q 1 (L / min), Assuming that the amount of water that branches and flows through the bypass passage 4 is q 4 (L / min), equation (1) is established from the relationship of the amount of heat at the junction of the hot water supply circulation circuit 2 and the water supply passage 1.

Txq=T(q−q)+T(q−q) ・・・(1)
(1)式をTxについて解くと(2)式となる。
Txq 2 = T 2 (q 2 −q 3 ) + T 4 (q 1 −q 4 ) (1)
When equation (1) is solved for Tx, equation (2) is obtained.

Tx=((q−q)/q)T+((q−q)/q)T ・・・(2)(2)式において、qおよびqはアクチュエータ等で直接検出することができないため、qおよびqを(2)式より消去することを考える。出湯栓13から供給される出湯流量は、q+qで表現できる。また給湯循環回路2と給水路1との合流点において流量の関係から、(3)式が成り立つ。 Tx = ((q 2 −q 3 ) / q 2 ) T 2 + ((q 1 −q 4 ) / q 2 ) T 4 (2) In equation (2), q 3 and q 4 are actuators Since it cannot be directly detected by the above, it is considered that q 3 and q 4 are deleted from the equation (2). The hot water flow rate supplied from the hot water tap 13 can be expressed as q 3 + q 4 . Further, the equation (3) is established from the relationship of the flow rate at the junction of the hot water supply circulation circuit 2 and the water supply channel 1.

=(q−q)+(q−q) ・・・(3)
(3)式の両辺よりqを消去すると、(4)式に同じとなる。
q 2 = (q 2 −q 3 ) + (q 1 −q 4 ) (3)
If q 2 is eliminated from both sides of the equation (3), the result becomes the same as the equation (4).

+q=q ・・・(4)
すなわち、出湯栓13から供給される出湯流量は、入水流量センサ5で検出される供給水量qと同じである。一方出湯路3とバイパス通路4との合流点において熱量の関係から、出湯サーミスタ17で検出される出湯栓13から供給される湯の温度をTとすると、(5)式が成り立つ。
q 3 + q 4 = q 1 (4)
That is, the hot water flow rate supplied from the hot water tap 13 is the same as the supplied water amount q 1 detected by the incoming water flow rate sensor 5. Whereas the relationship between the amount of heat in the junction of the pouring passage 3 and the bypass passage 4, when the temperature of the hot water supplied from the hot water tap 13 detected by the hot water thermistor 17 and T 3, (5) expression holds.

=T+T ・・・(5)
(4)式と(5)式より、qおよびqについて解くと、qおよびqはそれぞれ(6)式および(7)式で表される。
T 3 q 1 = T 2 q 3 + T 4 q 4 (5)
From the equations (4) and (5), when q 3 and q 4 are solved, q 3 and q 4 are expressed by equations (6) and (7), respectively.

=((T−T)/(T−T))q ・・・(6)
=((T−T)/(T−T))q ・・・(7)
(6)式および(7)式を(2)式に代入すると、給湯用熱交換器23に供給される水温
をTxは(8)式で表される。
q 3 = ((T 3 −T 4 ) / (T 2 −T 4 )) q 1 (6)
q 4 = ((T 2 −T 3 ) / (T 2 −T 4 )) q 1 (7)
When the equations (6) and (7) are substituted into the equation (2), the water temperature supplied to the hot water supply heat exchanger 23 is expressed by the equation (8).

Tx=T−(T−T)q/q ・・・(8)
次に図3において、給湯用熱交換器23に供給される水温をTx(℃)、循環流量センサ6で検出される出湯路3と分岐した後の給湯循環回路2を流れる流量をq(L/min)、給湯戻りサーミスタ16で検出される温水の温度をT(℃)、給湯循環回路2から分岐して出湯路3に入ってバイパス通路4を流れる水と混合される前の流量をq(L/min)、入水サーミスタ14で検出される供給水の温度をT(℃)、入水流量センサ5で検出される供給水量をq(L/min)、給水路1から分岐しバイパス通路4を流れる水量をq(L/min)とすると、給湯循環回路2と給水路1との合流点において熱量の関係から、(9)式が成り立つ。
Tx = T 2 − (T 3 −T 4 ) q 1 / q 2 (8)
Next, in FIG. 3, the water temperature supplied to the hot water supply heat exchanger 23 is Tx (° C.), and the flow rate flowing through the hot water supply circulation circuit 2 after branching from the hot water supply passage 3 detected by the circulation flow rate sensor 6 is q 2 ( L / min), the temperature of the hot water detected by the hot water supply return thermistor T 2 (° C.), the flow rate before being mixed with the water flowing through the bypass passage 4 after branching from the hot water supply circulation circuit 2 and entering the hot water supply passage 3 Q 3 (L / min), the temperature of the feed water detected by the incoming water thermistor 14 is T 4 (° C.), the amount of supplied water detected by the incoming water flow rate sensor 5 is q 1 (L / min), Assuming that the amount of water that branches and flows through the bypass passage 4 is q 4 (L / min), Equation (9) is established from the relationship of the amount of heat at the junction of the hot water supply circulation circuit 2 and the water supply passage 1.

Tx(q+q)=T+T(q−q) ・・・(9)
(9)式をTxについて解くと(10)式となる。
Tx (q 2 + q 3 ) = T 2 q 2 + T 4 (q 1 −q 4 ) (9)
When equation (9) is solved for Tx, equation (10) is obtained.

Tx=(q/(q+q))T+((q−q)/(q+q))T ・・・(10)
(10)式において、qおよびqはアクチュエータ等で直接検出することができないため、qおよびqを(10)式より消去することを考える。図3の場合においても(4)式は成立し、出湯路3とバイパス通路4との合流点において熱量の関係から、出湯サーミスタ17で検出される出湯栓13から供給される湯の温度をT、給湯往きサーミスタ15で検出される温度をTとすると、(11)式が成り立つ。
Tx = (q 2 / (q 2 + q 3)) T 2 + ((q 1 -q 4) / (q 2 + q 3)) T 4 ··· (10)
In equation (10), q 3 and q 4 cannot be directly detected by an actuator or the like, and therefore, q 3 and q 4 are considered to be deleted from equation (10). In the case of FIG. 3 as well, the formula (4) is established, and the temperature of hot water supplied from the hot water tap 13 detected by the hot water thermistor 17 is determined from the relationship between the amount of heat at the junction of the hot water passage 3 and the bypass passage 4 with T 3, when the temperature detected by the hot water forward thermistor 15 and T 1, (11) equation is established.

=T+T ・・・(11)
(4)式および(11)式よりqおよびqについて解くと、qおよびqはそれぞれ(12)式および(13)式で表される。
T 3 q 1 = T 1 q 3 + T 4 q 4 (11)
When q 3 and q 4 are solved from the equations (4) and (11), q 3 and q 4 are expressed by the equations (12) and (13), respectively.

=((T−T)/(T−T))q ・・・(12)
=((T−T)/(T−T))q ・・・(13)
(12)式および(13)式を(10)式に代入すると、給湯用熱交換器23に供給される水温をTxは(14)式で表される。
q 3 = ((T 3 −T 4 ) / (T 1 −T 4 )) q 1 (12)
q 4 = ((T 1 −T 3 ) / (T 1 −T 4 )) q 1 (13)
When the equations (12) and (13) are substituted into the equation (10), the water temperature supplied to the hot water supply heat exchanger 23 is expressed by the equation (14).

Tx=(1/(1+A))T+(A/(1+A))T ・・・(14)
ただし(14)式においてAは(15)式である。
Tx = (1 / (1 + A)) T 2 + (A / (1 + A)) T 4 (14)
However, in Formula (14), A is Formula (15).

A=(q/q)((T−T)/(T−T)) ・・・(15)
このように、制御手段91は図1の構成においては(8)式に、図3の構成においては(14)式に基づいて給湯用熱交換器23に供給される水温を計算することができる。
A = (q 1 / q 2 ) ((T 3 -T 4) / (T 1 -T 4)) ··· (15)
Thus, the control means 91 can calculate the water temperature supplied to the hot water supply heat exchanger 23 based on the equation (8) in the configuration of FIG. 1 and on the basis of the equation (14) in the configuration of FIG. .

以上、給湯回路を用いる運転として給湯単独運転の動作について、給湯循環回路2を用いる運転として暖房運転および風呂追い焚き運転の動作について、給湯回路と給湯循環回路2を同時に用いる運転の場合の動作についてそれぞれ説明したが、最後に図1または図3において、出湯路3のバイパス通路4の下流部から分岐した注湯流路61から、風呂回路62を経て浴槽69へ所定温度と所定湯量のお湯はりを行う風呂お湯はり運転の動作について説明する。   As described above, the operation using the hot water supply circuit as the operation using the hot water supply circuit, the operation using the hot water supply circulation circuit 2 as the operation using the hot water supply circulation circuit 2, and the operation using the hot water supply circuit and the hot water supply circulation circuit 2 simultaneously. Lastly, in FIG. 1 or FIG. 3, hot water of a predetermined temperature and a predetermined amount of hot water is supplied from the pouring channel 61 branched from the downstream portion of the bypass passage 4 of the hot water passage 3 to the bathtub 69 through the bath circuit 62. The operation of the hot water bath operation will be described.

風呂お湯はり運転は、給湯回路から分岐した注湯流路61を利用する動作であるので基本的には前記給湯単独運転の動作と同様であり、注湯流路61を用いる風呂お湯はり運転を単独に行うことも、出湯栓13から湯を供給しながらお湯はり運転を同時に行うことができる。ただし、出湯栓13から湯を供給しながらお湯はり運転を同時に行う場合の給湯
温度は、風呂お湯はり温度を実現する出湯サーミスタ17で検出される温度が優先となり、出湯栓13からはこの時の温度の湯が供給される。
The bath hot water operation is an operation using the pouring channel 61 branched from the hot water supply circuit, and is basically the same as the operation of the hot water single operation, and the bath hot water operation using the pouring channel 61 is performed. It is also possible to carry out hot water operation simultaneously while supplying hot water from the tap 13. However, the temperature detected by the hot water thermistor 17 that realizes the bath hot water temperature has priority over the hot water supply operation when hot water operation is performed simultaneously with hot water being supplied from the hot water tap 13, and from the hot water tap 13, Temperature hot water is supplied.

また、給湯循環回路2を用いる暖房運転を行いながらの風呂お湯はり運転動作も可能である。以下図1の構成に対応させて風呂お湯はり運転の動作について説明する。   In addition, a hot water bath operation can be performed while performing a heating operation using the hot water supply circulation circuit 2. The operation of the bath hot water operation will be described below corresponding to the configuration of FIG.

図4は図1の構成において風呂お湯はり運転を単独に行う場合の、温水や水の流れを図中の矢印で示したものである。浴室用リモートコントローラ92で使用者が所定温度と所定湯量を設定して風呂お湯はり運転の指示を行うと、制御手段91は注湯流路61に設けられた注湯弁77を開とし、前記の給湯回路を用いる給湯運転と同様な動作制御を行う。注湯流路61から風呂回路62に供給された湯は、一方は風呂戻り流路64、風呂戻り配管66、風呂循環アダプタ67を通って浴槽69へと、もう一方は風呂用熱交換器26の二次側流路である風呂回路62、風呂往き流路63、風呂往き配管65、風呂循環アダプタ67を通って浴槽69へと二方向から供給される。   FIG. 4 shows the flow of hot water or water with arrows in the figure when the bath / hot water operation is independently performed in the configuration of FIG. When the user sets a predetermined temperature and a predetermined amount of hot water using the bathroom remote controller 92 and instructs bath hot water operation, the control means 91 opens the pouring valve 77 provided in the pouring channel 61, and The same operation control as the hot water supply operation using the hot water supply circuit is performed. One of the hot water supplied from the pouring channel 61 to the bath circuit 62 passes through the bath return channel 64, the bath return pipe 66, and the bath circulation adapter 67 to the bathtub 69, and the other is the bath heat exchanger 26. Are supplied to the bathtub 69 from two directions through the bath circuit 62, the bath outlet channel 63, the bath outlet pipe 65, and the bath circulation adapter 67.

浴槽69へ供給される所定温度は、風呂戻り流路64を経由し風呂戻りサーミスタ83で検出される温度の湯と、風呂往き流路63を経由し風呂用熱交換器26で熱交換された風呂往きサーミスタ82で検出される湯とが混合して実現される。ここで、風呂戻りサーミスタ83で検出される温度は、出湯サーミスタ17で検出され注湯流路61に供給される湯の温度と同じである。   The predetermined temperature supplied to the bathtub 69 was heat-exchanged with the hot water detected by the bath return thermistor 83 via the bath return channel 64 and the bath heat exchanger 26 via the bath return channel 63. This is realized by mixing with hot water detected by the bathing thermistor 82. Here, the temperature detected by the bath return thermistor 83 is the same as the temperature of the hot water detected by the hot water thermistor 17 and supplied to the pouring channel 61.

また、風呂用熱交換器26の一次側流路である給湯循環回路2を通った高温湯が分岐して出湯路3に流れるため、風呂往き流路63を通過する注湯流路61から供給された湯は風呂用熱交換器26の二次側流路を流れる際に加熱される。したがって制御手段91は、浴槽水68の温度が設定された所定温度となるように出湯サーミスタ17での湯温制御を行うことが必要である。   Moreover, since the hot water that has passed through the hot water supply circulation circuit 2 that is the primary flow path of the bath heat exchanger 26 diverges and flows to the hot water discharge path 3, the hot water is supplied from the pouring flow path 61 that passes through the bath flow path 63. The hot water thus heated is heated when it flows through the secondary flow path of the bath heat exchanger 26. Therefore, the control means 91 needs to perform the hot water temperature control in the hot water thermistor 17 so that the temperature of the bathtub water 68 becomes the predetermined temperature set.

図4において、注湯流量センサ73で検出される流量をq(L/min)、風呂往き流路63を経由する流量割合をα、設定された注湯されるべき所定温度をT(℃)、風呂往きサーミスタ82で検出される温度をT(℃)、湯温制御するべき出湯サーミスタ17での検出温度をT(℃)とすると、風呂往き流路63側と風呂戻り流路64側から注湯される湯の熱量の関係から(16)式が成り立つ。 In FIG. 4, the flow rate detected by the pouring flow rate sensor 73 is q 5 (L / min), the flow rate rate passing through the bath flow path 63 is α, and the set predetermined temperature to be poured is T 6 ( ° C.), the temperature of T 5 (° C. detected by the bath forward thermistor 82), when the temperature detected by the hot water thermistor 17 to control the hot water temperature and T 3 (° C.), bath outward flow path 63 side and the bath return flow Equation (16) holds from the relationship between the amount of hot water poured from the path 64 side.

=Tαq+T(1−α)q ・・・(16)
(16)式をαについて解くと(17)式となる。
T 6 q 5 = T 5 αq 5 + T 3 (1-α) q 5 (16)
When the equation (16) is solved for α, the equation (17) is obtained.

α=(T−T)/(T−T) ・・・(17)
(17)式においてTは設定された所定温度として既知であり、Tは風呂往きサーミスタ82で直接検出することが可能である。
α = (T 6 −T 3 ) / (T 5 −T 3 ) (17)
In the equation (17), T 6 is known as the set predetermined temperature, and T 5 can be directly detected by the bathing thermistor 82.

一方、給湯往きサーミスタ15で検出される温度をT(℃)、給湯戻りサーミスタ16で検出される温水の温度をT(℃)、循環流量センサ6で検出される出湯路3と分岐する前の給湯循環回路2を流れる流量をq(L/min)とすると、利用側熱交換器24での熱交換の関係から(18)式が成り立つ。 On the other hand, the temperature detected by the hot water supply thermistor 15 is T 1 (° C.), the temperature of hot water detected by the hot water return thermistor 16 is T 2 (° C.), and the hot water supply path 3 detected by the circulation flow sensor 6 branches off. Assuming that the flow rate flowing through the previous hot water supply circulation circuit 2 is q 2 (L / min), the equation (18) is established from the relationship of heat exchange in the use side heat exchanger 24.

(暖房用熱交換器25の二次側流路(暖房回路42)の受熱量)
+(風呂用熱交換器26の二次側流路(風呂回路62)の受熱量)
=(利用側熱交換器24の一次側流路(給湯循環回路2)の供給熱量) ・・・(18)暖房用熱交換器25を利用する暖房運転を行わず風呂お湯はり運転のみを単独に行う場合においては(18)式の左辺第1項をゼロとすることができ、(19)式のようになる。
(The amount of heat received by the secondary flow path (heating circuit 42) of the heat exchanger 25 for heating)
+ (Amount of heat received by the secondary side flow path (bath circuit 62) of the heat exchanger 26 for bath)
= (Supply heat amount of the primary side flow path (hot water supply circulation circuit 2) of the use side heat exchanger 24) (18) Only the bath hot water operation is performed without performing the heating operation using the heating heat exchanger 25. In the case of (1), the first term on the left side of the equation (18) can be set to zero, and the equation (19) is obtained.

αq(T−T)=q(T−T) ・・・(19)
(19)式をαについて解くと、αは(20)式で表現できる。
αq 5 (T 5 -T 3 ) = q 2 (T 1 -T 2 ) (19)
When equation (19) is solved for α, α can be expressed by equation (20).

α=(q/q)((T−T)/(T−T)) ・・・(20)
(17)式と(20)式よりαを消去してTについて解くと、湯温制御するべき出湯サーミスタ17での検出温度Tは(21)式で表される。
α = (q 2 / q 5 ) ((T 1 −T 2 ) / (T 5 −T 3 )) (20)
(17) and (20) and solving for T 3 to erase from α-type, the detected temperature T 3 in the tapping thermistor 17 to control the hot water temperature is expressed by equation (21).

=T−(q/q)(T−T) ・・・(21)
(21)式にしたがって風呂お湯はり運転のみを単独に行う場合、制御手段91は、設定された浴槽69に注湯するべき所定温度T、循環流量センサ6で検出される流量q(L/min)、注湯流量センサ73で検出される流量q(L/min)、給湯往きサーミスタ15で検出される温度T、給湯戻りサーミスタ16で検出される温水の温度T(℃)を検出しながら、湯温制御するべき出湯サーミスタ17の目標制御温度Tを決定することができる。
T 3 = T 6 − (q 2 / q 5 ) (T 1 −T 2 ) (21)
When performing only the bath hot water operation according to the equation (21), the control means 91 uses the predetermined temperature T 6 to be poured into the set bathtub 69, the flow rate q 2 (L / Min), the flow rate q 5 (L / min) detected by the pouring flow sensor 73, the temperature T 1 detected by the hot water supply thermistor 15, and the hot water temperature T 2 (° C.) detected by the hot water return thermistor 16. while detecting the can determine a target control temperature T 3 of the hot water thermistor 17 to control the hot water temperature.

注湯流量センサ73で検出される流量q(L/min)を積算して所定湯量の注湯動作が終了すると、制御手段91は前記風呂追い焚き運転と同様な動作制御を行い、風呂戻りサーミスタ83で検出される温度、すなわち注湯された浴槽水68の温度が設定された所定温度となっているかどうか確認する。注湯動作に時間がかかるため浴槽69に注湯された浴槽水68が冷めてしまった場合などは、そのまま風呂追い焚き運転を行い設定された所定温度となるまで沸き上げ動作を継続する。 When the flow rate q 5 (L / min) detected by the pouring flow rate sensor 73 is integrated and the pouring operation of a predetermined amount of hot water is completed, the control means 91 performs the same operation control as the bath reheating operation and returns to the bath. It is confirmed whether the temperature detected by the thermistor 83, that is, the temperature of the poured bath water 68 is a predetermined temperature. If the bath water 68 poured into the tub 69 has cooled down due to the time required for the pouring operation, the bath pouring operation is continued and the boiling operation is continued until the set temperature is reached.

以上のように風呂お湯はり運転を単独に行う場合は、制御手段91は(21)式に基づき出湯サーミスタ17の湯温制御を行えば良いが、利用側熱交換器24を用いる暖房運転と風呂お湯はり運転を同時に行う場合には(18)式の左辺第1項をゼロとすることができないため、(21)式に基づく出湯サーミスタ17での湯温制御を行うことができない。   When the bath hot water operation is performed independently as described above, the control means 91 may control the hot water temperature of the hot water thermistor 17 based on the equation (21), but the heating operation using the use side heat exchanger 24 and the bath When the hot water operation is performed simultaneously, the first term on the left side of the equation (18) cannot be made zero, so that the hot water temperature control in the hot water thermistor 17 based on the equation (21) cannot be performed.

そこで、機器設置時に行う試運転時に風呂お湯はり運転を単独に行い、湯温制御するべき出湯サーミスタで検出される温度TをTとして(17)式に代入することで計算されるαをαとして学習し、利用側熱交換器24を用いる暖房運転と風呂お湯はり運転を同時に行う場合には、αを(17)式に代入して計算される(23)式で表されるTに従って制御手段91は出湯サーミスタ17での湯温制御を行う。すなわち、試運転時に風呂お湯はり運転を単独に行い(22)式のようにαを学習する。 Therefore, the bath hot water beam operation is performed independently during the trial operation performed at the time of equipment installation, and α calculated by substituting the temperature T 3 detected by the hot water thermistor for hot water temperature control into T 7 as T 7 is expressed as α 1 and when performing the heating operation using the use side heat exchanger 24 and the hot water bath operation at the same time, α 1 is substituted into the equation (17) and calculated by the equation (23). 3 , the control means 91 controls the hot water temperature in the hot water thermistor 17. That is, the bath / hot water operation is performed independently during the trial operation, and α 1 is learned as shown in equation (22).

α=(T−T)/(T−T) ・・・(22)
(22)式のαを(17)式のαに代入し、Tについて解くことで利用側熱交換器24を用いる暖房運転と同時に風呂お湯はり運転を行う場合の出湯サーミスタ17で湯温制御するべきTを決定する。
α 1 = (T 6 −T 7 ) / (T 5 −T 7 ) (22)
By substituting α 1 in equation (22) for α in equation (17) and solving for T 3 , the hot water temperature is increased by the hot water thermistor 17 when performing bath hot water operation simultaneously with the heating operation using the use side heat exchanger 24. determining the T 3 to be controlled.

=(T−α)/(1−α) ・・・(23)
一方、浴槽69へ供給される所定湯量は、注湯流路61に設けられた入水流量センサ5や循環流量センサ6と同様な構造である注湯流量センサ73で検出される注湯流量を積算することで求めることができる。浴槽69に浴槽水68が残り湯として存在する状態から風呂お湯はり運転を行う場合、設定された所定温度の湯量に対して残りあと、どれだけの湯量を注湯するのかをまず計算する必要がある。
T 3 = (T 6 −α 1 T 5 ) / (1−α 1 ) (23)
On the other hand, the predetermined amount of hot water supplied to the bathtub 69 is obtained by integrating the pouring flow rate detected by the pouring flow rate sensor 73 having the same structure as the incoming water flow rate sensor 5 and the circulating flow rate sensor 6 provided in the pouring channel 61. You can ask for it. When bath hot water operation is performed from a state in which the bathtub water 68 is present in the bathtub 69 as the remaining hot water, it is necessary to first calculate how much hot water is to be poured after remaining with respect to the predetermined amount of hot water. is there.

図1や図3の構成の場合においては、風呂循環アダプタ67を通して浴槽水68の水位に対応した水圧を検出する水位センサ(図示せず)を有する水位式の方式ではなく、設定
された所定湯量を注湯流量センサ73で注湯する水量式であって、浴槽水68が残り湯として存在していても直接その存在を検出することができない。なお、前記水位センサは通常風呂戻り流路64に設けられる。
In the case of the configuration of FIG. 1 or FIG. 3, not a water level system having a water level sensor (not shown) that detects the water pressure corresponding to the water level of the bathtub water 68 through the bath circulation adapter 67, but a predetermined amount of hot water set. The amount of water is poured by the pouring flow rate sensor 73, and even if the bathtub water 68 exists as the remaining hot water, its presence cannot be detected directly. The water level sensor is usually provided in the bath return channel 64.

図1や図3の水量式の構成における残り湯を計算する方法として、機器設置時に行う試運転時に風呂追い焚き運転を行って風呂回路62の循環流量q(L/min)を学習し、風呂お湯はり運転時に残り湯が存在すると判断された場合には、まず風呂追い焚き運転を行いながら学習した風呂回路62の循環流量q(L/min)を基に残り湯の湯量を計算する残湯演算を行う。以下、試運転時に風呂回路62の循環流量q(L/min)を学習する方法、風呂お湯はり運転時に行う残湯演算の方法について説明する。 As a method of calculating the remaining hot water in the configuration of the water quantity formula of FIG. 1 and FIG. 3, the recirculation flow q 6 (L / min) of the bath circuit 62 is learned by performing a bath rebirth operation during a trial operation performed at the time of equipment installation. If it is determined that there is remaining hot water during hot water operation, the remaining hot water is calculated based on the circulation flow rate q 6 (L / min) of the bath circuit 62 learned while performing the bath chasing operation. Perform hot water calculation. Hereinafter, a method for learning the circulation flow rate q 6 (L / min) of the bath circuit 62 during the trial operation and a method for calculating the remaining hot water performed during the bath hot water operation will be described.

機器設置時には、前記のようにある所定温度と所定湯量の風呂お湯はり運転を行うことで、風呂往き流路63を経由する流量割合をαなどの学習を行う。例えば、この風呂お湯はり運転が終了した状態で、続いて風呂追い焚き運転を単独で所定時間行う。図4において、給湯往きサーミスタ15で検出される温度をT(℃)、給湯戻りサーミスタ16で検出される温水の温度をT(℃)、循環流量センサ6で検出される流量をq(L/min)、風呂往きサーミスタ82で検出される温度をT(℃)、風呂戻りサーミスタ83で検出される温度をT(℃)、風呂回路62の循環流量をq(L/min)とすると、風呂用熱交換器26における熱交換の関係より(24)式が成り立つ。 During equipment installation, by performing the bath water beam operating at a predetermined temperature and a predetermined amount of hot water in the manner described above, the flow rate passing through the bath forward channel 63 performs learning such as alpha 1. For example, the bath hot water driving operation is performed for a predetermined time alone after the bath hot water driving operation is completed. In FIG. 4, the temperature detected by the hot water supply thermistor 15 is T 1 (° C.), the temperature of hot water detected by the hot water return thermistor 16 is T 2 (° C.), and the flow rate detected by the circulating flow sensor 6 is q 2. (L / min), the temperature detected by the bath thermistor 82 is T 5 (° C.), the temperature detected by the bath return thermistor 83 is T 8 (° C.), and the circulation flow rate of the bath circuit 62 is q 6 (L / min)), the equation (24) is established from the relationship of heat exchange in the bath heat exchanger 26.

(T−T)=q(T−T) ・・・(24)
(24)式をqについて解くと、(25)式のようにqを求めることができる。
q 6 (T 5 −T 8 ) = q 2 (T 1 −T 2 ) (24)
When equation (24) is solved for q 6 , q 6 can be obtained as in equation (25).

=q(T−T)/(T−T) ・・・(25)
をより精度良く学習するために、例えば、試運転時に風呂追い焚き運転を単独で所定時間(例えば3分間)行い、その間に所定時間間隔(例えば10秒間)に所定個数m(例えば18個)のqを計算し、それらの平均値で風呂回路62の循環流量qを決定する。すなわち、
=(1/m)Σq(i) ・・・(26)
ただし(26)式において、q(i)はi番目に計算された循環流量を示す。
q 6 = q 2 (T 1 -T 2 ) / (T 5 -T 8 ) (25)
In order to learn q 6 with higher accuracy, for example, a bath chasing operation is performed independently for a predetermined time (for example, 3 minutes) during the test operation, and a predetermined number m (for example, 18) is performed at predetermined time intervals (for example, 10 seconds) during that time. Q 6 is calculated, and the circulation flow rate q 6 of the bath circuit 62 is determined by the average value thereof. That is,
q 6 = (1 / m) Σq 6 (i) (26)
However, in the equation (26), q 6 (i) indicates the i-th calculated circulation flow rate.

以上のようにして試運転時に学習されたqを用いて、風呂お湯はり運転時に行う残湯演算の方法について以下説明する。 A method of calculating remaining hot water performed during bath hot water operation using q 6 learned during the trial operation as described above will be described below.

風呂お湯はり運転を開始する際、制御手段91は、まず風呂ポンプ75を駆動させる。その際、水流スイッチ76が所定時間(例えば90秒)連続してOFFした場合、または水流スイッチ76が所定時間(例えば90秒)ON/OFFを繰り返した場合には、制御手段91は浴槽69に残り湯がないと判断し、使用者が設定した所定湯量の湯を注湯流量センサ73で積算して風呂お湯はり運転を行う。   When the bath hot water operation is started, the controller 91 first drives the bath pump 75. At that time, when the water flow switch 76 is continuously turned OFF for a predetermined time (for example, 90 seconds), or when the water flow switch 76 is repeatedly turned ON / OFF for a predetermined time (for example, 90 seconds), the control means 91 is switched to the bathtub 69. It is determined that there is no remaining hot water, and a predetermined amount of hot water set by the user is integrated by the pouring flow rate sensor 73 to perform bath hot water operation.

水流スイッチ76が所定時間(例えば90秒)連続してONした場合、制御手段91は浴槽69に残り湯があると判断し、そのまま風呂戻りサーミスタ83で検出される温度が所定温度ΔT(℃)(
ここでΔは一般的に呼ばれている「デルタ」の文字として使用し、以下同じように使用する)上昇するまで風呂追い焚き運転を行う。風呂戻りサーミスタ83で検出される温度が所定温度ΔT(℃)上昇するまでの時間をΔt(min)、風呂用熱交換器26の二次側流路である風呂回路62での受熱量を計算する時間間隔をΔτ(min)とすると、受熱量を計算する合計回数は|Δt/Δτ|である。
When the water flow switch 76 is continuously turned on for a predetermined time (for example, 90 seconds), the control means 91 determines that there is remaining hot water in the bathtub 69, and the temperature detected by the bath return thermistor 83 is the predetermined temperature ΔT (° C.). (
Here, Δ is used as a commonly called “delta” character and is used in the same manner below). The time until the temperature detected by the bath return thermistor 83 rises by a predetermined temperature ΔT (° C.) is calculated by Δt (min), and the amount of heat received by the bath circuit 62 that is the secondary side flow path of the bath heat exchanger 26 is calculated. If the time interval to perform is Δτ (min), the total number of times of calculating the amount of heat received is | Δt / Δτ |.

ただし|Δt/Δτ|はΔt/Δτの整数部分を表す。浴槽69の残り湯をQ(L)、
試運転時に学習した循環流量をq(L/min)、受熱量をj番目に計算する際の風呂往きサーミスタ82で検出される温度をT(j)(℃)、受熱量をj番目に計算する際の風呂戻りサーミスタ83で検出される温度をT(j)(℃)とすると、残り湯Q(L)がΔT(℃)温度上昇して受熱した熱量の関係から(27)式が成り立つ。
However, | Δt / Δτ | represents an integer part of Δt / Δτ. Q (L) for remaining hot water in bathtub 69
The circulation flow rate learned during the trial operation is q 6 (L / min), the temperature detected by the bathing thermistor 82 when calculating the heat reception amount jth is T 5 (j) (° C.), and the heat reception amount jth Assuming that the temperature detected by the bath return thermistor 83 at the time of calculation is T 8 (j) (° C.), the remaining hot water Q (L) rises in temperature by ΔT (° C.), and the relationship between the amount of heat received and the equation (27) Holds.

QΔT=Σ(q(T(j)−T(j))Δτ) ・・・(27)
ただし(27)式における右辺は自然数jについての和であり、
j=1、・・・、|Δt/Δτ|
である。(27)式をQについて解くと、浴槽69の残湯量Q(L)は、(28)式で求めることができる。
QΔT = Σ (q 6 (T 5 (j) −T 8 (j)) Δτ) (27)
However, the right side in equation (27) is the sum of natural numbers j,
j = 1,..., | Δt / Δτ |
It is. Solving the equation (27) for Q, the remaining hot water amount Q (L) of the bathtub 69 can be obtained by the equation (28).

Q={Σ(q(T(j)−T(j))Δτ)}/ΔT ・・・(28)
残湯量Q(L)が求まれば、制御手段91は使用者が設定した所定湯量に対してQ(L)を引いた残りの湯量を注湯流量センサ73で積算して浴槽69に注湯することができる。
Q = {Σ (q 6 (T 5 (j) −T 8 (j)) Δτ)} / ΔT (28)
When the remaining hot water amount Q (L) is obtained, the control means 91 adds the remaining hot water amount obtained by subtracting Q (L) from the predetermined hot water amount set by the user by the pouring flow rate sensor 73, and pours water into the bathtub 69. can do.

以上のように、図4における構成において、風呂戻り流路64と風呂往き流路63の二方向から浴槽69に所定温度の湯を注湯する際、風呂用熱交換器26の二次側流路を経由するため風呂往き流路63側から注湯される湯は加熱されるため、最終的に注湯された浴槽水68の温度を使用者が設定した温度となるよう、出湯サーミスタ17での湯温制御するべき温度を決定する必要があるが、風呂お湯はり運転を単独に行う場合には、制御手段91は(21)式に基づいて出湯サーミスタ17での制御温度を決定することができる。   As described above, in the configuration in FIG. 4, when hot water of a predetermined temperature is poured into the bathtub 69 from the two directions of the bath return channel 64 and the bath outlet channel 63, the secondary side flow of the bath heat exchanger 26. Since the hot water poured from the bath going flow path 63 side through the path is heated, the tapping water thermistor 17 adjusts the temperature of the finally poured bath water 68 to the temperature set by the user. It is necessary to determine the temperature at which the hot water temperature should be controlled, but when performing bath hot water operation alone, the control means 91 may determine the control temperature in the hot water thermistor 17 based on the equation (21). it can.

また、利用側熱交換器24を用いる運転として暖房運転を行いながら風呂お湯はり運転を行う場合には、風呂往き流路63中に設けた風呂往きサーミスタ82で検出される温度と、機器設置時に行う試運転時に学習した風呂往き流路63を経由する流量割合αを用いて、(23)式に基づいて出湯サーミスタ17での制御温度を決定することができる。 In addition, when performing a hot water bath operation while performing a heating operation as an operation using the use-side heat exchanger 24, the temperature detected by the bathing thermistor 82 provided in the bathing flow path 63, and when the device is installed with a flow rate ratio alpha 1 passing through the bath forward passage 63 which has been learned during the commissioning performed, it can determine the control temperature at tapping thermistor 17 on the basis of the equation (23).

(実施の形態2)
図5は、本発明の第7の実施の形態における給湯装置の構成、および風呂お湯はり運転を単独に行う場合の温水や水の流れを示した図であり、温水や水の流れは図5中の矢印で示している。なお、図5は図1や図4の場合に対応させて、出湯路3の給湯循環回路2からの分岐部を複数の熱出力機能を単一ユニットとして形成された利用側熱交換器24の下流側に配置させた構成で示しているが、図3の場合に対応させて出湯路3を利用側熱交換器24の上流側から分岐させても本実施の形態2で述べる効果および作用は同様である。
(Embodiment 2)
FIG. 5 is a diagram showing the configuration of the hot water supply apparatus according to the seventh embodiment of the present invention and the flow of hot water and water when performing bath hot water operation alone. The flow of hot water and water is shown in FIG. This is indicated by the arrow inside. 5 corresponds to the case of FIG. 1 and FIG. 4, the branching portion from the hot water supply circulation circuit 2 of the hot water supply passage 3 of the use side heat exchanger 24 formed with a plurality of heat output functions as a single unit. Although shown in the configuration arranged on the downstream side, the effects and operations described in the second embodiment are not affected even if the outlet water passage 3 is branched from the upstream side of the use side heat exchanger 24 in correspondence with the case of FIG. It is the same.

図5に示す本実施の形態において、図1または図3に示す実施の形態1の給湯装置と異なるところは、注湯流路61と風呂回路62の合流部から風呂用熱交換器26を通過して風呂往き流路63に至る風呂回路62中に、流路開閉を行う流路開閉手段84を設けたところで、それ以外の同一構成並びに同一作用効果を奏するところには同一符号を付して詳細な説明を略し、異なるところを中心に説明する。   In the present embodiment shown in FIG. 5, the difference from the hot water supply apparatus of the first embodiment shown in FIG. 1 or 3 is that it passes through the bath heat exchanger 26 from the junction of the pouring channel 61 and the bath circuit 62. In the bath circuit 62 leading to the bath going-out flow path 63, the flow path opening / closing means 84 for opening and closing the flow path is provided, and the other parts having the same configuration and the same function and effect are denoted by the same reference numerals. Detailed explanation will be omitted, and different points will be mainly described.

特に、図5では前記流路開閉手段84を注湯流路61と風呂回路62の合流部から風呂用熱交換器26の入口部までの風呂回路62中に設けた構成として示している。風呂用熱交換器26の下流の風呂往き流路63では熱交換された後の湯が流れるため、風呂用熱交換器26の入口部までに流路開閉手段84を設けることで、流路開閉手段84は熱交換される前の温水にさらされることとなり、熱的なストレスを軽減させることができる。ここで流路開閉手段84は例えば注湯弁77と同様な電磁弁の構造である。   In particular, in FIG. 5, the flow path opening / closing means 84 is shown as being provided in the bath circuit 62 from the junction of the pouring flow path 61 and the bath circuit 62 to the entrance of the bath heat exchanger 26. Since the hot water after the heat exchange flows in the bath going flow path 63 downstream of the bath heat exchanger 26, the flow path opening / closing means 84 is provided up to the entrance of the bath heat exchanger 26, thereby opening and closing the flow path. The means 84 is exposed to warm water before heat exchange, and thermal stress can be reduced. Here, the channel opening / closing means 84 has a solenoid valve structure similar to the pouring valve 77, for example.

実施の形態1の給湯装置では図4を用いながら、風呂お湯はり運転時の動作制御の方法について述べた。図1または図4に示す給湯装置の構成上、浴槽69へ供給される湯の温
度は、風呂戻り流路64を通過し風呂戻りサーミスタ83で検出される湯の温度と、風呂用熱交換器26で熱交換され風呂往き流路63を通過し風呂往きサーミスタ82で検出される湯の温度とが混合したものとなる。
In the hot water supply apparatus according to the first embodiment, the operation control method during bath hot water operation has been described with reference to FIG. Due to the configuration of the hot water supply apparatus shown in FIG. 1 or FIG. 4, the temperature of the hot water supplied to the bathtub 69 is the temperature of the hot water that passes through the bath return channel 64 and is detected by the bath return thermistor 83, and the bath heat exchanger. The temperature of the hot water detected by the bathing thermistor 82 after passing through the bathing flow path 63 after being heat-exchanged at 26 is mixed.

したがって、浴槽69に供給された湯の温度を、使用者が設定した所定温度とするために、制御手段91は、風呂お湯はり運転を単独に行う場合には、(21)式に基づき出湯サーミスタ17の湯温制御を行い、暖房運転と風呂お湯はり運転を同時に行う場合には、試運転時に学習したαを用いて(23)式に基づき出湯サーミスタ17の湯温制御を行うことが必要であった。 Therefore, in order to set the temperature of the hot water supplied to the bathtub 69 to a predetermined temperature set by the user, the control means 91 performs the hot water thermistor based on the equation (21) when performing the bath hot water operation alone. When the hot water temperature control of 17 is performed and the heating operation and the hot water bath operation are performed simultaneously, it is necessary to control the hot water temperature of the hot water thermistor 17 based on the equation (23) using α 1 learned during the trial operation. there were.

なお、図3における給湯装置の構成においては、風呂お湯はり運転を単独に行う場合には、風呂往き流路63を通過する側の湯は風呂用熱交換器26で一次側流路である給湯循環回路2に水流がないため、(21)式においてq=0とでき、熱交換されないため、出湯サーミスタ17の制御温度Tは使用者が設定した所定温度Tと同じ、すなわちT=Tであるが、暖房運転と風呂お湯はり運転を同時に行う場合には、図1における給湯装置の構成と同様に風呂用熱交換器26の一次側流路である給湯循環回路2に水流が生じるため風呂往き流路63を通過する側の温水は熱交換されるため、試運転時に学習したαを用いて(23)式に基づき出湯サーミスタ17の湯温制御を行うことが必要である。 In the configuration of the hot water supply apparatus in FIG. 3, when the bath hot water operation is performed independently, the hot water passing through the bath going flow path 63 is the hot water supply that is the primary flow path in the bath heat exchanger 26. Since there is no water flow in the circulation circuit 2, q 2 = 0 in equation (21), and heat exchange is not performed, so the control temperature T 3 of the tapping thermistor 17 is the same as the predetermined temperature T 6 set by the user, that is, T 3 = T 6 , however, when the heating operation and the hot water bath operation are performed simultaneously, the water flows into the hot water supply circulation circuit 2 that is the primary flow path of the bath heat exchanger 26 as in the configuration of the hot water supply device in FIG. Therefore, it is necessary to control the hot water temperature of the hot water thermistor 17 based on the equation (23) using α 1 learned during the trial operation because the hot water passing through the bath going-out flow path 63 is subjected to heat exchange. .

本実施の形態2では、風呂お湯はり運転時の出湯サーミスタ17の湯温制御について、風呂往き流路63を通過する側の温水が風呂用熱交換器26での熱交換される影響をなくし、制御手段91が出湯サーミスタ17の制御温度を使用者が設定した所定温度となるような給湯装置の構成および動作制御を提供するものである。   In the second embodiment, with respect to the hot water temperature control of the hot water thermistor 17 during the bath hot water operation, the hot water on the side passing through the bath going-out flow path 63 is not affected by heat exchange in the bath heat exchanger 26, The control means 91 provides the configuration and operation control of the hot water supply apparatus such that the control temperature of the hot water thermistor 17 becomes a predetermined temperature set by the user.

図5において、風呂お湯はり運転を行う場合には、制御手段91はまず流路開閉手段84を閉としてから、前記の実施の形態1で述べたように風呂お湯はり運転を行う。この時注湯流路61から風呂回路62に供給される湯は、流路開閉手段84が閉となっているため風呂用熱交換器26および風呂往き流路63を通過せず、風呂戻り流路64からのみ浴槽69に供給される。   In FIG. 5, when performing the bath / hot water operation, the control means 91 first closes the flow path opening / closing means 84 and then performs the bath / hot water operation as described in the first embodiment. At this time, the hot water supplied from the pouring channel 61 to the bath circuit 62 does not pass through the bath heat exchanger 26 and the bath outlet channel 63 because the channel opening / closing means 84 is closed, and the bath return flow. Only from the path 64 is supplied to the bathtub 69.

従って、浴槽水68の温度は出湯サーミスタ17で検出される湯の温度と同じであり、制御手段91が制御するべき出湯サーミスタ17で検出されるべき湯の温度Tは、設定された注湯されるべき所定温度をTと同じとすることができる。ただし、流路開閉手段84が閉となると風呂往き流路63側から浴槽69に注湯できないため、風呂往き流路63と風呂戻り流路64の双方から注湯する場合に比べて注湯流量が減少するため風呂お湯はり時間が長くなる。 Therefore, the temperature of the bath water 68 is the same as the temperature of the hot water detected by the hot water thermistor 17, the temperature T 3 of the hot water to the control means 91 is detected by the hot water thermistor 17 to be controlled, pouring, which are set the predetermined temperature to be can be the same as T 6. However, when the channel opening / closing means 84 is closed, it is not possible to pour water into the bathtub 69 from the bath flow channel 63 side, and therefore, compared to the case where the water is poured from both the bath flow channel 63 and the bath return flow channel 64. Since the amount of water decreases, the hot water bathing time becomes longer.

図3の給湯装置の構成に対して流路開閉手段84を設ける場合には、制御手段91は風呂お湯はり運転を単独に行う場合には流路開閉手段84を開として風呂往き流路63と風呂戻り流路64の双方から注湯し、暖房運転と風呂お湯はり運転を同時に行う場合にのみ流路開閉手段84を閉として注湯させることで、可能な限り注湯流量を多くするような動作制御を行う。なお、図5に示した図1の給湯装置の構成に対して流路開閉手段84を設ける場合には、風呂お湯はり運転を単独に行う場合でも流路開閉手段84を閉とする必要がある。   When the channel opening / closing means 84 is provided in the configuration of the hot water supply apparatus of FIG. 3, the control means 91 opens the channel opening / closing means 84 and opens the bath opening channel 63 when performing bath hot water operation alone. By pouring from both of the bath return channels 64 and pouring with the channel opening / closing means 84 closed only when heating operation and bath hot water operation are performed simultaneously, the pouring flow rate is increased as much as possible. Perform motion control. When the flow path opening / closing means 84 is provided in the configuration of the hot water supply apparatus of FIG. 1 shown in FIG. 5, it is necessary to close the flow path opening / closing means 84 even when performing the bath hot water operation alone. .

図6は、本発明の第8の実施の形態における給湯装置の構成、および風呂お湯はり運転を単独に行う場合の温水や水の流れを示した図であり、温水や水の流れは図6中の矢印で示している。なお、図6は図1や図4の給湯装置の場合に対応させて、出湯路3の給湯循環回路2からの分岐部を複数の熱出力機能を単一ユニットとして形成された利用側熱交換
器24の下流側に配置させた構成で示しているが、図3の給湯装置の場合に対応させて出湯路3を利用側熱交換器24の上流側から分岐させても本実施の形態2で述べる効果および作用は同様である。
FIG. 6 is a diagram showing the configuration of the hot water supply apparatus in the eighth embodiment of the present invention and the flow of hot water and water when performing bath hot water operation alone. The flow of hot water and water is shown in FIG. This is indicated by the arrow inside. 6 corresponds to the case of the hot water supply apparatus of FIG. 1 or FIG. 4, the use side heat exchange in which the branch portion from the hot water supply circulation circuit 2 of the hot water supply passage 3 is formed as a plurality of heat output functions. Although shown by the structure arrange | positioned in the downstream of the heater 24, even if it branches the hot water supply path 3 from the upstream of the utilization side heat exchanger 24 corresponding to the case of the hot-water supply apparatus of FIG. The effects and actions described in are the same.

図6において、図1または図3の給湯装置と異なるところは、注湯流路61と風呂回路62の合流部から風呂用熱交換器26を通過して風呂往き流路63に至る風呂回路62中に、風呂用熱交換器26を迂回する風呂バイパス流路85と、風呂用熱交換器26を通過するか風呂バイパス流路85を通過するかの流路切り替えを行う風呂回路流路切替手段86とを設けたところで、それ以外の同一構成並びに同一作用効果を奏するところには同一符号を付して詳細な説明を略し、異なるところを中心に説明する。   6 differs from the hot water supply apparatus of FIG. 1 or FIG. 3 in that the bath circuit 62 extends from the junction of the pouring channel 61 and the bath circuit 62 to the bath outlet channel 63 through the bath heat exchanger 26. A bath bypass passage 85 for bypassing the bath heat exchanger 26 and a bath circuit passage switching means for switching the passage between the bath heat exchanger 26 and the bath bypass passage 85. 86, the other parts having the same configuration and the same function and effect are denoted by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

図6において、前記風呂回路流路切替手段86の流路開閉状態は白抜き状態が開となっているように表現しており、この図6の場合、注湯流路61から分岐して風呂用熱交換器26側へ流れる温水は、風呂回路62から風呂バイパス流路85を経由して風呂往き流路63に至るように流れている状態を示している。ここで、風呂回路流路切替手段86としては、内部に流路貫通部を有するボール状の弁体をステッピングモータで回転させて流路切替を行わせるような構造が考えられる。   In FIG. 6, the open / closed state of the bath circuit channel switching means 86 is expressed as an open white state, and in this case in FIG. The hot water flowing to the heat exchanger 26 side is in a state of flowing from the bath circuit 62 to the bath outlet channel 63 via the bath bypass channel 85. Here, as the bath circuit flow path switching means 86, a structure in which a flow path is switched by rotating a ball-shaped valve body having a flow path through portion with a stepping motor is conceivable.

図6において風呂お湯はり運転を行う場合には、まず制御手段91は、通常は風呂回路62から風呂用熱交換器26に流れ風呂バイパス流路85に流れない状態となっている風呂回路流路切替手段86の弁体を駆動させ、図6に示すように風呂バイパス流路85を流れるようにする。そして、前記実施の形態1で述べたように風呂お湯はり運転を行う。   In FIG. 6, when performing bath hot water operation, first, the control means 91 normally flows from the bath circuit 62 to the bath heat exchanger 26 and does not flow to the bath bypass channel 85. The valve body of the switching means 86 is driven to flow through the bath bypass channel 85 as shown in FIG. Then, as described in the first embodiment, the bath / hot water operation is performed.

この時、注湯流路61から風呂回路62に供給される湯は、一方は風呂回路62、風呂バイパス流路85、風呂往き流路63、風呂往き配管65を通過して浴槽69へ、もう一方は風呂戻り流路64、風呂戻り配管66を通過して浴槽69へ二方向から注湯が行われる。   At this time, one of the hot water supplied from the pouring channel 61 to the bath circuit 62 passes through the bath circuit 62, the bath bypass channel 85, the bath channel 63, and the bath channel 65 to the bathtub 69. One side passes through the bath return channel 64 and the bath return pipe 66, and the hot water is poured into the bathtub 69 from two directions.

なおこの時、風呂往き流路63側から注湯される湯は風呂用熱交換器26を通過しないため、浴槽水68の温度は出湯サーミスタ17で検出される湯の温度と同じであり、制御手段91が制御するべき出湯サーミスタ17で検出されるべき湯の温度Tは、設定された注湯されるべき所定温度をTと同じとすることができる。さらに、風呂往き流路63および風呂戻り流路64の二方向から浴槽69へ注湯することが可能となるため、注湯流量を十分確保することができ、風呂お湯はり運転の時間を図5で述べた給湯装置の構成よりも短縮することができる。 At this time, since the hot water poured from the bath outlet channel 63 side does not pass through the bath heat exchanger 26, the temperature of the bath water 68 is the same as the temperature of the hot water detected by the hot water thermistor 17. temperature T of the hot water to means 91 is detected by the hot water thermistor 17 to control 3 may be the same predetermined temperature to be poured, which is set to T 6. Furthermore, since it becomes possible to pour hot water into the bathtub 69 from the two directions of the bath going-out flow path 63 and the bath return flow path 64, a sufficient flow rate of pouring water can be secured, and the time of the bath hot water operation is shown in FIG. It can be shortened compared with the structure of the hot-water supply apparatus described in.

以上のように、図5に示す給湯装置での風呂回路62中に流路開閉手段84を設けた構成、または図6に示す給湯装置での風呂バイパス流路85と風呂回路流路切替手段86を設けた構成とすることで、風呂お湯はり運転時に、制御手段91は制御するべき出湯サーミスタ17で検出されるべき湯の温度Tを、設定された注湯されるべき所定温度をTと同じとすることができる。さらに、図6の給湯装置の構成では風呂往き流路63側と風呂戻り流路64側の双方から浴槽69に注湯することが可能となるため、十分な注湯流量を確保することができる。 As described above, the flow path opening / closing means 84 is provided in the bath circuit 62 in the hot water supply apparatus shown in FIG. 5, or the bath bypass flow path 85 and the bath circuit flow path switching means 86 in the hot water supply apparatus shown in FIG. in the structure provided with, at the time of bath water beam operation, the temperature T 3 of the hot water to the control unit 91 is detected by the hot water thermistor 17 to be controlled, the predetermined temperature to be poured, which is set T 6 Can be the same. Furthermore, in the configuration of the hot water supply apparatus of FIG. 6, it is possible to pour hot water into the bathtub 69 from both the bath going-out flow path 63 side and the bath return flow path 64 side, so that a sufficient pouring flow rate can be ensured. .

なお、上記実施の形態に制御手段91は、主としてマイクロコンピュータ及びその周辺回路から構成され、実施の形態1の各実施例及び実施の形態2の各実施例で説明した動作作用を実行するためのプログラムが内臓されているものである。   In the above embodiment, the control means 91 is mainly composed of a microcomputer and its peripheral circuits, and executes the operation and action described in each example of the first embodiment and each example of the second embodiment. The program is built-in.

以上のように、本発明にかかる給湯装置は、給湯用熱交換器で加熱された温水を循環す
る給湯循環回路に利用側熱交換器を設けた構成において、前記利用側熱交換器の熱出力機能を複数設ける場合、一次側である高温側温水が流れる単一の前記給湯循環回路に対して、前記利用側熱交換器の二次側の複数流路を各々並列に接続し、複数の利用側熱交換器を単一ユニットとして形成することで、本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記利用側熱交換器での放熱ロスを軽減し、二次側流路との熱交換効率向上を図ることができ、ガス、電気、ヒートポンプ式を熱源とする給湯装置に適用できる。
As described above, the hot water supply apparatus according to the present invention has a configuration in which the use side heat exchanger is provided in the hot water supply circulation circuit that circulates the hot water heated by the hot water supply heat exchanger, and the heat output of the use side heat exchanger. When providing a plurality of functions, a plurality of secondary-side flow paths of the use-side heat exchanger are connected in parallel to a single hot water supply circulation circuit through which high-temperature hot water that is the primary side flows, and a plurality of uses By forming the side heat exchanger as a single unit, it is possible to reduce the size and weight of the equipment by simplifying the main body configuration, reduce the heat dissipation loss in the use side heat exchanger, and It is possible to improve the efficiency of heat exchange with the road, and it can be applied to a hot water supply apparatus using a gas, electricity, or heat pump as a heat source.

また、複数の利用側熱交換器を単一ユニットとして形成する具体的な構成として本発明では、一次側流路と二次側流路が交互に積層されて構成されるプレート式熱交換器において、二次側流路を形成する伝熱プレートの形状を複数の熱出力機能に応じた各部屋である二次側流路を隔離するための仕切りを有する形状を提供したが、プレート式熱交換器は最近多くの熱源システムで多用化される中、本構成のようなプレート式熱交換器を熱源システム内に用いることで熱源システムの簡素化および小型化を実現することができ、ガス、電気、ヒートポンプ式を熱源とする給湯装置の利用側熱交換器に適用できる。   Further, in the present invention, as a specific configuration in which a plurality of use side heat exchangers are formed as a single unit, in a plate heat exchanger configured by alternately laminating primary side flow paths and secondary side flow paths. The shape of the heat transfer plate that forms the secondary side flow path is provided with a shape having a partition for isolating the secondary side flow path that is each room according to a plurality of heat output functions. Recently, many heat source systems are used widely, and by using a plate heat exchanger like this configuration in the heat source system, the heat source system can be simplified and miniaturized. It can be applied to a use side heat exchanger of a hot water supply apparatus using a heat pump type as a heat source.

本発明の実施の形態1における給湯装置の構成図Configuration diagram of hot water supply apparatus in Embodiment 1 of the present invention 本発明の実施の形態1におけるプレート式熱交換器の構造図Structure diagram of plate-type heat exchanger in Embodiment 1 of the present invention 本発明の実施の形態1におけるプレート式熱交換器の一次側伝熱プレートの構造図Structure diagram of primary side heat transfer plate of plate heat exchanger in Embodiment 1 of the present invention 本発明の実施の形態1におけるプレート式熱交換器の二次側伝熱プレートの構造図Structure diagram of the secondary heat transfer plate of the plate heat exchanger in Embodiment 1 of the present invention 本発明の実施の形態1における給湯装置の構成図Configuration diagram of hot water supply apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における動作説明図Operation explanatory diagram in Embodiment 1 of the present invention 本発明の実施の形態2における給湯装置の構造および動作説明図Structure and operation explanatory diagram of a hot water supply apparatus in Embodiment 2 of the present invention 本発明の実施の形態2の他例における給湯装置の構造および動作説明図Structure and operation explanatory diagram of a hot water supply apparatus in another example of Embodiment 2 of the present invention

符号の説明Explanation of symbols

1 給水路
2 給湯循環回路
3 出湯路
7 循環ポンプ
23 給湯用熱交換器
24 利用側熱交換器
26 風呂用熱交換器
61 注湯流路
62 風呂回路
68 浴槽水
69 浴槽
82 風呂往きサーミスタ
84 流路開閉手段
85 風呂バイパス流路
86 風呂回路流路切替手段
107 仕切り
DESCRIPTION OF SYMBOLS 1 Water supply path 2 Hot water supply circulation circuit 3 Hot water supply path 7 Circulation pump 23 Heat exchanger for hot water supply 24 Use side heat exchanger 26 Heat exchanger for bath 61 Hot water flow path 62 Bath circuit 68 Bath water 69 Bath 82 Bathing thermistor 84 Flow Road opening / closing means 85 Bath bypass flow path 86 Bath circuit flow path switching means 107 Partition

Claims (9)

給水路より供給される水を加熱し出湯路に湯水を供給する給湯用熱交換器を備え、循環ポンプを介して給湯用熱交換器から利用側熱交換器に至る給湯循環回路を形成するとともに、前記給湯循環回路から分岐し出湯路に至る給湯回路を形成し、前記給湯循環回路と前記給湯回路のどちらか一方を利用するか、または、前記給湯循環回路と前記給湯回路を同時に利用するかを選択できるようにし、前記利用側熱交換器の熱出力機能として複数設ける場合、前記給湯用熱交換器から供給される一次側の高温側温水が流れる単一の前記給湯循環回路に対して、前記利用側熱交換器の二次側の複数流路を各々並列に接続し、複数の熱出力機能を有する前記利用側熱交換器を単一ユニットとして形成するようにした給湯装置。 A hot water supply heat exchanger is provided that heats water supplied from the water supply passage and supplies hot water to the hot water supply passage, and forms a hot water supply circulation circuit from the hot water supply heat exchanger to the user side heat exchanger via the circulation pump. Whether to form a hot water supply circuit that branches from the hot water supply circulation circuit to the hot water supply path, and uses either the hot water supply circulation circuit or the hot water supply circuit, or uses the hot water supply circulation circuit and the hot water supply circuit at the same time. When a plurality of heat output functions of the use side heat exchanger are provided, for the single hot water supply circulation circuit through which the high temperature hot water on the primary side supplied from the hot water heat exchanger flows, A hot water supply apparatus in which a plurality of secondary-side flow paths of the usage-side heat exchanger are connected in parallel to form the usage-side heat exchanger having a plurality of heat output functions as a single unit. 出湯路の給湯循環回路からの分岐部は、単一ユニット化された利用側熱交換器の上流側に配置された請求項1記載の給湯装置。 The hot water supply apparatus according to claim 1, wherein the branch portion from the hot water supply circulation circuit of the hot water supply passage is arranged on the upstream side of the use-side heat exchanger made into a single unit. 出湯路の給湯循環回路からの分岐部は、単一ユニット化された利用側熱交換器の下流側に配置された請求項1記載の給湯装置。 The hot water supply apparatus according to claim 1, wherein the branch portion from the hot water supply circulation circuit of the hot water supply passage is disposed on the downstream side of the use-side heat exchanger formed as a single unit. 利用熱交換器で複数の熱出力機能の内、二次側流路は浴槽に接続される風呂回路として形成される風呂用熱交換器として用い、また出湯路より分岐して前記風呂回路に接続された注湯流路から浴槽へ所定温度の湯を所定量供給する風呂お湯はり運転を実現する回路系を構成する場合、前記風呂回路中に前記風呂用熱交換器を通過して浴槽に供給される湯温を検出するための風呂往きサーミスタを設け、前記風呂お湯はり運転時には、浴槽水の温度を所定温度とするための前記注湯流路に供給するべき湯温を決定する動作制御を行う制御手段を有し、一方は前記注湯流路から供給された湯がそのまま浴槽へ、他方は前記注湯流路から供給された湯が前記風呂用熱交換器を通過してから浴槽へと二方向から注湯動作を行う請求項1〜3のいずれか1項記載の給湯装置。 Of the multiple heat output functions in the heat exchanger used, the secondary flow path is used as a bath heat exchanger formed as a bath circuit connected to the bathtub, and is branched from the hot water outlet and connected to the bath circuit When a circuit system that realizes a hot water bath operation for supplying a predetermined amount of hot water of a predetermined temperature to the bathtub from the supplied pouring channel is supplied to the bathtub through the bath heat exchanger in the bath circuit A bathing thermistor is provided for detecting the temperature of the hot water, and during the hot water operation of the bath, operation control for determining the temperature of the hot water to be supplied to the pouring channel for setting the temperature of the bath water to a predetermined temperature is performed. Control means to perform, one side being supplied with the hot water supplied from the pouring channel to the bath as it is, and the other side after passing the hot water supplied from the pouring channel through the bath heat exchanger to the bath The pouring operation is performed from two directions. Water heater claim wherein. 利用熱交換器で複数の熱出力機能の内、二次側流路は浴槽に接続される風呂回路として形成される風呂用熱交換器として用い、また出湯路より分岐して前記風呂回路に接続された注湯流路から浴槽へ所定温度の湯を所定量供給する風呂お湯はり運転を実現する回路系を構成する場合、前記風呂回路中に流路開閉手段を設け、前記風呂お湯はり運転時には、前記流路開閉手段を閉として前記風呂用熱交換器を経由させず、前記注湯流路から供給された湯がそのまま浴槽へと一方向から注湯動作を行う請求項1〜3のいずれか1項記載の給湯装置。 Of the multiple heat output functions in the heat exchanger used, the secondary flow path is used as a bath heat exchanger formed as a bath circuit connected to the bathtub, and is branched from the hot water outlet and connected to the bath circuit In the case of configuring a circuit system that realizes a bath hot water operation that supplies a predetermined amount of hot water of a predetermined temperature from the pouring channel into the bath, a channel opening / closing means is provided in the bath circuit, and during the bath hot water operation Any one of claims 1 to 3, wherein the flow channel opening / closing means is closed and the hot water supplied from the pouring flow channel is directly poured into the bathtub from one direction without passing through the bath heat exchanger. A hot water supply apparatus according to claim 1. 利用熱交換器で複数の熱出力機能の内、二次側流路は浴槽に接続される風呂回路として形成される風呂用熱交換器として用い、また出湯路より分岐して前記風呂回路に接続された注湯流路から浴槽へ所定温度の湯を所定量供給する風呂お湯はり運転を実現する回路系を構成する場合、前記風呂回路中に前記風呂用熱交換器を迂回する風呂バイパス流路と、前記風呂用熱交換器を通過するか、前記風呂バイパス流路を通過するかの流路切り替えを行う風呂回路流路切替手段とを設け、前記風呂お湯はり運転時には、前記風呂回路流路切替手段を駆動して一方は前記注湯流路から供給された湯が流路切り替えされた前記風呂バイパス流路を通過して浴槽へ、他方は前記注湯流路から供給された湯がそのまま浴槽へと二方向から注湯動作を行う請求項1〜3のいずれか1項記載の給湯装置。 Of the multiple heat output functions in the heat exchanger used, the secondary flow path is used as a bath heat exchanger formed as a bath circuit connected to the bathtub, and is branched from the hot water outlet and connected to the bath circuit Bath bypass flow path for bypassing the heat exchanger for bath in the bath circuit when configuring a circuit system for realizing a hot water bath operation for supplying a predetermined amount of hot water of a predetermined temperature from the poured water flow path to the bathtub And a bath circuit channel switching means for switching the channel whether to pass through the bath heat exchanger or the bath bypass channel, and during the bath hot water operation, the bath circuit channel One of the hot water supplied from the pouring channel is passed through the bath bypass channel where the hot water supplied from the pouring channel is switched to the bathtub, and the other is the hot water supplied from the pouring channel as it is. Invoicing from two directions to the bathtub Water heater according to any one of 1 to 3. 複数の熱出力機能を有する単一ユニット化された利用側熱交換器にあって、一次側流路と二次側流路が交互に積層されて構成されるプレート式熱交換器を用い、二次側流路を形成する伝熱プレートは複数の熱出力機能に応じて二次側流路を隔離するための仕切りを有するプレート式熱交換器。 There is a single-unit use-side heat exchanger having a plurality of heat output functions, and a plate-type heat exchanger configured by alternately stacking primary-side flow paths and secondary-side flow paths is used. The heat transfer plate forming the secondary flow path is a plate heat exchanger having a partition for isolating the secondary flow path according to a plurality of heat output functions. 仕切りは、所定の温度および所定の流量の高温側温水が一次側流路に流入した時に、熱出力機能の目的に応じて各々の二次側流路で得られる定格の熱出力が得られるように伝熱面積を最適化した場所に形成した伝熱プレートを有する請求項7記載のプレート式熱交換器。 The partition is configured so that when the hot water at a predetermined temperature and a predetermined flow rate flows into the primary channel, the rated heat output obtained in each secondary channel can be obtained according to the purpose of the heat output function. The plate heat exchanger according to claim 7, further comprising a heat transfer plate formed at a location where the heat transfer area is optimized. 請求項1〜6のいずれか1項に記載の利用側熱交換器は、請求項7または請求項8に記載のプレート式熱交換器を使用した給湯装置。 The utilization side heat exchanger according to any one of claims 1 to 6 is a hot water supply device using the plate heat exchanger according to claim 7 or 8.
JP2006264048A 2006-09-28 2006-09-28 Hot water supply device and plate type heat exchanger Pending JP2008082633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264048A JP2008082633A (en) 2006-09-28 2006-09-28 Hot water supply device and plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264048A JP2008082633A (en) 2006-09-28 2006-09-28 Hot water supply device and plate type heat exchanger

Publications (1)

Publication Number Publication Date
JP2008082633A true JP2008082633A (en) 2008-04-10

Family

ID=39353685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264048A Pending JP2008082633A (en) 2006-09-28 2006-09-28 Hot water supply device and plate type heat exchanger

Country Status (1)

Country Link
JP (1) JP2008082633A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032076A (en) * 2008-07-25 2010-02-12 Chofu Seisakusho Co Ltd Indirect heating type water heating system and indirect heating method of hot water
KR101581129B1 (en) 2014-08-25 2015-12-29 린나이코리아 주식회사 Hot water supply heating system
US20190154304A1 (en) * 2016-07-26 2019-05-23 Noritz Corporation Heating and hot water supply device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032076A (en) * 2008-07-25 2010-02-12 Chofu Seisakusho Co Ltd Indirect heating type water heating system and indirect heating method of hot water
KR101581129B1 (en) 2014-08-25 2015-12-29 린나이코리아 주식회사 Hot water supply heating system
US20190154304A1 (en) * 2016-07-26 2019-05-23 Noritz Corporation Heating and hot water supply device
US10989442B2 (en) * 2016-07-26 2021-04-27 Noritz Corporation Heating and hot water supply device

Similar Documents

Publication Publication Date Title
JP5580658B2 (en) Heat medium supply device
JP2011515647A (en) Boiler that can supply heating water and hot water at the same time
JP2014234990A (en) Water heater
JP2017190884A (en) Hot water storage type water heater system
JP5146731B2 (en) Hot water supply apparatus and hot water supply system
JP4436771B2 (en) Heat exchanger, heat pump type hot water supply device and heat pump type hot water supply and heating device
JP2008082633A (en) Hot water supply device and plate type heat exchanger
JP5553059B2 (en) Hot water storage water heater
JP6601059B2 (en) Combined heat source machine
JP7217628B2 (en) Heat source device
JP4400407B2 (en) Water heater
JP4696835B2 (en) Water heater
JP2020106226A (en) Heat source device
JP2008075886A (en) Water heater
JP2007278599A (en) Hot-water supply apparatus
JP4624091B2 (en) Water heater
JP4784266B2 (en) Water heater
JP2007107741A (en) Water heater
JP4715438B2 (en) Water heater
JP4770381B2 (en) Water heater
JP2019095159A (en) Water heater
JP2008185302A (en) Hot water supply device
JP2006057989A (en) Hot-water supply apparatus
JP2007010209A (en) Hot water supply control method of hot water circulation type heater
JP2007101052A (en) Hot water supply apparatus