JP2008068228A - Method of manufacturing palladium-containing supported catalyst - Google Patents
Method of manufacturing palladium-containing supported catalyst Download PDFInfo
- Publication number
- JP2008068228A JP2008068228A JP2006250579A JP2006250579A JP2008068228A JP 2008068228 A JP2008068228 A JP 2008068228A JP 2006250579 A JP2006250579 A JP 2006250579A JP 2006250579 A JP2006250579 A JP 2006250579A JP 2008068228 A JP2008068228 A JP 2008068228A
- Authority
- JP
- Japan
- Prior art keywords
- palladium
- supported catalyst
- carrier
- catalyst
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有担持触媒の製造方法に関する。また本発明は、α,β−不飽和カルボン酸の製造方法に関する。 The present invention relates to a method for producing a palladium-containing supported catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde. The present invention also relates to a method for producing an α, β-unsaturated carboxylic acid.
オレフィンを分子状酸素により液相酸化してα,β−不飽和カルボン酸を製造するためのパラジウム含有担持触媒として、例えば、特許文献1にはパラジウム塩を還元剤により還元したパラジウム金属の担持触媒が提案されている。
しかしながら、特許文献1に記載の方法で製造した触媒を用いた場合のα,β−不飽和カルボン酸の生産性は未だ十分ではなく、より生産性の高いα,β−不飽和カルボン酸製造用触媒が望まれている。 However, the productivity of α, β-unsaturated carboxylic acid when using the catalyst produced by the method described in Patent Document 1 is not yet sufficient, and is more productive for producing α, β-unsaturated carboxylic acid. A catalyst is desired.
したがって本発明の目的は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高生産性で製造するためのパラジウム含有触媒、その触媒の製造方法、およびα,β−不飽和カルボン酸を高生産性で製造する方法を提供することにある。 Accordingly, an object of the present invention is to provide a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde with high productivity, a method for producing the catalyst, and an α, β-unsaturated product. The object is to provide a method for producing a saturated carboxylic acid with high productivity.
本発明は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有担持触媒の製造方法であって、
(a)担体にパラジウム塩を担持する工程と、
(b)前記担体に対して質量比で0.01〜0.25の加水分解性の官能基を有する金属化合物を水含有溶液中で加水分解反応する工程と、
(c)前記工程(b)で加水分解反応して得られた生成物を、前記担体の存在下において脱水縮合反応する工程と、
を有することを特徴とするパラジウム含有担持触媒の製造方法である。
The present invention is a method for producing a palladium-containing supported catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde,
(A) supporting a palladium salt on a carrier;
(B) a step of hydrolyzing a metal compound having a hydrolyzable functional group having a mass ratio of 0.01 to 0.25 with respect to the carrier in a water-containing solution;
(C) subjecting the product obtained by the hydrolysis reaction in the step (b) to a dehydration condensation reaction in the presence of the carrier;
It is a manufacturing method of the palladium containing supported catalyst characterized by having.
前記パラジウム含有担持触媒の製造方法において、前記工程(a)と前記工程(c)とを同時に行う、または前記工程(a)の後に前記工程(c)を行うことが好ましい。 In the method for producing the palladium-containing supported catalyst, it is preferable that the step (a) and the step (c) are performed simultaneously, or the step (c) is performed after the step (a).
また本発明は、前記製造方法により得られるパラジウム含有担持触媒である。 Moreover, this invention is a palladium containing supported catalyst obtained by the said manufacturing method.
さらに本発明は、前記のパラジウム含有担持触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化するα,β−不飽和カルボン酸の製造方法である。 Furthermore, the present invention is a method for producing an α, β-unsaturated carboxylic acid in which an olefin or an α, β-unsaturated aldehyde is subjected to liquid phase oxidation with molecular oxygen using the palladium-containing supported catalyst.
本発明のパラジウム含有担持触媒の製造方法によれば、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造した場合に、α,β−不飽和カルボン酸を高生産性で製造できるパラジウム含有担持触媒を製造することができる。 According to the method for producing a palladium-containing supported catalyst of the present invention, when α, β-unsaturated carboxylic acid is produced from olefin or α, β-unsaturated aldehyde, α, β-unsaturated carboxylic acid is highly productive. A palladium-containing supported catalyst that can be produced by the above process can be produced.
また、本発明のパラジウム含有担持触媒によれば、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造した場合に、α,β−不飽和カルボン酸を高生産性で製造することができる。 Further, according to the palladium-containing supported catalyst of the present invention, when α, β-unsaturated carboxylic acid is produced from olefin or α, β-unsaturated aldehyde, α, β-unsaturated carboxylic acid is produced with high productivity. Can be manufactured.
さらに、本発明のα,β−不飽和カルボン酸の製造方法によれば、α,β−不飽和カルボン酸を高生産性で製造することができる。 Furthermore, according to the method for producing an α, β-unsaturated carboxylic acid of the present invention, an α, β-unsaturated carboxylic acid can be produced with high productivity.
本発明のパラジウム含有担持触媒の製造方法は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有担持触媒の製造方法であって、以下の工程を有する。
(a)担体にパラジウム塩を担持する工程。
(b)前記担体に対して質量比で0.01〜0.25の加水分解性の官能基を有する金属化合物を水含有溶液中で加水分解反応する工程。
(c)前記工程(b)で加水分解反応して得られた生成物を、前記担体の存在下において脱水縮合反応する工程。
The method for producing a palladium-containing supported catalyst of the present invention is a method for producing a palladium-containing supported catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde, comprising the following steps: Have.
(A) A step of supporting a palladium salt on a carrier.
(B) A step of hydrolyzing a metal compound having a hydrolyzable functional group having a mass ratio of 0.01 to 0.25 with respect to the carrier in a water-containing solution.
(C) A step of subjecting the product obtained by the hydrolysis reaction in the step (b) to a dehydration condensation reaction in the presence of the carrier.
α,β−不飽和カルボン酸を高生産性で製造することができる要因としては、加水分解性の官能基を有する金属化合物の加水分解・脱水縮合により、担体上のパラジウム粒子が安定化されること、および加水分解性の官能基を有する金属化合物により担体表面の特性が変化し、パラジウム粒子と担体との相互作用が改良されることなどが考えられる。 Factors that can produce an α, β-unsaturated carboxylic acid with high productivity are the stabilization of palladium particles on the carrier by hydrolysis and dehydration condensation of a metal compound having a hydrolyzable functional group. It is conceivable that the characteristics of the surface of the carrier are changed by the metal compound having a hydrolyzable functional group, and the interaction between the palladium particles and the carrier is improved.
本発明のパラジウム含有担持触媒は、担体に、パラジウム金属を含む触媒構成元素を担持した担持型触媒であり、例えば、下記の製造方法により得ることができる。ただし、得られるパラジウム含有担持触媒が同じであれば、下記の製造方法により製造されたものには限定されない。 The palladium-containing supported catalyst of the present invention is a supported catalyst in which a catalyst constituent element containing palladium metal is supported on a carrier, and can be obtained, for example, by the following production method. However, if the obtained palladium containing supported catalyst is the same, it is not limited to what was manufactured with the following manufacturing method.
担体としては特に限定されない。例えば、シリカ、アルミナ、シリカアルミナ、マグネシア、カルシア、チタニア、ジルコニアおよび活性炭等を挙げることができる。中でもシリカ、アルミナ、チタニア、ジルコニアが好ましい。担体は1種を用いることも、2種以上を併用することもできる。担体は多孔質であることが好ましい。 The carrier is not particularly limited. Examples thereof include silica, alumina, silica alumina, magnesia, calcia, titania, zirconia and activated carbon. Of these, silica, alumina, titania and zirconia are preferable. One type of carrier can be used, or two or more types can be used in combination. The carrier is preferably porous.
担体の比表面積は担体の種類等により異なるので一概に言えないが、シリカの場合、50m2/g以上が好ましく、100m2/g以上がより好ましい。また、1500m2/g以下が好ましく、1000m2/g以下がより好ましい。担体の比表面積は、小さいほど有用成分がより表面に担持された触媒の製造が可能となり、大きいほど有用成分が多く担持された触媒の製造が可能となる。担体の細孔容積は、担体の強度およびパラジウムの担持効率の観点から0.05〜2.0cc/gが好ましい。 Although specific surface area of the support can not be said sweepingly because different by the kind of carrier, the case of silica, preferably at least 50m 2 / g, 100m 2 / g or more is more preferable. Moreover, 1500 m < 2 > / g or less is preferable and 1000 m < 2 > / g or less is more preferable. The smaller the specific surface area of the carrier, the more the catalyst having a useful component supported on the surface can be produced, and the larger the specific surface area of the carrier, the more the useful component supported. The pore volume of the carrier is preferably 0.05 to 2.0 cc / g from the viewpoint of the strength of the carrier and the efficiency of palladium loading.
パラジウム塩としては、例えば、塩化パラジウム(II)、酢酸パラジウム(II)、硝酸パラジウム(II)、テトラアンミンパラジウム硝酸塩(II)、およびビス(アセチルアセトナト)パラジウム(II)等を挙げることができる。中でも酢酸パラジウム(II)、硝酸パラジウム(II)、テトラアンミンパラジウム硝酸塩(II)、およびビス(アセチルアセトナト)パラジウム(II)が好ましい。パラジウム塩は1種を用いることも、2種以上を併用することもできる。 Examples of the palladium salt include palladium (II) chloride, palladium (II) acetate, palladium (II) nitrate, tetraammine palladium nitrate (II), bis (acetylacetonato) palladium (II), and the like. Of these, palladium (II) acetate, palladium (II) nitrate, tetraammine palladium nitrate (II), and bis (acetylacetonato) palladium (II) are preferred. One palladium salt can be used, or two or more palladium salts can be used in combination.
パラジウム塩を担体に担持させる方法としては特に限定されないが、パラジウム塩の溶解液に担体を浸漬した後に溶媒を蒸発させる方法、または担体の細孔容積分のパラジウム塩の溶解液を担体に吸収させた後に溶媒を蒸発させる、いわゆるポアフィリング法による方法が好ましい。パラジウム塩を溶解させる溶媒としては、パラジウム塩を溶解するものであれば特に限定されない。 The method for supporting the palladium salt on the carrier is not particularly limited, but the method of evaporating the solvent after immersing the carrier in the palladium salt solution, or absorbing the palladium salt solution for the pore volume of the carrier into the carrier. A so-called pore filling method, in which the solvent is evaporated after that, is preferable. The solvent for dissolving the palladium salt is not particularly limited as long as it dissolves the palladium salt.
加水分解性の官能基を有する金属化合物としては、金属アルコキシド又はそのオリゴマーを用いることができる。金属アルコキシドを形成するアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基等の炭素数が1〜3のものが好ましい。また、金属アルコキシドを形成する金属としては、最終的に形成される金属酸化物に対応した金属、例えばケイ素、チタン、ジルコニウム、アルミニウムが使用される。この金属は、1種でもよく2種以上でも良い。一方、オリゴマーとしては特に限定されず、10量体程度までを好適に使用できる。 As the metal compound having a hydrolyzable functional group, a metal alkoxide or an oligomer thereof can be used. As an alkoxy group which forms a metal alkoxide, a C1-C3 thing, such as a methoxy group, an ethoxy group, a propoxy group, is preferable, for example. Moreover, as a metal which forms a metal alkoxide, the metal corresponding to the metal oxide finally formed, for example, silicon, titanium, zirconium, aluminum, is used. This metal may be one type or two or more types. On the other hand, it does not specifically limit as an oligomer, About 10-mer can be used conveniently.
また、金属がケイ素の場合、ケイ素アルコキシド又はそのオリゴマーのアルコキシ基の一部がアルキル基に置換されたアルキルアルコキシシラン類、2つ以上のケイ素を炭化水素を主とする架橋構造によって結びつけた架橋アルコキシド類、およびそれらの10量体程度までのオリゴマーも好適に用いられる。また、ケイ素に変えて金属をチタン、ジルコニア、アルミニウム等に置換したアルキル置換金属アルコキシドも同様に用いることができる。 In addition, when the metal is silicon, alkylalkoxysilanes in which a part of the alkoxy group of silicon alkoxide or its oligomer is substituted with an alkyl group, and a crosslinked alkoxide in which two or more silicons are linked by a crosslinked structure mainly composed of hydrocarbons And oligomers of up to about 10-mers thereof are also preferably used. In addition, an alkyl-substituted metal alkoxide in which a metal is replaced with titanium, zirconia, aluminum, or the like instead of silicon can also be used.
加水分解性の官能基を有する金属化合物の使用量は、担体に対して質量比で0.01〜0.25の範囲である。質量比が0.01以下では十分な効果が得られず、質量比が0.25以上では担体の細孔閉塞、パラジウム金属表面の被覆等が生じ、効果が得られないことが考えられる。好ましくは、質量比で0.02以上であり、さらに好ましくは0.03以上である。また、好ましくは、質量比で0.2以下であり、さらに好ましくは0.15以下である。 The amount of the metal compound having a hydrolyzable functional group is in the range of 0.01 to 0.25 by mass ratio with respect to the support. When the mass ratio is 0.01 or less, a sufficient effect cannot be obtained, and when the mass ratio is 0.25 or more, pores are blocked in the support, the palladium metal surface is covered, and the effect is not obtained. Preferably, it is 0.02 or more by mass ratio, More preferably, it is 0.03 or more. Further, the mass ratio is preferably 0.2 or less, and more preferably 0.15 or less.
加水分解性の官能基を有する金属化合物の加水分解反応条件は特に限定されないが、例えば、加水分解性の官能基を有する金属化合物1モルに対して水4モル以上を混合することで加水分解反応を行うことができ、それにより加水分解物を得ることができる。さらに、必要により有機溶剤を混合してもよい。加水分解反応は、pH1〜5の酸性条件下で行うことが好ましい。加水分解反応の処理時間は0.5〜2時間とすることが好ましく、その処理温度は10〜60℃とすることが好ましい。加水分解性の官能基を有する金属化合物が金属アルコキシドである場合、加水分解反応の進行は、1H−NMRを用いて金属アルコキシド由来のスペクトルおよび加水分解により生成するアルコール由来のスペクトルを観測すること等により確認することができる。 Hydrolysis reaction conditions for the metal compound having a hydrolyzable functional group are not particularly limited. For example, the hydrolysis reaction is performed by mixing 4 mol or more of water with 1 mol of the metal compound having a hydrolyzable functional group. Can be carried out, whereby a hydrolyzate can be obtained. Further, if necessary, an organic solvent may be mixed. The hydrolysis reaction is preferably performed under acidic conditions of pH 1-5. The treatment time for the hydrolysis reaction is preferably 0.5 to 2 hours, and the treatment temperature is preferably 10 to 60 ° C. When the metal compound having a hydrolyzable functional group is a metal alkoxide, the progress of the hydrolysis reaction is to observe the spectrum derived from the metal alkoxide and the spectrum derived from the alcohol generated by hydrolysis using 1 H-NMR. Etc. can be confirmed.
次いで、加水分解物の脱水縮合反応を行う。この脱水縮合反応は、担体の存在下で行うため、加水分解反応の処理時または加水分解反応の処理後に担体を添加する。加水分解物の脱水縮合反応の方法は特に限定されず、種々の方法を用いることができる。例えば、アルカリの添加によるpH調整による方法、加熱による方法、脱水縮合触媒の添加による方法、溶媒の除去による方法などが挙げられる。本発明においては、水および有機溶剤を蒸発させて、加水分解物の脱水縮合反応を行うことが好ましい。 Next, a dehydration condensation reaction of the hydrolyzate is performed. Since this dehydration condensation reaction is carried out in the presence of a carrier, the carrier is added during the hydrolysis reaction or after the hydrolysis reaction. The method for the dehydration condensation reaction of the hydrolyzate is not particularly limited, and various methods can be used. Examples thereof include a method by pH adjustment by addition of alkali, a method by heating, a method by addition of a dehydration condensation catalyst, and a method by removal of a solvent. In the present invention, it is preferable to carry out a dehydration condensation reaction of the hydrolyzate by evaporating water and the organic solvent.
担体にパラジウム塩を担持する工程と、担体の存在下において加水分解物を脱水縮合反応する工程とは、別々または同時に行うことができる。担体上のパラジウム塩の周辺に金属水酸化物が担体表面の水酸基と脱水縮合することによってパラジウム塩が安定化されると考えられることから、脱水縮合反応を、パラジウム塩の担持と同時またはパラジウム塩の担持後に行うことが好ましい。パラジウム塩の溶解液に担体を浸漬させ、さらに加水分解性の官能基を有する金属化合物の加水分解物が共存している状態で、水および溶媒を蒸発させることで、脱水縮合反応とパラジウム塩の担持とを同時に行うことができる。 The step of supporting the palladium salt on the carrier and the step of dehydrating and condensing the hydrolyzate in the presence of the carrier can be performed separately or simultaneously. Since it is considered that the palladium salt is stabilized by dehydration condensation of the metal hydroxide with the hydroxyl group on the support surface around the palladium salt on the support, the dehydration condensation reaction is performed simultaneously with the support of the palladium salt or the palladium salt. It is preferable to carry out after loading. By immersing the carrier in a solution of palladium salt and evaporating water and the solvent in the presence of a hydrolyzate of a metal compound having a hydrolyzable functional group, the dehydration condensation reaction and the palladium salt The loading can be performed simultaneously.
担体表面の水酸基量の定量方法としては、担体を加熱して水酸基の脱離による重量減少を測定する方法がある。このような方法としては、例えば、担体がシリカの場合にはJIS K1150の測定方法に則り、強熱減量の値からシラノール基数を算出することができる。その他に、定量試薬としてリチウムアルミニウムハイドライドを用いて、担体表面の水酸基との反応で発生する水素をガスビューレットやガスクロマトグラフを用いて測定し、担体表面の水酸基数を算出する方法もある。 As a method for quantifying the amount of hydroxyl groups on the surface of the carrier, there is a method in which the carrier is heated and the weight loss due to the elimination of hydroxyl groups is measured. As such a method, for example, when the support is silica, the number of silanol groups can be calculated from the value of ignition loss in accordance with the measurement method of JIS K1150. In addition, there is a method in which lithium aluminum hydride is used as a quantitative reagent, hydrogen generated by reaction with hydroxyl groups on the support surface is measured using a gas burette or gas chromatograph, and the number of hydroxyl groups on the support surface is calculated.
また、本発明では、工程(a)〜(c)を行った後に、少なくとも酸化パラジウムが担持された触媒前駆体とすることが好ましい。触媒前駆体は、パラジウム塩を担体に担持した後に酸化パラジウムを別途担持させる方法により調製することもできるが、パラジウム塩が担体に担持された状態で熱処理することにより、パラジウム塩の少なくとも一部が分解して酸化パラジウムとする方法により調製することが好ましい。熱処理温度は、パラジウム塩の熱分解温度以上が好ましい。また、熱処理温度は、800℃以下が好ましく、700℃以下がより好ましい。所定の熱処理温度までの昇温方法は特に限定されないが、パラジウム含有担持触媒におけるパラジウム原子の良好な分散状態を得るため、昇温速度は1〜10℃/分が好ましい。所定の熱処理温度に達した後の保持時間は、所望の量のパラジウム塩が分解されて酸化パラジウムになる時間であれば特に限定されないが、1〜12時間が好ましい。 Moreover, in this invention, after performing process (a)-(c), it is preferable to set it as the catalyst precursor by which the palladium oxide was carry | supported at least. The catalyst precursor can also be prepared by a method in which palladium oxide is supported on a carrier after the palladium salt is supported on the carrier, but at least a part of the palladium salt is obtained by heat treatment in a state where the palladium salt is supported on the carrier. It is preferable to prepare by the method of decomposing into palladium oxide. The heat treatment temperature is preferably equal to or higher than the thermal decomposition temperature of the palladium salt. The heat treatment temperature is preferably 800 ° C. or lower, and more preferably 700 ° C. or lower. The method for raising the temperature up to the predetermined heat treatment temperature is not particularly limited, but the rate of temperature rise is preferably 1 to 10 ° C./min in order to obtain a good dispersion state of palladium atoms in the palladium-containing supported catalyst. The holding time after reaching the predetermined heat treatment temperature is not particularly limited as long as a desired amount of palladium salt is decomposed to become palladium oxide, but is preferably 1 to 12 hours.
本発明では、担体上にパラジウム塩および/または酸化パラジウムが担持された触媒前駆体を還元剤で還元することが好ましい。 In the present invention, it is preferable to reduce a catalyst precursor having a palladium salt and / or palladium oxide supported on a support with a reducing agent.
用いる還元剤は特に限定されないが、例えば、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、水素、蟻酸、蟻酸の塩、エチレン、プロピレン、1−ブテン、2−ブテン、イソブチレン、1,3−ブタジエン、1−ヘプテン、2−ヘプテン、1−ヘキセン、2−ヘキセン、シクロヘキセン、アリルアルコール、メタリルアルコール、アクロレインおよびメタクロレイン等が挙げられる。還元剤は1種を用いることも、2種以上を併用することもできる。 The reducing agent to be used is not particularly limited. For example, hydrazine, formaldehyde, sodium borohydride, hydrogen, formic acid, formic acid salt, ethylene, propylene, 1-butene, 2-butene, isobutylene, 1,3-butadiene, 1-butadiene, Examples include heptene, 2-heptene, 1-hexene, 2-hexene, cyclohexene, allyl alcohol, methallyl alcohol, acrolein, and methacrolein. One reducing agent can be used, or two or more reducing agents can be used in combination.
パラジウム塩および/または酸化パラジウムの還元は、気相中で行っても液相中で行ってもよい。気相中で還元を行う場合は、還元剤として水素を用いることが好ましい。また、液相中で還元を行う場合は、還元剤としてヒドラジン、ホルムアルデヒド、蟻酸、または蟻酸の塩を用いることが好ましい。 The reduction of the palladium salt and / or palladium oxide may be performed in the gas phase or in the liquid phase. When reducing in the gas phase, it is preferable to use hydrogen as the reducing agent. Moreover, when reducing in a liquid phase, it is preferable to use hydrazine, formaldehyde, formic acid, or a salt of formic acid as a reducing agent.
液相中で還元を行う場合に使用する溶媒としては、水が好ましいが、担体の分散性によっては、エタノール、1−プロパノール、2−プロパノール、n−ブタノール、t−ブタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸、n−吉草酸、iso−吉草酸等の有機酸類;ヘプタン、ヘキサン、シクロヘキサン等の炭化水素類;等の有機溶媒を単独又は複数組み合わせて用いることができる。これらと水との混合溶媒を用いることもできる。 As a solvent used for the reduction in the liquid phase, water is preferable, but alcohols such as ethanol, 1-propanol, 2-propanol, n-butanol, t-butanol, etc., depending on the dispersibility of the carrier; acetone , Methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and other ketones; acetic acid, n-valeric acid, iso-valeric acid and other organic acids; heptane, hexane, cyclohexane and other hydrocarbons; Can be used. A mixed solvent of these and water can also be used.
液相中で還元を行う場合で還元剤が気体の場合、溶媒中への溶解度を挙げる為にオートクレーブ等の加圧装置中で行うことが好ましい。その際、加圧装置の内部は還元剤で加圧する。その圧力は0.1〜1.0MPa(ゲージ圧;以下圧力はゲージ圧表記とする)とすることが好ましい。 When the reduction is performed in the liquid phase and the reducing agent is a gas, it is preferably performed in a pressure apparatus such as an autoclave in order to increase the solubility in the solvent. At that time, the inside of the pressurizer is pressurized with a reducing agent. The pressure is preferably 0.1 to 1.0 MPa (gauge pressure; hereinafter, pressure is expressed as gauge pressure).
また、液相中で還元を行う場合で還元剤が液体の場合、パラジウム塩および/または酸化パラジウムの還元を行う装置に制限はなく、溶媒中に還元剤を添加することで行うことができる。この時の還元剤の使用量は特に限定されないが、パラジウム塩及び酸化パラジウムの合計1モルに対して1〜100モルとすることが好ましい。 Further, when the reduction is performed in the liquid phase and the reducing agent is liquid, there is no limitation on the apparatus for reducing the palladium salt and / or palladium oxide, and the reduction can be performed by adding the reducing agent to the solvent. Although the usage-amount of a reducing agent at this time is not specifically limited, It is preferable to set it as 1-100 mol with respect to 1 mol of total of palladium salt and palladium oxide.
還元温度および還元時間は還元剤等により異なるが、還元温度は−5〜150℃が好ましく、15〜80℃がより好ましい。還元時間は0.1〜4時間が好ましく、0.25〜3時間がより好ましく、0.5〜2時間がさらに好ましい。 Although the reduction temperature and reduction time vary depending on the reducing agent and the like, the reduction temperature is preferably -5 to 150 ° C, more preferably 15 to 80 ° C. The reduction time is preferably 0.1 to 4 hours, more preferably 0.25 to 3 hours, and further preferably 0.5 to 2 hours.
還元後、パラジウム金属が担体に担持されたパラジウム含有担持触媒を分離する。この触媒を分離する方法は特に限定されないが、例えば、ろ過、遠心分離等の方法を用いることができる。分離されたパラジウム含有担持触媒は適宜乾燥される。乾燥方法は特に限定されず、種々の方法を用いることができる。 After the reduction, the palladium-containing supported catalyst in which palladium metal is supported on the support is separated. Although the method for separating the catalyst is not particularly limited, for example, methods such as filtration and centrifugation can be used. The separated palladium-containing supported catalyst is appropriately dried. The drying method is not particularly limited, and various methods can be used.
なお、本発明のパラジウム含有担持触媒では、パラジウム以外の金属成分を含むものとすることができる。パラジウム以外の金属成分としては、例えば、ルテニウム、ロジウム、銀、オスミウム、イリジウム、白金、金、銅、アンチモン、テルル、鉛、ビスマス等が挙げられる。高い触媒活性を発現させる観点から、パラジウム含有担持触媒に含まれる金属成分のうち、50質量%以上がパラジウム金属であることが好ましい。パラジウム以外の金属成分を含むパラジウム含有担持触媒は、対応する金属の塩や酸化物等の金属化合物を担体に担持し、必要に応じて前記の還元を行うことで得ることができる。その際の金属化合物の担持方法としては特に限定されないが、パラジウム塩を担持する方法と同様に行うことができる。また、金属化合物は、パラジウム塩を担持する前に担持することもでき、パラジウム塩を担持した担持後に担持することもでき、パラジウム塩と同時に担持することもできる。 The palladium-containing supported catalyst of the present invention can contain a metal component other than palladium. Examples of the metal component other than palladium include ruthenium, rhodium, silver, osmium, iridium, platinum, gold, copper, antimony, tellurium, lead, and bismuth. From the viewpoint of developing high catalytic activity, it is preferable that 50% by mass or more of the metal component contained in the palladium-containing supported catalyst is palladium metal. A palladium-containing supported catalyst containing a metal component other than palladium can be obtained by supporting a metal compound such as a corresponding metal salt or oxide on a support, and performing the reduction as necessary. The method for supporting the metal compound at that time is not particularly limited, but can be carried out in the same manner as the method for supporting the palladium salt. In addition, the metal compound can be supported before the palladium salt is supported, can be supported after the palladium salt is supported, or can be supported simultaneously with the palladium salt.
パラジウム金属の担持率は、担持前の担体に対して0.1〜40質量%が好ましく、0.5〜30質量%がより好ましく、1〜20質量%がさらに好ましい。 The palladium metal loading is preferably from 0.1 to 40 mass%, more preferably from 0.5 to 30 mass%, and even more preferably from 1 to 20 mass%, based on the carrier before loading.
最終的に得られるパラジウム含有担持触媒の物性等は、XRD測定、XPS測定、TEM観察等により確認できる。 The physical properties and the like of the finally obtained palladium-containing supported catalyst can be confirmed by XRD measurement, XPS measurement, TEM observation and the like.
次に、本発明のパラジウム含有担持触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素で液相酸化してα,β−不飽和カルボン酸を製造する方法について説明する。 Next, a method for producing an α, β-unsaturated carboxylic acid by liquid phase oxidation of olefin or α, β-unsaturated aldehyde with molecular oxygen using the palladium-containing supported catalyst of the present invention will be described.
原料のオレフィンとしては、例えば、プロピレン、イソブチレン、2−ブテン等が挙げられる。また、原料のα,β−不飽和アルデヒドとしては、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド(β−メチルアクロレイン)、シンナムアルデヒド(β−フェニルアクロレイン)等が挙げられる。原料のオレフィンまたはα,β−不飽和アルデヒドには、不純物として飽和炭化水素および/または低級飽和アルデヒド等が少々含まれていてもよい。 Examples of the raw material olefin include propylene, isobutylene, 2-butene and the like. Examples of the raw α, β-unsaturated aldehyde include acrolein, methacrolein, crotonaldehyde (β-methylacrolein), and cinnamaldehyde (β-phenylacrolein). The raw material olefin or α, β-unsaturated aldehyde may contain some saturated hydrocarbons and / or lower saturated aldehydes as impurities.
製造されるα,β−不飽和カルボン酸は、原料がオレフィンの場合、オレフィンと同一炭素骨格を有するα,β−不飽和カルボン酸である。また、原料がα,β−不飽和アルデヒドの場合、α,β−不飽和アルデヒドのアルデヒド基がカルボキシル基に変化したα,β−不飽和カルボン酸である。 The α, β-unsaturated carboxylic acid produced is an α, β-unsaturated carboxylic acid having the same carbon skeleton as the olefin when the raw material is an olefin. When the raw material is an α, β-unsaturated aldehyde, it is an α, β-unsaturated carboxylic acid in which the aldehyde group of the α, β-unsaturated aldehyde is changed to a carboxyl group.
本発明の製造方法は、プロピレンまたはアクロレインからアクリル酸、イソブチレンまたはメタクロレインからメタクリル酸を製造する液相酸化に好適である。 The production method of the present invention is suitable for liquid phase oxidation for producing acrylic acid from propylene or acrolein, and methacrylic acid from isobutylene or methacrolein.
液相酸化反応に用いる分子状酸素源には、空気が経済的であるが、純酸素または純酸素と空気の混合ガスを用いることもでき、必要であれば、空気または純酸素を窒素、二酸化炭素、水蒸気等で希釈した混合ガスを用いることもできる。 As the molecular oxygen source used in the liquid phase oxidation reaction, air is economical, but pure oxygen or a mixed gas of pure oxygen and air can also be used. If necessary, air or pure oxygen is mixed with nitrogen, dioxide. A mixed gas diluted with carbon, water vapor or the like can also be used.
液相酸化反応に用いる溶媒は特に限定されないが、例えば、水;ターシャリーブタノール、シクロヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸、iso−吉草酸等の有機酸類;酢酸エチル、プロピオン酸メチル等の有機酸エステル類;ヘキサン、シクロヘキサン、トルエン等の炭化水素類;を用いることができる。なかでも炭素数2〜6の有機酸類、炭素数3〜6のケトン類、ターシャリーブタノールが好ましい。溶媒は1種でもよく、2種以上の混合溶媒でもよい。また、アルコール類、ケトン類、有機酸類および有機酸エステル類からなる群から選ばれる少なくとも1種を使用する場合は、水との混合溶媒とすることが好ましい。その際の水の量は特に限定されないが、混合溶媒の質量に対して2〜70質量%が好ましく、5〜50質量%がより好ましい。溶媒は均一であることが望ましいが、不均一な状態で用いても差し支えない。 The solvent used in the liquid-phase oxidation reaction is not particularly limited, but for example, water; alcohols such as tertiary butanol and cyclohexanol; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; acetic acid, propionic acid, n-butyric acid, iso -Organic acids such as butyric acid, n-valeric acid and iso-valeric acid; organic acid esters such as ethyl acetate and methyl propionate; hydrocarbons such as hexane, cyclohexane and toluene; Of these, organic acids having 2 to 6 carbon atoms, ketones having 3 to 6 carbon atoms, and tertiary butanol are preferable. The solvent may be one kind or a mixed solvent of two or more kinds. Moreover, when using at least 1 sort (s) chosen from the group which consists of alcohol, ketones, organic acids, and organic acid esters, it is preferable to set it as a mixed solvent with water. The amount of water at that time is not particularly limited, but is preferably 2 to 70% by mass, and more preferably 5 to 50% by mass with respect to the mass of the mixed solvent. Although the solvent is desirably uniform, it may be used in a non-uniform state.
液相酸化反応は、連続式、バッチ式の何れの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。 The liquid phase oxidation reaction may be carried out in either a continuous type or a batch type, but in view of productivity, the continuous type is preferred industrially.
液相酸化反応の原料であるオレフィンまたはα,β−不飽和アルデヒドの使用量は、溶媒100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。 The amount of olefin or α, β-unsaturated aldehyde used as the raw material for the liquid phase oxidation reaction is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the solvent. .
分子状酸素の使用量は、原料であるオレフィンまたはα,β−不飽和アルデヒド1モルに対して、0.1〜30モルが好ましく、0.3〜25モルがより好ましく、0.5〜20モルが特に好ましい。 The amount of molecular oxygen used is preferably from 0.1 to 30 mol, more preferably from 0.3 to 25 mol, and more preferably from 0.5 to 20 with respect to 1 mol of the raw material olefin or α, β-unsaturated aldehyde. Mole is particularly preferred.
前記触媒は、液相酸化を行う反応液に懸濁させた状態で使用することが好ましいが、固定床で使用してもよい。前記触媒の使用量は、反応器内に存在する溶液100質量部に対して、反応器内に存在する触媒として0.1〜30質量部が好ましく、0.5〜20質量部がより好ましく、1〜15質量部が特に好ましい。 The catalyst is preferably used in a state suspended in a reaction solution for liquid phase oxidation, but may be used in a fixed bed. The amount of the catalyst used is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight as the catalyst present in the reactor with respect to 100 parts by weight of the solution present in the reactor. 1 to 15 parts by mass is particularly preferable.
液相酸化の反応温度および反応圧力は、用いる溶媒および反応原料によって適宜選択される。反応温度は30〜200℃が好ましく、50〜150℃がより好ましい。反応圧力は大気圧(0MPa)〜10MPaが好ましく、2〜7MPaがより好ましい。 The reaction temperature and reaction pressure for liquid phase oxidation are appropriately selected depending on the solvent and reaction raw materials used. The reaction temperature is preferably 30 to 200 ° C, more preferably 50 to 150 ° C. The reaction pressure is preferably atmospheric pressure (0 MPa) to 10 MPa, more preferably 2 to 7 MPa.
以下、本発明について実施例、比較例を挙げて更に具体的に説明するが、本発明は実施例に限定されるものではない。下記の実施例および比較例中の「部」は質量部である。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to an Example. The “parts” in the following examples and comparative examples are parts by mass.
(原料および生成物の分析)
原料および生成物の分析はガスクロマトグラフィーを用いて行った。なお、オレフィンまたはα,β−不飽和アルデヒドの反応率、生成するα,β−不飽和カルボン酸の生産性は以下のように定義される。
(Analysis of raw materials and products)
Analysis of raw materials and products was performed using gas chromatography. The reaction rate of olefin or α, β-unsaturated aldehyde and the productivity of the α, β-unsaturated carboxylic acid produced are defined as follows.
オレフィンまたはα,β−不飽和アルデヒドの反応率(%)=(B/A)×100
α,β−不飽和カルボン酸の生産性(g/gPd/h) =(C/D/E)
ここで、Aは供給したオレフィンまたはα,β−不飽和アルデヒドのモル数、Bは反応したオレフィンまたはα,β−不飽和アルデヒドのモル数、Cは生成したα,β−不飽和カルボン酸の質量(g)、Dは触媒中のパラジウム金属の質量(g)、Eは反応時間(h)である。
Reaction rate of olefin or α, β-unsaturated aldehyde (%) = (B / A) × 100
Productivity of α, β-unsaturated carboxylic acid (g / gPd / h) = (C / D / E)
Here, A is the number of moles of olefin or α, β-unsaturated aldehyde supplied, B is the number of moles of reacted olefin or α, β-unsaturated aldehyde, and C is the amount of α, β-unsaturated carboxylic acid produced. Mass (g), D is the mass (g) of palladium metal in the catalyst, and E is the reaction time (h).
なお、以下の実施例及び比較例では、イソブチレンからメタクリル酸を製造する反応を行っており、この場合、Aは供給したイソブチレンのモル数、Bは反応したイソブチレンのモル数、Cは生成したメタクリル酸の質量(g)である。 In the following examples and comparative examples, a reaction for producing methacrylic acid from isobutylene is carried out. In this case, A is the number of moles of isobutylene supplied, B is the number of moles of reacted isobutylene, and C is the amount of methacrylic acid produced. The mass of acid (g).
[実施例1]
(触媒調製)
硝酸パラジウム(II)溶液(パラジウム金属として換算してパラジウム原子を約25質量%含有する硝酸水溶液)4.0部に、テルル酸0.22部を純水15部に溶解した水溶液を加えた。さらにテトラエトキシシラン0.7部を加え、この溶液を室温中で1時間攪拌処理を行い、テトラエトキシシランの加水分解を進行させた。次いで、シリカ担体(比表面積:450m2/g、細孔容積:0.68cc/g、JIS K1150の測定方法で測定したシラノール基量:6.0mmol/g)10.0部を上記溶液に浸漬し、エバポレーションを行った。その後、熱処理として、空気中で室温から200℃まで1.0℃/分で昇温し、200℃で3時間保持した後、室温まで降温した。
[Example 1]
(Catalyst preparation)
An aqueous solution in which 0.22 part of telluric acid was dissolved in 15 parts of pure water was added to 4.0 parts of a palladium (II) nitrate solution (a nitric acid aqueous solution containing about 25% by mass of palladium atoms in terms of palladium metal). Further, 0.7 part of tetraethoxysilane was added, and this solution was stirred at room temperature for 1 hour to promote hydrolysis of tetraethoxysilane. Next, 10.0 parts of silica support (specific surface area: 450 m 2 / g, pore volume: 0.68 cc / g, silanol group amount measured by the measuring method of JIS K1150: 6.0 mmol / g) is immersed in the above solution. Then, evaporation was performed. Thereafter, as a heat treatment, the temperature was raised from room temperature to 200 ° C. at a rate of 1.0 ° C./min, held at 200 ° C. for 3 hours, and then lowered to room temperature.
こうして得られた触媒前駆体を、還元剤であるホルムアルデヒドの37質量%水溶液50.0部に加えた。70℃に加熱し、2時間攪拌保持し、吸引ろ過後純水1000部でろ過洗浄した。さらに窒素流通下100℃で2時間乾燥して、シリカ担持型パラジウム含有触媒(パラジウム金属の担持率:10.0質量%)を得た。得られた触媒のXRD測定を行ったところ、金属パラジウムが生成していることが確認された。 The catalyst precursor thus obtained was added to 50.0 parts of a 37 mass% aqueous solution of formaldehyde as a reducing agent. The mixture was heated to 70 ° C., stirred and held for 2 hours, filtered and washed with 1000 parts of pure water after suction filtration. Furthermore, it was dried at 100 ° C. for 2 hours under a nitrogen flow to obtain a silica-supported palladium-containing catalyst (palladium metal support: 10.0% by mass). When the XRD measurement of the obtained catalyst was performed, it was confirmed that the metal palladium was producing | generating.
(反応評価)
上記の方法で得た触媒の1/4(パラジウム金属0.25部に相当)を75質量%t−ブタノール水溶液でろ過洗浄した。得られた触媒と反応溶媒として75質量%t−ブタノール水溶液75部をオートクレーブに入れ、オートクレーブを密閉した。次いで、イソブチレンを2.0部導入し、攪拌(回転数1000rpm)を開始し、90℃まで昇温した。昇温完了後、オートクレーブに窒素を内圧2.4MPaまで導入した後、圧縮空気を内圧4.8MPaまで導入して反応を開始させた。反応中に内圧が0.1MPa低下した時点(内圧4.7MPa)で、酸素を0.1MPa導入する操作を繰り返した。導入直後の圧力は4.8MPaである。反応開始後30分で反応を終了した。
(Reaction evaluation)
A quarter of the catalyst obtained by the above method (corresponding to 0.25 part of palladium metal) was filtered and washed with a 75% by mass aqueous t-butanol solution. As a catalyst and a reaction solvent, 75 parts by mass of 75% by mass t-butanol aqueous solution was put in an autoclave, and the autoclave was sealed. Next, 2.0 parts of isobutylene was introduced, stirring (rotation speed: 1000 rpm) was started, and the temperature was raised to 90 ° C. After completion of the temperature increase, nitrogen was introduced into the autoclave to an internal pressure of 2.4 MPa, and then compressed air was introduced to an internal pressure of 4.8 MPa to initiate the reaction. When the internal pressure decreased by 0.1 MPa during the reaction (internal pressure 4.7 MPa), the operation of introducing 0.1 MPa of oxygen was repeated. The pressure immediately after introduction is 4.8 MPa. The reaction was completed 30 minutes after the start of the reaction.
反応終了後、氷浴でオートクレーブ内を氷冷した。オートクレーブのガス出口にガス捕集袋を取り付け、ガス出口を開栓して出てくるガスを回収しながら反応器内の圧力を開放した。オートクレーブから触媒入りの反応液を取り出し、メンブランフィルターで触媒を分離して、反応液を回収した。回収した反応液と捕集したガスをガスクロマトグラフィーにより分析し、反応率及び生産性を算出した。 After completion of the reaction, the inside of the autoclave was ice-cooled in an ice bath. A gas collection bag was attached to the gas outlet of the autoclave, and the pressure in the reactor was released while collecting the gas that was opened by opening the gas outlet. The reaction solution containing the catalyst was taken out from the autoclave, the catalyst was separated with a membrane filter, and the reaction solution was recovered. The collected reaction liquid and the collected gas were analyzed by gas chromatography, and the reaction rate and productivity were calculated.
[実施例2]
(触媒調製)
テトラエトキシシラン1.4部を使用した以外は実施例1と同様の方法で行った。
[Example 2]
(Catalyst preparation)
This was carried out in the same manner as in Example 1 except that 1.4 parts of tetraethoxysilane was used.
(反応評価)
実施例1と同様の方法で行った。
(Reaction evaluation)
The same method as in Example 1 was used.
[実施例3]
(触媒調製)
テトラエトキシシラン1.8部を使用した以外は実施例1と同様の方法で行った。
[Example 3]
(Catalyst preparation)
This was carried out in the same manner as in Example 1 except that 1.8 parts of tetraethoxysilane was used.
(反応評価)
実施例1と同様の方法で行った。
(Reaction evaluation)
The same method as in Example 1 was used.
[比較例1]
(触媒調製)
テトラエトキシシランを使用しなかったこと以外は実施例1と同様の方法で行った。
[Comparative Example 1]
(Catalyst preparation)
The same procedure as in Example 1 was performed except that tetraethoxysilane was not used.
(反応評価)
実施例1と同様の方法で行った。
(Reaction evaluation)
The same method as in Example 1 was used.
[比較例2]
(触媒調製)
テトラエトキシシラン3.5部を使用した以外は実施例1と同様の方法で行った。
[Comparative Example 2]
(Catalyst preparation)
The same procedure as in Example 1 was performed except that 3.5 parts of tetraethoxysilane was used.
(反応評価)
実施例1と同様の方法で行った。
(Reaction evaluation)
The same method as in Example 1 was used.
以上の結果を表1にまとめて示したように、本発明の方法によれば、より高い生産性でα,β−不飽和カルボン酸を製造できることが分かった。 As the above results are summarized in Table 1, it was found that according to the method of the present invention, α, β-unsaturated carboxylic acid can be produced with higher productivity.
Claims (4)
(a)担体にパラジウム塩を担持する工程と、
(b)前記担体に対して質量比で0.01〜0.25の加水分解性の官能基を有する金属化合物を水含有溶液中で加水分解反応する工程と、
(c)前記工程(b)で加水分解反応して得られた生成物を、前記担体の存在下において脱水縮合反応する工程と、
を有することを特徴とするパラジウム含有担持触媒の製造方法。 A process for producing a palladium-containing supported catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde comprising the steps of:
(A) supporting a palladium salt on a carrier;
(B) a step of hydrolyzing a metal compound having a hydrolyzable functional group having a mass ratio of 0.01 to 0.25 with respect to the carrier in a water-containing solution;
(C) subjecting the product obtained by the hydrolysis reaction in the step (b) to a dehydration condensation reaction in the presence of the carrier;
A process for producing a palladium-containing supported catalyst, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006250579A JP4829730B2 (en) | 2006-09-15 | 2006-09-15 | Method for producing palladium-containing supported catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006250579A JP4829730B2 (en) | 2006-09-15 | 2006-09-15 | Method for producing palladium-containing supported catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008068228A true JP2008068228A (en) | 2008-03-27 |
JP4829730B2 JP4829730B2 (en) | 2011-12-07 |
Family
ID=39290292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006250579A Active JP4829730B2 (en) | 2006-09-15 | 2006-09-15 | Method for producing palladium-containing supported catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4829730B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013215671A (en) * | 2012-04-09 | 2013-10-24 | Mitsubishi Rayon Co Ltd | METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID |
WO2014175113A1 (en) * | 2013-04-25 | 2014-10-30 | 日本化薬株式会社 | Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000140648A (en) * | 1998-11-05 | 2000-05-23 | Toyota Central Res & Dev Lab Inc | Catalyst and its production |
JP2005105336A (en) * | 2003-09-30 | 2005-04-21 | Mitsubishi Chemicals Corp | Method of coprecipitating chalcogen compound, method of producing platinum group-chalcogen alloy, method of producing platinum group-chalcogen alloy/inorganic porous carried product, and method of producing oxide reaction product |
JP2006224022A (en) * | 2005-02-18 | 2006-08-31 | Mitsubishi Rayon Co Ltd | NOBLE METAL CONTAINING CATALYST AND METHOD FOR MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID USING THE SAME |
-
2006
- 2006-09-15 JP JP2006250579A patent/JP4829730B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000140648A (en) * | 1998-11-05 | 2000-05-23 | Toyota Central Res & Dev Lab Inc | Catalyst and its production |
JP2005105336A (en) * | 2003-09-30 | 2005-04-21 | Mitsubishi Chemicals Corp | Method of coprecipitating chalcogen compound, method of producing platinum group-chalcogen alloy, method of producing platinum group-chalcogen alloy/inorganic porous carried product, and method of producing oxide reaction product |
JP2006224022A (en) * | 2005-02-18 | 2006-08-31 | Mitsubishi Rayon Co Ltd | NOBLE METAL CONTAINING CATALYST AND METHOD FOR MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID USING THE SAME |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013215671A (en) * | 2012-04-09 | 2013-10-24 | Mitsubishi Rayon Co Ltd | METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID |
WO2014175113A1 (en) * | 2013-04-25 | 2014-10-30 | 日本化薬株式会社 | Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst |
US9393553B2 (en) | 2013-04-25 | 2016-07-19 | Nippon Kayaku Kabushiki Kaisha | Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing the catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst |
JPWO2014175113A1 (en) * | 2013-04-25 | 2017-02-23 | 日本化薬株式会社 | Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the catalyst, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst |
JP2018114502A (en) * | 2013-04-25 | 2018-07-26 | 日本化薬株式会社 | Catalyst for synthesis of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst |
Also Published As
Publication number | Publication date |
---|---|
JP4829730B2 (en) | 2011-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4846576B2 (en) | Palladium-containing catalyst and method for producing the same | |
JP4829730B2 (en) | Method for producing palladium-containing supported catalyst | |
JP5001543B2 (en) | Method for producing palladium-containing supported catalyst | |
JP4728761B2 (en) | Method for producing supported catalyst containing palladium and tellurium, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride | |
JP2007245068A (en) | NOBLE METAL-CONTAINING CATALYST AND PRODUCTION METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID USING IT | |
JP5340705B2 (en) | Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride | |
US7994091B2 (en) | Method for producing palladium-containing catalyst | |
JP4676887B2 (en) | Method for producing α, β-unsaturated carboxylic acid, catalyst therefor and method for producing the same | |
JP5910873B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP2006265227A (en) | METHOD FOR PRODUCING alpha,beta-UNSATURATED ALDEHYDE AND/OR alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP5609394B2 (en) | Method for producing palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid | |
JP2011235215A (en) | METHOD FOR PRODUCING PALLADIUM-CONTAINING CARRYING CATALYST, THE CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID | |
JP4446807B2 (en) | Palladium-containing catalyst and method for producing the same, and method for producing α, β-unsaturated aldehyde and α, β-unsaturated carboxylic acid | |
JP5084004B2 (en) | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4522841B2 (en) | Noble metal-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid using the same | |
JP5362348B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP2008212818A (en) | Method of manufacturing palladium-containing supported catalyst | |
JP5416886B2 (en) | Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid | |
JP2005218953A (en) | PALLADIUM-CONTAINING CATALYST, MANUFACTURING METHOD THEREFOR AND METHOD FOR PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID | |
JP2007044607A (en) | Noble metal-containing catalyst and method for producing alpha,beta-unsaturated carboxylic acid and alpha,beta-unsaturated carboxylic acid anhydride by using the same | |
JP2005324084A (en) | METHOD FOR PRODUCING PALLADIUM-CONTAINING CATALYST, PALLADIUM-CONTAINING CATALYST, AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP5327969B2 (en) | Method for producing noble metal-containing supported catalyst, catalyst therefor, and method for producing α, β-unsaturated carboxylic acid | |
JP2009254956A (en) | PALLADIUM-SUPPORTING CATALYST, ITS MANUFACTURING METHOD AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP2006137729A (en) | METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP2012116846A (en) | METHOD FOR PRODUCING α,β-UNSATURATED ALDEHYDE AND/OR α,β-UNSATURATED CARBOXYLIC ACID |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090910 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110907 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110916 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4829730 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |