Nothing Special   »   [go: up one dir, main page]

JP2008058062A - Angular velocity sensor - Google Patents

Angular velocity sensor Download PDF

Info

Publication number
JP2008058062A
JP2008058062A JP2006233230A JP2006233230A JP2008058062A JP 2008058062 A JP2008058062 A JP 2008058062A JP 2006233230 A JP2006233230 A JP 2006233230A JP 2006233230 A JP2006233230 A JP 2006233230A JP 2008058062 A JP2008058062 A JP 2008058062A
Authority
JP
Japan
Prior art keywords
axis
arm
angular velocity
detection
velocity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006233230A
Other languages
Japanese (ja)
Inventor
Takayuki Kikuchi
菊池  尊行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006233230A priority Critical patent/JP2008058062A/en
Publication of JP2008058062A publication Critical patent/JP2008058062A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized angular velocity sensor having a simple structure, which detects a torsional vibration component in a Y-axis rotation system. <P>SOLUTION: The angular velocity sensor 1 is equipped with a piezoelectric vibration chip 10 acquired by forming, on an XY-plane: a base part 20; driving arms 40, 50 extended in parallel with the Y-axis from the base part 20 or the first connection arm 31 and the second connection arm 32 connected to the base part 20, for performing bending vibration in the X-axis direction orthogonal to the Y-axis; and a detection arm 60 parallel to the driving arms 40, 50. The sensor 1 is also equipped with a detection means for outputting a detection signal corresponding to a vibration component generated in the detection arm 60 by a Coriolis force applied by rotation around the Y-axis. The vibration component in the Y-axis rotation system is a torsional vibration component of the detection arm 60. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、角速度センサに関し、詳しくは、Y軸回転系の角速度に反応して検出腕に発生する捩れ振動成分を検出信号として出力する角速度センサに関する。   The present invention relates to an angular velocity sensor, and more particularly to an angular velocity sensor that outputs a torsional vibration component generated in a detection arm in response to an angular velocity of a Y-axis rotation system as a detection signal.

回転角速度を検出する角速度センサ(ジャイロスコープと呼称することがある)は、ナビゲーションシステム、航空機や船舶の姿勢制御システム、ロボット等の姿勢制御システム、ビデオカメラやデジタルカメラの手振れ防止装置等に採用されている。これらの電子機器は小型化が要求され、それに伴い角速度センサも小型化と構成の簡素化が要求されてきている。   Angular velocity sensors (sometimes called gyroscopes) that detect rotational angular velocities are used in navigation systems, attitude control systems for aircraft and ships, attitude control systems for robots, etc., camera shake prevention devices for video cameras and digital cameras, etc. ing. These electronic devices are required to be reduced in size, and accordingly, the angular velocity sensor is also required to be reduced in size and simplified in configuration.

従来、振動子と、振動子に対して駆動振動を励振する励振手段と、振動子の回転によって振動子に発生した検出振動を検出する検出手段を備え、振動子は複数の振動系が回転軸Zに対して交差する所定面内に延びるように形成されているZ軸回転系の角速度を検出する角速度センサというものが知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a vibrator, excitation means for exciting drive vibration with respect to the vibrator, and detection means for detecting detection vibration generated in the vibrator due to rotation of the vibrator are provided. There is known an angular velocity sensor that detects an angular velocity of a Z-axis rotation system formed so as to extend in a predetermined plane intersecting Z (see, for example, Patent Document 1).

また、2個の音叉を含み、2個の音叉の中央部に音叉に平行に延出される検出腕の端部が、2個の音叉の周囲に設けられる枠部に接合されて支持される角速度センサにおいて、音叉及び検出腕が展開される面の中心を回転軸として回転すると、検出腕に回転軸回りの捩れ振動成分が発生し、この捩れ振動成分を検出する角速度センサというものも知られている(例えば、特許文献2参照)。   An angular velocity that includes two tuning forks and is supported by joining ends of detection arms that extend in parallel to the tuning fork at the center of the two tuning forks to a frame provided around the two tuning forks. In the sensor, when the center of the surface on which the tuning fork and the detection arm are deployed is rotated as a rotation axis, a torsional vibration component around the rotation axis is generated in the detection arm, and an angular velocity sensor that detects this torsional vibration component is also known. (For example, refer to Patent Document 2).

特開平11−281372号公報JP-A-11-281372 United States Ptent 4,654,663United States Pent 4,654,663

このような特許文献1では、複数の振動系が展開される面に対して垂直な回転軸、つまりZ軸回転系の振動成分の検出可能な角速度センサであり、面内に回転軸を有するX軸回転系またはY軸回転系の振動成分の検出はできない。すなわち、X軸およびY軸回転を検出しないような構成としている。   In Patent Document 1, an angular velocity sensor that can detect a vibration axis perpendicular to a surface on which a plurality of vibration systems are developed, that is, a vibration component of a Z-axis rotation system, and has an in-plane rotation axis. The vibration component of the shaft rotation system or the Y-axis rotation system cannot be detected. That is, the X-axis and Y-axis rotations are not detected.

また、上述した特許文献2では、捩れ振動成分を検出することが可能である。しかし
、検出腕を枠部に接続しているため、加速度や捩れ以外の角速度の影響を受けてノイズが入る。
Further, in Patent Document 2 described above, a torsional vibration component can be detected. However, since the detection arm is connected to the frame, noise is generated under the influence of angular velocity other than acceleration and torsion.

本発明の目的は、上述した課題を解決することを要旨とし、Y軸回転系の捩れ振動成分の検出を実現する簡単な構造で小型の角速度センサを提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a small angular velocity sensor with a simple structure that realizes detection of a torsional vibration component of a Y-axis rotation system.

本発明の角速度センサは、前記基部または前記基部に接続された連結腕からY軸に平行に延出されY軸に直交するX軸方向に屈曲振動をする駆動腕と、前記駆動腕に平行な検出腕と、がXY平面に形成される圧電振動片と、Y軸回りの回転により与えられるZ軸方向のコリオリ力により前記検出腕に発生する振動成分に応じて、Y軸回転系の検出信号を出力する検出手段と、が備えられていることを特徴とする。   An angular velocity sensor according to the present invention includes a drive arm that extends in parallel to the Y axis from the base or a connecting arm connected to the base and performs bending vibration in the X-axis direction orthogonal to the Y axis, and is parallel to the drive arm. A detection signal of the Y-axis rotation system in accordance with a vibration component generated in the detection arm by a Coriolis force in the Z-axis direction given by rotation around the Y axis and a piezoelectric vibrating piece formed on the XY plane. And detecting means for outputting.

この発明によれば、上述した圧電振動片の構造はXY平面内に駆動腕と検出腕とを形成し、Y軸回りの回転により与えられるZ軸方向のコリオリ力により前記検出腕に発生する振動成分を検出することで、Y軸回転系の角速度を検出することができる。   According to the present invention, the structure of the piezoelectric vibrating piece described above forms a drive arm and a detection arm in the XY plane, and vibration generated in the detection arm due to the Coriolis force in the Z-axis direction given by rotation around the Y-axis. By detecting the component, the angular velocity of the Y-axis rotation system can be detected.

また、前記圧電振動片が、前記基部からY軸方向に延出される第1の検出腕及びマイナスY軸方向に延出される第2の検出腕と、前記基部からX軸方向に延出された第1の連結腕と、前記基部からマイナスX軸方向に延出された第2の連結腕と、前記第1の連結腕に連結され、Y軸方向およびマイナスY軸方向に延出される駆動腕と、前記第2の連結腕に連結され、Y軸方向およびマイナスY軸方向に延出される駆動腕と、を備えて構成されていることが好ましい。   The piezoelectric vibrating piece extends from the base in the Y-axis direction, the second detection arm extends in the minus Y-axis direction, and extends from the base in the X-axis direction. A first connecting arm; a second connecting arm extending in the minus X-axis direction from the base; and a driving arm connected to the first connecting arm and extending in the Y-axis direction and the minus Y-axis direction. And a driving arm connected to the second connecting arm and extending in the Y-axis direction and the minus Y-axis direction.

このように構成される角度センサは、WT型角速度センサ(ダブルT型)と呼ばれる形態と同じであり、Z軸回転系の角速度センサに用いられている。WT型角速度センサは駆動系と検出系を独立しているため漏れ信号が小さく、検出感度が高いことが知られており、Y軸回転系の角速度の検出においても高い検出感度を実現する。   The angle sensor configured as described above has the same form as a WT type angular velocity sensor (double T type), and is used for an angular velocity sensor of a Z-axis rotation system. Since the WT type angular velocity sensor is independent of the drive system and the detection system, it is known that the leakage signal is small and the detection sensitivity is high, and high detection sensitivity is also realized in the detection of the angular velocity of the Y-axis rotation system.

また、上述した角速度センサの構造では、前記Y軸回りの回転により与えられるZ軸方向のコリオリ力により前記第1の検出腕及び前記第2の検出腕に発生する振動成分が捩れ振動成分であることを特徴とする。   In the structure of the angular velocity sensor described above, the vibration component generated in the first detection arm and the second detection arm by the Coriolis force in the Z-axis direction given by the rotation about the Y-axis is a torsional vibration component. It is characterized by that.

上述したような構成のWT型角速度センサは、Z軸回転系の振動成分を検出する角速度センサとして知られ、Z軸回転系の振動成分は第1、第2の検出腕の屈曲振動成分である。従って、本発明による検出腕の捩れ振動とは振動モードが異なるため、Z軸と直交するY軸回転系の振動成分をZ軸回転系の検出信号の影響を最小にして検出することができる。   The WT type angular velocity sensor configured as described above is known as an angular velocity sensor that detects a vibration component of the Z-axis rotation system, and the vibration component of the Z-axis rotation system is a bending vibration component of the first and second detection arms. . Therefore, since the vibration mode is different from the torsional vibration of the detection arm according to the present invention, the vibration component of the Y-axis rotation system orthogonal to the Z-axis can be detected with the influence of the detection signal of the Z-axis rotation system being minimized.

また、前記Y軸回りの回転により与えられるZ軸方向のコリオリ力により発生する捩れ振動が、前記基部から視認して、前記第1の検出腕の捩れ振動方向と前記第2の検出腕の捩れ振動方向が逆方向であり、それぞれの振動振幅がほぼ同じであることを特徴とする。   Further, the torsional vibration generated by the Coriolis force in the Z-axis direction given by the rotation about the Y-axis is visually recognized from the base portion, and the torsional vibration direction of the first detection arm and the torsion of the second detection arm. The vibration direction is the reverse direction, and each vibration amplitude is substantially the same.

このようにすれば、第1の検出腕と第2の検出腕からの出力信号は逆位相となることから、二つの出力信号を合成した検出信号の信号強度は2倍となり、ノイズ(S/N比)を抑制することができることから検出感度を高める。   In this way, since the output signals from the first detection arm and the second detection arm are in opposite phases, the signal intensity of the detection signal obtained by synthesizing the two output signals is doubled, and noise (S / N ratio) can be suppressed, so that the detection sensitivity is increased.

また、前記駆動腕と前記検出腕のそれぞれの先端に錘部が形成され、前記検出腕の錘部の幅Dが、前記検出腕の検出腕部の幅dに対して、5d≦D≦10dの範囲に設定されていることが好ましい。   Further, a weight portion is formed at each tip of the drive arm and the detection arm, and the width D of the weight portion of the detection arm is 5d ≦ D ≦ 10d with respect to the width d of the detection arm portion of the detection arm. It is preferable that the range is set.

Y軸回転系の振動成分は捩れ振動成分である。従って、錘部の幅を振動部の幅よりも大きくし所定の範囲に設計することで捩れ振動を発生しやすくし検出感度を高めることができる。また、後述する検出離調周波数の調整幅を小さくでき、生産性を高めることができるという効果がある。   The vibration component of the Y-axis rotation system is a torsional vibration component. Therefore, by designing the width of the weight portion to be larger than the width of the vibration portion and designing it within a predetermined range, it is easy to generate torsional vibration and the detection sensitivity can be increased. Moreover, there is an effect that the adjustment range of the detected detuning frequency described later can be reduced, and the productivity can be increased.

また、前記Y軸回転系の捩れ振動成分の検出感度が、前記第1の検出腕及び前記第2の検出腕の検出離調周波数にて調整することが好ましい。
ここで、検出離調周波数とは、駆動周波数と検出周波数の差を意味する。
Moreover, it is preferable that the detection sensitivity of the torsional vibration component of the Y-axis rotation system is adjusted by the detection detuning frequency of the first detection arm and the second detection arm.
Here, the detected detuning frequency means a difference between the drive frequency and the detected frequency.

詳しくは後述する実施の形態にて説明するが、Y軸回転系の検出の際、Z軸回転系の検出信号が重畳される。また、Y軸回転系感度とZ軸回転系感度は略逆比例傾向を示す。Y軸回転系感度の感度に対してZ軸回転系感度は他軸感度であり、他軸感度はノイズである。ここで、検出離調周波数を適正な値に調整することにより、他軸感度のY軸回転系のY軸感度に与える影響度を小さくし、結果としてY軸回転系の検出感度を高めることができる。   Although details will be described in an embodiment described later, the detection signal of the Z-axis rotation system is superimposed when the Y-axis rotation system is detected. Further, the Y-axis rotation system sensitivity and the Z-axis rotation system sensitivity show a substantially inversely proportional tendency. The Z-axis rotation system sensitivity is the other-axis sensitivity with respect to the Y-axis rotation system sensitivity, and the other-axis sensitivity is noise. Here, by adjusting the detected detuning frequency to an appropriate value, the degree of influence on the Y-axis sensitivity of the Y-axis rotation system of the other-axis sensitivity can be reduced, and as a result, the detection sensitivity of the Y-axis rotation system can be increased. it can.

また、前記検出離調周波数の調整は、前記第1の検出腕及び前記第2の検出腕それぞれの先端に設けられる錘部の質量の増減によって行われることが好ましい。   The detection detuning frequency is preferably adjusted by increasing or decreasing the mass of the weight portion provided at the tip of each of the first detection arm and the second detection arm.

上述したY軸回転系の振動成分が捩れ振動成分であるため、第1、第2の検出腕よりも幅が広い錘部の質量増減により検出離調周波数の調整を効果的に行うことができる。   Since the vibration component of the Y-axis rotation system described above is a torsional vibration component, the detected detuning frequency can be effectively adjusted by increasing or decreasing the mass of the weight portion that is wider than the first and second detection arms. .

さらに、前記錘部の質量増減は、前記錘部の幅方向端部から中央に向かって順次行われることが望ましい。   Further, it is preferable that the mass of the weight portion is increased or decreased sequentially from the width direction end portion of the weight portion toward the center.

Z軸回転系では捩れ振動成分を検出している。従って、捩れ振動に影響を与えやすい検錘の幅方向端部から質量増減を行うことにより、少ない質量増減で検出離調周波数の調整を行うことができ、調整時間を短縮することができる。   The torsional vibration component is detected in the Z-axis rotation system. Therefore, by performing mass increase / decrease from the end in the width direction of the weight that easily affects torsional vibration, the detected detuning frequency can be adjusted with a small mass increase / decrease, and the adjustment time can be shortened.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の角速度センサの構造を示し、図2は回転角速度が加わらないときの振動モード、図3はZ軸回転系の振動モード、図4〜図6はY軸回転系の振動モードを示す説明図、図7は感度特性を示すグラフである。
なお、以下の説明で参照する図は、図示の便宜上、部材ないし部分の縦横の縮尺は実際のものとは異なる模式図である。
(実施形態)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 shows the structure of the angular velocity sensor of the present invention, FIG. 2 shows a vibration mode when no rotational angular velocity is applied, FIG. 3 shows a vibration mode of the Z-axis rotation system, and FIGS. 4 to 6 show vibration modes of the Y-axis rotation system. FIG. 7 is a graph showing sensitivity characteristics.
Note that the drawings referred to in the following description are schematic views in which the vertical and horizontal scales of members or portions are different from actual ones for convenience of illustration.
(Embodiment)

図1は、本発明の実施形態に係る角速度センサの構造を示す斜視図である。図1において、本実施形態の角速度センサ1は圧電振動片10と図示しない検出手段としての検出回路と励振手段としての発振回路とから構成されている。なお、圧電振動片10は、周知の圧電材料にて形成することが可能であるが、本実施形態では水晶振動片を例示して説明する。   FIG. 1 is a perspective view showing the structure of an angular velocity sensor according to an embodiment of the present invention. In FIG. 1, an angular velocity sensor 1 according to this embodiment includes a piezoelectric vibrating piece 10, a detection circuit (not shown) as detection means, and an oscillation circuit as excitation means. The piezoelectric vibrating piece 10 can be formed of a known piezoelectric material. In the present embodiment, a quartz vibrating piece will be described as an example.

圧電振動片10はXY平面内に形成される。本実施形態では、圧電振動片10は水晶で形成され、電気軸と呼ばれるX軸、機械軸と呼ばれるY軸及び光学軸と呼ばれるZ軸のX軸とY軸を平面方向に切り出したZカットの水晶基板により形成されている。
圧電振動片10の平面形状は、水晶の結晶軸に合わせてXY平面に展開され、重心位置Gに対して180°点対称の形状である。
The piezoelectric vibrating piece 10 is formed in the XY plane. In the present embodiment, the piezoelectric vibrating piece 10 is made of quartz, and is a Z-cut of the X-axis called the electric axis, the Y-axis called the mechanical axis, and the Z-axis called the optical axis and the Y-axis cut in the plane direction. It is formed of a quartz substrate.
The planar shape of the piezoelectric vibrating piece 10 is developed on the XY plane in accordance with the crystal axis of the crystal, and is 180 ° point-symmetric with respect to the gravity center position G.

圧電振動片10には、X軸方向とY軸方向にそれぞれ平行な端面をもつ矩形状の基部20が形成され、Y軸に平行な基部20の2端面の中央からX軸に平行に延出される第1の連結腕31と第2の連結腕32の先端部からY軸に平行な一対の駆動腕40,50と、X軸に平行な基部20の2端面の中央からY軸に平行な直線上に延出される検出腕60とが形成されている。駆動腕40は、基部20の端面からX軸方向に延出される第1の連結腕31と、第1の連結腕31に対して直交しY軸方向及びマイナスY軸方向に延出される2本の振動部41,42で構成されている。同様に、駆動腕50は、基部20からマイナスX軸方向に延出される第2の連結腕32に直交しY軸方向及びマイナスY軸方向に延出される2本の振動部51,52で構成されている。   The piezoelectric vibrating piece 10 is formed with a rectangular base 20 having end faces parallel to the X-axis direction and the Y-axis direction, respectively, and extends parallel to the X-axis from the center of the two end faces of the base 20 parallel to the Y-axis. A pair of drive arms 40, 50 parallel to the Y axis from the distal ends of the first connecting arm 31 and the second connecting arm 32 and a center of two end faces of the base 20 parallel to the X axis are parallel to the Y axis. A detection arm 60 extending on a straight line is formed. The drive arm 40 includes a first connecting arm 31 extending from the end face of the base portion 20 in the X-axis direction, and two driving arms 40 extending in the Y-axis direction and the minus Y-axis direction perpendicular to the first connecting arm 31. The vibration parts 41 and 42 are comprised. Similarly, the drive arm 50 includes two vibrating portions 51 and 52 that are orthogonal to the second connecting arm 32 extending in the minus X-axis direction from the base portion 20 and extend in the Y-axis direction and the minus Y-axis direction. Has been.

振動部41,42,51,52の先端にはそれぞれ、各振動部より幅の広い略四角形の錘部43,44,53,54が形成されている。   At the tips of the vibration parts 41, 42, 51, 52, substantially square weight parts 43, 44, 53, 54 wider than the respective vibration parts are formed.

また、検出腕60は、基部20の2端部からY軸方向及びマイナスY軸方向の直線上に延出される検出腕部61,62と、検出腕部61,62の先端に形成される各検出腕部より幅の広い略四角形の錘部63,64と、から構成されている。   The detection arm 60 includes detection arm portions 61 and 62 extending from the two end portions of the base portion 20 on the straight lines in the Y-axis direction and the negative Y-axis direction, and each of the detection arm portions 61 and 62 formed at the tips of the detection arm portions 61 and 62. It is composed of substantially rectangular weight parts 63 and 64 that are wider than the detection arm part.

ここで、検出腕部61,62の先端に形成される錘部63,64の幅(X軸方向の幅を示す)は、他の錘部43,44,53,54よりも大きく設定されており、錘部63,64の幅をD、検出腕部61,62の幅をdとしたとき、5d≦D≦10dとなるように設計される。つまり、錘部63,64の幅は、検出腕部61,62の幅dの5〜10倍の範囲に設計されている。   Here, the widths (indicating the width in the X-axis direction) of the weight parts 63 and 64 formed at the tips of the detection arm parts 61 and 62 are set larger than those of the other weight parts 43, 44, 53 and 54. The weights 63 and 64 are designed so that 5d ≦ D ≦ 10d, where D is the width of the weights 63 and 64, and d is the width of the detection arm portions 61 and 62. That is, the widths of the weight parts 63 and 64 are designed in a range of 5 to 10 times the width d of the detection arm parts 61 and 62.

このように錘部63,64を設定する理由は、後述するY軸回転系の角速度検出において(図4〜6、参照)、検出腕60の捩れ振動を効率よく発生させるためである。   The reason why the weight parts 63 and 64 are set in this way is to efficiently generate torsional vibration of the detection arm 60 in the angular velocity detection of the Y-axis rotation system described later (see FIGS. 4 to 6).

振動部41,42,51,52及び検出腕部61,62それぞれの幅方向中央には、厚み方向に凹形状の溝45,46,55,56,65,66が形成されている。
なお、前述の錘部43,44,53,54,63,64、及び溝45,46,55,56,65,66は、圧電振動片10を小型化するために設けられているが、本発明を特に限定するものではない。
A concave groove 45, 46, 55, 56, 65, 66 is formed in the thickness direction at the center in the width direction of each of the vibration parts 41, 42, 51, 52 and the detection arm parts 61, 62.
The weights 43, 44, 53, 54, 63, 64 and the grooves 45, 46, 55, 56, 65, 66 are provided to reduce the size of the piezoelectric vibrating piece 10. The invention is not particularly limited.

駆動腕40,50は、所定の周波数の駆動振動が発生するように、振動部41,42,51,52の幅や長さ、錘部43,44,53,54の寸法、溝45,46,55,56の寸法が設定されている。また、検出腕60は、所定の検出振動が発生するように、検出腕部61,62の幅や長さ、錘部63,64の寸法、溝65,66の寸法が設定されている。   The drive arms 40 and 50 have the widths and lengths of the vibration parts 41, 42, 51, and 52, the dimensions of the weight parts 43, 44, 53, and the grooves 45 and 46 so that the drive vibration of a predetermined frequency is generated. , 55 and 56 are set. In addition, the width and length of the detection arm portions 61 and 62, the dimensions of the weight portions 63 and 64, and the dimensions of the grooves 65 and 66 are set in the detection arm 60 so that predetermined detection vibration is generated.

上述したような形状の圧電振動片10は、一般にWT型圧電振動片と呼称され、小型化及び高精度化に有利であるとされており、検出腕部61,62の幅と錘部63,64の幅との関係以外は、既に提案されているWT型と同様な構成である。   The piezoelectric vibrating piece 10 having the shape as described above is generally called a WT type piezoelectric vibrating piece and is advantageous for downsizing and high accuracy. The width of the detection arm portions 61 and 62 and the weight portion 63, Except for the relationship with the width of 64, the configuration is the same as that of the WT type already proposed.

なお、駆動腕40,50及び検出腕60にはそれぞれ図示しない駆動電極、検出電極とが形成されている。これら駆動電極及び検出電極は、基部20の裏面から図示しない検出回路、発振回路に接続されている。また、基部20はリードまたはボンディングワイヤを介して基板に接続され、支持される。基板はパッケージ内部に固定される。このような構成とすれば、外部からの衝撃が加わった場合、リードまたはボンディングワイヤが衝撃を吸収するため、ノイズの発生を抑えることができる。また、、リードまたはボンディングワイヤを介して駆動電極及び検出電極を駆動回路や検出回路に導通させる構成としても良い。検出回路、発振回路も従来のWT型圧電振動片にて採用されているものと同じ構成のものが採用される。また、各駆動電極、検出電極は重心位置Gに対して180°点対称に形成されている。   The drive arms 40 and 50 and the detection arm 60 are formed with drive electrodes and detection electrodes (not shown), respectively. These drive electrodes and detection electrodes are connected from the back surface of the base 20 to a detection circuit and an oscillation circuit (not shown). The base 20 is connected to and supported by the substrate via leads or bonding wires. The substrate is fixed inside the package. With such a configuration, when an external impact is applied, the lead or the bonding wire absorbs the impact, so that the generation of noise can be suppressed. Alternatively, the drive electrode and the detection electrode may be electrically connected to the drive circuit or the detection circuit via a lead or a bonding wire. The detection circuit and the oscillation circuit have the same configuration as that used in the conventional WT type piezoelectric vibrating piece. Further, each drive electrode and detection electrode are formed symmetrically with respect to the gravity center position G by 180 °.

続いて、上述した本実施形態の圧電振動片10の動作、従来のZ軸回転系及び本実施形態のY軸回りの回転系(以降、単にY軸回転系と表すことがある)の振動モードについて説明する。
図2は、本実施形態の圧電振動片の振動モード(回転が加わらない)を模式的に示す説明図、図3はZ軸回転系の振動モードを模式的に示す説明図である。図2,3は、振動形態を分かりやすく表現するために、駆動腕40,50及び検出腕60を簡略化して線で表している。図1と同じ構成部分を同じ符号で示し、構造の説明を省略する。
Subsequently, the operation of the piezoelectric vibrating reed 10 of the present embodiment described above, the vibration mode of the conventional Z-axis rotation system and the rotation system around the Y-axis of the present embodiment (hereinafter simply referred to as the Y-axis rotation system). Will be described.
FIG. 2 is an explanatory view schematically showing a vibration mode (no rotation is applied) of the piezoelectric vibrating piece of the present embodiment, and FIG. 3 is an explanatory view schematically showing a vibration mode of the Z-axis rotation system. 2 and 3, the drive arms 40 and 50 and the detection arm 60 are simplified and represented by lines in order to easily express the vibration form. The same components as those in FIG. 1 are denoted by the same reference numerals, and the description of the structure is omitted.

まず、圧電振動片10の静的な動作(回転加速度が加えられていないときの振動モード)について説明する。図2において、駆動振動は、振動部41,42,51,52の矢印Aで示す屈曲振動であって、実線で示す振動姿態と、二点鎖線で示す振動姿態を所定の周波数で繰り返している。このとき、振動部41,42と振動部51,52とがバランス調整され、重心位置Gを通るY軸に対して線対称の振動を行っているので、基部20、第1の連結腕31、第2の連結腕32及び検出腕部61,62はほとんど振動しない。   First, the static operation of the piezoelectric vibrating piece 10 (vibration mode when no rotational acceleration is applied) will be described. In FIG. 2, the drive vibration is a bending vibration indicated by an arrow A of the vibration parts 41, 42, 51, 52, and a vibration state indicated by a solid line and a vibration state indicated by a two-dot chain line are repeated at a predetermined frequency. . At this time, the balance between the vibrating portions 41 and 42 and the vibrating portions 51 and 52 is adjusted, and vibration is performed in line symmetry with respect to the Y axis passing through the gravity center position G. Therefore, the base portion 20, the first connecting arm 31, The second connecting arm 32 and the detection arm portions 61 and 62 hardly vibrate.

次に、Z軸回りの回転角速度ωが加えられたときの動作について説明する。図3において、Z軸回転系において、検出振動は、実線で示す振動姿態と、二点鎖線で示す振動姿態を繰り返している。検出振動は、圧電振動片10が図2に示した駆動振動(屈曲振動)を行っている状態で、圧電振動片10にZ軸周りの回転角速度ωが加わったとき、駆動腕40,50に矢印Bで示す方向のコリオリ力が働くことによって発生する。   Next, the operation when the rotational angular velocity ω around the Z axis is applied will be described. In FIG. 3, in the Z-axis rotation system, the detected vibration repeats a vibration state indicated by a solid line and a vibration state indicated by a two-dot chain line. The detected vibration is applied to the drive arms 40 and 50 when a rotational angular velocity ω around the Z-axis is applied to the piezoelectric vibrating piece 10 in a state where the piezoelectric vibrating piece 10 performs the driving vibration (bending vibration) shown in FIG. It is generated by the Coriolis force in the direction indicated by the arrow B.

矢印B方向のコリオリ力が働くことにより、駆動腕40,50は重心位置Gに対して周方向の振動となる。また同時に、検出腕部61,62は、矢印Cに示すように、矢印Bの振動に呼応して矢印Bとは周方向反対向きの屈曲振動を行う。   Due to the Coriolis force in the direction of arrow B, the driving arms 40 and 50 vibrate in the circumferential direction with respect to the gravity center position G. At the same time, as shown by an arrow C, the detection arm portions 61 and 62 perform bending vibration in the direction opposite to the arrow B in response to the vibration of the arrow B.

圧電振動片10に形成されている駆動電極と検出電極が、基部20に形成された接続電極を経由して、検出回路及び発振回路(共に半導体装置に搭載される)に電気的に接続されている(共に図示せず)。このことにより、圧電振動片10は、発振回路により屈曲振動し、検出腕60から角速度に応じた検出信号を検出回路に出力する。そして、半導体装置により角速度に対応した電気信号を出力する。   The drive electrode and the detection electrode formed on the piezoelectric vibrating piece 10 are electrically connected to the detection circuit and the oscillation circuit (both mounted on the semiconductor device) via the connection electrode formed on the base 20. (Both not shown). As a result, the piezoelectric vibrating piece 10 bends and vibrates by the oscillation circuit, and outputs a detection signal corresponding to the angular velocity from the detection arm 60 to the detection circuit. Then, an electrical signal corresponding to the angular velocity is output by the semiconductor device.

Z軸回転系においては、Z軸に垂直なY軸回転系またはX軸回転系の検出感度は無視できる。   In the Z axis rotation system, the detection sensitivity of the Y axis rotation system or the X axis rotation system perpendicular to the Z axis can be ignored.

続いて、本実施形態におけるY軸回転系の動作について図面を参照して説明する。
図4〜図6は、Y軸回転系の振動モードを示し、図4は斜視図、図5,6は図4の上方(矢印A方向)から視認した状態を示す上側側面図である。駆動腕40,50が屈曲振動している状態においてY軸回りに回転角速度ωが加えられたときに、駆動腕40,50は、図4に示すようにコリオリ力によりX方向の屈曲振動とZ軸方向の屈曲振動とを合成した振動モードで振動する。
Subsequently, the operation of the Y-axis rotation system in the present embodiment will be described with reference to the drawings.
4 to 6 show vibration modes of the Y-axis rotation system, FIG. 4 is a perspective view, and FIGS. 5 and 6 are upper side views showing a state viewed from above (in the direction of arrow A) in FIG. When a rotational angular velocity ω is applied around the Y axis in a state in which the drive arms 40 and 50 are flexurally vibrated, the drive arms 40 and 50 cause the flexural vibration in the X direction and the Z direction by the Coriolis force as shown in FIG. Vibrates in a vibration mode that combines axial bending vibrations.

つまり、コリオリ力によって、駆動腕40は第1の連結腕31を振動の軸として、また駆動腕50は第2の連結腕32を振動の軸に対してそれぞれが逆位相でZ方向に屈曲振動する。すると、検出腕60には、矢印T方向の捩れ振動が発生する。この捩れ振動を検出することにより角速度に応じた検出信号を検出回路に出力する。そして、半導体装置により角速度に対応した電気信号を出力する。   In other words, due to the Coriolis force, the driving arm 40 bends and vibrates in the Z direction with the first connecting arm 31 as the axis of vibration and the driving arm 50 has the second connecting arm 32 in the opposite phase with respect to the axis of vibration. To do. Then, torsional vibration in the direction of arrow T is generated in the detection arm 60. By detecting this torsional vibration, a detection signal corresponding to the angular velocity is output to the detection circuit. Then, an electrical signal corresponding to the angular velocity is output by the semiconductor device.

Y軸回転系におけるコリオリ力と捩れ振動(検出振動)との関係について図5,6を参照してさらに詳しく説明する。図5は、駆動腕40,50が、外側方向(図中、矢印+Vで表す)に振動したときを表しており、駆動腕40はコリオリ力Fにより+Z方向に、駆動腕50は−Z方向に変形する。すると、検出腕60は、コリオリ力Fを打ち消す方向(+T方向)に捩れ変形する。   The relationship between Coriolis force and torsional vibration (detected vibration) in the Y-axis rotation system will be described in more detail with reference to FIGS. FIG. 5 illustrates a case where the driving arms 40 and 50 vibrate in the outer direction (indicated by an arrow + V in the drawing). The driving arm 40 is moved in the + Z direction by the Coriolis force F, and the driving arm 50 is moved in the −Z direction. Transforms into Then, the detection arm 60 is twisted and deformed in a direction (+ T direction) to cancel the Coriolis force F.

図6は、駆動腕40,50が、内側方向(図中、矢印−Vで表す)に振動したときを表しており、駆動腕40はコリオリ力Fにより−Z方向に、駆動腕50は+Z方向に振動変形する。すると、検出腕60は、コリオリ力Fを打ち消す方向(−T方向)に捩れ変形する。
このようにして、検出腕60は、コリオリ力Fにより図5,6に示すように捩れ振動を繰り返し、検出信号を出力し、Y軸回転系の角速度を検出することができる。
なお、X軸回転系の場合にはコリオリ力が発生しないので検出腕60に検出信号が出力されない。
FIG. 6 illustrates a case where the driving arms 40 and 50 vibrate in the inner direction (indicated by an arrow −V in the figure). The driving arm 40 is moved in the −Z direction by the Coriolis force F, and the driving arm 50 is + Z. Vibration deformation in the direction. Then, the detection arm 60 is twisted and deformed in a direction (-T direction) to cancel the Coriolis force F.
In this way, the detection arm 60 repeats torsional vibrations as shown in FIGS. 5 and 6 due to the Coriolis force F, and outputs a detection signal to detect the angular velocity of the Y-axis rotation system.
In the case of the X-axis rotating system, no detection signal is output to the detection arm 60 because no Coriolis force is generated.

以上説明したように、Z軸回転系については検出腕60のX軸方向の屈曲振動を検出信号として検出可能であり、Y軸回転系については検出腕60の捩れ振動を検出信号として検出することができる。   As described above, the bending vibration in the X-axis direction of the detection arm 60 can be detected as a detection signal for the Z-axis rotation system, and the torsional vibration of the detection arm 60 can be detected as a detection signal for the Y-axis rotation system. Can do.

なお、Y軸(+Y軸)側の検出腕とマイナスY軸側の検出腕は、基部20から視認してそれぞれが逆方向に回転振動する。従って、それぞれの検出腕は逆位相の検出信号を出力し、この検出信号を合成することにより、出力は一方の検出腕からの出力の2倍となり、検出感度を高めている。   Note that the detection arm on the Y-axis (+ Y-axis) side and the detection arm on the negative Y-axis side are visually oscillated in the opposite directions when viewed from the base 20. Therefore, each detection arm outputs a detection signal having an antiphase, and by synthesizing this detection signal, the output becomes twice the output from one detection arm, and the detection sensitivity is increased.

また、Y軸回転系の検出信号には、Z軸回転系の検出信号がわずかであるが重畳されることが実験により確認され、Z軸回転系の検出信号はY軸回転系の検出信号に対してノイズである。なお、Y軸回りの回転のときには、X軸回転系のコリオリ力は発生しないので無視できる。   Further, it is confirmed by experiment that the detection signal of the Z-axis rotation system is superposed on the detection signal of the Y-axis rotation system, but the detection signal of the Z-axis rotation system is added to the detection signal of the Y-axis rotation system. On the other hand, it is noise. When rotating around the Y axis, the Coriolis force of the X axis rotating system is not generated and can be ignored.

次に、ノイズとして位置付けられるZ軸回転系の検出信号の極小化について説明を加える。Y軸回転系のY軸感度と、Y軸回転系におけるZ軸感度を用いて説明する。Y軸回転系におけるY軸感度に対してZ軸感度を他軸感度と表す。また、Y軸感度に対するZ軸感度の比を他軸感度比率と表す。
図7は、感度特性を示すグラフである。横軸に検出離調周波数、左方の縦軸に検出感度(単に感度と表す)、右方の縦軸に他軸感度比率(単に感度比率と表す)を表している。
Next, a description will be given of minimizing the detection signal of the Z-axis rotation system positioned as noise. Description will be made using the Y-axis sensitivity of the Y-axis rotation system and the Z-axis sensitivity of the Y-axis rotation system. The Z-axis sensitivity is expressed as the other-axis sensitivity with respect to the Y-axis sensitivity in the Y-axis rotation system. Further, the ratio of the Z-axis sensitivity to the Y-axis sensitivity is expressed as the other-axis sensitivity ratio.
FIG. 7 is a graph showing sensitivity characteristics. The horizontal axis represents the detected detuning frequency, the left vertical axis represents the detection sensitivity (simply expressed as sensitivity), and the right vertical axis represents the other axis sensitivity ratio (simply expressed as sensitivity ratio).

図7において、Y軸感度は、検出離調周波数を0Hzに近づけていくと感度が曲線的に上昇する。一方、Z軸感度はY軸感度に逆比例方向に変化し、0Hzに近づけると下降する傾向を示している。従って、他軸感度比率は直線的に変化し、検出離調周波数が概ね−1200Hz近傍では50%程度となり、Z軸感度の影響を大きく受けることになる。   In FIG. 7, the Y-axis sensitivity increases in a curve as the detected detuning frequency approaches 0 Hz. On the other hand, the Z-axis sensitivity changes in an inversely proportional direction to the Y-axis sensitivity, and tends to decrease when approaching 0 Hz. Therefore, the other-axis sensitivity ratio changes linearly, and is about 50% when the detected detuning frequency is approximately in the vicinity of −1200 Hz, which is greatly influenced by the Z-axis sensitivity.

そして、本実施形態では、計算上−409Hz前後で他軸感度比率が極小値を示し、−409Hz±73Hzの範囲において、他軸感度比率を5%以下に抑制できる。他軸感度比率を5%以下とすれば、Y軸回転系の角速度センサとして十分実用化に供することが可能である。   In the present embodiment, the other-axis sensitivity ratio shows a minimum value around −409 Hz in the calculation, and the other-axis sensitivity ratio can be suppressed to 5% or less in the range of −409 Hz ± 73 Hz. If the other-axis sensitivity ratio is 5% or less, it can be sufficiently put into practical use as an angular velocity sensor of the Y-axis rotation system.

上述したように検出離調周波数を調整することにより検出感度の調整が可能であるが、図7が示すように、Y軸感度とZ軸感度とは略逆比例関係にあるので、駆動周波数に対してZ軸回転系とY軸回転系の離調周波数をそれぞれ相殺するように調整すればよい。つまり、Y軸回転系の離調周波数をマイナス側に、Z軸回転系の離調周波数をプラス側に調整することにより、Y軸回転系における他軸感度(他軸感度比率)を抑制することができる。   As described above, the detection sensitivity can be adjusted by adjusting the detection detuning frequency. However, as shown in FIG. 7, the Y-axis sensitivity and the Z-axis sensitivity are in a substantially inversely proportional relationship. On the other hand, it is only necessary to adjust so that the detuning frequencies of the Z-axis rotation system and the Y-axis rotation system cancel each other. In other words, by adjusting the detuning frequency of the Y axis rotation system to the minus side and the detuning frequency of the Z axis rotation system to the plus side, the other axis sensitivity (other axis sensitivity ratio) in the Y axis rotation system is suppressed. Can do.

なお、Y軸回転系の離調周波数調整は、錘部63,64(図1、参照)における質量の付加または除去によって行う。ここでは、質量を除去する例をあげ説明する。
錘部63,64の表裏両面には予めAu層を形成しておく。このAu層が付加質量であり、このAu層をレーザを用いて所定の離調周波数になるように除去する。
The detuning frequency adjustment of the Y-axis rotation system is performed by adding or removing mass in the weight parts 63 and 64 (see FIG. 1). Here, an example of removing mass will be described.
Au layers are formed in advance on both the front and back surfaces of the weight parts 63 and 64. This Au layer has an additional mass, and this Au layer is removed using a laser so as to have a predetermined detuning frequency.

この際、錘部63,64の幅方向外側端部または内側端部から長手方向に線状に、しかも徐々に内側端部に向かって除去していく。前述したように、Y軸回転系の検出は捩れ振動成分を検出するため、捩れ振動に影響を与えやすい錘部の幅方向外側から質量除去を行えば、効率よく離調周波数調整を行える。   At this time, the weights 63 and 64 are removed linearly in the longitudinal direction from the outer end or inner end in the width direction and gradually removed toward the inner end. As described above, since the detection of the Y-axis rotation system detects the torsional vibration component, the detuning frequency can be adjusted efficiently by removing the mass from the outside in the width direction of the weight part that easily affects the torsional vibration.

また、錘部63,64の離調周波数調整を質量除去にて行う場合には、Au層は狙いの周波数よりも検出離調周波数をマイナス方向になるように形成しておく。本実施形態においては、Y軸離調周波数を例えば−800Hz程度に設定しておき、質量除去にて−409Hz±73Hzの範囲に調整する。   Further, when the detuning frequency adjustment of the weight parts 63 and 64 is performed by removing the mass, the Au layer is formed so that the detected detuning frequency is in the minus direction with respect to the target frequency. In this embodiment, the Y-axis detuning frequency is set to, for example, about −800 Hz, and is adjusted to a range of −409 Hz ± 73 Hz by mass removal.

一方、質量付加による検出離調周波数の調整については詳しい説明を省略するが、上述した質量除去の考え方を応用することで可能である。つまり、予め、Y軸離調周波数をプラス側に設定しておき、錘部63,64にイオンプレーティングや蒸着法により質量を付加すればよい。   On the other hand, the detailed description of the adjustment of the detected detuning frequency by adding mass is omitted, but it is possible by applying the above-described concept of mass removal. That is, the Y-axis detuning frequency may be set in advance on the plus side, and mass may be added to the weights 63 and 64 by ion plating or vapor deposition.

なお、錘部63,64は、それぞれの捩れ振動のバランス(検出周波数及び振幅のバランス)がとれるように質量の付加,除去をおこなう。   The weights 63 and 64 add and remove mass so that the torsional vibrations are balanced (detection frequency and amplitude are balanced).

従って、前述した実施形態によれば、圧電振動片10の構造はXY平面内に駆動腕40,50と検出腕60とを形成し、従来のZ軸回転系の角速度センサと同様な構造で、Y軸回りの回転により与えられるコリオリ力により検出腕60に発生する振動成分を検出することができる。   Therefore, according to the above-described embodiment, the structure of the piezoelectric vibrating piece 10 includes the drive arms 40 and 50 and the detection arm 60 in the XY plane, and has the same structure as the conventional angular velocity sensor of the Z-axis rotation system. The vibration component generated in the detection arm 60 can be detected by the Coriolis force given by the rotation about the Y axis.

また、上述したような形態の圧電振動片10は、WT型角速度センサ(ダブルT型)と呼ばれる形態である。WT型角速度センサは検出感度が高いことが知られており、Y軸回転系の角速度の検出においても高い検出感度を実現することができる。   Further, the piezoelectric vibrating piece 10 having the above-described form is a form called a WT type angular velocity sensor (double T type). It is known that the WT type angular velocity sensor has high detection sensitivity, and high detection sensitivity can be realized even in the detection of the angular velocity of the Y-axis rotation system.

また、WT型におけるZ軸回転系の振動成分は検出腕60の屈曲振動成分である。従って、Y軸回転系の検出腕60の捩れ振動とは振動モードが異なるため、Z軸回転系の振動成分の影響を受けにくくY軸回転系の振動成分を精度よく検出することができる。   Further, the vibration component of the Z-axis rotation system in the WT type is a bending vibration component of the detection arm 60. Therefore, since the vibration mode is different from the torsional vibration of the detection arm 60 of the Y-axis rotation system, the vibration component of the Y-axis rotation system can be accurately detected without being affected by the vibration component of the Z-axis rotation system.

また、基部20から視認して検出腕部61の捩れ振動方向と検出腕部62の捩れ振動方向が逆方向であり、それぞれの振動振幅をほぼ同じにしている。従って、二つの出力信号を合成した検出信号の信号強度は2倍となり、ノイズ(S/N比)を抑制することができることから検出感度を高めることができる。   Further, the torsional vibration direction of the detection arm portion 61 and the torsional vibration direction of the detection arm portion 62 as viewed from the base portion 20 are opposite to each other, and the respective vibration amplitudes are substantially the same. Accordingly, the signal intensity of the detection signal obtained by combining the two output signals is doubled, and noise (S / N ratio) can be suppressed, so that the detection sensitivity can be increased.

さらに、Y軸回転系の振動成分は捩れ振動成分であることから、検出腕60の錘部63,64の幅Dが、検出腕部61,62の幅dに対して、5d≦D≦10dの範囲に設定することにより捩れ振動を発生しやすくし、また検出離調周波数の調整幅を小さくすることができる。   Furthermore, since the vibration component of the Y-axis rotation system is a torsional vibration component, the width D of the weight parts 63 and 64 of the detection arm 60 is 5d ≦ D ≦ 10d with respect to the width d of the detection arm parts 61 and 62. By setting to this range, torsional vibration can be easily generated, and the adjustment range of the detected detuning frequency can be reduced.

また、上述した圧電振動片10の構造では、Y軸回転系の検出の際、Z軸回転系の検出信号が重畳される。また、Y軸回転系感度とZ軸回転系感度は略逆比例傾向を示す。Y軸回転系感度の感度に対してZ軸回転系感度(他軸感度)はノイズである。ここで、Y軸回転系の検出離調周波数を他軸感度比率5%以下の適正な値に調整することにより、他軸感度のY軸回転系の感度に与える影響度を小さくし、結果としてY軸回転系の感度を高めることができる。   In the structure of the piezoelectric vibrating piece 10 described above, the detection signal of the Z-axis rotation system is superimposed when the Y-axis rotation system is detected. Further, the Y-axis rotation system sensitivity and the Z-axis rotation system sensitivity show a substantially inversely proportional tendency. The Z-axis rotation system sensitivity (other-axis sensitivity) is noise relative to the Y-axis rotation system sensitivity. Here, by adjusting the detected detuning frequency of the Y-axis rotation system to an appropriate value of the other-axis sensitivity ratio of 5% or less, the degree of influence of the other-axis sensitivity on the sensitivity of the Y-axis rotation system is reduced, and as a result The sensitivity of the Y-axis rotation system can be increased.

また、上述したY軸回転系の検出離調周波数の調整は、検出腕60に設けられる錘部63,64の質量の増減によって行い、前記錘部の幅方向端部から中央に向かって行う。Y軸回転系では検出腕60の捩れ振動成分を検出していることから、捩れ振動に影響を与えやすい錘部の幅方向端部から質量の増減を行うことにより、少ない質量増減で検出離調周波数の調整を行い、検出感度調整を行うことができる。   The above-described adjustment of the detected detuning frequency of the Y-axis rotation system is performed by increasing / decreasing the mass of the weight portions 63 and 64 provided on the detection arm 60, and is performed from the width direction end portion of the weight portion toward the center. Since the torsional vibration component of the detection arm 60 is detected in the Y-axis rotation system, the detection detuning can be performed with a small mass increase / decrease by increasing / decreasing the mass from the end in the width direction of the weight part that easily affects the torsional vibration. It is possible to adjust the detection sensitivity by adjusting the frequency.

なお、本発明は前述の実施の形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、前述した実施形態では、WT型の圧電振動片を例示して説明したが、H型と呼ばれる圧電振動片、音叉型振動片や他の形態にも応用できる。これらは、2軸の回転系のうち、一方をコリオリ力により検出腕を屈曲振動、他方を捩れ振動するように設計することで実現可能である。
It should be noted that the present invention is not limited to the above-described embodiment, but includes modifications and improvements as long as the object of the present invention can be achieved.
For example, in the above-described embodiment, the WT type piezoelectric vibrating piece has been described as an example. However, the present invention can also be applied to a piezoelectric vibrating piece called an H type, a tuning fork type vibrating piece, and other forms. These can be realized by designing one of the two-axis rotation systems so that the detection arm is flexibly oscillated by the Coriolis force and the other is torsionally oscillated.

従って、本発明によれば、Y軸回転系の捩れ振動成分の検出を実現する簡単な構造で小型の角速度センサを提供することができる。   Therefore, according to the present invention, it is possible to provide a small angular velocity sensor with a simple structure that realizes detection of the torsional vibration component of the Y-axis rotation system.

なお、上述した本発明による角速度センサは、各種の電子機器に搭載することができる。例えば、デジタルカメラの手振れ補正用、HDD(Hard Disk Drive)等の衝撃検出センサ等に応用することができる。   The above-described angular velocity sensor according to the present invention can be mounted on various electronic devices. For example, it can be applied to camera shake correction of a digital camera, an impact detection sensor such as an HDD (Hard Disk Drive), or the like.

例えば、薄型のデジタルカメラにおいては、光学軸に対して回路基板等が垂直に配設されるため、角速度センサのZ軸を光学軸に対して垂直に配設することは困難であるが、本発明のY軸回転系の検出が可能な角速度センサを搭載すれば、回路基板に対して平行に角速度センサを配設することが可能なため、デジタルカメラの薄型化を実現することができる。   For example, in a thin digital camera, since a circuit board or the like is arranged perpendicular to the optical axis, it is difficult to arrange the Z-axis of the angular velocity sensor perpendicular to the optical axis. If the angular velocity sensor capable of detecting the Y-axis rotation system of the invention is mounted, the angular velocity sensor can be disposed in parallel to the circuit board, so that the digital camera can be thinned.

本発明の実施形態に係る角速度センサの構造を示す斜視図。The perspective view which shows the structure of the angular velocity sensor which concerns on embodiment of this invention. 本発明の実施形態に係る圧電振動片の回転加速度が加えられないときの振動モードを模式的に示す説明図。Explanatory drawing which shows typically the vibration mode when the rotational acceleration of the piezoelectric vibrating piece which concerns on embodiment of this invention is not applied. 本発明の実施形態に係るZ軸回転系の振動モードを模式的に示す説明図。Explanatory drawing which shows typically the vibration mode of the Z-axis rotation system which concerns on embodiment of this invention. 本発明の実施形態に係るY軸回転系の振動モードを示す斜視図。The perspective view which shows the vibration mode of the Y-axis rotation system which concerns on embodiment of this invention. 図4の上方(矢印A方向)から視認した状態を示す上側面図。The upper side view which shows the state visually recognized from the upper direction (arrow A direction) of FIG. 図4の上方(矢印A方向)から視認した状態を示す上側面図。The upper side view which shows the state visually recognized from the upper direction (arrow A direction) of FIG. 本発明の実施形態に係る感度特性を表すグラフ。The graph showing the sensitivity characteristic which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…角速度センサ、10…圧電振動片、20…基部、40,50…駆動腕、60…検出腕、61,62…検出腕部、63,64…錘部。
DESCRIPTION OF SYMBOLS 1 ... Angular velocity sensor, 10 ... Piezoelectric vibration piece, 20 ... Base part, 40, 50 ... Drive arm, 60 ... Detection arm, 61, 62 ... Detection arm part, 63, 64 ... Weight part.

Claims (8)

基部と、前記基部または前記基部に接続された連結腕からY軸に平行に延出されY軸に直交するX軸方向に屈曲振動をする駆動腕と、前記駆動腕に平行な検出腕と、がXY平面に形成される圧電振動片と、
Y軸回りの回転により与えられるZ軸方向のコリオリ力により前記検出腕に発生する振動成分に応じて、Y軸回転系の検出信号を出力する検出手段と、
が備えられていることを特徴とする角速度センサ。
A base, a drive arm extending in parallel to the Y axis from the base or a connecting arm connected to the base, and bending-vibrating in the X-axis direction perpendicular to the Y axis; and a detection arm parallel to the drive arm; A piezoelectric vibrating piece formed on the XY plane,
Detecting means for outputting a detection signal of the Y-axis rotation system in accordance with a vibration component generated in the detection arm due to the Coriolis force in the Z-axis direction given by rotation around the Y-axis;
An angular velocity sensor comprising:
請求項1に記載の角速度センサにおいて、
前記圧電振動片が、前記基部からY軸方向に延出される第1の検出腕及びマイナスY軸方向に延出される第2の検出腕と、前記基部からX軸方向に延出された第1の連結腕と、前記基部からマイナスX軸方向に延出された第2の連結腕と、前記第1の連結腕に連結され、Y軸方向およびマイナスY軸方向に延出される駆動腕と、前記第2の連結腕に連結され、Y軸方向およびマイナスY軸方向に延出される駆動腕と、を備えて構成されていることを特徴とする角速度センサ。
The angular velocity sensor according to claim 1,
The piezoelectric vibrating piece includes a first detection arm extending from the base in the Y-axis direction, a second detection arm extending in the negative Y-axis direction, and a first extending from the base in the X-axis direction. A connecting arm, a second connecting arm extending in the minus X-axis direction from the base, a driving arm connected to the first connecting arm and extending in the Y-axis direction and the minus Y-axis direction, An angular velocity sensor comprising: a drive arm connected to the second connection arm and extending in the Y-axis direction and the minus Y-axis direction.
請求項1または請求項2に記載の角速度センサにおいて、
前記Y軸回りの回転により与えられるZ軸方向のコリオリ力により前記第1の検出腕及び前記第2の検出腕に発生する振動成分が捩れ振動成分であることを特徴とする角速度センサ。
The angular velocity sensor according to claim 1 or 2,
An angular velocity sensor characterized in that a vibration component generated in the first detection arm and the second detection arm by a Coriolis force in the Z-axis direction given by the rotation about the Y-axis is a torsional vibration component.
請求項3に記載の角速度センサにおいて、
前記Y軸回りの回転により与えられるZ軸方向のコリオリ力により発生する捩れ振動が、前記基部から視認して、前記第1の検出腕の捩れ振動方向と前記第2の検出腕の捩れ振動方向が逆方向であり、それぞれの振動振幅がほぼ同じであることを特徴とする角速度センサ。
The angular velocity sensor according to claim 3.
The torsional vibration generated by the Coriolis force in the Z-axis direction given by the rotation about the Y-axis is viewed from the base, and the torsional vibration direction of the first detection arm and the torsional vibration direction of the second detection arm Is an opposite direction and each vibration amplitude is substantially the same.
請求項1ないし請求項4のいずれか一項に記載の角速度センサにおいて、
前記駆動腕と前記検出腕のそれぞれの先端に錘部が形成され、
前記検出腕の錘部の幅Dが、前記検出腕の検出腕部の幅dに対して、5d≦D≦10dの範囲に設定されていることを特徴とする角速度センサ。
The angular velocity sensor according to any one of claims 1 to 4,
A weight portion is formed at the tip of each of the drive arm and the detection arm,
The angular velocity sensor, wherein the width D of the weight portion of the detection arm is set in a range of 5d ≦ D ≦ 10d with respect to the width d of the detection arm portion of the detection arm.
請求項1ないし請求項5のいずれか一項に記載の角速度センサにおいて、
前記Y軸回転系の捩れ振動成分の検出感度が、前記第1の検出腕及び前記第2の検出腕の検出離調周波数にて調整されることを特徴とする角速度センサ。
The angular velocity sensor according to any one of claims 1 to 5,
An angular velocity sensor, wherein the detection sensitivity of the torsional vibration component of the Y-axis rotation system is adjusted by the detected detuning frequency of the first detection arm and the second detection arm.
請求項6に記載の角速度センサにおいて、
前記検出離調周波数の調整は、前記第1の検出腕及び前記第2の検出腕それぞれの先端に設けられる錘部の質量の増減によって行われることを特徴とする角速度センサ。
The angular velocity sensor according to claim 6.
The angular velocity sensor according to claim 1, wherein the adjustment of the detected detuning frequency is performed by increasing or decreasing the mass of a weight portion provided at the tip of each of the first detection arm and the second detection arm.
請求項6または請求項7に記載の角速度センサにおいて、
前記錘部の質量増減が、前記錘部の幅方向端部から中央に向かって行われることを特徴とする角速度センサ。
The angular velocity sensor according to claim 6 or 7,
An angular velocity sensor characterized in that mass increase / decrease of the weight portion is performed from the width direction end portion toward the center of the weight portion.
JP2006233230A 2006-08-30 2006-08-30 Angular velocity sensor Withdrawn JP2008058062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233230A JP2008058062A (en) 2006-08-30 2006-08-30 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233230A JP2008058062A (en) 2006-08-30 2006-08-30 Angular velocity sensor

Publications (1)

Publication Number Publication Date
JP2008058062A true JP2008058062A (en) 2008-03-13

Family

ID=39240985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233230A Withdrawn JP2008058062A (en) 2006-08-30 2006-08-30 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP2008058062A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139054A (en) * 2006-11-30 2008-06-19 Epson Toyocom Corp Angular velocity sensor
CN102195563A (en) * 2010-03-19 2011-09-21 精工爱普生株式会社 Resonator element, resonator device and electronic device
CN102192731A (en) * 2010-01-28 2011-09-21 精工爱普生株式会社 Physical quantity detection element, physical quantity detection device, and electronic apparatus
CN102192735A (en) * 2010-03-19 2011-09-21 精工爱普生株式会社 Vibration gyro element, vibration gyro sensor, electronic device, and method of detecting physical quantity of vibration
CN102200438A (en) * 2010-03-26 2011-09-28 精工爱普生株式会社 Physical quantity detection element, physical quantity detection device, and electronic apparatus
JP2014205198A (en) * 2013-04-10 2014-10-30 セイコーエプソン株式会社 Robot, robot control device, and robot system
JP2014205199A (en) * 2013-04-10 2014-10-30 セイコーエプソン株式会社 Robot, robot control device, and robot system
US9895800B2 (en) 2013-06-05 2018-02-20 Seiko Epson Corporation Robot, robot control device, and robot system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798228A (en) * 1993-09-28 1995-04-11 Toyota Motor Corp Vibration gyro
JPH0861960A (en) * 1994-08-25 1996-03-08 Toyota Central Res & Dev Lab Inc Vibrator and adjusting method therefor, and angular velocity sensor
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
JP2003315046A (en) * 2002-04-19 2003-11-06 Ngk Insulators Ltd Vibrator and vibrating gyroscope
JP2004286476A (en) * 2003-03-19 2004-10-14 Ngk Insulators Ltd Method for measuring detection/detuning of vibrator, its adjustment method, and vibrator
JP2005098983A (en) * 2003-09-01 2005-04-14 Seiko Epson Corp Oscillator, electronic device, and frequency adjusting method for oscillator
JP2005274537A (en) * 2004-03-26 2005-10-06 Ngk Insulators Ltd Physical quantity measuring device
JP2006058101A (en) * 2004-08-19 2006-03-02 Seiko Epson Corp Vibrating reed, oscillator, and application equipment
JP2006105614A (en) * 2004-09-30 2006-04-20 Seiko Epson Corp Vibrating gyroscope and its manufacturing method
JP2007108053A (en) * 2005-10-14 2007-04-26 Ngk Insulators Ltd Oscillator and measuring element for oscillation gyroscope
JP2007163200A (en) * 2005-12-12 2007-06-28 Epson Toyocom Corp Vibrating reed and angular velocity sensor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798228A (en) * 1993-09-28 1995-04-11 Toyota Motor Corp Vibration gyro
JPH0861960A (en) * 1994-08-25 1996-03-08 Toyota Central Res & Dev Lab Inc Vibrator and adjusting method therefor, and angular velocity sensor
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
JP2003315046A (en) * 2002-04-19 2003-11-06 Ngk Insulators Ltd Vibrator and vibrating gyroscope
JP2004286476A (en) * 2003-03-19 2004-10-14 Ngk Insulators Ltd Method for measuring detection/detuning of vibrator, its adjustment method, and vibrator
JP2005098983A (en) * 2003-09-01 2005-04-14 Seiko Epson Corp Oscillator, electronic device, and frequency adjusting method for oscillator
JP2005274537A (en) * 2004-03-26 2005-10-06 Ngk Insulators Ltd Physical quantity measuring device
JP2006058101A (en) * 2004-08-19 2006-03-02 Seiko Epson Corp Vibrating reed, oscillator, and application equipment
JP2006105614A (en) * 2004-09-30 2006-04-20 Seiko Epson Corp Vibrating gyroscope and its manufacturing method
JP2007108053A (en) * 2005-10-14 2007-04-26 Ngk Insulators Ltd Oscillator and measuring element for oscillation gyroscope
JP2007163200A (en) * 2005-12-12 2007-06-28 Epson Toyocom Corp Vibrating reed and angular velocity sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139054A (en) * 2006-11-30 2008-06-19 Epson Toyocom Corp Angular velocity sensor
CN102192731A (en) * 2010-01-28 2011-09-21 精工爱普生株式会社 Physical quantity detection element, physical quantity detection device, and electronic apparatus
US8511161B2 (en) 2010-01-28 2013-08-20 Seiko Epson Corporation Physical amount detecting device
CN102195563A (en) * 2010-03-19 2011-09-21 精工爱普生株式会社 Resonator element, resonator device and electronic device
CN102192735A (en) * 2010-03-19 2011-09-21 精工爱普生株式会社 Vibration gyro element, vibration gyro sensor, electronic device, and method of detecting physical quantity of vibration
CN102200438A (en) * 2010-03-26 2011-09-28 精工爱普生株式会社 Physical quantity detection element, physical quantity detection device, and electronic apparatus
US8539833B2 (en) 2010-03-26 2013-09-24 Seiko Epson Corporation Physical amount detecting device
JP2014205198A (en) * 2013-04-10 2014-10-30 セイコーエプソン株式会社 Robot, robot control device, and robot system
JP2014205199A (en) * 2013-04-10 2014-10-30 セイコーエプソン株式会社 Robot, robot control device, and robot system
US9895800B2 (en) 2013-06-05 2018-02-20 Seiko Epson Corporation Robot, robot control device, and robot system

Similar Documents

Publication Publication Date Title
JP6171475B2 (en) Manufacturing method of vibrating piece
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
US20110140575A1 (en) Vibrating reed, vibrator, physical quantity sensor, and electronic equipment
JP2008058062A (en) Angular velocity sensor
JP4668739B2 (en) Vibrating gyro
JP5772286B2 (en) Bending vibration piece and electronic device
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP2005249646A (en) Tuning fork type oscillator for angular velocity sensor, angular velocity sensor using the oscillator, and automobile using the angular velocity sensor
US8453503B2 (en) Vibrating reed, vibrator, physical quantity sensor, and electronic apparatus
JP2010071758A (en) Angular velocity sensor element, angular velocity sensor and electronic apparatus
JP4911690B2 (en) Vibrating gyro vibrator
JP2005098983A (en) Oscillator, electronic device, and frequency adjusting method for oscillator
JP2008151633A (en) Method for manufacturing angular velocity sensor
JP2008224627A (en) Angular velocity sensor, method of manufacturing the same, and electronic apparatus
JP5050448B2 (en) Angular velocity sensor and electronic device
JP2008256669A (en) Angular velocity sensor and electronic device
JP2007163248A (en) Piezoelectric vibration gyro
JP2009074996A (en) Piezoelectric vibration gyro
JP2007285977A (en) Angular velocity sensor
JP2012112819A (en) Vibration gyro
JP6733621B2 (en) Vibration type angular velocity sensor
JP2009192403A (en) Angular velocity and acceleration detector
JP2009128020A (en) Piezoelectric vibration gyroscope using tuning fork type piezoelectric single crystal vibrator
JP2008175578A (en) Vibrator for piezoelectric vibrating gyroscope
JP2004301510A (en) Tuning fork type angular velocity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120727