Nothing Special   »   [go: up one dir, main page]

JP2008053849A - Optical wireless communication device - Google Patents

Optical wireless communication device Download PDF

Info

Publication number
JP2008053849A
JP2008053849A JP2006225743A JP2006225743A JP2008053849A JP 2008053849 A JP2008053849 A JP 2008053849A JP 2006225743 A JP2006225743 A JP 2006225743A JP 2006225743 A JP2006225743 A JP 2006225743A JP 2008053849 A JP2008053849 A JP 2008053849A
Authority
JP
Japan
Prior art keywords
light
optical
light beam
wireless communication
parallel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006225743A
Other languages
Japanese (ja)
Inventor
Yuichi Miyamoto
祐一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2006225743A priority Critical patent/JP2008053849A/en
Publication of JP2008053849A publication Critical patent/JP2008053849A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-way optical wireless communication device which tracks a light beam again by temporarily increasing the angle of projection of the light beam to be projected by a simple mechanism which need not have high-level position precision when a light beam to be received deviates from the optical wireless communiation device. <P>SOLUTION: The optical wireless communication device 1 includes: a receiving means of receiving a light beam from an opposite station; a transmitting means of transmitting a light beam to the opposite station; and a tracking means of controlling the direction of optical systems of the receiving means and transmitting means by detecting the position of the light beam from the opposite station. A parallel flat plate 18 which is transparent and has a larger refractive index than air, is disposed to be put in and off an optical path between a light source 10 for light beam transmission of the transmitting means and an optical lens 13 converging the light from the light source, and the transmitting means is increased in angle of projection of the light beam projected from an optical lens 11 for projection and reception when the parallel flat plate 18 is put in the optical axis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空間を介して双方向の光無線通信を行う光無線通信装置に関するものである。   The present invention relates to an optical wireless communication apparatus that performs bidirectional optical wireless communication via a space.

送受信機能を備えた双方向光無線通信装置同士の通信を長距離間で行う場合、光ビームのパワー効率が低下しないように、光ビームの広がりを抑えてほぼ平行光に近いビームとして送信することがなされる。その場合、光ビームの幅が狭いために、どちらかの光無線通信装置の位置や角度が何らかの要因で変化すると、互いに送信する光ビームが相手局の光無線通信装置から外れてしまう事態が生じ易くなる。そのような事態を防止するために、相手局の光無線通信装置からの光ビームに合わせて、光無線通信装置における送受信手段の光学系の向きを制御する追尾機構を備えた装置が開発されている。   When communicating between two-way optical wireless communication devices equipped with a transmission / reception function over a long distance, transmit the light beam as a beam close to parallel light while suppressing the spread of the light beam so that the power efficiency of the light beam does not decrease. Is made. In that case, since the width of the light beam is narrow, if the position or angle of one of the optical wireless communication devices changes due to some factor, a situation occurs in which the optical beams transmitted to each other are separated from the optical wireless communication device of the counterpart station. It becomes easy. In order to prevent such a situation, an apparatus having a tracking mechanism that controls the direction of the optical system of the transmitting / receiving means in the optical wireless communication apparatus in accordance with the light beam from the optical wireless communication apparatus of the counterpart station has been developed. Yes.

一方、送信する光ビームが相手局の光無線通信装置から外れないように、必要に応じて、送信する光ビームの投光角度を広くする手段も開発されている。特許文献1に記載の発明では、光ビーム送信用の光源からの光を集光する光学レンズ(図1における光学レンズ13に相当するもの)を、光軸に沿って移動することにより、光無線通信装置から投光される光ビームの角度を広げるようにしている。
特開平5−134207号公報
On the other hand, means for widening the projection angle of the light beam to be transmitted has been developed as necessary so that the light beam to be transmitted does not deviate from the optical wireless communication apparatus of the counterpart station. In the invention described in Patent Document 1, an optical lens for condensing light from a light source for transmitting a light beam (corresponding to the optical lens 13 in FIG. 1) is moved along the optical axis, whereby optical wireless communication is performed. The angle of the light beam projected from the communication device is widened.
Japanese Patent Laid-Open No. 5-134207

ところで、上記のような追尾機構を備えた光無線通信装置であっても、どちらかの光無線通信装置の位置や角度が急激に大きく変化した場合や、追尾機構の誤動作が生じた場合には、やはり、互いの光ビームが相手局の光無線通信装置から外れてしまう。そのため、再度、追尾可能とするために、相手局の光無線通信装置に対して投光する光ビームの投光角度を拡大することが考えられる。ところが、その際に、特許文献1の発明のように、光源からの光を集光する光学レンズを光軸に沿って移動させる手段では、光軸方向への移動に伴って、光学レンズが光軸方向以外にもわずかながら位置ずれを生じる。この場合、その位置ずれが、例えば数μmから10μm程度であっても、光無線通信装置から投光される光ビームの光路は大きく影響を受けることになる。また、このような位置ずれを生じない精密な移動装置とするには、製造コストが大きくなる。
本発明は、上記問題を解決するためになされたものであり、受信すべき光ビームが光無線通信装置から外れた場合に、高度な位置精度を要することのない簡易な機構によって、投光する光ビームの投光角度を一時的に拡大して、再び光ビームを追尾可能とすることのできる双方向の光無線通信装置を提供することを目的とする。
By the way, even if the optical wireless communication apparatus includes the tracking mechanism as described above, when the position or angle of one of the optical wireless communication apparatuses changes drastically or when the tracking mechanism malfunctions, After all, the mutual light beams are separated from the optical wireless communication apparatus of the counterpart station. Therefore, in order to enable tracking again, it is conceivable to increase the projection angle of the light beam projected to the optical wireless communication apparatus of the counterpart station. However, at that time, as in the invention of Patent Document 1, in the means for moving the optical lens that collects the light from the light source along the optical axis, the optical lens is moved along with the movement in the optical axis direction. In addition to the axial direction, a slight misalignment occurs. In this case, even if the positional deviation is about several μm to 10 μm, for example, the optical path of the light beam projected from the optical wireless communication apparatus is greatly affected. Further, in order to obtain a precise moving device that does not cause such a positional shift, the manufacturing cost increases.
The present invention has been made to solve the above-described problem. When a light beam to be received is separated from the optical wireless communication apparatus, the light is projected by a simple mechanism that does not require high positional accuracy. It is an object of the present invention to provide a bidirectional optical wireless communication apparatus capable of temporarily expanding the light beam projection angle and enabling tracking of the light beam again.

このような目的を達成するために、本発明の光無線通信装置は、空間を介して双方向の光無線通信を行う光無線通信装置であって、相手局からの光ビームを受信する受信手段と、 相手局に光ビームを送信する送信手段と、相手局からの光ビームの位置を検出することによって、受信手段及び送信手段における光学系の向きを制御する追尾手段とを備え、 送信手段における光ビーム送信用の光源とその光源からの光を集光する光学レンズとの間の光路に対し、前記光源からの光に対して透明でかつ屈折率が空気よりも大きい平行平板を挿入及び離脱可能に配置し、送信手段は、前記光路に対して平行平板が挿入されたときに、投受光用光学レンズから投光される光ビームの投光角度が拡大するような光学系とされたことを特徴とするものである。   In order to achieve such an object, an optical wireless communication apparatus of the present invention is an optical wireless communication apparatus that performs bidirectional optical wireless communication through a space, and that receives a light beam from a counterpart station And a transmission means for transmitting the light beam to the counterpart station, and a tracking means for controlling the direction of the optical system in the reception means and the transmission means by detecting the position of the light beam from the counterpart station. A parallel plate that is transparent to the light from the light source and has a higher refractive index than air is inserted into and removed from the optical path between the light source for transmitting the light beam and the optical lens that collects the light from the light source. The transmission means is an optical system that expands the light projection angle of the light beam projected from the light projecting / receiving optical lens when a parallel plate is inserted into the optical path. It is characterized by The

この装置によれば、相手局からの光ビームの位置を検出することによって、光学系の向きを制御する追尾動作を行いつつ、空間を介して双方向の光無線通信を行うことができる。そして、互いの光ビームが相手局の光無線通信装置から外れて、追尾できなくなった場合、送信手段における光ビーム送信用の光源とその光源からの光を集光する光学レンズとの間の光路に対し、光源からの光に対して透明でかつ屈折率が空気よりも大きい平行平板を挿入することにより、高度な位置精度を要さない簡易な機構によって、しかも、投光される光ビームの光路に狂いを生じることなく、投受光用光学レンズから投光される光ビームの投光角度を拡大するようにできる。そのため、相手局の光無線通信装置によって光ビームが検知され、再度、追尾可能とすることができる。また、その後、光源とその光源からの光を集光する光学レンズとの間の光路から、平行平板を離脱させることで、投受光用光学レンズから投光される光ビームの投光角度の広がりを抑えて、パワー効率に優れた投光状態に戻すことができる。   According to this apparatus, by detecting the position of the light beam from the counterpart station, bidirectional optical wireless communication can be performed through the space while performing the tracking operation for controlling the direction of the optical system. When the mutual light beams are separated from the optical wireless communication apparatus of the counterpart station and cannot be tracked, the optical path between the light source for transmitting the light beam in the transmitting means and the optical lens for collecting the light from the light source On the other hand, by inserting a parallel plate that is transparent to the light from the light source and has a refractive index greater than that of air, a simple mechanism that does not require a high degree of positional accuracy, and that the projected light beam The projection angle of the light beam projected from the light projecting / receiving optical lens can be expanded without causing any deviation in the optical path. Therefore, the optical beam is detected by the optical wireless communication apparatus of the other station, and tracking can be performed again. After that, by separating the parallel plate from the optical path between the light source and the optical lens that collects the light from the light source, the projection angle of the light beam projected from the light projecting / receiving optical lens is expanded. It is possible to return to a light projection state with excellent power efficiency.

また、平行平板が1枚の平行平板が進退自在に構成されることで、前記光路に対し、挿入及び離脱可能に配置されているようにした場合、1枚の平行平板が進退するだけの簡単な構成によって、平行平板が挿入されたときと、離脱したときの2段階に光ビームの投光角度を変化させることができる。   In addition, when the parallel plate is configured so that one parallel plate can be moved back and forth, the parallel plate can be easily moved forward and backward when it is arranged to be able to be inserted and removed from the optical path. With this configuration, it is possible to change the light projection angle of the light beam in two stages when the parallel plate is inserted and when the parallel plate is detached.

また、平行平板は、互いに異なる屈折率又は厚さを有する複数枚の平行平板から構成され、それらの1枚毎に、選択的に前記光路に対し、挿入及び離脱可能に配置されていることとした場合、平行平板が挿入されたときの光ビームの投光角度の広がりを、所定の多段階で選択することができる。   Further, the parallel plate is composed of a plurality of parallel plates having different refractive indexes or thicknesses, and each of them is selectively disposed so as to be able to be inserted into and removed from the optical path. In this case, the spread of the projection angle of the light beam when the parallel plate is inserted can be selected in a predetermined multistage.

また、本発明の装置は、空間を介して双方向の光無線通信を行う光無線通信装置であって、相手局からの光ビームを受信する受信手段と、相手局に光ビームを送信する送信手段と、相手局からの光ビームの位置を検出することによって、受信手段及び送信手段における光学系の向きを制御する追尾手段とを備え、送信手段における光ビーム送信用の光源からの光を集光する光学レンズが複数枚のレンズからなり、それらのレンズの間であってかつその部分の光ビームが平行ビームでない光路に対し、光源からの光に対して透明でかつ屈折率が空気よりも大きい平行平板を挿入及び離脱可能に配置し、送信手段は、前記光路に対して平行平板が挿入されたときに、投受光用光学レンズから投光される光ビームの投光角度が拡大するような光学系とされたことを特徴とする。   The apparatus of the present invention is an optical wireless communication apparatus that performs two-way optical wireless communication through a space, and includes a receiving unit that receives a light beam from a partner station and a transmission that transmits the light beam to the partner station. And a tracking means for controlling the direction of the optical system in the receiving means and the transmitting means by detecting the position of the light beam from the counterpart station, and collecting light from the light beam transmitting light source in the transmitting means. The optical lens that illuminates consists of a plurality of lenses, and is transparent to the light from the light source and has a refractive index higher than that of air with respect to the optical path between the lenses and the light beam in that part is not a parallel beam. A large parallel plate is arranged so that it can be inserted and removed, and the transmitting means expands the projection angle of the light beam projected from the light projecting / receiving optical lens when the parallel plate is inserted into the optical path. Optical system And characterized in that it is.

この装置によれば、相手局からの光ビームの位置を検出することによって、光学系の向きを制御する追尾動作を行いつつ、空間を介して双方向の光無線通信を行うことができる。そして、互いの光ビームが相手局の光無線通信装置から外れて、追尾できなくなった場合、送信手段における光ビーム送信用の光源からの光を集光する複数枚のレンズの間であってかつその部分の光ビームが平行ビームでない光路に対し、光源からの光に対して透明でかつ屈折率が空気よりも大きい平行平板を挿入することにより、高度な位置精度を要さない簡易な機構によって、しかも、投光される光ビームの光路に狂いを生じることなく、投受光用光学レンズから投光される光ビームの投光角度を拡大するようにできる。そのため、相手局の光無線通信装置によって光ビームが検知され、再度、追尾可能とすることができる。また、その後、前記光路から、平行平板を離脱させることで、投受光用光学レンズから投光される光ビームの投光角度の広がりを抑えて、パワー効率に優れた投光状態に戻すことができる。この装置では、平行平板を光源に近い位置に配置することが困難な場合であっても、光源からの光を集光するレンズ群の中の適宜の位置に平行平板を配置することができる。   According to this apparatus, by detecting the position of the light beam from the counterpart station, bidirectional optical wireless communication can be performed through the space while performing the tracking operation for controlling the direction of the optical system. When the mutual light beams are separated from the optical wireless communication apparatus of the counterpart station and cannot be tracked, between the plurality of lenses for condensing the light from the light source for light beam transmission in the transmission means, and By inserting a parallel plate that is transparent to the light from the light source and has a refractive index greater than that of air into the optical path where the light beam of that part is not a parallel beam, a simple mechanism that does not require a high degree of positional accuracy is used. In addition, the projection angle of the light beam projected from the light projecting / receiving optical lens can be expanded without causing a deviation in the optical path of the projected light beam. Therefore, the optical beam is detected by the optical wireless communication apparatus of the other station, and tracking can be performed again. After that, by removing the parallel plate from the optical path, it is possible to suppress the spread of the light projection angle of the light beam projected from the light projecting / receiving optical lens and to return to the light projection state with excellent power efficiency. it can. In this apparatus, even if it is difficult to arrange the parallel plate at a position close to the light source, the parallel plate can be arranged at an appropriate position in the lens group that collects light from the light source.

本発明によれば、受信すべき光ビームが光無線通信装置から外れた場合に、高度な位置精度を要することのない簡易な機構によって、投光する光ビームの投光角度を一時的に拡大して、再び光ビームを追尾可能とすることのできる双方向の光無線通信装置を提供することができる。   According to the present invention, when the light beam to be received deviates from the optical wireless communication apparatus, the light projection angle of the light beam to be projected is temporarily expanded by a simple mechanism that does not require high positional accuracy. Thus, it is possible to provide a bidirectional optical wireless communication apparatus capable of tracking the light beam again.

以下、図面に基づいて、本発明による光無線通信装置の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。図1は、本発明による実施形態の光無線通信装置の全体構成を示す概念図である。光無線通信装置1における可動基体2は、内部に送受信のための光学系を配置され、相手局からの光ビームに対して、光学系が追尾可能なように、制御手段3,上下回動駆動手段4,水平回動駆動手段5によって向きを自動的に調整可能とされている。可動基体2の追尾動作は、相手局からの光ビームの位置を検出する位置検出器8からの信号によって、制御手段3が上下回動駆動手段4及び水平回動駆動手段5を駆動制御することでなされる。なお、上下回動駆動手段4による可動基体2の上下方向への回動については、図1では図面が煩雑になるのを避けるために、可動基体2の右端外方に回動を示す矢印aを記載しているが、上下回動の中心は、可動基体2の端部側に限られるものではなく、力のバランスやスペース効率から、可動基体2の長手方向ほぼ中央部分とすることが好ましい。同様に、水平回動駆動手段5によって、可動基体2は長手方向ほぼ中央部分において、水平方向での矢印bのような回動が可能とされている。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an optical wireless communication apparatus according to the present invention will be described in detail with reference to the drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted. FIG. 1 is a conceptual diagram showing the overall configuration of an optical wireless communication apparatus according to an embodiment of the present invention. The movable base 2 in the optical wireless communication apparatus 1 is provided with an optical system for transmission and reception inside, and the control means 3 is driven to rotate up and down so that the optical system can track the light beam from the counterpart station. The direction can be automatically adjusted by means 4 and horizontal rotation drive means 5. In the tracking operation of the movable base 2, the control means 3 drives and controls the vertical rotation driving means 4 and the horizontal rotation driving means 5 in accordance with a signal from the position detector 8 that detects the position of the light beam from the counterpart station. Made in Note that the vertical rotation of the movable base 2 by the vertical rotation drive means 4 is shown in FIG. 1 in order to avoid complication of the drawing. However, the center of the vertical rotation is not limited to the end side of the movable base 2 and is preferably approximately the center in the longitudinal direction of the movable base 2 from the viewpoint of force balance and space efficiency. . Similarly, the horizontal rotation driving means 5 enables the movable base 2 to rotate as indicated by an arrow b in the horizontal direction at a substantially central portion in the longitudinal direction.

受信手段における光学系は、投受光用光学レンズ11,光学レンズ12,ビームスプリッタ16,ビームスプリッタ17,光学レンズ14から構成される。投受光用光学レンズ11で受光した相手局からの受信光Aは、光学レンズ12,ビームスプリッタ16,17を透過して、光学レンズ14によって信号受信器9に集光される。そして、信号受信器9からの受信信号は、送受信回路7に送られる。受信光Aのうちの一部は、ビームスプリッタ17で反射されて光学レンズ15によって、位置検出器8に集光される。位置検出器8は、例えば、4分割フォトダイオード等のセンサによって構成され、集光された受信光Aの位置信号を制御手段3に送信することで、投受光用光学レンズ11の光軸が受信光Aの光路中心に一致するように、可動基体2の前記追尾動作がなされる。   The optical system in the receiving means includes a light projecting / receiving optical lens 11, an optical lens 12, a beam splitter 16, a beam splitter 17, and an optical lens 14. The received light A from the partner station received by the light projecting / receiving optical lens 11 passes through the optical lens 12 and the beam splitters 16 and 17 and is condensed on the signal receiver 9 by the optical lens 14. Then, the reception signal from the signal receiver 9 is sent to the transmission / reception circuit 7. A part of the received light A is reflected by the beam splitter 17 and is condensed on the position detector 8 by the optical lens 15. The position detector 8 is constituted by, for example, a sensor such as a four-division photodiode, and transmits the collected position signal of the received light A to the control unit 3 so that the optical axis of the light projecting / receiving optical lens 11 is received. The tracking operation of the movable base 2 is performed so as to coincide with the optical path center of the light A.

送信手段における光学系は、投受光用光学レンズ11,光学レンズ12,ビームスプリッタ16,光源10からの光を集光する光学レンズ13から構成される。光源10は、送受信回路7からの送信信号で変調された光を発生するレーザダイオード等によって構成される。光学レンズ13によって集光され、ほぼ平行にされた光ビームは、ビームスプリッタ16によって反射され、光学レンズ12を経て、投受光用光学レンズ11から、送信光Bとして、相手局の光無線通信装置に送信される。   The optical system in the transmission means includes a light projecting / receiving optical lens 11, an optical lens 12, a beam splitter 16, and an optical lens 13 that condenses light from the light source 10. The light source 10 is configured by a laser diode or the like that generates light modulated by a transmission signal from the transmission / reception circuit 7. The light beam condensed by the optical lens 13 and made almost parallel is reflected by the beam splitter 16, passes through the optical lens 12, and is transmitted from the light projecting / receiving optical lens 11 as transmission light B to the optical wireless communication apparatus of the counterpart station. Sent to.

なお、双方向通信を行う際に、送信光と受信光の波長を異ならせることもでき、その場合、ビームスプリッタ16には、送信光の波長の光ビームを反射し、受信光の波長の光ビームを透過するダイクロイックミラーを使用することで、送信光と受信光を分離することができる。また、送信光と受信光の偏光を異ならせることもでき、その場合、ビームスプリッタ16には、送信光の偏光ビームを反射し、受信光の偏光ビームを透過する偏光ビームスプリッタ(PBS)を使用することで、送信光と受信光を分離することができる。   Note that when performing bidirectional communication, the wavelengths of the transmitted light and the received light can be made different. In this case, the beam splitter 16 reflects the light beam having the wavelength of the transmitted light, and the light having the wavelength of the received light is reflected. By using a dichroic mirror that transmits the beam, transmission light and reception light can be separated. Also, the polarization of the transmission light and the reception light can be made different. In this case, a polarization beam splitter (PBS) that reflects the polarization beam of the transmission light and transmits the polarization beam of the reception light is used as the beam splitter 16. By doing so, transmission light and reception light can be separated.

本実施形態においては、光源10と光源10からの光を集光する光学レンズ13との間の光路に、光源10からの光に対して透明すなわち当該光を透過することができ、かつ屈折率が空気よりも大きい平行平板18を挿入及び離脱可能に配置する。平行平板18としては、例えば、ガラス板などであるが、光源10からの光を透過し、屈折率が空気よりも大きい平行平板であれば、ガラス板に限定されるものではない。平行平板18は、例えば電磁駆動されるアクチュエータ61からなる平行平板挿入手段6によって、進退可能にされている。平行平板挿入手段6は、位置検出器8による相手局からの受信光Aの位置検出がされず、追尾作動ができない状況になったときに、制御手段3によって制御されて、平行平板18を、光源10と光学レンズ13との間の光路に挿入する。その場合、光学レンズ13に対して光源10の位置が近づけられたと同様の作用によって、光ビームは、平行平板18以降で破線のような経路を経て、投受光用光学レンズ11から投光される光ビームが、平行平板18が挿入されていない状態での送信光Bよりも拡大した投光角度の送信光Cとなる。   In the present embodiment, the light path between the light source 10 and the optical lens 13 that collects the light from the light source 10 is transparent to the light from the light source 10, that is, the light can be transmitted, and the refractive index. A parallel plate 18 having a larger diameter than that of air is disposed so as to be inserted and removed. The parallel plate 18 is, for example, a glass plate, but is not limited to a glass plate as long as it is a parallel plate that transmits light from the light source 10 and has a refractive index larger than that of air. The parallel plate 18 can be advanced and retracted by parallel plate insertion means 6 including an actuator 61 that is electromagnetically driven, for example. The parallel plate insertion means 6 is controlled by the control means 3 when the position detector 8 does not detect the position of the received light A from the counterpart station and the tracking operation cannot be performed. It is inserted into the optical path between the light source 10 and the optical lens 13. In this case, the light beam is projected from the light projecting / receiving optical lens 11 through a path as indicated by a broken line after the parallel plate 18 by the same action as the position of the light source 10 is brought closer to the optical lens 13. The light beam becomes the transmission light C having a projection angle larger than that of the transmission light B in a state where the parallel plate 18 is not inserted.

ここで、平行平板18は、レンズのように光軸を有するものでもなく、光路に沿った位置によって集光度合いが変化するものでもないことから、光学レンズ13の光軸にほぼ垂直に配置されれば、光軸に垂直な方向や光軸方向に正確な位置制御をされなくとも、送信光の光路を狂わすこと(変動させること)がない。そして、平行平板18の厚さと屈折率によって定まる所定量だけ、投受光用レンズ11から投光される送信光Cの投光角度を拡大することになる。   Here, the parallel plate 18 does not have an optical axis like a lens, and the degree of light collection does not change depending on the position along the optical path. Therefore, the parallel plate 18 is disposed substantially perpendicular to the optical axis of the optical lens 13. Therefore, even if the position control is not performed accurately in the direction perpendicular to the optical axis or in the optical axis direction, the optical path of the transmission light is not deviated (varied). Then, the projection angle of the transmission light C projected from the light projecting / receiving lens 11 is expanded by a predetermined amount determined by the thickness and refractive index of the parallel plate 18.

次に、本実施形態の光無線通信装置の作動について、図1,2によって説明する。図2は、図1の光無線通信装置1を自局と相手局にそれぞれ備えて双方向通信を行う場合の概念図である。図2(1)は、自局の光無線通信装置1−1,相手局の光無線通信装置1−2とも、互いに相手から送信される光ビームを検知して、可動基体2−1,2−2を駆動制御する追尾動作が可能な通常時の双方向通信を示している。この場合、互いに投光する光ビームA、Bは、パワー効率が低下しないように、ほぼ平行光に近い状態に広がりを抑えている。図1において、投受光用光学レンズ11によって受光された受信光Aは、信号受信器9に集光され、受信信号は送受信回路7に送られ、一方、送信信号は光源10からの光ビームとして、光学レンズ13によって集光され、投受光用光学レンズ11から送信光Bとして送信される。また、受信光Aの一部は、位置検出器8に集光されて位置が検出され、それに基づいて、制御手段3によって上下回動駆動手段4及び水平回動手段5が駆動されて、可動基体2内に配置された送受信手段における光学系の受信光に対する追尾動作がなされる。   Next, the operation of the optical wireless communication apparatus of this embodiment will be described with reference to FIGS. FIG. 2 is a conceptual diagram in a case where the optical wireless communication apparatus 1 of FIG. FIG. 2 (1) shows that the optical base station 1-1, the optical wireless communication apparatus 1-2 of the local station, and the optical wireless communication apparatus 1-2 of the other station detect the light beams transmitted from the other party to detect the movable bases 2-1, 2. 2 shows normal two-way communication in which a tracking operation for driving and controlling -2 is possible. In this case, the light beams A and B that are projected to each other are prevented from spreading in a state that is substantially close to parallel light so that the power efficiency does not decrease. In FIG. 1, the received light A received by the light projecting / receiving optical lens 11 is collected by the signal receiver 9, and the received signal is sent to the transmission / reception circuit 7, while the transmission signal is transmitted as a light beam from the light source 10. The light is condensed by the optical lens 13 and transmitted as the transmission light B from the light projecting / receiving optical lens 11. Further, a part of the received light A is condensed on the position detector 8 to detect the position, and based on this, the control means 3 drives the up / down rotation driving means 4 and the horizontal rotation means 5 to move. A tracking operation is performed on the received light of the optical system in the transmission / reception means arranged in the base 2.

ところが、図2(2)のように、一方の光無線通信装置1−2の可動基体2−2の向きや位置が大きく変化した場合、どちらの光ビームA、Bも幅が狭いために、互いに相手の送信光の位置を検出できず、追尾も不能となる。そこで、図1において、受信すべき受信光の位置を位置検出器8が検出できなくなった場合、制御手段3は平行平板挿入手段6を駆動して、平行平板18を光源10と光学レンズ13との間の光路に挿入する。それによって、投受光用光学レンズ11から投光される光ビームは、送信光Cのように投光角度が広がったものとなる。図2(3)に示すように、光無線通信装置1−1から送信される拡大された送信光Cによって、相手局の光無線通信装置1−2は送信光Cを検出することができ、その追尾機能によって、可動基体2−2が回動し、再び互いの光ビームを検出して追尾可能となる。この場合、相手局の光無線通信装置1−2は、必ずしも平行平板18と平行平板挿入手段6を備える必要はないが、両方の光無線通信装置が備えている場合は、どちらの装置においても送信光を拡大できることはいうまでもない。また、追尾機能が回復すれば、制御手段3により、平行平板挿入手段6が平行平板18を光源10と光学レンズ13との間の光路から離脱させることで、送信光を再びパワー効率のよいビーム幅の狭い送信光Bとする。   However, as shown in FIG. 2 (2), when the direction and position of the movable base 2-2 of one optical wireless communication device 1-2 change greatly, both the light beams A and B are narrow, The positions of the other party's transmission lights cannot be detected, and tracking is impossible. Therefore, in FIG. 1, when the position detector 8 cannot detect the position of the received light to be received, the control means 3 drives the parallel plate insertion means 6 so that the parallel plate 18 is replaced with the light source 10 and the optical lens 13. Insert into the light path between. As a result, the light beam projected from the light projecting / receiving optical lens 11 has a wider light projection angle like the transmission light C. As shown in FIG. 2 (3), the optical wireless communication apparatus 1-2 of the counterpart station can detect the transmission light C by the expanded transmission light C transmitted from the optical wireless communication apparatus 1-1. By the tracking function, the movable base 2-2 rotates, and it becomes possible to detect and track each other light beam again. In this case, the optical wireless communication device 1-2 of the counterpart station does not necessarily need to include the parallel plate 18 and the parallel plate insertion means 6. However, when both optical wireless communication devices are provided, in either device Needless to say, the transmission light can be expanded. When the tracking function is restored, the control plate 3 causes the parallel plate insertion unit 6 to remove the parallel plate 18 from the optical path between the light source 10 and the optical lens 13, thereby again transmitting the transmitted light to a power efficient beam. A narrow transmission light B is assumed.

以上のように、本実施形態においては、平行平板18を光源10と光源10からの光を集光する光学レンズ13との間の光路に進退可能に挿入するだけの簡単な機構によって、光学レンズ13の光軸に垂直な方向や光軸方向にも正確な位置合わせを必要とせずに、受信光の検出ができなくなった際に、送信光の投光角度を拡大することができる。   As described above, in the present embodiment, the optical lens is obtained by a simple mechanism that simply inserts the parallel plate 18 into the optical path between the light source 10 and the optical lens 13 that collects light from the light source 10 so as to be able to advance and retract. When the received light cannot be detected without requiring accurate alignment in the direction perpendicular to the optical axis 13 or in the optical axis direction, the projection angle of the transmitted light can be expanded.

本実施形態においては、平行平板18は1個であって、平行平板挿入手段6のアクチュエータ61によって進退するようにしたが、図3,4に示すような多段階のものとしてもよい。図3は、平行平板挿入手段6を回転モータMと回転円板63から構成した場合の上下方向断面を示す概念図であり、図4は、そのIV−IV断面図である。回転円板63には、互いに異なる屈折率又は厚さを有する複数枚の平行平板18−1〜18−7と、平行平板の存在しない窓部64を円周に沿って配置されている。この装置の場合、光源10からの光が光学レンズ13によって集光される光路に窓部64が位置するように、制御手段3がモータ62の回転位置を制御しているときは、図1に示す送信光Bのとおり、狭い幅の光ビームとして投光される。そして、相手局からの受信光を位置検出器8が検出できない状態となったときには、前記光路に平行平板18−1が位置するように回転モータ62を駆動する。平行平板18は、例えば、18−1から18−7まで順次送信光の投光角度が拡大するように、厚さ又は屈折率を設定しておくことができる。そうすれば、例えば、平行平板18−1によっては、追尾機能が回復しなければ、平行平板18−2、それでも回復しなければ平行平板18−3というように、順次平行平板18が前記光路に位置するような制御を行うことで、最初からあまりに送信光を拡大することなく、相手局からの光ビームのずれに応じた程度の送信光の投光角度の拡大によって、追尾機能を回復させることができる。   In the present embodiment, the number of the parallel plate 18 is one, and it is advanced and retracted by the actuator 61 of the parallel plate insertion means 6, but it may be multi-stage as shown in FIGS. FIG. 3 is a conceptual diagram showing a vertical cross section when the parallel plate inserting means 6 is constituted by the rotary motor M and the rotary disc 63, and FIG. 4 is a IV-IV cross sectional view thereof. In the rotating disc 63, a plurality of parallel flat plates 18-1 to 18-7 having different refractive indexes or thicknesses and a window portion 64 having no parallel flat plate are arranged along the circumference. In the case of this apparatus, when the control means 3 controls the rotational position of the motor 62 so that the window 64 is positioned in the optical path where the light from the light source 10 is collected by the optical lens 13, FIG. As shown by the transmitted light B, the light beam is projected as a narrow-width light beam. When the position detector 8 cannot detect the light received from the other station, the rotary motor 62 is driven so that the parallel plate 18-1 is positioned in the optical path. For example, the thickness or refractive index of the parallel plate 18 can be set so that the projection angle of the transmission light sequentially increases from 18-1 to 18-7. Then, for example, depending on the parallel plate 18-1, if the tracking function is not recovered, the parallel plate 18-2 is sequentially placed in the optical path, such as the parallel plate 18-2, and if not, the parallel plate 18-3. By performing control that is positioned, the tracking function can be restored by expanding the projection angle of the transmitted light according to the deviation of the light beam from the partner station without expanding the transmitted light too much from the beginning. Can do.

また、本実施形態においては、平行平板18は、光源10とその光を集光する光学レンズ13との間に挿入可能に配置したが、図5に示すように、光学レンズ13を複数のレンズ13−1、13−2によって構成した場合、それらのレンズの間に平行平板18を挿入可能に配置することもできる。同様に、図6に示すように、光学レンズ13を複数のレンズ13−1、13−2、13−3によって構成し、それらのレンズの間の一カ所に平行平板18を挿入可能に配置することもできる。挿入されるのは平行平板18であることから、平行な光ビームの部分に配置しても、送信光の投光角度を変えることはできないが、図5、図6のように光ビームが拡大する部分に挿入可能に配置すれば、図1の光学系の場合、送信光の投光角度を拡大することができる。なお、送信手段における光学系を適宜変更すれば、光学レンズ13を構成するレンズ間での光ビームが縮小する光路に平行平板18を挿入することで、投受光用光学レンズ11からの送信光を拡大することもできる。さらに、図5、図6の平行平板18,平行平板挿入手段6として、図3,4に示したものを採用してもよい。このように光学レンズ13を構成するレンズ間に平行平板18を挿入可能に配置する場合、平行平板18を光源10に近い位置に配置することが困難な場合であっても、平行平板の挿入によって、送信光の投光角度を拡大することができる。   Further, in the present embodiment, the parallel plate 18 is disposed so as to be insertable between the light source 10 and the optical lens 13 that condenses the light. However, as shown in FIG. When comprised by 13-1, 13-2, the parallel plate 18 can also be arrange | positioned so that insertion is possible among those lenses. Similarly, as shown in FIG. 6, the optical lens 13 is composed of a plurality of lenses 13-1, 13-2, and 13-3, and a parallel plate 18 is disposed so as to be insertable at one place between these lenses. You can also Since the parallel plate 18 is inserted, even if it is arranged in the parallel light beam portion, the projection angle of the transmitted light cannot be changed, but the light beam is expanded as shown in FIGS. If the optical system shown in FIG. 1 is arranged so that it can be inserted into the portion to be inserted, the projection angle of the transmitted light can be expanded. If the optical system in the transmission means is changed as appropriate, the transmission light from the light projecting / receiving optical lens 11 can be transmitted by inserting the parallel plate 18 into the optical path where the light beam between the lenses constituting the optical lens 13 is reduced. It can also be enlarged. Further, the parallel plate 18 and the parallel plate insertion means 6 shown in FIGS. 5 and 6 may be those shown in FIGS. As described above, when the parallel plate 18 is arranged so as to be inserted between the lenses constituting the optical lens 13, even if it is difficult to arrange the parallel plate 18 at a position close to the light source 10, the parallel plate 18 can be inserted by inserting the parallel plate. The projection angle of the transmitted light can be expanded.

本発明の実施形態の光無線通信装置1の構成を示す概念図である。It is a conceptual diagram which shows the structure of the optical wireless communication apparatus 1 of embodiment of this invention. 本発明の実施形態における光無線通信装置1の双方向通信を示す概念図である。It is a conceptual diagram which shows the bidirectional | two-way communication of the optical wireless communication apparatus 1 in embodiment of this invention. 本発明における平行平板18と平行平板挿入手段6の別の形態を示す説明図である。It is explanatory drawing which shows another form of the parallel plate 18 and the parallel plate insertion means 6 in this invention. 図3におけるIV−IV断面図である。It is IV-IV sectional drawing in FIG. 本発明における平行平板18の配置について別の形態を示す説明図である。It is explanatory drawing which shows another form about arrangement | positioning of the parallel plate 18 in this invention. 本発明における平行平板18の配置についてさらに別の形態を示す説明図である。It is explanatory drawing which shows another form about arrangement | positioning of the parallel plate 18 in this invention.

符号の説明Explanation of symbols

1‥光無線通信装置、2‥可動基体、3‥制御手段、4‥上下回動駆動手段、5‥水平回動駆動手段、6‥平行平板挿入手段、7‥送受信回路、8‥位置検出器、9‥信号受信器、10‥光源、11‥投受光用光学レンズ、12‥光学レンズ、13‥光学レンズ、14‥光学レンズ、15‥光学レンズ、16‥ビームスプリッタ、17‥ビームスプリッタ、18‥平行平板、A‥受信光、B‥送信光(平行平板を挿入しない場合)、C‥送信光(平行平板を挿入した場合)

DESCRIPTION OF SYMBOLS 1 ... Optical wireless communication apparatus, 2 ... Movable base | substrate, 3 ... Control means, 4 ... Vertical rotation drive means, 5 ... Horizontal rotation drive means, 6 ... Parallel plate insertion means, 7 ... Transmission / reception circuit, 8 ... Position detector , 9 signal receiver, 10 light source, 11 light projecting / receiving optical lens, 12 optical lens, 13 optical lens, 14 optical lens, 15 optical lens, 16 beam splitter, 17 beam splitter, 18 ... Parallel plate, A ... Received light, B ... Transmitted light (when no parallel plate is inserted), C ... Transmitted light (when a parallel plate is inserted)

Claims (4)

空間を介して双方向の光無線通信を行う光無線通信装置であって、
相手局からの光ビームを受信する受信手段と、
相手局に光ビームを送信する送信手段と、
相手局からの光ビームの位置を検出することによって、前記受信手段及び前記送信手段における光学系の向きを制御する追尾手段とを備え、
前記送信手段における光ビーム送信用の光源とその光源からの光を集光する光学レンズとの間の光路に対し、前記光源からの光に対して透明でかつ屈折率が空気よりも大きい平行平板を挿入及び離脱可能に配置し、
前記送信手段は、前記光路に対して前記平行平板が挿入されたときに、投受光用光学レンズから投光される光ビームの投光角度が拡大するような光学系とされたことを特徴とする光無線通信装置。
An optical wireless communication device that performs bidirectional optical wireless communication through a space,
Receiving means for receiving the light beam from the other station;
A transmission means for transmitting a light beam to a partner station;
A tracking unit that controls the direction of the optical system in the receiving unit and the transmitting unit by detecting the position of the light beam from the counterpart station;
A parallel plate that is transparent to the light from the light source and has a refractive index larger than that of air with respect to the optical path between the light source for transmitting the light beam in the transmission means and the optical lens that collects the light from the light source. Placed so that it can be inserted and removed,
The transmitting means is an optical system that expands a light projection angle of a light beam projected from a light projecting / receiving optical lens when the parallel plate is inserted into the optical path. Optical wireless communication device.
前記平行平板は1枚の平行平板が進退自在に構成されることで、前記光路に対し、挿入及び離脱可能に配置されていることを特徴とする請求項1に記載の光無線通信装置。   The optical wireless communication apparatus according to claim 1, wherein the parallel plate is configured such that a single parallel plate can be moved forward and backward, so that the parallel plate can be inserted into and removed from the optical path. 前記平行平板は、互いに異なる屈折率又は厚さを有する複数枚の平行平板から構成され、それらの1枚毎に、選択的に前記光路に対し、挿入及び離脱可能に配置されていることを特徴とする請求項1に記載の光無線通信装置。   The parallel plate is composed of a plurality of parallel plates having different refractive indexes or thicknesses, and each of the parallel plates is selectively disposed so as to be inserted into and removed from the optical path. The optical wireless communication apparatus according to claim 1. 空間を介して双方向の光無線通信を行う光無線通信装置であって、
相手局からの光ビームを受信する受信手段と、
相手局に光ビームを送信する送信手段と、
相手局からの光ビームの位置を検出することによって、前記受信手段及び前記送信手段における光学系の向きを制御する追尾手段とを備え、
前記送信手段における光ビーム送信用の光源からの光を集光する光学レンズが複数枚のレンズからなり、それらのレンズの間であってかつその部分の光ビームが平行ビームでない光路に対し、前記光源からの光に対して透明でかつ屈折率が空気よりも大きい平行平板を挿入及び離脱可能に配置し、
前記送信手段は、前記光路に対して前記平行平板が挿入されたときに、投受光用光学レンズから投光される光ビームの投光角度が拡大するような光学系とされたことを特徴とする光無線通信装置。

An optical wireless communication device that performs bidirectional optical wireless communication through a space,
Receiving means for receiving the light beam from the other station;
A transmission means for transmitting a light beam to a partner station;
A tracking unit that controls the direction of the optical system in the receiving unit and the transmitting unit by detecting the position of the light beam from the counterpart station;
The optical lens for condensing the light from the light source for transmitting the light beam in the transmission means is composed of a plurality of lenses, and the light beam between the lenses and the light beam of the portion is not a parallel beam, A parallel plate that is transparent to the light from the light source and has a refractive index larger than that of air is arranged so that it can be inserted and removed,
The transmitting means is an optical system that expands a light projection angle of a light beam projected from a light projecting / receiving optical lens when the parallel plate is inserted into the optical path. Optical wireless communication device.

JP2006225743A 2006-08-22 2006-08-22 Optical wireless communication device Pending JP2008053849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225743A JP2008053849A (en) 2006-08-22 2006-08-22 Optical wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225743A JP2008053849A (en) 2006-08-22 2006-08-22 Optical wireless communication device

Publications (1)

Publication Number Publication Date
JP2008053849A true JP2008053849A (en) 2008-03-06

Family

ID=39237496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225743A Pending JP2008053849A (en) 2006-08-22 2006-08-22 Optical wireless communication device

Country Status (1)

Country Link
JP (1) JP2008053849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034758A1 (en) * 2014-09-04 2016-03-10 Nokia Technologies Oy Free space communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134207A (en) * 1991-11-13 1993-05-28 Canon Inc Two-way spatial optical communication device
JPH05181086A (en) * 1991-12-28 1993-07-23 Sony Corp Optical spatial transmitter
JP2000137175A (en) * 1998-10-30 2000-05-16 Nippon Telegr & Teleph Corp <Ntt> Variable optical filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134207A (en) * 1991-11-13 1993-05-28 Canon Inc Two-way spatial optical communication device
JPH05181086A (en) * 1991-12-28 1993-07-23 Sony Corp Optical spatial transmitter
JP2000137175A (en) * 1998-10-30 2000-05-16 Nippon Telegr & Teleph Corp <Ntt> Variable optical filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034758A1 (en) * 2014-09-04 2016-03-10 Nokia Technologies Oy Free space communication
CN107078798A (en) * 2014-09-04 2017-08-18 诺基亚技术有限公司 Free-space communication
US10187162B2 (en) 2014-09-04 2019-01-22 Nokia Technologies Oy Free space communication
CN107078798B (en) * 2014-09-04 2019-12-24 诺基亚技术有限公司 Free space communication

Similar Documents

Publication Publication Date Title
JP2004310104A (en) Alignment system for fiber optic cross-connect switch
US6529652B1 (en) Optical switch and method for aligning optical switch components
JP2004212205A (en) Angle detecting apparatus, light signal switching system, and information recording and reproducing system
US11652549B2 (en) Optical antenna
JP2001290089A (en) Tunable optical add/drop device and method
US6591029B1 (en) Optical switch and method for aligning optical switch components
KR20140082654A (en) Alignment system and extreme ultraviolet light generation system
EP1174865A3 (en) Compatible optical pickup
JP2008053849A (en) Optical wireless communication device
US7289736B1 (en) Adaptive optics imaging system with object acquisition capability
US10833763B2 (en) Bi-directional wireless optical communication apparatus and method thereof
TWI268503B (en) Optical pickup and optical disk apparatus
JP4701454B2 (en) Spatial optical communication method and spatial optical communication apparatus
JPH05133716A (en) Bi-directional spatial optical communication device
JPH08204644A (en) Optical space transmitter and its optical axis alignment method
RU2304288C2 (en) Onboard optical locator for determining approach parameters of two spacecrafts
JP4446087B2 (en) Photodetector and photodetection system using the same
JP2006023626A (en) Collimation adjusting mechanism, and optical antenna system and collimation adjusting method using same
US11344970B2 (en) Optical device and method for detecting the drift of a light beam
JP3870197B2 (en) Optical space transmission equipment
JP3870196B2 (en) Optical space transmission equipment
JP3870198B2 (en) Optical space transmission equipment
US20240195501A1 (en) Free-space optical link
JP2016154149A (en) Alignment system
JP2007079387A (en) Optical coupler and optical system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004