Nothing Special   »   [go: up one dir, main page]

JP2008049353A - Nickel plated stainless steel wire - Google Patents

Nickel plated stainless steel wire Download PDF

Info

Publication number
JP2008049353A
JP2008049353A JP2006225553A JP2006225553A JP2008049353A JP 2008049353 A JP2008049353 A JP 2008049353A JP 2006225553 A JP2006225553 A JP 2006225553A JP 2006225553 A JP2006225553 A JP 2006225553A JP 2008049353 A JP2008049353 A JP 2008049353A
Authority
JP
Japan
Prior art keywords
stainless steel
steel wire
plating layer
nickel
inorganic salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006225553A
Other languages
Japanese (ja)
Inventor
Nobue Takamura
伸栄 高村
Teruyuki Murai
照幸 村井
Minoru Nakano
稔 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2006225553A priority Critical patent/JP2008049353A/en
Priority to PCT/JP2007/065252 priority patent/WO2008023561A1/en
Publication of JP2008049353A publication Critical patent/JP2008049353A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metal Extraction Processes (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel plated stainless steel wire which is satisfactory in lubricity with a tool and is excellent in workability. <P>SOLUTION: An inorganic salt having an action of holding a lubricant is stored in each recessed part (A part) formed on the surface of a plating layer by wire drawing after the application of nickel plating to the stock of a stainless steel wire, thus, by the lubricant holding action of the inorganic salt stored in each recessed part, its lubricity with a tool upon wire drawing and coiling in a poststage is made satisfactory even if the inorganic salt is not hardly stuck to each almost flat part (B part) in the surface other than the recessed parts of the nickel plating layer, so as to improve its workability. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ニッケルをメッキしたステンレス鋼線に関する。   The present invention relates to a nickel-plated stainless steel wire.

ステンレス鋼線は、炭素鋼線に比較して加工硬化性が大きいうえ、工具との潤滑性が悪いので、伸線加工やばね成形(コイリング)する際の加工性が低く、製品寸法のばらつきが大きくなりやすいという問題があった。このため、従来は、潤滑性に優れたニッケルをメッキして加工性を改善したものが多く用いられてきたが、このようなニッケルメッキを施したステンレス鋼線も、加工性に対する要求が高まるにつれて、その要求に必ずしも十分に対応できなくなってきている。これに対して、加工性をさらに改善するために、ニッケルメッキ層の表面に硫酸カリウム等の無機塩を被覆する方法(特許文献1参照。)や、その無機塩の被覆層の表面に付着する潤滑剤の量を適正範囲に調整する方法(特許文献2参照。)が提案されている。
特開平10−118711号公報 特開平11−92882号公報
Stainless steel wire has higher work hardenability than carbon steel wire and poor lubricity with tools, so the workability during wire drawing and spring forming (coiling) is low, and the product dimensions vary. There was a problem that it was easy to grow. For this reason, in the past, many nickel plated with excellent lubricity and improved workability have been used. However, stainless steel wires subjected to such nickel plating are also becoming more demanding for workability. , It is not always enough to meet that demand. On the other hand, in order to further improve the workability, the surface of the nickel plating layer is coated with an inorganic salt such as potassium sulfate (see Patent Document 1), or adheres to the surface of the coating layer of the inorganic salt. A method for adjusting the amount of lubricant to an appropriate range (see Patent Document 2) has been proposed.
Japanese Patent Laid-Open No. 10-118711 JP-A-11-92882

しかしながら、上記特許文献1、2に記載されているようにニッケルメッキステンレス鋼線のメッキ層表面を無機塩で被覆しても、伸線加工の過程では加工前のメッキ層表面に存在していた凹凸がさらに小さくなるため、被覆した無機塩が脱落しやすく、実際に伸線やコイリングを行う際の工具との潤滑性を良くして加工性を改善することは困難であった。   However, as described in Patent Documents 1 and 2 above, even if the plating layer surface of the nickel-plated stainless steel wire is coated with an inorganic salt, it was present on the surface of the plating layer before processing in the process of wire drawing. Since the unevenness is further reduced, the coated inorganic salt tends to fall off, and it has been difficult to improve the workability by improving the lubricity with the tool when actually drawing or coiling.

また、上記特許文献2にはステンレス鋼線表面(ニッケルメッキ表面)の粗さと潤滑剤付着量の適正範囲が記載されているが、潤滑剤付着量の適正範囲はニッケルメッキの表面状態だけでなく加工条件等によっても変化する。従って、特許文献2に記載されたような方法では、加工性を改善するために潤滑剤付着量を精密に制御することが必要となり、その制御の実現が容易でない。   Moreover, although the said patent document 2 has described the appropriate range of the roughness of a stainless steel wire surface (nickel plating surface) and lubricant adhesion amount, the appropriate range of lubricant adhesion amount is not only the surface state of nickel plating. It also changes depending on the processing conditions. Therefore, in the method as described in Patent Document 2, it is necessary to precisely control the lubricant adhesion amount in order to improve the workability, and it is not easy to realize the control.

本発明の課題は、工具との潤滑性が良く、加工性に優れたニッケルメッキステンレス鋼線を提供することである。   An object of the present invention is to provide a nickel-plated stainless steel wire having good lubricity with a tool and excellent workability.

上記の課題を解決するために、本発明のニッケルメッキステンレス鋼線は、前記ニッケルメッキ層の表面に凹部を有しており、この凹部に硫酸カリウム、硫酸ナトリウムまたは硼砂の少なくとも1種を含有する無機塩が保持されている構成のものとした。   In order to solve the above problems, the nickel-plated stainless steel wire of the present invention has a recess on the surface of the nickel plating layer, and the recess contains at least one of potassium sulfate, sodium sulfate, or borax. It was set as the structure by which the inorganic salt was hold | maintained.

すなわち、ステンレス鋼線の素材へニッケルメッキした後の伸線加工によりメッキ層の表面に形成される凹部(図1におけるA部(暗部))に、潤滑剤を保持する作用のある無機塩を溜め込んだものとすることにより、ニッケルメッキ層の凹部以外の表面のほぼ平坦な部分(図1におけるB部(明部))に無機塩がほとんど付着していなくても、凹部に溜め込まれた無機塩の潤滑剤保持作用で後工程での伸線やコイリングの際の工具との潤滑性が良くなり、加工性が向上するようにしたのである。   That is, an inorganic salt having an action of retaining a lubricant is stored in a concave portion (A portion (dark portion) in FIG. 1) formed on the surface of the plating layer by wire drawing after nickel plating on a stainless steel wire material. As a result, the inorganic salt accumulated in the recesses can be obtained even if almost no inorganic salt adheres to the substantially flat portion (B portion (bright portion) in FIG. 1) of the surface other than the recesses of the nickel plating layer. This lubricant holding action improves the lubricity with the tool during wire drawing and coiling in the subsequent process, and improves the workability.

ここで、ニッケルメッキ層の凹部は、ニッケルメッキ後に30〜40%程度の減面率で伸線加工を行うことによりメッキ層に生じた亀裂を拡張させて生じさせることができる。そして、この伸線加工を行ったステンレス鋼線を、無機塩を含む水溶液中に浸漬した後、乾燥して水分を除去することにより、無機塩の被覆層を形成し、その後40〜55%程度の減面率で伸線加工を行って製品寸法に仕上げる。これにより、後段の伸線加工の段階でメッキ層の凹部以外の表面の無機塩がほとんど脱落したとしても、製品のメッキ層の凹部には無機塩を残存させることができる。   Here, the concave portion of the nickel plating layer can be generated by expanding a crack generated in the plating layer by performing wire drawing at a surface reduction rate of about 30 to 40% after nickel plating. And after immersing the stainless steel wire which performed this wire drawing in the aqueous solution containing an inorganic salt, it dries and removes a water | moisture content, and forms the coating layer of an inorganic salt, and is about 40 to 55% after that Finishing to product dimensions by drawing at a reduction rate of. Thereby, even if the inorganic salt on the surface other than the concave portion of the plating layer is almost removed in the subsequent drawing step, the inorganic salt can remain in the concave portion of the plated layer of the product.

上記の構成において、前記ニッケルメッキ層の凹部以外の表面には、硫酸カリウム、硫酸ナトリウムまたは硼砂の少なくとも1種を含有する無機塩の被覆層を、前記凹部に保持されている無機塩よりも薄く形成することが望ましい。凹部以外の表面に付着している無機塩はその厚みが薄いほど後工程での加工の際に脱落しにくくなり、加工性の向上に寄与するようになるからである。   In the above configuration, a coating layer of an inorganic salt containing at least one of potassium sulfate, sodium sulfate, or borax is thinner on the surface of the nickel plating layer than the concave portion than the inorganic salt held in the concave portion. It is desirable to form. This is because the smaller the thickness of the inorganic salt adhering to the surface other than the recesses, the more difficult it is to drop off during processing in the subsequent process, which contributes to the improvement of workability.

ここで、無機塩の被覆層は、前述の無機塩を含む水溶液中へのステンレス鋼線の浸漬によって形成された段階では、メッキ層の表面にほぼ均一な厚みをもっているが、無機塩被覆層形成後に行う後段の伸線加工に続いて、0.1〜5%程度の小さい減面率で伸線加工を行うことにより、メッキ層の凹部以外の表面に形成された部分のみを薄くすることができる。なお、メッキ層の凹部と凹部以外とでの無機塩被覆層の厚みの大小は、X線解析法(薄膜XRD分析)やオージェ電子分光分析法によりステンレス鋼線表面を分析した結果から判定できる。   Here, the coating layer of the inorganic salt has a substantially uniform thickness on the surface of the plating layer at the stage formed by immersing the stainless steel wire in the aqueous solution containing the inorganic salt, but the inorganic salt coating layer is formed. Subsequent to the subsequent drawing process, the drawing process is performed with a small area reduction of about 0.1 to 5%, so that only the portion formed on the surface other than the concave portion of the plating layer can be thinned. it can. In addition, the magnitude of the thickness of the inorganic salt coating layer in the recessed part of the plating layer and other than the recessed part can be determined from the result of analyzing the surface of the stainless steel wire by X-ray analysis (thin film XRD analysis) or Auger electron spectroscopy.

前記ニッケルメッキ層の厚さは0.5〜5μmとし、前記ニッケルメッキ層の凹部の深さは、ニッケルメッキ層の厚さの10〜100%とするとよい。メッキ層の厚さが0.5μm未満では加工性向上効果が小さく、5μmを超えるとメッキ層が剥離しやすくなるので好ましくない。また、メッキ層の凹部の深さがメッキ層の厚さの10%未満になると、凹部に保持される無機塩の量が少なくなって加工性向上効果が小さくなるので好ましくない。   The thickness of the nickel plating layer may be 0.5 to 5 μm, and the depth of the concave portion of the nickel plating layer may be 10 to 100% of the thickness of the nickel plating layer. If the thickness of the plating layer is less than 0.5 μm, the effect of improving workability is small, and if it exceeds 5 μm, the plating layer is easily peeled off, which is not preferable. In addition, if the depth of the concave portion of the plated layer is less than 10% of the thickness of the plated layer, the amount of inorganic salt held in the concave portion is reduced and the effect of improving workability is reduced, which is not preferable.

ここで、メッキ層の凹部の深さは、メッキを施した当初(前段の伸線加工前)のメッキ層の厚さと伸線加工全体での減面率により調整することができる。当初のメッキ層厚さが一定の場合、減面率が大きいほど凹部深さは大きくなるからである。なお、凹部深さは、ステンレス鋼線の断面を光学顕微鏡や電子顕微鏡で観測することにより測定できるほか、オージェ電子分光分析法によりステンレス鋼線の表面から深さ方向へニッケル元素分析を行ってその結果から判定することもできる。   Here, the depth of the concave portion of the plating layer can be adjusted by the thickness of the plating layer at the beginning of plating (before the previous drawing process) and the area reduction rate of the entire drawing process. This is because when the initial plating layer thickness is constant, the depth of the recess increases as the area reduction ratio increases. The depth of the recess can be measured by observing the cross section of the stainless steel wire with an optical microscope or an electron microscope, and the nickel elemental analysis is performed from the surface of the stainless steel wire to the depth direction by Auger electron spectroscopy. It can also be determined from the result.

前記ニッケルメッキ層の凹部の幅は、0.5〜20μmとすることが望ましい。凹部の幅が0.5μm未満では無機塩を保持する面積が小さくなり、20μmを超えると無機塩を保持する作用が弱くなって、いずれの場合も加工性向上効果が小さくなるからである。   The width of the concave portion of the nickel plating layer is preferably 0.5 to 20 μm. This is because if the width of the recess is less than 0.5 μm, the area for holding the inorganic salt becomes small, and if it exceeds 20 μm, the action of holding the inorganic salt becomes weak, and in any case, the workability improvement effect becomes small.

ここで、メッキ層の凹部の幅は、深さと同様、当初のメッキ層の厚さと減面率により調整することができる。当初のメッキ層厚さが小さいほど、減面率が大きいほど、凹部幅は大きくなるからである。また、後段の伸線加工の後に0.1〜5%程度の小さい減面率で伸線加工を行うことにより、さらに精度よく凹部幅を調整できる。なお、凹部幅は、ステンレス鋼線の表面を光学顕微鏡や電子顕微鏡で観測することにより測定できる。   Here, the width of the concave portion of the plated layer can be adjusted by the initial thickness of the plated layer and the area reduction rate, as well as the depth. This is because the recess width increases as the initial plating layer thickness decreases and the area reduction rate increases. Further, by performing the wire drawing with a small area reduction of about 0.1 to 5% after the subsequent wire drawing, the width of the recess can be adjusted with higher accuracy. The recess width can be measured by observing the surface of the stainless steel wire with an optical microscope or an electron microscope.

また、前記ニッケルメッキ層の表面に潤滑剤を付着させている場合、前記ニッケルメッキ層の凹部以外の表面に付着している潤滑剤の単位面積あたりの量は、凹部に付着している潤滑剤よりも少なくすることが望ましい。このようにすれば、潤滑性を確保しつつ、従来よりも潤滑剤の使用量を少なくできるので、潤滑剤が多すぎるときに問題となる伸線加工時の材料つまりや、製品の表面のくすみ等の表面性状劣化が生じにくくなる。   Further, when a lubricant is attached to the surface of the nickel plating layer, the amount of the lubricant attached to the surface other than the recess of the nickel plating layer is the lubricant attached to the recess. Is desirable. In this way, it is possible to reduce the amount of lubricant used compared to the conventional method while ensuring lubricity, so the material during wire drawing, which is a problem when there is too much lubricant, or dullness on the surface of the product It is difficult to cause surface property deterioration such as.

ここで、潤滑剤の種類としては、ステアリン酸カルシウム系のものや、ステアリン酸ナトリウム系のものがあげられる。なお、メッキ層の凹部と凹部以外とでの潤滑剤の量の大小は、X線解析法(薄膜XRD分析)やオージェ電子分光分析法によりステンレス鋼線表面を分析した結果から判定することができる。   Here, examples of the lubricant include calcium stearate type and sodium stearate type. Note that the amount of lubricant in the plated layer and other than the recessed portion can be determined from the result of analyzing the surface of the stainless steel wire by X-ray analysis (thin film XRD analysis) or Auger electron spectroscopy. .

本発明のニッケルメッキステンレス鋼線は、上述したように、ニッケルメッキ層の表面に凹部を有しており、この凹部に潤滑剤を保持する作用のある無機塩を溜め込んだものであるから、後工程での伸線やコイリングの際の工具との潤滑性が良く加工性に優れている。   As described above, the nickel-plated stainless steel wire of the present invention has a concave portion on the surface of the nickel-plated layer, and an inorganic salt having an action of retaining a lubricant is stored in the concave portion. Good lubricity and excellent workability with tools during wire drawing and coiling in the process.

(実施例1)
以下、本発明の実施形態を説明する。実施例1のニッケルメッキステンレス鋼線は、素材として線径3〜5mmのステンレス鋼線を用い、この素材にニッケルメッキを施し(工程1)、前段の伸線加工(工程2)を行った後、メッキ層表面に無機塩を被覆し(工程3)、最後に後段の伸線加工(工程4)を行って製造したものである。
(Example 1)
Embodiments of the present invention will be described below. The nickel-plated stainless steel wire of Example 1 uses a stainless steel wire having a wire diameter of 3 to 5 mm as a material, and after this material is nickel-plated (Step 1), the former wire drawing (Step 2) is performed. The surface of the plating layer is coated with an inorganic salt (step 3), and finally the subsequent drawing process (step 4) is performed.

前記素材として用いたステンレス鋼線は、質量%で、カーボン:0.077%、シリコン:0.52%、マンガン:1.27%、リン:0.025%、ニッケル:8.55%、クロム:18.58%、モリブデン:0.02%を含み、残部が鉄および不可避的不純物からなるもの(SUS304)で、溶体化処理のすんだものである。   The stainless steel wire used as the material is mass%, carbon: 0.077%, silicon: 0.52%, manganese: 1.27%, phosphorus: 0.025%, nickel: 8.55%, chromium. : 18.58%, molybdenum: 0.02%, the balance consisting of iron and inevitable impurities (SUS304), which has undergone solution treatment.

前記工程1では、下記メッキ条件により、素材のステンレス鋼線の表面に2〜20μmの厚さのニッケルメッキ層を形成した。
<メッキ条件>
・メッキ液:
スルファミン酸ニッケル 797g/l
臭化ニッケル 6g/l
炭酸ニッケル 25g/l
ホウ酸 25g/l
・電流密度:10A/dm
・PH :4
・浴温 :25℃
In the step 1, a nickel plating layer having a thickness of 2 to 20 μm was formed on the surface of the material stainless steel wire under the following plating conditions.
<Plating conditions>
・ Plating solution:
Nickel sulfamate 797 g / l
Nickel bromide 6g / l
Nickel carbonate 25g / l
Boric acid 25g / l
・ Current density: 10 A / dm 2
・ PH: 4
・ Bath temperature: 25 ° C

前記工程2では、工程1でニッケルメッキを施したステンレス鋼線を、通常の連続伸線機により減面率40%で伸線加工した。伸線加工の際には、ステアリン酸カルシウム系の粉末潤滑剤を使用した。その後、ノルマルヘキサン中に浸漬して表面に残存していた潤滑剤を除去し、表面を清浄にした。   In step 2, the stainless steel wire plated with nickel in step 1 was drawn with a normal continuous wire drawing machine at a surface reduction rate of 40%. In the wire drawing, a calcium stearate powder lubricant was used. Thereafter, the lubricant remaining on the surface was removed by dipping in normal hexane to clean the surface.

前記工程3では、工程2で前段の伸線加工を行ったステンレス鋼線を、硫酸カリウムを2%含む水溶液中に浸漬した後、乾燥して水分を除去することにより、ニッケルメッキ層の表面に硫酸カリウムの被覆層を形成した。   In the step 3, the stainless steel wire subjected to the previous wire drawing in the step 2 is immersed in an aqueous solution containing 2% potassium sulfate, and then dried to remove moisture, so that the surface of the nickel plating layer is removed. A coating layer of potassium sulfate was formed.

前記工程4では、工程3で表面に硫酸カリウムを被覆したステンレス鋼線を、工程2と同じ連続伸線機により減面率45%で伸線加工した。この伸線加工の際にも、工程2と同じステアリン酸カルシウム系の潤滑剤を使用した。   In step 4, the stainless steel wire whose surface was coated with potassium sulfate in step 3 was drawn with the same continuous wire drawing machine as in step 2 with a reduction in area of 45%. The same calcium stearate lubricant as in step 2 was also used during the wire drawing.

そして、前記工程4を終えたステンレス鋼線は、ニッケルメッキ層の表面にメッキ層の亀裂が伸線加工で拡張された凹部を有し、この凹部に硫酸カリウムを含有する無機塩とステアリン酸カルシウム系の潤滑剤を保持したものとなる。   And the stainless steel wire which completed the said process 4 has the recessed part by which the crack of the plating layer was extended by the wire drawing process on the surface of a nickel plating layer, and the inorganic salt and potassium stearate type | system | group containing potassium sulfate in this recessed part The lubricant is retained.

次に、本発明の効果を確認するために実施したばね成形加工試験について説明する。まず、上述した工程1〜4により、ニッケルメッキ層の厚さ(メッキ厚さ)、メッキ層の厚さに対する凹部深さの比(凹部深さ比)および凹部幅が異なるニッケルメッキステンレス鋼線を13種類作製した。次に、これらのステンレス鋼線を自動コイリング装置によりばね成形加工して、下記の仕様のばねを300個ずつ製造した。そして、製造したばねの自由長比(実際自由長/目標自由長)を測定し、この自由長比が±0.1%を超えるものを不良として不良率を求めた。
<ばね仕様>
・線径 :1.0mm
・コイル中心径:30.0mm
・有効巻数 :9.5
・標準自由長 :40.0mm
Next, a spring forming process test conducted to confirm the effect of the present invention will be described. First, the nickel plating stainless steel wire in which the thickness of the nickel plating layer (plating thickness), the ratio of the recess depth to the thickness of the plating layer (recess depth ratio), and the recess width is different by the steps 1 to 4 described above. 13 types were produced. Next, these stainless steel wires were subjected to spring forming using an automatic coiling device to produce 300 springs having the following specifications. Then, the free length ratio (actual free length / target free length) of the manufactured spring was measured, and the defect rate was determined by assuming that the free length ratio exceeded ± 0.1%.
<Spring specifications>
・ Wire diameter: 1.0mm
・ Coil center diameter: 30.0mm
-Effective number of windings: 9.5
Standard free length: 40.0mm

上記試験の結果を表1に示す。表1から、この実施例1のニッケルメッキステンレス鋼線は、いずれの条件のものも比較例に比べて不良率が低く、加工性に優れていることがわかる。すなわち、メッキ層の表面に亀裂が拡張した凹部を適度な大きさに形成して、この凹部に潤滑剤を保持する作用のある無機塩を溜め込んだものとすることにより、コイリングの際の工具との潤滑性が良くなり、加工性が向上することが確認された。   The results of the above test are shown in Table 1. From Table 1, it can be seen that the nickel-plated stainless steel wire of Example 1 has a lower defect rate than those of the comparative examples and is excellent in workability under any conditions. That is, by forming a concave portion with an enlarged crack on the surface of the plating layer and storing an inorganic salt having an action of retaining a lubricant in the concave portion, a coiling tool and It was confirmed that the lubricity of the steel improved and the workability improved.

(実施例2)
実施例1のNo.4の条件で作製したステンレス鋼線を、さらに減面率1%で伸線加工し、その表面をX線解析法(薄膜XRD分析)により下記条件で分析した。
<X線解析条件>
・使用X線 :Cu−Ka
・励起条件 :45KV 40mA
・X線入射角度:0.5°
・測定範囲 :2θ=5〜60°
(Example 2)
No. of Example 1 The stainless steel wire produced under the condition No. 4 was further drawn at a surface reduction rate of 1%, and the surface was analyzed by the X-ray analysis method (thin film XRD analysis) under the following conditions.
<X-ray analysis conditions>
・ X-ray used: Cu-Ka
Excitation conditions: 45KV 40mA
・ X-ray incident angle: 0.5 °
・ Measurement range: 2θ = 5-60 °

上記分析の結果、図2(a)、(b)に示すように、メッキ層表面の凹部には硫酸カリウムやステアリン酸カルシウムの成分が検出されたが(図2(a))、これらの成分は凹部以外の表面からはほとんど検出されなかった(図2(b))。そして、このステンレス鋼線を用いて実施例1と同じばね成形加工試験を行ったところ、実施例1のNo.4の条件のものと比較して、不良率がさらに30%減少した。   As a result of the above analysis, as shown in FIGS. 2 (a) and 2 (b), components of potassium sulfate and calcium stearate were detected in the recesses on the surface of the plating layer (FIG. 2 (a)). It was hardly detected from the surface other than the concave portion (FIG. 2B). And when the same spring shaping | molding processing test as Example 1 was done using this stainless steel wire, No. 1 of Example 1 was obtained. Compared with the four conditions, the defect rate was further reduced by 30%.

(実施例3)
実施例1と同じ工程1、2を経たステンレス鋼線を、硫酸カリウム、硫酸ナトリウム、硼砂のうちの1種類を3%含む水溶液中に浸漬した後、実施例1と同様に乾燥して水分を除去することにより、ニッケルメッキ層の表面に硫酸カリウム、硫酸ナトリウムまたは硼砂の被覆層を形成した。この3種類の無機塩の被覆層を有するステンレス鋼線を、それぞれ減面率40%でステアリン酸カルシウム系の潤滑剤を用いて伸線加工し、ニッケルメッキ層の厚さが3μm、凹部深さ比が45%、凹部幅が5μmのものを作製した。そして、実施例1と同じばね成形加工試験を行った結果、不良率は被覆が硫酸カリウムのもので6%、硫酸ナトリウム被覆のもので7%、硼砂被覆のもので8%となり、これらの無機塩の被覆では、無機塩の種類による加工性向上効果の差は小さいことが確認された。
(Example 3)
A stainless steel wire that has undergone the same steps 1 and 2 as in Example 1 was immersed in an aqueous solution containing 3% of one of potassium sulfate, sodium sulfate, and borax, and then dried in the same manner as in Example 1 to provide moisture. By removing, a coating layer of potassium sulfate, sodium sulfate or borax was formed on the surface of the nickel plating layer. The stainless steel wires having these three inorganic salt coating layers were each drawn with a calcium stearate-based lubricant at a surface reduction rate of 40%. The nickel plating layer had a thickness of 3 μm and a recess depth ratio. Was 45% and the width of the recess was 5 μm. As a result of performing the same spring molding processing test as in Example 1, the defect rate was 6% for the potassium sulfate coating, 7% for the sodium sulfate coating, and 8% for the borax coating. In the case of salt coating, it was confirmed that the difference in processability improvement effect due to the type of inorganic salt was small.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

ニッケルメッキ後に伸線加工したステンレス鋼線(実施例2)の表面顕微鏡写真の模式図Schematic diagram of surface micrograph of stainless steel wire (Example 2) drawn after nickel plating a、bは、それぞれ実施例2のステンレス鋼線のメッキ層表面の凹部(a)およびメッキ層の凹部以外の表面(b)の表面分析結果を示すグラフa and b are graphs showing the surface analysis results of the concave portion (a) on the surface of the plated layer of the stainless steel wire of Example 2 and the surface (b) other than the concave portion of the plated layer, respectively.

Claims (5)

ニッケルメッキ層を有するステンレス鋼線において、前記ニッケルメッキ層の表面に凹部を有しており、この凹部に硫酸カリウム、硫酸ナトリウムまたは硼砂の少なくとも1種を含有する無機塩が保持されていることを特徴とするニッケルメッキステンレス鋼線。   The stainless steel wire having a nickel plating layer has a recess on the surface of the nickel plating layer, and the recess holds an inorganic salt containing at least one of potassium sulfate, sodium sulfate, or borax. Characteristic nickel-plated stainless steel wire. 前記ニッケルメッキ層の凹部以外の表面に、硫酸カリウム、硫酸ナトリウムまたは硼砂の少なくとも1種を含有する無機塩の被覆層が、前記凹部に保持されている無機塩よりも薄く形成されていることを特徴とする請求項1に記載のニッケルメッキステンレス鋼線。   A coating layer of an inorganic salt containing at least one of potassium sulfate, sodium sulfate, or borax is formed on the surface of the nickel plating layer other than the recesses thinner than the inorganic salt held in the recesses. The nickel-plated stainless steel wire according to claim 1. 前記ニッケルメッキ層の厚さが0.5〜5μmであり、前記ニッケルメッキ層の凹部の深さが、ニッケルメッキ層の厚さの10〜100%であることを特徴とする請求項1または2に記載のニッケルメッキステンレス鋼線。   The thickness of the nickel plating layer is 0.5 to 5 µm, and the depth of the concave portion of the nickel plating layer is 10 to 100% of the thickness of the nickel plating layer. Nickel plated stainless steel wire as described in 前記ニッケルメッキ層の凹部の幅が、0.5〜20μmであることを特徴とする請求項1乃至3のいずれかに記載のニッケルメッキステンレス鋼線。   The nickel-plated stainless steel wire according to any one of claims 1 to 3, wherein a width of the concave portion of the nickel-plated layer is 0.5 to 20 µm. 前記ニッケルメッキ層の表面に潤滑剤が付着しており、前記ニッケルメッキ層の凹部以外の表面に付着している潤滑剤の単位面積あたりの量が、凹部に付着している潤滑剤よりも少ないことを特徴とする請求項1乃至4のいずれかに記載のニッケルメッキステンレス鋼線。   Lubricant is attached to the surface of the nickel plating layer, and the amount of lubricant attached to the surface other than the concave portion of the nickel plating layer is less than the lubricant attached to the concave portion. The nickel-plated stainless steel wire according to any one of claims 1 to 4.
JP2006225553A 2006-08-22 2006-08-22 Nickel plated stainless steel wire Pending JP2008049353A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006225553A JP2008049353A (en) 2006-08-22 2006-08-22 Nickel plated stainless steel wire
PCT/JP2007/065252 WO2008023561A1 (en) 2006-08-22 2007-08-03 Nickel-plated stainless-steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225553A JP2008049353A (en) 2006-08-22 2006-08-22 Nickel plated stainless steel wire

Publications (1)

Publication Number Publication Date
JP2008049353A true JP2008049353A (en) 2008-03-06

Family

ID=39106648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225553A Pending JP2008049353A (en) 2006-08-22 2006-08-22 Nickel plated stainless steel wire

Country Status (2)

Country Link
JP (1) JP2008049353A (en)
WO (1) WO2008023561A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPN20130032A1 (en) * 2013-06-20 2014-12-21 Evio Vazzoler METHOD FOR FORMING A SHAPED METAL ELEMENT
JP7092636B2 (en) * 2018-10-22 2022-06-28 大同メタル工業株式会社 Sliding members and bearing devices using them

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836607B2 (en) * 1996-08-29 1998-12-14 住友電気工業株式会社 Stainless steel wire and its manufacturing method
JP3053789B2 (en) * 1997-09-09 2000-06-19 高麗商事株式会社 Stainless steel wire for spring

Also Published As

Publication number Publication date
WO2008023561A1 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
RU2563611C2 (en) Method of making article of stainless steel
JP4729648B2 (en) Electrodeposition wire tool
JP5570078B2 (en) Ni-plated steel sheet and battery can manufacturing method using the Ni-plated steel sheet
TWI412421B (en) Magnesium wire for welding
RU2583193C1 (en) METHOD FOR PRODUCTION OF METAL SHEET WITH Zn-Al-Mg COATING LUBRICATED WITH OIL AND RESPECTIVE METAL SHEET
KR20130126725A (en) Ni-containing surface-treated steel sheet for containers, and method for producing same
JP2007185711A (en) Steel wire for spring
JP2018150593A (en) FILM COATED HOT-DIP Zn-Al-Mg PLATED STEEL PLATE AND MANUFACTURING METHOD OF THE SAME
JP2008049353A (en) Nickel plated stainless steel wire
JP2836607B2 (en) Stainless steel wire and its manufacturing method
JP2006159291A (en) Plated wire for gas shield arc welding
JP2019157224A (en) Tin plated copper wire, method for manufacturing the same, insulated wire and cable
JPH06226330A (en) Steel wire for automatic coiling and manufacture thereof
JP2008036668A (en) Copper or copper alloy material, its manufacturing method, and semiconductor package
WO2012046712A1 (en) Method for producing substrate for hard disk, and substrate for hard disk
JP2006169621A (en) Stainless steel wire for spring having excellent formability, and its manufacturing method
JP2006187789A (en) Steel wire before wire drawing and its lubrication surface-treating method
JP2021055143A (en) Galvanized steel plate with surface treatment and manufacturing method of the same
JP3312235B2 (en) Beryllium copper alloy spring material and its manufacturing method
TW201350594A (en) Metal material
JP2003191092A (en) Solid wire for arc welding without copper plating
JPH01222090A (en) Steel wire having superior corrosion resistance
JP2018119192A (en) Steel wire for reinforcing rubber product, steel cord for reinforcing rubber product and method for manufacturing steel wire for reinforcing rubber product
JP6573766B2 (en) Brass plating wire manufacturing method and brass plating wire manufacturing apparatus
JP6620513B2 (en) Method for producing stainless steel material, and chemical conversion treatment method for stainless steel material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311