JP2007327747A - Ultrasonic flaw inspection method and device - Google Patents
Ultrasonic flaw inspection method and device Download PDFInfo
- Publication number
- JP2007327747A JP2007327747A JP2006156755A JP2006156755A JP2007327747A JP 2007327747 A JP2007327747 A JP 2007327747A JP 2006156755 A JP2006156755 A JP 2006156755A JP 2006156755 A JP2006156755 A JP 2006156755A JP 2007327747 A JP2007327747 A JP 2007327747A
- Authority
- JP
- Japan
- Prior art keywords
- flaw detection
- delay time
- ultrasonic
- thickness
- inspected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
本発明は、超音波の伝搬速度が相違する複数の材料を積層した被検査材の深層部側の材料内の超音波探傷技術に関し、特に表層側に深層側の材料に塗布した塗装材を有する被検査材を対象とし、塗装材越しに深層部の材料内の超音波探傷を実施するのに有効な超音波探傷方法及び装置に関するものである。 The present invention relates to an ultrasonic flaw detection technique in a material on the deep layer side of a material to be inspected in which a plurality of materials having different propagation speeds of ultrasonic waves are laminated, and particularly has a coating material applied to the material on the deep layer side on the surface layer side. The present invention relates to an ultrasonic flaw detection method and apparatus that are effective for carrying out ultrasonic flaw detection in a deep layer material through a coating material for a material to be inspected.
構造物等の非破壊検査の1つの手法である超音波探傷法は、超音波プローブから送信した超音波を被検査体内に伝搬させ、被検査体内からの反射波の有無,大きさ及び伝搬時間などに着目して被検査体の健全性を評価している。また、検査部位で超音波の強度を強くして、探傷の感度を向上させるために、超音波を集束させる手法が用いられている。超音波を集束させる手段として、音響レンズ等で超音波を集束させる集束型超音波プローブや、複数個の振動素子に遅延時間を付与して超音波を集束させるフェーズドアレイ法(電子スキャン法とも呼ばれている)が用いられている。 The ultrasonic flaw detection method, which is one method for nondestructive inspection of structures, etc., propagates ultrasonic waves transmitted from an ultrasonic probe into the body to be inspected, and the presence / absence, magnitude, and propagation time of reflected waves from the body under inspection. The health of the test object is evaluated by paying attention to the above. Further, in order to increase the intensity of ultrasonic waves at the examination site and improve the sensitivity of flaw detection, a technique for focusing ultrasonic waves is used. As means for focusing ultrasound, a focused ultrasound probe that focuses the ultrasound with an acoustic lens, etc., or a phased array method (also called an electronic scan method) that focuses the ultrasound by giving a delay time to multiple vibration elements Is used).
通常、塗装は被検査体の厚さに比べて薄いために、塗装の影響を考慮せずに、音響レンズ形状を決めたり、フェーズドアレイ法の遅延時間を設定している。また塗装膜を施した被膜鋼材において、塗装膜と鋼材の音速の違いを考慮することにより、被膜厚を除いて鋼板の厚さを測定する方法に関しては、特許文献1があるが、探傷の感度を向上のための超音波の集束との関係に関しては言及されていない。
Usually, since the coating is thinner than the thickness of the object to be inspected, the acoustic lens shape is determined and the delay time of the phased array method is set without considering the influence of the coating. Moreover, regarding the method of measuring the thickness of the steel sheet excluding the film thickness by considering the difference in sound speed between the coated film and the steel material in the coated steel material to which the coating film is applied, there is
検査に集束した超音波を用いる手法においては、被検査体が薄くなったり、塗装の音速が被検査体に比べて遅く、相対的に塗装が厚くなった場合には、超音波の集束性が悪くなり、欠陥の検出感度が低下する場合などがある。また、塗装材が厚くなると、被検査材内の反射源位置(超音波の送信から受信までの伝搬距離)が実際の位置と異なる場合がある。 In the method that uses focused ultrasonic waves for inspection, if the object to be inspected becomes thinner or the sound speed of the paint is slower than that of the object to be inspected, and the paint becomes relatively thick, the focusability of the ultrasonic wave is reduced. In some cases, the defect detection sensitivity decreases. Further, when the coating material becomes thick, the reflection source position (propagation distance from transmission of ultrasonic waves to reception) in the material to be inspected may be different from the actual position.
本発明が解決しようとする問題点は、複数の材料が積層された被検査材の、超音波発信源から遠い側、即ち深層側の材料内を超音波で探傷する際に、超音波を集束させて感度を向上させた場合、超音波発信源に近い側、即ち表層側の材料厚みが変化すると、超音波の集束性能が変化することにより、探傷目的位置での探傷感度が変化し超音波反射源の検出が難しくなる点である。さらに、表層側の材料の厚みが変化することにより、被検査材内の探傷対象の反射源位置(超音波の送信から受信までの伝搬時間)が、実際の位置と異なる点である。 The problem to be solved by the present invention is that the ultrasonic wave is focused when a material to be inspected in which a plurality of materials are laminated far from the ultrasonic wave transmission source, that is, in the deep layer side, is flawlessly detected. If the material thickness on the side close to the ultrasonic transmission source, that is, the surface layer side changes, the ultrasonic focusing performance changes, and the flaw detection sensitivity at the flaw detection target position changes. It is difficult to detect the reflection source. Furthermore, when the thickness of the material on the surface layer side changes, the reflection source position (propagation time from transmission to reception of ultrasonic waves) of the flaw detection target in the inspection object differs from the actual position.
したがって、本発明の目的は、複数の材料が積層された被検査材の、超音波発信源から遠い側、即ち深層側の材料内を超音波検査で探傷する際の探傷性能を向上することにある。 Therefore, an object of the present invention is to improve the flaw detection performance when flaw detection is performed by ultrasonic inspection of the material farther from the ultrasonic transmission source, that is, the deep layer side of the material to be inspected in which a plurality of materials are laminated. is there.
課題を解決するための基本的な超音波探傷方法は、表面に塗装材を有する被検査材内に、遅延時間で時間制御した超音波を、前記表面側に配置したアレイプローブの各振動素子から発信し、前記被検査材内に前記超音波を集束させて前記被検査材内を探傷するフェーズドアレイ法による超音波検査方法において、前記塗装材の厚みを測定する第1ステップと、前記表面から前記塗装の厚みを考慮して前記超音波を集束させる目的の位置に前記超音波が集束するように前記遅延時間を定める第2ステップと、前記定めた遅延時間で時間制御して前記超音波を前記被検査材内に集束させて前記探傷を行う第3ステップとを有することを特徴とする超音波探傷方法である。 A basic ultrasonic flaw detection method for solving the problem is that ultrasonic waves time-controlled by a delay time are introduced into each inspection element having a coating material on the surface from each vibration element of the array probe arranged on the surface side. A first step of measuring the thickness of the coating material in the ultrasonic inspection method by the phased array method of transmitting and focusing the ultrasonic wave in the inspection material to detect flaws in the inspection material; and from the surface A second step of determining the delay time so that the ultrasonic wave is focused at a target position where the ultrasonic wave is focused in consideration of the thickness of the coating; and time-controlling the ultrasonic wave by the determined delay time. And a third step of performing the flaw detection by focusing in the material to be inspected.
課題を解決するための超音波探傷装置は、複数の振動素子が超音波を送受信するように装備されたアレイプローブと、前記振動素子の励起タイミングを第1の遅延時間設定手段で設定した遅延時間で制御して前記振動素子を振動させるパルサと、前記振動素子からの電気信号を受信信号として受けるレシーバと、前記レシーバからの前記受信信号に前記遅延時間による時間制御を加えて前記受信信号を加算する加算手段と、前記加算手段で加算した前記受信信号に基づいて探傷結果を表示する表示手段と、を備えたフェーズドアレイ式の超音波探傷装置において、前記超音波を通過させる複数の材料内での前記超音波の音速を前記材料ごとに設定する音速設定手段と、前記加算の後の前記受信信号に基づいて得られた前記材料内での超音波の伝搬時間と前記設定した音速とに基づいて前記材料の厚みを計算する計算手段と、前記計算によって得られた前記材料の厚さと前記超音波の集束位置に応じて前記遅延時間を変更して設定する第2の遅延時間設定手段とを備え、探傷時に前記第2の遅延時間設定手段で設定した遅延時間で前記励起タイミングを制御することを特徴とする超音波探傷装置である。 An ultrasonic flaw detection apparatus for solving the problem includes an array probe equipped with a plurality of vibration elements transmitting and receiving ultrasonic waves, and a delay time in which excitation timing of the vibration elements is set by a first delay time setting means. A pulser that vibrates the vibration element under control, a receiver that receives an electric signal from the vibration element as a reception signal, and adds the reception signal by adding time control based on the delay time to the reception signal from the receiver In a phased array type ultrasonic flaw detector comprising: an adding means for displaying; and a display means for displaying a flaw detection result based on the received signal added by the adding means. Sound velocity setting means for setting the sound velocity of the ultrasonic wave for each material, and the ultrasonic wave in the material obtained based on the received signal after the addition Calculation means for calculating the thickness of the material based on the carrying time and the set sound velocity, and changing and setting the delay time according to the thickness of the material obtained by the calculation and the focal position of the ultrasonic wave The ultrasonic flaw detection apparatus is characterized in that the excitation timing is controlled by a delay time set by the second delay time setting means during flaw detection.
課題を解決するための他の超音波探傷装置は、複数の振動素子が超音波を送受信するように装備されたアレイプローブと、前記振動素子の励起タイミングを遅延時間設定手段で設定した遅延時間で制御して前記振動素子を振動させるパルサと、前記振動素子からの電気信号を受信信号として受けるレシーバと、前記レシーバからの前記受信信号に前記遅延時間による時間制御を加えて前記受信信号を加算する加算手段と、前記加算手段で加算した前記受信信号に基づいて探傷結果を表示する表示手段と、を備えたフェーズドアレイ式の超音波探傷装置において、前記超音波を通過させる複数の材料内での前記超音波の音速を前記材料ごとに設定する音速設定手段と、前記加算の後の前記受信信号に基づいて得られた前記材料内での超音波の伝搬時間と前記設定した音速とに基づいて前記材料の厚みを計算する計算手段と、前記計算によって得られた前記材料の厚さに応じて前記遅延時間を増減補正する遅延時間補正手段とを備え、探傷時に前記遅延時間補正手段で補正した前記遅延時間で前記励起タイミングを制御することを特徴とする超音波探傷装置である。 Another ultrasonic flaw detector for solving the problem includes an array probe equipped with a plurality of vibration elements transmitting and receiving ultrasonic waves, and a delay time set by a delay time setting means for the excitation timing of the vibration elements. A pulser that controls and vibrates the vibration element; a receiver that receives an electric signal from the vibration element as a reception signal; and a time control based on the delay time added to the reception signal from the receiver to add the reception signal In a phased array type ultrasonic flaw detector provided with an adding means and a display means for displaying a flaw detection result based on the received signal added by the adding means, a plurality of materials through which the ultrasonic waves pass Sound velocity setting means for setting the sound velocity of the ultrasonic wave for each material, and transmission of the ultrasonic wave in the material obtained based on the received signal after the addition. Calculating means for calculating the thickness of the material based on time and the set sound velocity; and delay time correcting means for correcting the delay time in accordance with the thickness of the material obtained by the calculation, The ultrasonic flaw detection apparatus is characterized in that the excitation timing is controlled by the delay time corrected by the delay time correction means at the time of flaw detection.
本発明の超音波探傷方法及び超音波探傷装置によれば、超音波発信源に近い表層の材料の厚さが変化しても、深層部の材料内での目的の位置で超音波を集束させることができ、探傷感度を低下することなく、目的の位置での反射源を検出でき、探傷性能を向上できる。 According to the ultrasonic flaw detection method and the ultrasonic flaw detection apparatus of the present invention, even if the thickness of the surface layer material close to the ultrasonic wave transmission source changes, the ultrasonic wave is focused at a target position in the deep layer material. Therefore, it is possible to detect the reflection source at the target position without reducing the flaw detection sensitivity, and to improve the flaw detection performance.
本発明の実施例は、被検査材の表面に塗装材を塗布した被検査体の前記塗装材の層である表層部と前記被検査材である深層部の内、表層部側に超音波発信源を置いて深層部の材料を探傷する例である。 In an embodiment of the present invention, an ultrasonic wave is transmitted to the surface layer portion side of the surface layer portion that is the layer of the coating material and the deep layer portion that is the material to be inspected of the inspection object in which the surface of the material to be inspected is coated with the coating material. This is an example of flaw detection of the material in the deep layer with a source.
その第1実施例にあっては、塗装材又は塗装材と被検査材の厚みを測定する第1ステップと、それらの厚み測定値に基づいて、アレイプローブの各振動素子に対して設定する遅延時間を変更する第2ステップと、変更後の遅延時間に基づいて探傷する第3ステップで実施している。 In the first embodiment, the first step of measuring the thickness of the coating material or the coating material and the material to be inspected, and the delay set for each vibration element of the array probe based on the measured thickness values. This is implemented in a second step for changing the time and a third step for flaw detection based on the changed delay time.
その第2ステップの遅延時間設定の際に、超音波を被検査材内の目的の位置で集束するように設定することで、塗装材の厚みが変化しても、探傷感度の変化を小さくでき、反射源の検出を容易に行える。 When setting the delay time in the second step, by setting the ultrasonic wave to be focused at the target position in the material to be inspected, even if the thickness of the coating material changes, the change in flaw detection sensitivity can be reduced. The reflection source can be easily detected.
具体的には、フェーズドアレイ法による超音波探傷方法において、被検査体内の垂直方向(厚み方向)に超音波を送受信する遅延時間設定で第1ステップを実施し、その測定結果に基づいて前記塗装材又は塗装材と被検査材の厚みを測定し、その厚みに基づいて設定した遅延時間で、第3ステップの探傷を行う。 Specifically, in the ultrasonic flaw detection method based on the phased array method, the first step is performed with a delay time setting for transmitting and receiving ultrasonic waves in the vertical direction (thickness direction) in the body to be inspected, and the coating is performed based on the measurement result. The thickness of the material or coating material and the material to be inspected is measured, and the third step flaw detection is performed with a delay time set based on the thickness.
このようにすることにより、アレイプローブ等を複数準備する必要がなく、ひとつのシステムで行える特徴がある。また、塗装材の厚みを測定することで、塗装材と被検査材の境界(被検査材の表面)位置を特定できるため、被検査材内における反射源位置を精度良く求めることができる特徴がある。さらに、塗装材と被検査材の境界を、フェーズドアレイ法の断面画像における深さ方向の原点とすることで、塗装材の厚みに係わらずに検査員の監視箇所を設定できる特徴がある。 By doing so, there is a feature that it is not necessary to prepare a plurality of array probes and the like, and can be performed by one system. In addition, by measuring the thickness of the coating material, the position of the boundary between the coating material and the material to be inspected (surface of the material to be inspected) can be specified, so that the position of the reflection source in the material to be inspected can be obtained with high accuracy. is there. Further, by setting the boundary between the coating material and the material to be inspected as the origin in the depth direction in the cross-sectional image of the phased array method, there is a feature that the monitoring location of the inspector can be set regardless of the thickness of the coating material.
さらに、上記各ステップで得られた情報に基づいて、横軸を位置とし、縦軸を被検査体深さ方向とした断面画像を生成すれば、縦軸上で被検査体の表面位置を固定することができることから、塗装材の厚みに依存せずに、検査員の注目箇所を一定にできるため、検査員が迅速に評価できる利点がある。 Furthermore, if a cross-sectional image is generated with the horizontal axis as the position and the vertical axis as the depth direction of the object to be inspected based on the information obtained in the above steps, the surface position of the object to be inspected is fixed on the vertical axis. Since it is possible to make the inspector's attention point constant without depending on the thickness of the coating material, there is an advantage that the inspector can evaluate quickly.
図1は、本発明の測定フロー(実施方法)を示す。図1中のステップ101からステップ107までの各ステップが前述の第1ステップであり、ステップ108が前述の第2ステップそしてステップ109が前述の第3ステップである。また、図2は第1及び第2ステップの説明図、図3は第3ステップの模式的説明図である。
FIG. 1 shows a measurement flow (implementation method) of the present invention. Each step from
図1〜図3を用いて、探傷方法を説明する。まず、塗装材1及び被検査材2の厚みを測定するために必要な各々の音速を予め設定し(ステップ101)、被検査材2の表面に施工した塗装材1上にリニアスキャン法用のアレイプローブ3を設置する(プローブを検査位置に設置(ステップ102))。
The flaw detection method will be described with reference to FIGS. First, the respective sound velocities necessary for measuring the thickness of the
この状態で、垂直探傷に必要な遅延時間を設定し(ステップ103)、超音波の送受信を行うことで1回目の測定を行う(ステップ104)。アレイプローブを構成する短冊状の微小振動子の複数個を1ブロックとして、遅延時間を設定し、前記振動子の駆動素子を順次切り替えて行くことで、ある領域を検査できる(図2の走査)。 In this state, a delay time required for vertical flaw detection is set (step 103), and the first measurement is performed by transmitting and receiving ultrasonic waves (step 104). A plurality of strip-shaped micro vibrators constituting the array probe are set as one block, a delay time is set, and a drive region of the vibrator is sequentially switched to inspect a certain region (scanning in FIG. 2). .
任意の位置での超音波の受信波形例を、図2の中段に示す。被検査材2に垂直に超音波を入射した場合には、被検査材2表面、すなわち塗装材1と被検査材2との境界面からの反射波(反射波A)と、被検査材2底面からの反射波(反射波B)が得られる。また、各位置における受信波形を並べて画像化したのが、図2下段の断面画像である。
An example of a received waveform of an ultrasonic wave at an arbitrary position is shown in the middle part of FIG. When ultrasonic waves are incident on the
このように、測定データを受信波形や断面画像の形で表示する(ステップ105)。受信波形及び断面画像上の2個のカーソル(カーソルA,カーソルB)を用い、カーソルAを被検査材2表面からの反射波(反射波A)に設定し、カーソルBを被検査材2底面からの反射波(反射波B)に設定する(ステップ106)。予め設定している塗装材1表面の位置からカーソルAまでの時間(反射波Aまでの時間)及びカーソルAとカーソルBの時間差(反射波Bと反射波Aの時間差)を測定する。
In this way, the measurement data is displayed in the form of a received waveform or a cross-sectional image (step 105). Using the received waveform and two cursors (cursor A, cursor B) on the cross-sectional image, the cursor A is set to the reflected wave (reflected wave A) from the surface of the
該2個の時間(時間差)に、ステップ101で設定した音速を乗算することにより、塗装材1および被検査材2の厚みを求めることができる(ステップ107)。測定した塗装材1の厚みを考慮して、被検査材2内で超音波を集束したい点に集束できるような遅延時間を求め、その時間を設定する(ステップ108:第2のステップ)。
By multiplying the two times (time difference) by the speed of sound set in
被検査材2の裏面に欠陥4がある場合を想定し、超音波ビームを斜め方向に向けて探傷する場合の例を、図3に示す。塗装材1の厚みを考慮しない場合の例として、図3の超音波ビームAを示す。ここでは、塗装材1が厚く、超音波ビームが、被検査材2の中央部付近で集束している。そのため、被検査材2の底面にある欠陥4からの反射波が小さく、検出できない場合がある(図3の超音波ビームAの場合)。
FIG. 3 shows an example in which flaw detection is performed with the ultrasonic beam directed in an oblique direction, assuming that there is a
これに対して塗装材1の厚さを考慮して遅延時間を設定した超音波ビームBは、被検査材2の底面で集束しており、底面にある欠陥4からの反射波が大きくなり、検出可能となる(図3の超音波ビームBの場合)(ステップ109,110)。
On the other hand, the ultrasonic beam B in which the delay time is set in consideration of the thickness of the
該探傷位置で検査が終了したかどうか判断し(ステップ111)、次の位置で検査が必要な場合には、その位置にプローブを移動させ(ステップ112)、垂直探傷の遅延時間設定(ステップ103)のステップから繰り返す。 It is determined whether or not the inspection has been completed at the flaw detection position (step 111). If inspection is required at the next position, the probe is moved to that position (step 112), and the delay time setting for vertical flaw detection is set (step 103). Repeat from step).
以上の探傷方法を実施することで、図3に示したように、被検査材2の底面近傍の欠陥を感度良く検出することが可能である。図3では超音波ビームの集束位置を被検査材2の底面としたが、被検査材2の目的の任意の位置に集束させることも可能である。さらに、塗装材1が厚く、音速が被検査材2の音速と異なる時においても、反射源(欠陥4)の位置を精度良く評価,表示することができる。
By performing the above flaw detection method, it is possible to detect a defect near the bottom surface of the
以上説明した超音波探傷方法を実現するための装置構成を、図4に示す。音速設定手段20において、塗装材1及び被検査材2の音速を、キーボードなどで入力してメモリに保存する。パソコンなどの制御手段10からの指令に基づいて厚み測定用遅延時間設定手段11に駆動素子群(1ブロック)の厚み測定用遅延時間(予め制御手段内に保存していた遅延)時間を設定する。
An apparatus configuration for realizing the ultrasonic flaw detection method described above is shown in FIG. In the sound speed setting means 20, the sound speeds of the
該厚み測定用遅延時間設定手段11と駆動すべきパルサ13を、送信用切替器12を介して接続し、パルサ13と接続しているアレイプローブ3内の素子から超音波が送信される。被検査材2内からの反射波は、前記アレイプローブ3内の素子で受信され、レシーバ14,受信用切替器15を経由してAD変換器16へ送られる。
The thickness measuring delay time setting means 11 and the
AD変換器16では、各素子からのアナログ信号をデジタル信号に変換し、該デジタル信号を加算手段17へ送る。加算手段17では、複数のデジタル信号に対して、厚み測定用遅延時間設定手段11に設定されている時間に基づいて、信号を遅延させるとともに、遅延後に全ての信号を加算回路にて加算する。この加算して得られた1個の受信信号は、
CRTなどの表示手段18に送られ、アレイプローブ3内の駆動素子位置に対応して表示される。
The
It is sent to the display means 18 such as a CRT and displayed in correspondence with the drive element position in the
次に、駆動素子を順次切替えて走査することで、又はアレイプローブ3を走査(移動)することで、表示手段18に断面画像を表示する。カーソルA,Bを、マウスやキーボードなどのカーソル設定手段19で設定したい位置に移動・表示し、伝搬時間(及び伝搬時間差)を測定する。
Next, a cross-sectional image is displayed on the
図2の受信波形及び断面画像では、予め設定している塗装材表面に相当する時間から、カーソルA又はカーソルBまでの伝搬時間の測定値を、乗算器などの厚み計算手段21に送付し、該厚み計算手段21で、前記伝搬時間と音速設定手段20に設定された音速との積により、厚みを計算するとともに、メモリに保存する。制御手段10からの指令により、該厚み測定値をCRTなどの表示手段18に送信,表示するとともに、探傷用遅延時間設定手段22に送信する。 In the received waveform and cross-sectional image of FIG. 2, the measured value of the propagation time from the time corresponding to the preset coating material surface to the cursor A or the cursor B is sent to the thickness calculating means 21 such as a multiplier, The thickness calculation means 21 calculates the thickness by the product of the propagation time and the sound speed set in the sound speed setting means 20, and stores it in the memory. In response to a command from the control means 10, the thickness measurement value is transmitted and displayed on the display means 18 such as a CRT and transmitted to the flaw detection delay time setting means 22.
該探傷用遅延時間設定手段22では、塗装材1の厚みを加味して、被検査材2の目的の位置で集束できる遅延時間を設定する。この遅延時間に基づいて、パルサ13が駆動し、アレイプローブから超音波が送信され、探傷が開始される。被検査材2からの反射波は、アレイプローブで受信され、レシーバ14,受信用切替器15,AD変換器16を介して加算手段17で複数のデジタル化された受信信号を加算する。加算後の信号が表示手段
18に送られ、アレイプローブ3内の駆動素子位置に対応して表示される。
The flaw detection delay time setting means 22 sets a delay time that can be focused at a target position of the material to be inspected 2 in consideration of the thickness of the
図2及び図3での説明では被検査材2の底面反射波(反射波B)が得られることで説明したが、被検査材2の表面からの反射波(反射波A:塗装材1と被検査材2の境界)が得られることで、被検査材2の表面上の塗装材1を考慮でき、底面反射波(反射波B)が得られない場合においても、被検査材2の内部検査に関しては問題がない。
2 and 3, the bottom surface reflected wave (reflected wave B) of the material to be inspected 2 is obtained, but the reflected wave from the surface of the material to be inspected 2 (reflected wave A: the
この時の探傷方法を、図5に示す。図1の探傷方法との違いは、被検査材2表面を設定するカーソルのみとした(ステップ120)点と、塗装材の厚さのみを測定するようにした(ステップ121)点である。従って、この場合の受信波形及び断面画像のカーソルも、カーソルAのみとなる。
FIG. 5 shows the flaw detection method at this time. The difference from the flaw detection method of FIG. 1 is that only the cursor for setting the surface of the
図6は、逆にカーソルを1個増やしてカーソルCを設けたものである。該カーソルCは塗装材1表面(アレイプローブ3表面)を設定するためのものである。これにより、塗装材1の厚さがより精度良く測定することができるようになる。もちろん、図5のカーソルが1個の場合と組み合わせての、カーソルAとカーソルCの2個のカーソルの設定方法も考えられる。
FIG. 6 shows an example in which a cursor C is provided by increasing one cursor. The cursor C is for setting the surface of the coating material 1 (the surface of the array probe 3). Thereby, the thickness of the
前述の実施例1では、フェーズドアレイ法のうちリニアスキャン法の場合であるが、セクタスキャン法の例を、図7に示す。図7では、セクタスキャンの範囲(角度)を、垂直探傷領域を含む範囲で設定している。その結果、図7の下段にあるように、被検査材2の表面(塗装材1と被検査材2の境界)と底面、そして欠陥からの反射波(反射波A,B,C)を同時に得ることができる。
In the first embodiment, the linear scan method is used in the phased array method. FIG. 7 shows an example of the sector scan method. In FIG. 7, the sector scan range (angle) is set in a range including the vertical flaw detection area. As a result, as shown in the lower part of FIG. 7, the surface of the material to be inspected 2 (the boundary between the
垂直探傷に対応するラインAの受信波形を上段に示し、斜角探傷に相当するラインBの受信波形を中段に示している。ラインA上の受信波形での塗装材1及び被検査材2の厚さ測定方法は、図2の場合と同じである。セクタスキャン法の場合には、一度の測定で、厚み測定から探傷(垂直又は斜角)までの結果を得ることができるため、第1ステップの探傷で、塗装材1の厚さによる遅延時間の変更が必要ない場合には、第2ステップ,第3ステップが省略できる利点がある。
The reception waveform of line A corresponding to the vertical flaw detection is shown in the upper stage, and the reception waveform of line B corresponding to the oblique flaw detection is shown in the middle stage. The method for measuring the thickness of the
すなわち、別の見方をすると、一度の探傷で、欠陥検出と同時に塗装材1及び被検査材2の厚さを測定できる利点がある。
That is, from another viewpoint, there is an advantage that the thickness of the
セクタスキャン法の表示例として、一度の探傷で被検査材2底面の欠陥(スリット)までを検出できている結果を図8に示す。また、このセクタスキャン法による探傷方法を図9に、そして装置構成を図10に示す。図9では、図1の探傷方法と比較して、遅延時間をある角度範囲にわたって設定する遅延時間設定部分(ステップ130とステップ132)が異なり、遅延時間変更の有無を判断する(ステップ131)部分が追加されている。
As a display example of the sector scan method, FIG. 8 shows a result of detecting up to a defect (slit) on the bottom surface of the
また図10に示すセクタスキャン法の場合には、図2に示すようなブロック単位での駆動素子の切り替えが不要となるため、送信用切替器12と受信用切替器15が不要となる。さらに、遅延時間をある角度範囲にわたって設定する必要があるため、遅延時間設定手段22を補正手段23とした点が、図4と異なる。
In the case of the sector scan method shown in FIG. 10, switching of the drive elements in units of blocks as shown in FIG. 2 is not required, so that the
以上は、断面表示方法に関して考慮しておらず、被検査材2の厚みが一定、もしくは検査したい深さ範囲が一定の場合においても、塗装材1の厚さが変化すると、縦軸(時間:Z方向の距離)上で監視位置(欠陥などの反射源位置)が変化する。
The above description does not consider the cross-section display method, and the vertical axis (time: time: when the thickness of the
そこで、図11に示すように、断面画像の縦軸の原点を、常に被検査材2表面(塗装材1と被検査材2の境界)とすることで、塗装材1の厚みに関わらず、監視位置(欠陥などの反射源位置)が一定となるため、検査員が迅速に評価できる利点がある。図11では、セクタスキャン法での説明図であるが、リニアスキャン法でも同様である。 Therefore, as shown in FIG. 11, the origin of the vertical axis of the cross-sectional image is always the surface of the material to be inspected 2 (boundary between the material to be inspected 1 and the material to be inspected 2). Since the monitoring position (the position of the reflection source such as a defect) is constant, there is an advantage that the inspector can quickly evaluate. FIG. 11 is an explanatory diagram of the sector scan method, but the same applies to the linear scan method.
本発明の実施例では、塗装材や被検査材の厚みに関係なく、被検査材内を塗装材の厚さに応じて検査目的の個所へ超音波を集束させて感度良く検査できることから、被検査材の信頼性が向上する。このことによって、不具合防止による設備の稼働率向上を達成できる。また、断面表示の方法を考慮することで、監視範囲を塗装材の厚さに関係なく一定にできるため、検査,評価時間の短縮にも繋がる可能性がある。このように、塗装材の層が無いがごとくに、超音波を精度よく被検査在中に振舞わせるので、塗装を施した被検査材の探傷性能を向上できる。 In the embodiment of the present invention, it is possible to inspect the inside of a material to be inspected with high sensitivity by focusing the inside of the material to be inspected according to the thickness of the material to be coated. The reliability of the inspection material is improved. As a result, it is possible to improve the operating rate of the equipment by preventing malfunctions. In addition, by considering the cross-sectional display method, the monitoring range can be made constant regardless of the thickness of the coating material, which may lead to a reduction in inspection and evaluation time. In this way, although there is no coating material layer, the ultrasonic wave can be accurately acted on during inspection, so that the flaw detection performance of the coated inspection material can be improved.
本発明は、超音波検査や超音波探傷と称せられる超音波を用いた非破壊検査技術に利用できる。 The present invention can be used for a nondestructive inspection technique using ultrasonic waves called ultrasonic inspection or ultrasonic flaw detection.
1…塗装材、2…被検査材、3…アレイプローブ、4…欠陥、10…制御手段、11…厚み測定用遅延時間設定手段、12…送信用切替器、13…パルサ、14…レシーバ、
15…受信用切替器、16…AD変換器、17…加算手段、18…表示手段、19…カーソル設定手段、20…音速設定手段、21…厚み計算手段、22…探傷用遅延時間設定手段、23…遅延時間補正手段。
DESCRIPTION OF
DESCRIPTION OF
Claims (8)
前記塗装材の厚みを測定する第1ステップと、
前記表面から前記塗装の厚みを考慮して前記超音波を集束させる目的の位置に前記超音波が集束するように前記遅延時間を定める第2ステップと、
前記定めた遅延時間で時間制御して前記超音波を前記被検査材内に集束させて前記探傷を行う第3ステップとを有することを特徴とする超音波探傷方法。 Ultrasonic waves that are time-controlled with a delay time are transmitted from each vibration element of the array probe arranged on the surface side into the inspection material having a coating material on the surface, and the ultrasonic waves are focused in the inspection material. In the ultrasonic inspection method by the phased array method for flaw detection in the inspection object,
A first step of measuring the thickness of the coating material;
A second step of determining the delay time so that the ultrasonic wave is focused on a target position for focusing the ultrasonic wave in consideration of the thickness of the coating from the surface;
An ultrasonic flaw detection method comprising: a third step of performing the flaw detection by focusing the ultrasonic wave in the inspection object by controlling the time with the predetermined delay time.
前記振動素子の励起タイミングを第1の遅延時間設定手段で設定した遅延時間で制御して前記振動素子を振動させるパルサと、
前記振動素子からの電気信号を受信信号として受けるレシーバと、
前記レシーバからの前記受信信号に前記遅延時間による時間制御を加えて前記受信信号を加算する加算手段と、
前記加算手段で加算した前記受信信号に基づいて探傷結果を表示する表示手段と、
を備えたフェーズドアレイ式の超音波探傷装置において、
前記超音波を通過させる複数の材料内での前記超音波の音速を前記材料ごとに設定する音速設定手段と、
前記加算の後の前記受信信号に基づいて得られた前記材料内での超音波の伝搬時間と前記設定した音速とに基づいて前記材料の厚みを計算する計算手段と、
前記計算によって得られた前記材料の厚さと前記超音波の集束位置に応じて前記遅延時間を変更して設定する第2の遅延時間設定手段と、
を備え、探傷時に前記第2の遅延時間設定手段で設定した遅延時間で前記励起タイミングを制御することを特徴とする超音波探傷装置。 An array probe equipped with a plurality of vibration elements for transmitting and receiving ultrasonic waves;
A pulser that vibrates the vibration element by controlling the excitation timing of the vibration element with the delay time set by the first delay time setting means;
A receiver for receiving an electrical signal from the vibration element as a reception signal;
Adding means for adding the received signal by adding time control based on the delay time to the received signal from the receiver;
Display means for displaying a flaw detection result based on the received signal added by the adding means;
In a phased array type ultrasonic flaw detector equipped with
A sound speed setting means for setting, for each material, the sound speed of the ultrasonic wave in a plurality of materials through which the ultrasonic wave passes;
Calculation means for calculating the thickness of the material based on the propagation time of the ultrasonic wave in the material obtained based on the received signal after the addition and the set sound velocity;
Second delay time setting means for changing and setting the delay time according to the thickness of the material obtained by the calculation and the focus position of the ultrasonic wave,
The ultrasonic flaw detection apparatus is characterized by controlling the excitation timing with a delay time set by the second delay time setting means during flaw detection.
前記振動素子の励起タイミングを遅延時間設定手段で設定した遅延時間で制御して前記振動素子を振動させるパルサと、
前記振動素子からの電気信号を受信信号として受けるレシーバと、
前記レシーバからの前記受信信号に前記遅延時間による時間制御を加えて前記受信信号を加算する加算手段と、
前記加算手段で加算した前記受信信号に基づいて探傷結果を表示する表示手段と、
を備えたフェーズドアレイ式の超音波探傷装置において、
前記超音波を通過させる複数の材料内での前記超音波の音速を前記材料ごとに設定する音速設定手段と、
前記加算の後の前記受信信号に基づいて得られた前記材料内での超音波の伝搬時間と前記設定した音速とに基づいて前記材料の厚みを計算する計算手段と、
前記計算によって得られた前記材料の厚さに応じて前記遅延時間を増減補正する遅延時間補正手段と、
を備え、探傷時に前記遅延時間補正手段で補正した前記遅延時間で前記励起タイミングを制御することを特徴とする超音波探傷装置。
An array probe equipped with a plurality of vibration elements for transmitting and receiving ultrasonic waves;
A pulser that vibrates the vibration element by controlling the excitation timing of the vibration element with a delay time set by a delay time setting means;
A receiver for receiving an electrical signal from the vibration element as a reception signal;
Adding means for adding the received signal by adding time control based on the delay time to the received signal from the receiver;
Display means for displaying a flaw detection result based on the received signal added by the adding means;
In a phased array type ultrasonic flaw detector equipped with
A sound speed setting means for setting, for each material, the sound speed of the ultrasonic wave in a plurality of materials through which the ultrasonic wave passes;
Calculation means for calculating the thickness of the material based on the propagation time of the ultrasonic wave in the material obtained based on the received signal after the addition and the set sound velocity;
A delay time correcting means for increasing or decreasing the delay time according to the thickness of the material obtained by the calculation;
The ultrasonic flaw detection apparatus is characterized in that the excitation timing is controlled by the delay time corrected by the delay time correction means at the time of flaw detection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006156755A JP4682921B2 (en) | 2006-06-06 | 2006-06-06 | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006156755A JP4682921B2 (en) | 2006-06-06 | 2006-06-06 | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007327747A true JP2007327747A (en) | 2007-12-20 |
JP4682921B2 JP4682921B2 (en) | 2011-05-11 |
Family
ID=38928321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006156755A Active JP4682921B2 (en) | 2006-06-06 | 2006-06-06 | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4682921B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011529170A (en) * | 2008-06-09 | 2011-12-01 | ジーイー センシング アンド インスペクション テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Improved ultrasonic non-destructive inspection using coupling check |
JP2019194568A (en) * | 2018-03-09 | 2019-11-07 | ザ・ボーイング・カンパニーTheBoeing Company | Method for measuring out-of-plane wrinkle of composite laminate |
CN113994204A (en) * | 2019-06-13 | 2022-01-28 | 杰富意钢铁株式会社 | Ultrasonic flaw detection method, ultrasonic flaw detection device, steel product manufacturing equipment, steel product manufacturing method, and steel product quality assurance method |
WO2024147588A1 (en) * | 2023-01-05 | 2024-07-11 | 주식회사 엠아이티 | Ultrasonic inspection system and ultrasonic inspection method using same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002214205A (en) * | 2001-01-12 | 2002-07-31 | Kawasaki Heavy Ind Ltd | Ultrasonic flaw detector |
-
2006
- 2006-06-06 JP JP2006156755A patent/JP4682921B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002214205A (en) * | 2001-01-12 | 2002-07-31 | Kawasaki Heavy Ind Ltd | Ultrasonic flaw detector |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011529170A (en) * | 2008-06-09 | 2011-12-01 | ジーイー センシング アンド インスペクション テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Improved ultrasonic non-destructive inspection using coupling check |
JP2019194568A (en) * | 2018-03-09 | 2019-11-07 | ザ・ボーイング・カンパニーTheBoeing Company | Method for measuring out-of-plane wrinkle of composite laminate |
JP7475814B2 (en) | 2018-03-09 | 2024-04-30 | ザ・ボーイング・カンパニー | A method for measuring out-of-plane wrinkles in composite laminates. |
CN113994204A (en) * | 2019-06-13 | 2022-01-28 | 杰富意钢铁株式会社 | Ultrasonic flaw detection method, ultrasonic flaw detection device, steel product manufacturing equipment, steel product manufacturing method, and steel product quality assurance method |
CN113994204B (en) * | 2019-06-13 | 2024-04-26 | 杰富意钢铁株式会社 | Ultrasonic flaw detection method, ultrasonic flaw detection device, and steel manufacturing method |
WO2024147588A1 (en) * | 2023-01-05 | 2024-07-11 | 주식회사 엠아이티 | Ultrasonic inspection system and ultrasonic inspection method using same |
Also Published As
Publication number | Publication date |
---|---|
JP4682921B2 (en) | 2011-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7900516B2 (en) | Ultrasonic flaw detection apparatus and ultrasonic flaw detection method | |
US7789286B2 (en) | Method and apparatus for assessing the quality of spot welds | |
US9423380B2 (en) | Ultrasonic inspection method, ultrasonic test method and ultrasonic inspection apparatus | |
JP4630992B2 (en) | Ultrasonic inspection method and ultrasonic inspection apparatus used therefor | |
CA2496370C (en) | Ultrasonic flaw detecting method and ultrasonic flaw detector | |
JP2008122209A (en) | Ultrasonic flaw inspection device and method | |
JPH11183446A (en) | Method and apparatus for ultrasonic flaw detection of weld | |
US20130160551A1 (en) | Ultrasonic flaw detection device and ultrasonic flaw detection method | |
JP2010276465A (en) | Ultrasonic flaw detector and method therefor | |
JP6026245B2 (en) | Ultrasonic inspection method and ultrasonic inspection apparatus | |
JP4682921B2 (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
JP2016090272A (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
JP4166222B2 (en) | Ultrasonic flaw detection method and apparatus | |
JP2014077708A (en) | Inspection device and inspection method | |
JP2006138672A (en) | Method of and device for ultrasonic inspection | |
JP4633268B2 (en) | Ultrasonic flaw detector | |
JP5575157B2 (en) | Ultrasonic flaw detector, method and program | |
JP2008070388A (en) | Liquid level detection method by means of sound and its device | |
JP2002243703A (en) | Ultrasonic flaw detector | |
JP2005083907A (en) | Defect inspection method | |
JPS6228869B2 (en) | ||
JP4175762B2 (en) | Ultrasonic flaw detector | |
JP2005070017A (en) | Ultrasonic flaw detection method using vertical and horizontal diffracted waves and apparatus therefor | |
JP5123644B2 (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
JP2007263956A (en) | Ultrasonic flaw detection method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100907 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110124 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4682921 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |