Nothing Special   »   [go: up one dir, main page]

JP2007324079A - Positive electrode material for all-solid lithium battery - Google Patents

Positive electrode material for all-solid lithium battery Download PDF

Info

Publication number
JP2007324079A
JP2007324079A JP2006155800A JP2006155800A JP2007324079A JP 2007324079 A JP2007324079 A JP 2007324079A JP 2006155800 A JP2006155800 A JP 2006155800A JP 2006155800 A JP2006155800 A JP 2006155800A JP 2007324079 A JP2007324079 A JP 2007324079A
Authority
JP
Japan
Prior art keywords
positive electrode
electrolyte
solid
electrode material
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006155800A
Other languages
Japanese (ja)
Other versions
JP5286516B2 (en
Inventor
Yasuo Takeda
保雄 武田
Masayuki Imanishi
誠之 今西
Atsushi Hirano
敦 平野
Tadaaki Matsumura
忠朗 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Original Assignee
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC filed Critical Mie University NUC
Priority to JP2006155800A priority Critical patent/JP5286516B2/en
Publication of JP2007324079A publication Critical patent/JP2007324079A/en
Application granted granted Critical
Publication of JP5286516B2 publication Critical patent/JP5286516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active material and a positive electrode material in which thio-LISICON is used as a solid electrolyte, and which are for realizing an electrochemical capacity of 200 mAh/g or more, superior cycle characteristics, and a low cost. <P>SOLUTION: This is the positive electrode material for the all solid lithium ion secondary battery constituted of a nickel sulfide positive electrode active material, an electrolyte composed of a sulfide series super ion conductive crystalline body (thio-LISICON), and a mixture with a conductive agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電解液としてthio-LISICONを、又、正極活物質として硫化ニッケルを用いた全固体リチウム電池用正極材に関わる。   The present invention relates to a positive electrode material for an all-solid-state lithium battery using thio-LISICON as an electrolytic solution and nickel sulfide as a positive electrode active material.

リチウムイオン二次電池は大きな電気化学容量と高い作動電位、そして優れた充放電サイクル特性を有するため、現在、携帯用小型コンピュータ及び携帯電話用として活用されている。ところで次世代においてリチウムイオン二次電池の応用が期待されている分野に、電気自動車、また近年様々な分野で発展している発電装置用の蓄電デバイスがあるが、これらの用途へ展開するためにはリチウムイオン二次電池の大型化が必須となる。しかしながら現在のところ、コスト面と安全性の問題により、大型リチウムイオン二次電池は商品化に至っていない。コスト面の問題は新規電極材料の開発により解決の見通しは立つものの、可燃性の有機溶媒系電解質を使う限り、安全性の問題を根本的に解決することはできない。近年開発が進んでいるポリマー電解質はゾル状では安全性の向上が見込めず、固体のポリマー膜では室温で十分な電気化学特性が得られていないためである。   Lithium ion secondary batteries have a large electrochemical capacity, a high operating potential, and excellent charge / discharge cycle characteristics, and are currently used for portable small computers and mobile phones. By the way, in the field where the application of lithium ion secondary batteries is expected in the next generation, there are electric vehicles and power storage devices for power generators that have been developed in various fields in recent years. Therefore, it is essential to increase the size of the lithium ion secondary battery. However, at present, large-sized lithium ion secondary batteries have not been commercialized due to cost and safety issues. Although the cost problem can be solved by developing new electrode materials, the safety problem cannot be fundamentally solved as long as flammable organic solvent electrolytes are used. This is because a polymer electrolyte, which has been developed in recent years, cannot be expected to improve safety in a sol form, and a solid polymer film cannot obtain sufficient electrochemical characteristics at room temperature.

一方、硫化物系の超イオン伝導結晶体であるthio-LISICONは、〜 2×10-3S
/ cm-2程度の高いリチウムイオン伝導度を示し、不燃性固体電解質として有力な候補であるため、これまで幾つかの研究開発が実施され、その成果が公表されている(例えば、特許文献1)。又、thio-LISICON系固体電解質としてLi3.25Ge0.25P0.75S4、正極材料にMo6S8、負極にLi-Al合金を用いたリチウム二次電池では室温で、〜100 mAh/g程度の可逆的な電気化学容量を取り出すことに成功している(非特許参考文献1)。
On the other hand, thio-LISICON, a sulphide-based superionic conducting crystal, is ~ 2 × 10 -3 S
Since it exhibits a high lithium ion conductivity of about / cm −2 and is a promising candidate as a non-combustible solid electrolyte, several researches and developments have been conducted so far and the results have been published (for example, Patent Document 1) ). In addition, lithium secondary batteries using Li 3.25 Ge 0.25 P 0.75 S 4 as the thio-LISICON-based solid electrolyte, Mo 6 S 8 as the positive electrode material, and Li-Al alloy as the negative electrode are about ~ 100 mAh / g at room temperature. It has succeeded in extracting a reversible electrochemical capacity (Non-patent Reference 1).

ところで、thio-LISICON系全固体電池では、正極―電解質界面の状態が電気化学特性に影響を及ぼしており、電解質との相性に優れた正極材料の開発が一つの課題となっている。例えば特許文献2では、LiNi系複合酸化物とその表面に担持された水酸化アルミニウム及び酸化アルミニウムを含む非水電解質用正極活物質が、又、特許文献3では、LiNi系複合酸化物とその表面に担持されたTi、Sn,V,Nb,Mo及びWの何れかから選ばれる元素の酸化物又は硫化物を含む非水電解質用正極活物質が例示されている。 By the way, in the thio-LISICON all-solid-state battery, the state of the positive electrode-electrolyte interface has an influence on the electrochemical characteristics, and the development of a positive electrode material excellent in compatibility with the electrolyte has become an issue. For example, Patent Document 2 discloses a LiNi-based composite oxide and a positive electrode active material for a nonaqueous electrolyte containing aluminum hydroxide and aluminum oxide supported on the surface thereof. Patent Document 3 discloses a LiNi-based composite oxide and its surface. A positive electrode active material for a non-aqueous electrolyte containing an oxide or sulfide of an element selected from any of Ti, Sn, V, Nb, Mo, and W supported on the substrate is illustrated.

R.Kannno,M.Murayama, et al, Electrochemical and Solid-State Letters, 7(12)A455(2004)R. Kannno, M. Murayama, et al, Electrochemical and Solid-State Letters, 7 (12) A455 (2004)

特許第3233345号Japanese Patent No. 3233345 特開2005−322616号JP 2005-322616 A 特開2003−173775号JP 2003-173775 A

しかしながら公知の正極材料は、室温でのハイレート放電において、実用レベルで要求される電気化学容量を取り出せるに至っていない。そこで本発明は固体電解質としてthio-LISICONを用い、200 mAh/g 以上の電気化学容量と良好なサイクル特性および低コストを実現するための正極活物質および正極材料を提供することを課題とする。 However, known positive electrode materials have not yet been able to extract the electrochemical capacity required at a practical level in high-rate discharge at room temperature. Accordingly, an object of the present invention is to provide a positive electrode active material and a positive electrode material for realizing an electrochemical capacity of 200 mAh / g or more, good cycle characteristics, and low cost by using thio-LISICON as a solid electrolyte.

ここで、本発明者らは硫化ニッケルを正極活物質とすることにより本課題を達成した。より詳細には、硫化ニッケル正極活物質と、硫化物系超イオン伝導結晶体(thio-LISICON)からなる電解質および導電剤との混合物で構成されることを特徴とする全固体リチウムイオン2次電池用正極材料を提供することにより、課題を達成できる。 Here, the present inventors have achieved this problem by using nickel sulfide as a positive electrode active material. More specifically, an all-solid-state lithium ion secondary battery comprising a mixture of a nickel sulfide positive electrode active material, an electrolyte composed of a sulfide-based superionic conductive crystal (thio-LISICON), and a conductive agent. The problem can be achieved by providing a positive electrode material.

そして前述の硫化物系超イオン伝導結晶体からなる電解質が、リチウム、ゲルマニウム、リン及び硫黄で構成される化合物であることを特徴とし、より具体的にはthio-LISICON(Li3.25Ge0.25P0.75S4) が一般的に用いられる。又、前述の導電剤がアセチレンブラックであることを特徴とする。 The electrolyte comprising the above-described sulfide-based superionic conductive crystal is a compound composed of lithium, germanium, phosphorus and sulfur, and more specifically, thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ) is generally used. Further, the conductive agent is acetylene black.

次に正極活物質、電解質および導電剤の混合物が、重量混合比(%)で、正極活物質:電解質:導電剤=(40〜70%):(20〜50%):(3〜6%)であることを特徴とする。ここで、正極活物質、電解質および導電剤の合計は、常に100%になるように調整される。
なお、混合物とは、所定割合の正極活物質、電解質および導電剤を、ボールミル等で均一に混合することによって得られる。
Next, the mixture of the positive electrode active material, the electrolyte and the conductive agent is in a weight mixing ratio (%), and the positive electrode active material: electrolyte: conductive agent = (40-70%) :( 20-50%) :( 3-6% ). Here, the total of the positive electrode active material, the electrolyte, and the conductive agent is adjusted to be always 100%.
The mixture is obtained by uniformly mixing a predetermined ratio of positive electrode active material, electrolyte, and conductive agent with a ball mill or the like.

本発明により、電気化学容量の増加と、サイクル特性の安定化が可能となり、又、安全性も確保できる。従って、自動車用電池、蓄電池等の大型2次電池としての実用化が見込めるようになった。   According to the present invention, the electrochemical capacity can be increased, the cycle characteristics can be stabilized, and safety can be ensured. Therefore, practical use as a large-sized secondary battery such as an automobile battery or a storage battery can be expected.

本発明による正極材料Ni3S2とthio-LISICON系固体電解質Li3.25Ge0.25P0.75S4は、何れも蒸気圧の高い硫化物であるため、合成方法に工夫が必要である。本発明では、図1に示す密閉容器を用い、アルゴン気流中で合成した。図1に示すように、密閉容器は2本の石英管からなり、試料はアルゴン流路中のカーボンポット中で加熱される。これまでの石英管を用いた真空封入手法と比較すると、硫化物の蒸気圧が高いため組成の制御が困難になるものの、封入操作がより簡便で、石英管のリサイクルも可能となる。 Since the positive electrode material Ni 3 S 2 and the thio-LISICON solid electrolyte Li 3.25 Ge 0.25 P 0.75 S 4 according to the present invention are both sulfides having a high vapor pressure, the synthesis method needs to be devised. In this invention, it synthesize | combined in argon stream using the airtight container shown in FIG. As shown in FIG. 1, the sealed container is composed of two quartz tubes, and the sample is heated in a carbon pot in an argon flow path. Compared with the conventional vacuum sealing method using a quartz tube, the vapor pressure of sulfide is high, making it difficult to control the composition, but the sealing operation is simpler and the quartz tube can be recycled.

ところで、Ni3S2の合成には出発物質にNi粉末と硫黄を用い、アルゴン雰囲気下で混合、成型した後、アルゴン気流中で、700℃×12時間程度の焼成を行うことにより創製できる。又、Li-Ge-P系thio-LISICONの合成では出発物質にLi2S、GeS2、P2S5を用い、アルゴン雰囲気下で混合、成型した後、アルゴン気流中で700℃×2時間程度の焼成を行うことにより創製できる。ここで、高温焼成時の硫化物の蒸気圧は高く、焼成中に多くの硫黄が失われるため、初期混合組成においては目的の組成より多くの硫化物を混合する必要があり、例えば、Ni3S2の合成では硫黄を、thio-LISICONの合成ではP2S5をそれぞれ10%程度過剰に混合する。 By the way, Ni 3 S 2 can be synthesized by using Ni powder and sulfur as starting materials, mixing and molding in an argon atmosphere, and firing in an argon stream for about 700 ° C. × 12 hours. Also, in the synthesis of Li-Ge-P thio-LISICON, Li 2 S, GeS 2 and P 2 S 5 were used as starting materials, mixed and molded in an argon atmosphere, then 700 ° C x 2 hours in an argon stream It can be created by firing to a certain extent. Here, since the vapor pressure of sulfide during high-temperature firing is high and a lot of sulfur is lost during firing, it is necessary to mix more sulfide than the target composition in the initial mixed composition, for example, Ni 3 In the synthesis of S 2 , sulfur is mixed, and in the synthesis of thio-LISICON, P 2 S 5 is mixed in excess by about 10%.

上述のようにして得られた各々の化合物を用いた、全固体リチウムイオン二次電池の構成図の1例を図2に示す。図2では、正極活物質としてNi3S2を、電解質としてLi3.25Ge0.25P0.75S4を、負極としてLi/Al合金シートを用いた例を示したが、負極はLi/Alに限定されず、例えば炭素/黒鉛系材料を用いることもできる。 FIG. 2 shows an example of a configuration diagram of an all-solid-state lithium ion secondary battery using each of the compounds obtained as described above. FIG. 2 shows an example in which Ni 3 S 2 is used as the positive electrode active material, Li 3.25 Ge 0.25 P 0.75 S 4 is used as the electrolyte, and a Li / Al alloy sheet is used as the negative electrode. However, the negative electrode is limited to Li / Al. For example, a carbon / graphite-based material can also be used.

電解質層となるLi3.25Ge0.25P0.75S4
70 mgを直径10 mmの円柱に成型し、一方の面に正極合材
10 mgを、他方の面にAl、Liのシートを順に積層後、加圧成型を行った。正極層(正極合材)はNi3S2とLi3.25Ge0.25P0.75S4、導電剤となるアセチレンブラックを60 : 40 : 5の比で混合し、遊星型ボールミルで混合した。一体化された積層電池(図2)は密閉容器に加圧状態で封入し、大気中で0.1 〜0.2 mA、終止電圧300 〜2300 mVの定電流充放電測定を行った。
Li 3.25 Ge 0.25 P 0.75 S 4 as electrolyte layer
70 mg is molded into a cylinder with a diameter of 10 mm, and positive electrode composite on one side
10 mg was laminated in the order of Al and Li sheets on the other side, and then pressure molding was performed. For the positive electrode layer (positive electrode mixture), Ni 3 S 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , and acetylene black as a conductive agent were mixed in a ratio of 60: 40: 5, and mixed with a planetary ball mill. The integrated laminated battery (FIG. 2) was sealed in a sealed container under pressure and subjected to constant current charge / discharge measurement in the air at 0.1 to 0.2 mA and a final voltage of 300 to 2300 mV.

合成により得られたNi3S2とLi3.25Ge0.25P0.75S4のX線回折図形を図3に示す。Ni3S2の合成では、若干のNiを不純物として含むものの、ほぼ単一相でNi3S2を得ることができた。またLi3.25Ge0.25P0.75S4の合成では、Murayamaらによる真空封入合成で報告(R.Kannno and
M.Murayama, J.Electrochem, Soc.,148(7),A742(2001))されている x = 0.65、region2、単斜晶相の結晶を得ることができた。この試料のACインピーダンス測定による導電率の測定では2.39×10-3S / cm-2を示し、全固体リチウムイオン2次電池の電解質材料として十分な特性を有することを確認した。
FIG. 3 shows X-ray diffraction patterns of Ni 3 S 2 and Li 3.25 Ge 0.25 P 0.75 S 4 obtained by synthesis. In the synthesis of Ni 3 S 2, although containing some Ni as an impurity, it was possible to obtain a Ni 3 S 2 substantially in a single phase. The synthesis of Li 3.25 Ge 0.25 P 0.75 S 4 was reported by Murayama et al. In vacuum encapsulated synthesis (R. Kannno and
M. Murayama, J. Electrochem, Soc., 148 (7), A742 (2001)) x = 0.65, region 2, monoclinic phase crystals could be obtained. The conductivity measurement by AC impedance measurement of this sample showed 2.39 × 10 −3 S / cm −2, and it was confirmed that the sample had sufficient characteristics as an electrolyte material for an all-solid-state lithium ion secondary battery.

Ni3S2とLi3.25Ge0.25P0.75S4を6:4の比で混合した合材を正極に、Li3.25Ge0.25P0.75S4を電解質に、Li/Alシートを負極に用い、定電流充放電を行った結果を図4に示す。100μAの定電流を放電方向から流し、次いで100μAでの充電を行った。放電、充電の終止電圧はそれぞれ0.3 V、2.3 Vに設定した。最初の放電では1.3 Vの初期電位から0.3 Vまで緩やかに電圧が降下した。続く充電では、電圧は0.5 V付近から1.5 V付近に上昇した後、0.23 Vまで緩やかに変化した。2回目以降の放電では初期放電挙動と異なり、電圧は2.0 V付近から1.0 Vまで降下した後、緩やかに0.3 Vに到達した。得られた電気化学容量は、〜300 mAh/gと大きく、20サイクル後の容量も、〜280 mAh/gと高い値を保った。 A mixture of Ni 3 S 2 and Li 3.25 Ge 0.25 P 0.75 S 4 in a ratio of 6: 4 was used as the positive electrode, Li 3.25 Ge 0.25 P 0.75 S 4 was used as the electrolyte, and a Li / Al sheet was used as the negative electrode. The result of performing the current charge / discharge is shown in FIG. A constant current of 100 μA was passed from the discharge direction, and then charging was performed at 100 μA. The discharge and charge end voltages were set to 0.3 V and 2.3 V, respectively. In the first discharge, the voltage gradually dropped from an initial potential of 1.3 V to 0.3 V. In subsequent charging, the voltage rose from around 0.5 V to around 1.5 V and then gradually changed to 0.23 V. Unlike the initial discharge behavior in the second and subsequent discharges, the voltage dropped from around 2.0 V to 1.0 V and then slowly reached 0.3 V. The obtained electrochemical capacity was as large as ˜300 mAh / g, and the capacity after 20 cycles was also kept as high as ˜280 mAh / g.

充放電により進行する正極中での反応は次式に示すとおりであり、放電により左から右の反応が、充電によりその逆の反応が進行していることが推測できる。
Ni3S2+4Li⇔3Ni+2Li2S
2回目以降の放電挙動が変化したのは、Ni3S2//Liの初期開回路電位1.3 Vを上回る電圧を印可したことで、下式に示すNi3S2のさらなる酸化が進行したためと考えられる。
Ni3S2+Li2S⇔3NiS+2Li
Ni3S2の充電では、特に2.0 Vを超える電位において充電電位が不安定になる傾向が見られ、この挙動が著しいとサイクル特性の大きな劣化を引き起こした。この電位で進行している反応は上式に対応するNiSの生成であり、Ni3S2からNiSへの酸化が円滑に行われない場合、活物質の孤立化、及び電解質の分解等の副反応を引き起こし、容量劣化に結びついている可能性がある。
The reaction in the positive electrode that proceeds by charging and discharging is as shown in the following formula, and it can be estimated that the reaction from left to right is progressing by discharging and the reverse reaction is proceeding by charging.
Ni 3 S 2 + 4Li⇔3Ni + 2Li 2 S
The change in the discharge behavior after the second time was due to the further oxidation of Ni 3 S 2 shown in the following formula by applying a voltage exceeding the initial open circuit potential of Ni 3 S 2 // Li of 1.3 V. Conceivable.
Ni 3 S 2 + Li 2 S⇔3NiS + 2Li
In the charging of Ni 3 S 2 , the charging potential tended to become unstable especially at a potential exceeding 2.0 V. If this behavior was remarkable, the cycle characteristics were greatly deteriorated. The reaction proceeding at this potential is the formation of NiS corresponding to the above formula, and when oxidation from Ni 3 S 2 to NiS is not performed smoothly, the secondary material such as isolation of the active material and decomposition of the electrolyte It may cause reaction and lead to capacity degradation.

正極合材中のNi3S2 /
thio-LISICON比と電気化学特性の関係を調べるため、Ni3S2 / thio-LISICON比を5:5、6:4、7:3で混合した正極合材を用意し同様の全固体電池を作製、定電流充放電を行った。0.3 V 〜2.3 V cut-off、0.1 mAの充放電を放電から行った結果を図5に示す。Ni3S2の比が50%、60%、70%と増加するにつれてNi3S2、1 g当たりの容量は、250 mAh/gから450 mAh/gと増加する一方、初期の不可逆容量も大きくなる傾向が見られた。放電によるNi3S2の還元反応
Ni3S2+4 Li++4e-→3 Ni+2 Li2S
から導かれるNi3S2、1 g当たりの容量は446.3 mAh/gであり、Ni3S2、70%において、ほぼ完全に上記反応が完了しており、それ以下の比では放電終了時でもNi3S2が残存していると考えられる。
Ni 3 S 2 / in positive electrode mixture
In order to investigate the relationship between the thio-LISICON ratio and electrochemical characteristics, we prepared a positive electrode mixture in which the Ni 3 S 2 / thio-LISICON ratio was mixed at 5: 5, 6: 4, and 7: 3. Fabrication and constant current charge / discharge were performed. FIG. 5 shows the results of charging / discharging at 0.3 V to 2.3 V cut-off, 0.1 mA from discharging. As the Ni 3 S 2 ratio increases to 50%, 60% and 70%, the capacity per gram of Ni 3 S 2 increases from 250 mAh / g to 450 mAh / g, while the initial irreversible capacity also increases There was a tendency to increase. Reduction reaction of Ni 3 S 2 by electric discharge
Ni 3 S 2 +4 Li + + 4e - → 3 Ni + 2 Li 2 S
The capacity per 1 g of Ni 3 S 2 derived from is 446.3 mAh / g, and in Ni 3 S 2 , 70%, the above reaction is almost completely completed. Ni 3 S 2 is considered to remain.

高速充放電の可能性を確認するため、これまでの5倍に当たる0.5 mAの電流で充放電テストを行った結果を図6に示す。テストセルはNi3S2:LISICON
= 6:4の正極合材を用いて作製した。可逆的な充放電が可能であり、120 mAh/gの容量が得られた。0.1 mAでの充放電と比較するとその容量は半分以下であるものの、20サイクルまではサイクルにともなう大きな容量の劣化もみられなかった。
In order to confirm the possibility of high-speed charge / discharge, the results of a charge / discharge test conducted at a current of 0.5 mA, which is five times the current level, are shown in FIG. Test cell is Ni 3 S 2 : LISICON
= 6: 4 positive electrode mixture was used. Reversible charge / discharge was possible, and a capacity of 120 mAh / g was obtained. Compared to charging / discharging at 0.1 mA, the capacity was less than half, but no significant capacity degradation was observed with the cycle up to 20 cycles.

硫化ニッケル系正極材を合成するための反応炉を示す概要図である。It is a schematic diagram which shows the reaction furnace for synthesize | combining a nickel sulfide type positive electrode material. 全固体Li2次電池の構成を示す概要図である。It is a schematic diagram which shows the structure of an all-solid-state Li secondary battery. 正極合材(Ni3S2/Li3.25Ge0.25P0.75S4)のX線回折図形を示す図である。It is a figure which shows the X-ray-diffraction figure of positive electrode compound material (Ni3S2 / Li3.25Ge0.25P0.75S4). 正極合材として、Ni3S2:Li3.25Ge0.25P0.75S4=6:4、電解質としてLi3.25Ge0.25P0.75S4、負極としてLi/Al を用いた全固体電池について、定電流放電を行った結果を示す図である。The results of constant current discharge for all solid state batteries using Ni3S2: Li3.25Ge0.25P0.75S4 = 6: 4 as the positive electrode mixture, Li3.25Ge0.25P0.75S4 as the electrolyte, and Li / Al as the negative electrode. FIG. Ni3S2:Li3.25Ge0.25P0.75S4 を各々5:5, 6:4, 7:3 で混合した正極合材について、定電流充放電(0.1mA)を行った結果を示す図である。It is a figure which shows the result of having performed constant current charging / discharging (0.1 mA) about the positive electrode compound material which mixed Ni3S2: Li3.25Ge0.25P0.75S4 by 5: 5, 6: 4, 7: 3, respectively. Ni3S2:Li3.25Ge0.25P0.75S4 = 6:4 の全固体Li2次電池について、0.5mAの電流で高速充放電を行った結果を示す図である。It is a figure which shows the result of having performed high-speed charging / discharging with the electric current of 0.5 mA about the all-solid-state Li secondary battery of Ni3S2: Li3.25Ge0.25P0.75S4 = 6: 4.

Claims (5)

硫化ニッケルを正極活物質とすることを特徴とする全固体リチウムイオン2次電池用正極材料。   A positive electrode material for an all solid lithium ion secondary battery, characterized in that nickel sulfide is used as a positive electrode active material. 前記硫化ニッケル正極活物質と、硫化物系超イオン伝導結晶体からなる電解質および導電剤との混合物で構成されることを特徴とする全固体リチウムイオン2次電池用正極材料。 A positive electrode material for an all-solid-state lithium ion secondary battery, comprising a mixture of the nickel sulfide positive electrode active material, an electrolyte comprising a sulfide-based superionic conductive crystal, and a conductive agent. 前記硫化物系超イオン伝導結晶体からなる電解質がリチウム、ゲルマニウム、リン及び硫黄で構成される化合物であることを特徴とする請求項2に記載の全固体リチウムイオン2次電池用正極材料。   The positive electrode material for an all-solid-state lithium ion secondary battery according to claim 2, wherein the electrolyte composed of the sulfide-based superionic conductive crystal is a compound composed of lithium, germanium, phosphorus, and sulfur. 前記導電剤がアセチレンブラックであることを特徴とする請求項2又は3の何れかに記載の全固体リチウムイオン2次電池用正極材料。   The positive electrode material for an all solid lithium ion secondary battery according to claim 2, wherein the conductive agent is acetylene black. 請求項2〜4の何れかに記載の混合物が、重量混合比(%)で、正極活物質:電解質:導電剤=(40〜70%):(20〜50%):(3〜6%)であることを特徴とする請求項2〜4の何れかに記載の全固体リチウムイオン2次電池用正極材料。
The mixture according to any one of claims 2 to 4, in a weight mixing ratio (%), positive electrode active material: electrolyte: conductive agent = (40-70%) :( 20-50%) :( 3-6% The positive electrode material for an all-solid-state lithium ion secondary battery according to any one of claims 2 to 4, wherein
JP2006155800A 2006-06-05 2006-06-05 Positive electrode material for all-solid-state lithium batteries Active JP5286516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155800A JP5286516B2 (en) 2006-06-05 2006-06-05 Positive electrode material for all-solid-state lithium batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155800A JP5286516B2 (en) 2006-06-05 2006-06-05 Positive electrode material for all-solid-state lithium batteries

Publications (2)

Publication Number Publication Date
JP2007324079A true JP2007324079A (en) 2007-12-13
JP5286516B2 JP5286516B2 (en) 2013-09-11

Family

ID=38856684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155800A Active JP5286516B2 (en) 2006-06-05 2006-06-05 Positive electrode material for all-solid-state lithium batteries

Country Status (1)

Country Link
JP (1) JP5286516B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969110A (en) * 2010-08-31 2011-02-09 天津巴莫科技股份有限公司 Fast ion conductor modified lithium ion battery cathode material lithium cobalt oxide with fast ion conductor and preparation method
JP2011228289A (en) * 2010-03-27 2011-11-10 Osaka Municipa Technical Research Institute Electrode material for secondary battery and secondary battery using the same
JP2013030379A (en) * 2011-07-29 2013-02-07 Kuraray Co Ltd Positive electrode material for nonaqueous secondary battery
US20130323603A1 (en) * 2012-06-04 2013-12-05 Hyundai Motor Company Solid high-ionic conductor for battery and lithium-sulfur battery using the same
US9401525B2 (en) 2009-03-20 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
JP2019212615A (en) * 2018-06-01 2019-12-12 トヨタ自動車株式会社 Positive electrode mixture, all-solid battery, manufacturing method of positive electrode mixture, and manufacturing method of all-solid battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102631719B1 (en) 2017-09-26 2024-01-31 주식회사 엘지에너지솔루션 Positive Electrode Active Material for High Voltage Comprising Lithium Manganese-Based Oxide and Preparation Method Thereof
WO2019066298A2 (en) * 2017-09-26 2019-04-04 주식회사 엘지화학 Positive electrode active material for high voltage, comprising lithium manganese-based oxide, and production method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275315A (en) * 1993-03-23 1994-09-30 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2001006674A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Electron-lithium ion mixed conductor and synthesis thereof and all solid lithium secondary battery
JP2003022839A (en) * 2001-07-06 2003-01-24 National Institute For Materials Science Multilayed structure and lithium battery using it
JP2004207210A (en) * 2002-05-23 2004-07-22 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2005005024A (en) * 2003-06-10 2005-01-06 Nbc Inc Woven fabric for solid electrolyte carrier and solid electrolyte sheet for lithium battery
JP2006277997A (en) * 2005-03-28 2006-10-12 Idemitsu Kosan Co Ltd High-performance all-solid state lithium battery
JP2007273214A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Solid electrolyte, its manufacturing method and all solid secondary battery
JP2007311084A (en) * 2006-05-16 2007-11-29 Idemitsu Kosan Co Ltd Electrolyte, member for battery, electrode, and all-solid secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275315A (en) * 1993-03-23 1994-09-30 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2001006674A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Electron-lithium ion mixed conductor and synthesis thereof and all solid lithium secondary battery
JP2003022839A (en) * 2001-07-06 2003-01-24 National Institute For Materials Science Multilayed structure and lithium battery using it
JP2004207210A (en) * 2002-05-23 2004-07-22 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2005005024A (en) * 2003-06-10 2005-01-06 Nbc Inc Woven fabric for solid electrolyte carrier and solid electrolyte sheet for lithium battery
JP2006277997A (en) * 2005-03-28 2006-10-12 Idemitsu Kosan Co Ltd High-performance all-solid state lithium battery
JP2007273214A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Solid electrolyte, its manufacturing method and all solid secondary battery
JP2007311084A (en) * 2006-05-16 2007-11-29 Idemitsu Kosan Co Ltd Electrolyte, member for battery, electrode, and all-solid secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9401525B2 (en) 2009-03-20 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
US9590277B2 (en) 2009-03-20 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
JP2011228289A (en) * 2010-03-27 2011-11-10 Osaka Municipa Technical Research Institute Electrode material for secondary battery and secondary battery using the same
CN101969110A (en) * 2010-08-31 2011-02-09 天津巴莫科技股份有限公司 Fast ion conductor modified lithium ion battery cathode material lithium cobalt oxide with fast ion conductor and preparation method
JP2013030379A (en) * 2011-07-29 2013-02-07 Kuraray Co Ltd Positive electrode material for nonaqueous secondary battery
US20130323603A1 (en) * 2012-06-04 2013-12-05 Hyundai Motor Company Solid high-ionic conductor for battery and lithium-sulfur battery using the same
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11005123B2 (en) 2013-04-19 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11594752B2 (en) 2013-04-19 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11923499B2 (en) 2013-04-19 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
JP2019212615A (en) * 2018-06-01 2019-12-12 トヨタ自動車株式会社 Positive electrode mixture, all-solid battery, manufacturing method of positive electrode mixture, and manufacturing method of all-solid battery
JP7156157B2 (en) 2018-06-01 2022-10-19 トヨタ自動車株式会社 Positive electrode mixture, all-solid battery, method for producing positive electrode mixture, and method for producing all-solid battery

Also Published As

Publication number Publication date
JP5286516B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US10193185B2 (en) Sulfide solid electrolyte material and lithium solid state battery
JP5286516B2 (en) Positive electrode material for all-solid-state lithium batteries
JP5957144B2 (en) Sulfide-based solid electrolyte for lithium-ion battery
Li et al. Co-modification by LiAlO2-coating and Al-doping for LiNi0. 5Co0. 2Mn0. 3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage
AU2010358633B2 (en) Sulfide solid electrolyte glass, lithium solid-state battery, and method for producing sulfide solid electrolyte glass
WO2016009768A1 (en) Sulfide-based solid electrolyte for lithium ion batteries
TWI509860B (en) Battery system, production method of battery system, and controlling device of battery
JP2022502341A (en) Inorganic sulfide solid electrolyte with high atmospheric stability, its manufacturing method and its application
KR20160048894A (en) Solid-state battery and method for manufacturing electrode active material
JP2010257878A (en) All-solid-state battery
JP5900244B2 (en) Solid battery manufacturing method
JP2011044249A (en) Sulfide solid electrolyte material
JP2012054212A (en) Sulfide solid electrolyte material, method for producing sulfide solid electrolyte material, and lithium solid battery
Liu et al. Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries
KR20150003886A (en) Cyclic quaternary ammonium salt, nonaqueous solvent, nonaqueous electrolyte, and power storage device
WO2011118302A1 (en) Active material for battery, and battery
JPWO2011118799A1 (en) Solid electrolyte material and all solid lithium secondary battery
KR20210036543A (en) Li6P2S8I SOLID ELECTROLYTE AND LITHIUM ION BATTERY INCLUDING THE SAME
Lim et al. Optimization of electrolyte and carbon conductor for dilithium terephthalate organic batteries
CN114824192B (en) Composite positive electrode material, battery positive electrode, lithium battery and application thereof
De Luna et al. All-solid lithium-sulfur batteries: Present situation and future progress
CN110556523B (en) Positive electrode mixture, all-solid-state battery, method for producing positive electrode mixture, and method for producing all-solid-state battery
Heo et al. One‐pot aprotic solvent‐enabled synthesis of superionic Li‐argyrodite solid electrolyte
WO2017139993A1 (en) Method for preparing doped lithium sulfide composite coated with graphene/carbon and having core-shell structure
JP5780322B2 (en) Sulfide solid electrolyte material and lithium solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507