Nothing Special   »   [go: up one dir, main page]

JP2007317477A - Twisted-wire conductor - Google Patents

Twisted-wire conductor Download PDF

Info

Publication number
JP2007317477A
JP2007317477A JP2006145159A JP2006145159A JP2007317477A JP 2007317477 A JP2007317477 A JP 2007317477A JP 2006145159 A JP2006145159 A JP 2006145159A JP 2006145159 A JP2006145159 A JP 2006145159A JP 2007317477 A JP2007317477 A JP 2007317477A
Authority
JP
Japan
Prior art keywords
wire
wires
diameter
center
strands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006145159A
Other languages
Japanese (ja)
Other versions
JP2007317477A5 (en
Inventor
Toshibumi Inagaki
俊文 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanshu Densen KK
Original Assignee
Sanshu Densen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanshu Densen KK filed Critical Sanshu Densen KK
Priority to JP2006145159A priority Critical patent/JP2007317477A/en
Publication of JP2007317477A publication Critical patent/JP2007317477A/en
Publication of JP2007317477A5 publication Critical patent/JP2007317477A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a twisted-wire conductor, consisting of 19-core strands, whose outline becomes nearly round, without compressing the strands. <P>SOLUTION: Of the twisted-wire conductor 1 of 19 cores structured of three kinds of strands with different diameters, the strands constituting center wires 11 and an inner layer 1A are of mid-diameter wires 3, six-core small-diameter wires 2 narrower than the mid-diameter wires 3 and six-core large-diameter wires 4 larger than the mid-diameter wires 3 are used as the strands constituting an outer layer 1B, these of which are arranged alternately in a peripheral direction, and at the same time, the six-core small-diameter wires 2 are arranged so as to have their center point positioned on an extension line connecting the center of the center wires 11 and that of the six-core mid-diameter wires constituting the inner layer 1A, the large-diameter wires 4 are arranged at a valley part 5 formed of outer faces of the adjacent mid-diameter wires constituting the inner layer, with each strand in contact with all the adjacent strands, and with a distance from the center wires 11 to an outermost edge end of the small-diameter wires 2 and that from the center of the center wires 11 to an outermost edge end of the large-diameter wires 4 set equal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、撚線導体に関するもので、詳しくは、電線等に使用される19心の同心撚り配列で構成される撚線導体に関するものである。   The present invention relates to a stranded wire conductor, and more particularly, to a stranded wire conductor configured by a 19-core concentric stranded arrangement used for electric wires and the like.

従来、電線等に使用される撚線導体を構成する各々の素線は、一般的に、全て断面円形の丸線で、かつ、同一径である。該素線として銅線が主として用いられ、その銅線に、錫、ニッケル、銀をメッキしたものやアルミ線、各種合金線が使用される。   Conventionally, each strand constituting a stranded conductor used for an electric wire or the like is generally a round wire having a circular cross section and the same diameter. A copper wire is mainly used as the element wire, and a copper wire plated with tin, nickel, silver, an aluminum wire, and various alloy wires are used.

また、19心の素線で構成される撚線導体は、一般的に、図4に示すように、中心の1心の素線102を核として、その周囲を6心の素線103が覆い囲んで内層を形成し、更に、その外周を12心の素線104が覆い囲んで外層を形成する19心の同心撚り配列であり、それを図3に示すように同一方向に撚ることで撚線導体101を形成している。   In addition, as shown in FIG. 4, a stranded conductor composed of 19 core wires generally has a single core wire 102 as a core and a 6 core wire 103 covering the periphery. It is a 19-core concentric twisted arrangement in which an inner layer is formed to enclose and an outer layer is formed by enclosing the outer periphery with 12 cores 104, and it is twisted in the same direction as shown in FIG. A stranded conductor 101 is formed.

前記の素線102、103、104は全て、断面円形で、かつ、同一径であることから、素線102、103、104で構成される19心の同心撚り配列の撚線導体101における外形形状は図4に示すように、六角形状に近似した形状となり、丸形状に近似した形状とはならない。以下、前記の撚線導体101を従来技術1とする。   Since the strands 102, 103, 104 are all circular in cross section and have the same diameter, the outer shape of the 19-core concentric strand arrangement stranded conductor 101 composed of the strands 102, 103, 104 As shown in FIG. 4, the shape approximates a hexagonal shape and does not approximate a round shape. Hereinafter, the stranded wire conductor 101 is referred to as Conventional Technology 1.

また、撚線導体101は、一般的に、図4に示すように、外周部に絶縁材106を被覆した被覆線として、電線等に使用される。この被覆線の外形形状は、略真円形状であることが望まれている。一方、絶縁材106は、耐圧特性の点から撚線導体101の外周部に略均一に被覆されることが望ましい。したがって、撚線導体の外形形状は真円であることが望まれている。   Further, the stranded wire conductor 101 is generally used for an electric wire or the like as a covered wire in which an outer peripheral portion is covered with an insulating material 106, as shown in FIG. The outer shape of the covered wire is desired to be a substantially perfect circle. On the other hand, it is desirable that the insulating material 106 is coated substantially uniformly on the outer periphery of the stranded wire conductor 101 in terms of pressure resistance. Therefore, it is desired that the outer shape of the stranded wire conductor is a perfect circle.

また、石油を主成分とする絶縁材106の減量化は、資源の有効利用の観点からも大変重要であり、撚線導体の細径化や丸形化が要求されている。   Further, the reduction in the amount of the insulating material 106 containing petroleum as a main component is very important from the viewpoint of effective use of resources, and the stranded wire conductor is required to be reduced in diameter or rounded.

しかし、前記のように撚線導体101の外形形状が六角形で、かつ、被覆線の外面形状を真円とすると、撚線導体101の外形形状が六角形の頂点部の近傍に位置する絶縁材106の厚みは薄く、六角形の辺部に至るほど厚くなり、絶縁材106の厚みが不均一となるという問題点が生じる。また、耐圧不良を防止するためには、前記六角形の頂点部に位置する絶縁材106の厚みを一定以上確保する必要がある。そのため、撚線導体101の中心からその頂点までの径よりも被覆線を細くすることができず、被覆線の細径化、軽量化には限界があるという問題点がある。   However, as described above, when the outer shape of the stranded wire conductor 101 is a hexagon and the outer surface shape of the covered wire is a perfect circle, the outer shape of the stranded wire conductor 101 is insulated in the vicinity of the apex of the hexagon. The thickness of the material 106 is thin, and becomes thicker as it reaches the hexagonal side, and the thickness of the insulating material 106 becomes uneven. Further, in order to prevent a breakdown voltage failure, it is necessary to secure a certain thickness or more for the insulating material 106 located at the apex of the hexagon. Therefore, the covered wire cannot be made thinner than the diameter from the center of the stranded wire conductor 101 to its apex, and there is a problem that there is a limit to reducing the diameter and weight of the covered wire.

また、辺部に位置する絶縁材106の肉厚は、性能の観点からは過剰であるが、断面を真円とするためには必要であるため、絶縁材106の減量化にも限界が生じるという問題点がある。   Further, the thickness of the insulating material 106 located on the side is excessive from the viewpoint of performance, but is necessary to make the cross section a perfect circle, so there is a limit in reducing the amount of the insulating material 106. There is a problem.

また、撚線導体101の外形形状が六角形であると、被覆線を端末加工する時等において、被覆材106をストリップする際に撚線導体101を傷つける虞があるという問題点がある。   Further, when the outer shape of the stranded wire conductor 101 is a hexagon, there is a problem that the stranded wire conductor 101 may be damaged when the covering material 106 is stripped when the coated wire is subjected to terminal processing.

上記の問題点は、撚線導体の外形形状を略真円とすることで解決することができる。
この解決手段として、特許文献1記載のように、断面円形で、かつ、全て同一径の素線を、一方向に撚りながら圧縮ダイスを通すことにより、図5に示すように、撚線導体201の外層素線202の外面203を加圧変形して、その撚線導体201の外形形状を略真円とする方法が提案されている。以下、前記撚線導体201を従来技術2とする。
特開2000−057852号公報
The above problem can be solved by making the outer shape of the stranded conductor into a substantially perfect circle.
As a means for solving this problem, as shown in Patent Document 1, a strand conductor 201 having a circular cross section and having the same diameter is passed through a compression die while twisting in one direction, as shown in FIG. A method has been proposed in which the outer surface 203 of the outer layer wire 202 is subjected to pressure deformation so that the outer shape of the stranded wire conductor 201 becomes a substantially perfect circle. Hereinafter, the stranded wire conductor 201 is referred to as Conventional Technology 2.
JP 2000-057852 A

上記、従来技術2の撚線導体201の外層素線202は圧縮ダイスにより圧縮変形されるため、のび特性、柔軟性、可とう性等の物理特性が損なわれるという問題点がある。   Since the outer strand 202 of the stranded conductor 201 of the prior art 2 is compressed and deformed by a compression die, there is a problem that physical characteristics such as stretch characteristics, flexibility, and flexibility are impaired.

また、従来技術2の撚線導体201は、一方向に撚りながら圧縮ダイスを通す必要があるため、従来技術1の撚線導体101と比較して、圧縮ダイスが余分に必要であり、この圧縮ダイスは撚線導体の製造時に摩耗損傷が生じるため、定期交換が必要でありコストが高くなるという問題点がある。   Further, the twisted conductor 201 of the prior art 2 needs to pass a compression die while twisting in one direction. Therefore, an extra compression die is required as compared with the twisted conductor 101 of the prior art 1, and this compression The dies have a problem in that wear damage occurs during the production of the stranded wire conductor, so that periodic replacement is necessary and the cost becomes high.

また、圧縮後の撚線導体201を略真円状にするためには、製造機械(撚線機)の回転数を一定値以下にし、かつ、回転数を安定させる必要があるため、従来技術1の撚線導体101よりも生産効率が悪くなるという問題点もある。   Further, in order to make the stranded wire conductor 201 after compression substantially circular, it is necessary to set the rotation speed of the production machine (twisting machine) to a certain value or less and stabilize the rotation speed. There is also a problem that the production efficiency is worse than that of the single stranded wire conductor 101.

そこで、本発明は、19心の素線で構成される撚線導体であって、該素線を圧縮加工することなく、撚線導体の外形形状は略真円形状となる撚線導体を提供することを目的とするものである。   Therefore, the present invention provides a stranded wire conductor composed of 19 core wires, and the stranded wire conductor has a substantially perfect circular shape without compressing the strand. It is intended to do.

前記の課題を解決するために、請求項1記載の発明は、1心の素線からなる中心線を設け、該中心線の周囲を6心の素線が覆い囲んで内層を形成し、更に、その外周を12心の素線が覆い囲んで外層を形成する19心の撚線導体であって、
前記素線として、直径が異なる3種類の細径線、中径線、太径線を用い、
前記中心線と内層を構成する素線は全て前記中径線であり、
外層を構成する素線として、前記中径線よりも細い6心の前記細径線と、前記中径線よりも太い6心の前記太径線を用いて、これらを周方向に交互に配置するとともに、
前記6心の細径線を、その中心が、前記中心線の中心と、内層を構成する6心の中径線の中心とを結んだ延長線上に位置するように配設し、前記内層を構成する6心の中径線における隣接する中径線の外面同士で形成される谷間部に太径線を配設し、
前記各素線は、隣接する全ての素線と接触し、
前記中心線の中心から前記細径線の最外縁端までの距離と、前記中心線の中心から前記太径線の最外縁端までの距離とが等しいことを特徴とするものである。
In order to solve the above-mentioned problem, the invention according to claim 1 is provided with a center line composed of one core wire, and an inner layer is formed by surrounding the center line with six core wires, , A 19-core stranded wire conductor that surrounds its outer periphery with 12 core wires to form an outer layer,
As said strand, three kinds of thin diameter wires with different diameters, medium diameter wires, and large diameter wires are used,
All the strands constituting the center line and the inner layer are the medium diameter wires,
As the strands constituting the outer layer, the six thin diameter wires thinner than the medium diameter wire and the six thick wires thicker than the medium diameter wire are alternately arranged in the circumferential direction. And
The six-core thin diameter wires are arranged so that the center thereof is located on an extension line connecting the center of the center line and the center of the six-core medium diameter wires constituting the inner layer, and the inner layer is A thick wire is disposed in the valley formed by the outer surfaces of the adjacent medium wires in the 6 wires constituting the medium wire,
Each strand is in contact with all adjacent strands;
The distance from the center of the center line to the outermost edge of the thin line is equal to the distance from the center of the center line to the outermost edge of the thick line.

本発明によれば、素線を圧縮変形させることなく、撚線導体の外形形状を略真円形状とし、かつ、各素線を隣接する全ての素線と接触させることができる。   According to the present invention, the outer shape of the stranded conductor can be made into a substantially circular shape without compressing and deforming the strands, and each strand can be brought into contact with all adjacent strands.

また、従来技術1、2の撚線導体101、201よりも最大外径を細くできる。
このように、撚線導体の外形が略真円形状で、かつ、上述のように、従来技術1、2の撚線導体101、201よりも細径化できることにより、絶縁材の被覆の厚みを全周にわたって薄くでき、かつ、略均一化することができ、絶縁材を減量でき、コストを低減することができる。
Further, the maximum outer diameter can be made thinner than the stranded wire conductors 101 and 201 of the prior arts 1 and 2.
Thus, the outer shape of the stranded wire conductor is substantially perfect circle shape and, as described above, can be made thinner than the stranded wire conductors 101 and 201 of the prior arts 1 and 2, thereby reducing the coating thickness of the insulating material. The entire circumference can be made thin and can be made substantially uniform, the amount of insulating material can be reduced, and the cost can be reduced.

また、従来技術2の撚線導体201のように、素線を圧縮ダイスに通すことがないために、外層素線が、圧縮変形されることがない。そのため、のび特性、柔軟性、可とう性等の物理特性を損うことがなく、素線の物理特性を維持することができ、信頼性の高い品質を得ることができる。   Further, unlike the stranded wire conductor 201 of the prior art 2, since the strand is not passed through the compression die, the outer layer strand is not compressed and deformed. Therefore, the physical characteristics of the strands can be maintained without deteriorating the physical characteristics such as the stretch characteristics, flexibility, and flexibility, and a highly reliable quality can be obtained.

本発明を実施するための最良の形態を図1及び図2に基づいて説明する。
図1は、本発明の撚線導体1の横断面図であり、該撚線導体1は、細径線(素線)2、中径線(素線)3、太径線(素線)4の3種類の素線により構成されている。また、該撚線導体1は、図1に示すように、19心の素線で構成され、中心に位置する1心の素線(中心線)11を核として、その周囲を6心の素線が覆い囲んで内層1Aを形成し、更に、その外周を12心の素線が覆い囲んで外層1Bを形成する19心の同心撚り配列である。また、各素線2、3、4は、隣接する他の全ての素線2、3、4と接触するように構成されている。
The best mode for carrying out the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view of a stranded wire conductor 1 of the present invention. The stranded wire conductor 1 includes a thin wire (element wire) 2, a medium diameter wire (element wire) 3, and a large diameter wire (element wire). 4 of three types of strands. Further, as shown in FIG. 1, the stranded conductor 1 is composed of 19 core wires, and a single core wire (center line) 11 located at the center is used as a core, and the surroundings are 6 core wires. This is a 19-core concentric twisted arrangement in which a wire surrounds and forms the inner layer 1A, and further, 12 cores surround the outer periphery to form the outer layer 1B. Further, each of the strands 2, 3, 4 is configured to come into contact with all other adjacent strands 2, 3, 4.

該素線2、3、4としては、断面円形(丸形)の線を用い、従来と同様に、銅線や該銅線に、錫、ニッケル、銀をメッキしたもの、或いはアルミ線、各種合金線が使用できる。   As the strands 2, 3, and 4, wires having a circular cross section (round shape) are used, and copper wires, copper wires plated with tin, nickel, silver, aluminum wires, various types as in the past. Alloy wire can be used.

前記中心線11は、直径がdの素線3である。以下これを、中径線3ともいう。前記内層1Aは、前記中心線11と同じ直径dの素線、すなわち、中径線3の1種類の素線のみで構成されている。 The center line 11 is a wire 3 having a diameter of d 2. Hereinafter, this is also referred to as a medium diameter wire 3. The inner layer 1 </ b> A is composed of only a strand having the same diameter d 2 as the center line 11, that is, one type of strand having a medium diameter 3.

前記外層1Bは、中径線3より細い直径dの素線2(以下、これを細径線2ともいう)と、中径線3より太い直径dの素線4(以下、これをを太径線4ともいう)の2種類の素線で構成されている。該細径線2は、その中心が、中心線11の中心Aと内層1Aの素線(中径線)3の中心とを結んだ延長線上に位置するように配設され、太径線4は、細径線2の外面と細径線2の外面との間(つまり、内層1Aを構成する中径線3の外面と中径線3の外面とで形成される谷間部5)に配設されている。細径線2と太径線4は、図1に示すように、周方向に交互に配設されている。 The outer layer 1B includes a strand 2 having a diameter d 1 thinner than the medium diameter wire 3 (hereinafter also referred to as a thin diameter wire 2) and a strand 4 having a diameter d 3 thicker than the medium diameter wire 3 (hereinafter referred to as this). Is also referred to as a thick wire 4). The small-diameter wire 2 is disposed such that the center thereof is located on an extension line connecting the center A of the center line 11 and the center of the strand (medium-diameter wire) 3 of the inner layer 1A. Is arranged between the outer surface of the thin wire 2 and the outer surface of the thin wire 2 (that is, the valley portion 5 formed by the outer surface of the medium wire 3 and the outer surface of the medium wire 3 constituting the inner layer 1A). It is installed. As shown in FIG. 1, the thin diameter wire 2 and the large diameter wire 4 are alternately arranged in the circumferential direction.

各素線2、3、4は、隣接する全ての素線2、3、4と接触している。
また、撚線導体1の外形形状は、略真円形状、つまり、中心線11の中心Aから細径線2の最外縁端Bまでの距離L1と、中心線11の中心Aから太径線4の最外縁端Cまでの距離L3が略同一となるように形成されている。つまり、外層1Bを形成する全ての細径線2及び太径線4の最外縁端B、Cは、図1に示すように、中心線11の中心Aから細径線2の最外縁端Bまでの距離L1を半径とする略真円線の上に位置するように形成されている。
Each strand 2, 3 and 4 is in contact with all adjacent strands 2, 3 and 4.
Further, the outer shape of the stranded wire conductor 1 is a substantially perfect circle shape, that is, the distance L1 from the center A of the center line 11 to the outermost edge B of the thin wire 2 and the center wire 11 to the thick wire. 4 is formed such that the distance L3 to the outermost edge C is substantially the same. That is, the outermost edge ends B and C of all the thin diameter lines 2 and the large diameter lines 4 forming the outer layer 1B are from the center A of the center line 11 to the outermost edge edge B of the small diameter line 2 as shown in FIG. It is formed so that it may be located on the substantially perfect circle line which makes the distance L1 to a radius.

各素線2、3、4の外面は、その素線2、3、4と隣接する全ての素線2、3、4の外面と接触し、かつ、中心線11の中心Aから細径線2の最外縁端Bまでの距離L1と、中心線11の中心Aから太径線4の最外縁端Cまでの距離L3が同一となるように設定するものである。   The outer surface of each of the strands 2, 3, 4 is in contact with the outer surface of all the strands 2, 3, 4 adjacent to the strands 2, 3, 4, and the small diameter wire from the center A of the center line 11 The distance L1 to the outermost edge B of 2 and the distance L3 from the center A of the center line 11 to the outermost edge C of the large diameter line 4 are set to be the same.

次に、これらの素線2、3、4の直径、すなわち、細径線2の直径d、中径線3の直径d、太径線4の直径dの関係について説明する。 Then, the diameter of these strands 2,3,4, i.e., the diameter d 1 of the thin line 2, the diameter d 2 of the middle meridian 3, the relationship between the diameter d 3 of the thick diameter line 4 will be described.

中心線11の中心Aから細径線2の最外縁端Bまでの距離L1は、
L1=d/2+d+d ・・・(1)
となる。
The distance L1 from the center A of the center line 11 to the outermost edge B of the thin wire 2 is
L1 = d 2/2 + d 2 + d 1 ··· (1)
It becomes.

従来技術1のように外層の素線が、図2の破線に示す中径線3である場合、中心線11(中径線3)の最外縁Dと外層の中径線3の最内縁Eとの距離L2は、
L2=2(cos30°−1/2)d・・・(2)
となる。
When the outer layer strand is the medium diameter line 3 shown by the broken line in FIG. 2 as in the prior art 1, the outermost edge D of the center line 11 (medium diameter line 3) and the innermost edge E of the medium diameter line 3 of the outer layer. The distance L2 from
L2 = 2 (cos30 ° −1 / 2) d 2 (2)
It becomes.

外層の中径線3を太径線4に変えると図2に示すように、太径線4の最内縁E’は中径線3の最内縁Eよりも外側に位置することになる。太径線4の最内縁E’と中径線3の最内縁Eとの差をαとする。なお、図2における太径線4の直径は、実際のものよりも大きくして、αが分るようにして図示してある。   When the inner diameter line 3 of the outer layer is changed to the larger diameter line 4, the innermost edge E ′ of the larger diameter line 4 is positioned outside the innermost edge E of the intermediate diameter line 3 as shown in FIG. 2. The difference between the innermost edge E ′ of the thick wire 4 and the innermost edge E of the medium wire 3 is defined as α. Note that the diameter of the thick wire 4 in FIG. 2 is made larger than the actual one so that α can be seen.

中心線11の中心Aから太径線4の最外縁端Cまでの距離L3は、
L3=d/2+2(cos30°−1/2)d+α+d・・・(3)
となる。
The distance L3 from the center A of the center line 11 to the outermost edge C of the large diameter line 4 is
L3 = d 2/2 + 2 (cos30 ° -1 / 2) d 2 + α + d 3 ··· (3)
It becomes.

撚線導体1の外形形状が、略真円形状、つまり、中心線11の中心Aから細径線2の最外縁端Bまでの距離と、中心線11の中心Aから太径線4の最外縁端Cまでの距離が同一となるのは、L1=L3であるので、式(1)、(3)より、
/2+d+d=d/2+(cos30°−1/2)d+α+d・・・(4)
となる。
The outer shape of the stranded wire conductor 1 is substantially circular, that is, the distance from the center A of the center line 11 to the outermost edge B of the thin wire 2 and the outermost edge 4 of the thin wire 2 from the center A of the center wire 11. The reason why the distance to the outer edge C is the same is L1 = L3. Therefore, from the equations (1) and (3),
d 2/2 + d 2 + d 1 = d 2/2 + (cos30 ° -1 / 2) d 2 + α + d 3 ··· (4)
It becomes.

細径線2の中心Fから直線ACへ垂線を下ろした位置Gとし直線FGの距離をL4とし、βを変数とすると、
L4=d/2+d/2−β ・・・(5)
となり、中心線11の中心Aから細径線2の中心Fまでの距離L5とすると
sin30°=L4/L5
=(d/2+d/2−β)/(d/2+d+d/2)
より、
/2+d/2−β=(d/2+d+d/2)/2 ・・・(6)
となる。
If the position G is a perpendicular line from the center F of the thin wire 2 to the straight line AC, the distance of the straight line FG is L4, and β is a variable,
L4 = d 3/2 + d 1/2-β ··· (5)
When the distance L5 from the center A of the center line 11 to the center F of the thin wire 2 is sin30 ° = L4 / L5
= (D 3/2 + d 1/2-β) / (d 2/2 + d 2 + d 1/2)
Than,
d 3/2 + d 1/ 2-β = (d 2/2 + d 2 + d 1/2) / 2 ··· (6)
It becomes.

実際の撚線導体1に使用する素線2、3、4の直径は、0.6mm以下と細いことから、α、βは極微小で、加工精度よりも小さくなることから、α、βを零として近似でき、α、βを零として近似すると
式(4)、(6)より
=0.82137×d ・・・(7)
=1.08932×d ・・・(8)
という関係式が得られ、このような関係が成り立つ細径線2、中径線3、太径線4を用いて撚線導体1を構成することにより、各素線2、3、4は、隣接する全ての素線2、3、4と接触し、かつ、中心線11の中心Aから細径線2の最外縁端Bまでの距離と、中心線11の中心Aから太径線4の最外縁端Cまでの距離を同一とすることができる。
Since the diameters of the strands 2, 3, and 4 used for the actual stranded conductor 1 are as thin as 0.6 mm or less, α and β are extremely small and smaller than the processing accuracy. It can be approximated as zero, and when α and β are approximated as zero, from Equations (4) and (6), d 1 = 0.82137 × d 2 (7)
d 3 = 1.08932 × d 2 (8)
By constructing the stranded conductor 1 using the thin wire 2, the medium wire 3, and the thick wire 4 where such a relationship is established, the strands 2, 3, 4 are The distance from the center A of the center line 11 to the outermost edge B of the thin wire 2 and the center wire 11 from the center A to the thick wire 4 The distance to the outermost edge C can be made the same.

また、本願の撚線導体1の外径D1は、D1=2×L1であるので、式(1)より
D1=2×(d/2+d+d) ・・・(9)
となり、この式(9)に式(7)を導入すると
D1=4.6427×d ・・・(10)
となる。
The outer diameter D1 of the stranded conductor 1 of the present application, since it is D1 = 2 × L1, formula (1) from D1 = 2 × (d 2/ 2 + d 2 + d 1) ··· (9)
When formula (7) is introduced into formula (9), D1 = 4.6427 × d 2 (10)
It becomes.

一方、従来技術1において、各素線の直径をdと仮定した場合の撚線導体101の最大外径D2は、図4からも明らかなように、
D2=5×d ・・・(11)
である。
On the other hand, in the prior art 1, the maximum outer diameter D2 of the stranded conductor 101 when the diameter of the wires was assumed d 2, as is apparent from FIG. 4,
D2 = 5 × d 2 (11)
It is.

また、従来技術2の撚線導体201の外径D3は、各素線の直径をdで、かつ、その圧縮率を直径比において3%(撚線導体201における最良の圧縮率)と仮定すると、
D3=5×d×(1−3/100)=4.85×d・・・(12)
である。
Also, assuming the outer diameter D3 of the stranded conductor 201 of the prior art 2, the diameter of the wires in the d 2, and the compression ratio of 3% in the diameter ratio (best compression ratio in stranded conductor 201) Then
D3 = 5 × d 2 × (1-3 / 100) = 4.85 × d 2 (12)
It is.

従って、D1<D3<D2となり、本願発明の撚線導体1は、従来技術1、2の撚線導体101、201よりも、最大外径を小さくすることができることが分かる。   Therefore, D1 <D3 <D2, and it can be seen that the stranded wire conductor 1 of the present invention can be made smaller in the maximum outer diameter than the stranded wire conductors 101 and 201 of the prior arts 1 and 2.

しかし、このように従来技術1、2の素線をdと仮定すると、本願発明の撚線導体1と従来技術の撚線導体101、201とでは、導体断面積が異なる。 However, assuming that the strands of the prior arts 1 and 2 are d 2 in this way, the conductor cross-sectional area is different between the stranded conductor 1 of the present invention and the stranded conductors 101 and 201 of the prior art.

そこで、次に、本願発明の撚線導体1と従来技術1、2の撚線導体101、201の導体断面積を同一にした場合の撚線導体1、101、201の外径D1’、D2’、D3’の比較を行なう。   Therefore, next, the outer diameters D1 ′ and D2 of the stranded wire conductors 1, 101, and 201 when the conductor cross-sectional areas of the stranded wire conductor 1 of the present invention and the stranded wire conductors 101 and 201 of the prior art 1 and 2 are the same. Comparison of “, D3” is performed.

本願発明の撚線導体1の断面積S1は、
S1=(π/4×d ×7)+(π/4×d ×6)+(π/4×d ×6) ・・・(13)
この式(13)に式(7)、(8)を導入すると、
S1=14.2688×d ・・・(14)
となる。
The cross-sectional area S1 of the stranded conductor 1 of the present invention is:
S1 = (π / 4 × d 2 2 × 7) + (π / 4 × d 1 2 × 6) + (π / 4 × d 3 2 × 6) (13)
When formulas (7) and (8) are introduced into formula (13),
S1 = 14.2688 × d 2 2 (14)
It becomes.

一方、従来技術1の撚線導体101の素線の直径をdとすると、撚線導体101の断面積S2は、
S2=π/4×d ×19
=14.9226×d ・・・(15)
となる。
On the other hand, when the diameter of the wire of stranded conductor 101 of the prior art 1 and d 4, the cross-sectional area S2 of the stranded conductor 101,
S2 = π / 4 × d 4 2 × 19
= 14.9226 × d 4 2 (15)
It becomes.

撚線導体1の導体断面積と、従来技術1の撚線導体101の導体断面積とが同一となるのは、S1=S2、式(14)、(15)より、
=1.02265×d ・・・(16)
となる。
The conductor cross-sectional area of the stranded wire conductor 1 and the conductor cross-sectional area of the stranded wire conductor 101 of the prior art 1 are the same from S1 = S2, formulas (14) and (15),
d 2 = 1.02265 × d 4 (16)
It becomes.

従って、撚線導体1の外径D1’は、式(10)、(16)より、
D1’=4.6427×d=4.74789×d ・・・(17)
また、従来技術1、2の撚線導体101、201の外径D2’、D3’は、式(11)、(12)より、
D2’=5×d ・・・(18)
D3’=4.85×d ・・・(19)
となる。
Accordingly, the outer diameter D1 ′ of the stranded wire conductor 1 is expressed by the equations (10) and (16).
D1 ′ = 4.6427 × d 2 = 4.747489 × d 4 (17)
Moreover, the outer diameters D2 ′ and D3 ′ of the stranded wire conductors 101 and 201 of the prior arts 1 and 2 are expressed by the following equations (11) and (12):
D2 ′ = 5 × d 4 (18)
D3 ′ = 4.85 × d 4 (19)
It becomes.

従って、撚線導体1と従来技術101、201の導体断面積を同一にした場合においても、D1’<D3’<D2’の関係が成り立ち、本願発明の撚線導体1は、従来技術1の撚線導体101よりも約5%、従来技術2の撚線導体201よりも約2%、外径を細くできることが分かる。   Therefore, even when the conductor cross-sectional areas of the stranded wire conductor 1 and the prior arts 101 and 201 are the same, the relationship D1 ′ <D3 ′ <D2 ′ holds, and the stranded wire conductor 1 of the present invention is the same as that of the prior art 1. It can be seen that the outer diameter can be made thinner by about 5% than the stranded wire conductor 101 and by about 2% than the stranded wire conductor 201 of the prior art 2.

本願発明の撚線導体1は、上記の構造を有しているために、次のような作用、効果を奏する。   Since the stranded wire conductor 1 of the present invention has the above-described structure, the following actions and effects are exhibited.

撚線導体1の外形形状を略真円形状とし、かつ、素線2、3、4が隣接する全ての素線2、3、4と接触させることができる。   The outer shape of the stranded wire conductor 1 can be made into a substantially perfect circle shape, and the strands 2, 3, 4 can be brought into contact with all adjacent strands 2, 3, 4.

撚線導体1の外形が略真円形状で、かつ、上述のように、従来技術1、2の撚線導体101、201よりも細径化できることにより、絶縁材の被覆の厚みを薄くでき、かつ、略均一化することができ、絶縁材を減量でき、コストを低減することができる。   The outer shape of the stranded wire conductor 1 is substantially circular, and as described above, the diameter of the stranded wire conductors 101 and 201 of the prior arts 1 and 2 can be reduced, thereby reducing the thickness of the insulation coating. And it can be made substantially uniform, an insulating material can be reduced, and cost can be reduced.

また、撚線導体1は、従来技術2の撚線導体201のように、素線を圧縮ダイスに通すことがないために、外層素線が、圧縮変形されることがない。そのため、のび特性、柔軟性、可とう性等の物理特性を損うことがなく、素線の物理特性を維持することができ、信頼性の高い撚線導体1を得ることができる。   Further, unlike the stranded wire conductor 201 of the prior art 2, the stranded wire conductor 1 does not allow the strand to pass through a compression die, and therefore, the outer layer strand is not compressed and deformed. Therefore, the physical characteristics of the strands can be maintained without damaging the physical characteristics such as the stretch characteristics, flexibility, and flexibility, and the highly reliable stranded conductor 1 can be obtained.

上記式(7)、(8)の関係となるように、中径線3の直径dを0.103mm、細径線2の直径dをd=0.82137×d=0.084mm、太径線4の直径dをd=1.08932×d=0.112mmとする3種類の素線2、3、4を用いて、撚ピッチ4.5mmで一括撚線として撚線導体1を得、これを実施品1とした。なお、素線2、3、4の材質は、銀メッキ軟銅線である。 The diameter d 2 of the medium diameter wire 3 is 0.103 mm and the diameter d 1 of the thin diameter wire 2 is d 1 = 0.82137 × d 2 = 0. Using three types of strands 2, 3, and 4 with 084 mm and the diameter d 3 of the large-diameter wire 4 as d 3 = 1.08932 × d 2 = 0.112 mm, as a batch stranded wire at a twist pitch of 4.5 mm A stranded wire conductor 1 was obtained, and this was designated as an implementation product 1. In addition, the material of the strands 2, 3, and 4 is a silver plating annealed copper wire.

この撚線導体1の外径の実測値は0.477mmであり、式(9)から求められる計算値、
D1=2×(d/2+d+d)=3d+2d
=3×0.103+2×0.084=0.477 ・・・(20)
と一致した。
The measured value of the outer diameter of the stranded conductor 1 is 0.477 mm, and is a calculated value obtained from the equation (9),
D1 = 2 × (d 2/ 2 + d 2 + d 1) = 3d 2 + 2d 1
= 3 x 0.103 + 2 x 0.084 = 0.477 (20)
Matched.

この実施品1を顕微鏡にて観察すると、各素線は隣接する全ての素線と接しており、かつ、その外形形状は略真円形状であった。   When the product 1 was observed with a microscope, each strand was in contact with all adjacent strands, and the outer shape thereof was a substantially perfect circle.

また、中径線と同様の直径dを有する0.103mmの銀メッキ軟銅線を素線として用い、撚ピッチ4.5mmにて、従来技術1の撚線導体101を作成し、これを比較品1とした。 In addition, using a 0.103 mm silver-plated annealed copper wire having a diameter d 2 similar to that of the medium diameter wire as a strand, a twisted wire conductor 101 of prior art 1 is created at a twist pitch of 4.5 mm, and this is compared. Product 1.

更に、中径線と同様の直径dを有する0.103mmの銀メッキ軟銅線を素線として用い、かつ、撚ピッチ4.5mm、圧縮率2.5%(直径比)にて、従来技術2の撚線導体201を作成し、これを比較品2とした。 In addition, a 0.103 mm silver-plated annealed copper wire having a diameter d 2 similar to that of the medium diameter wire is used as the element wire, and the twist pitch is 4.5 mm and the compression ratio is 2.5% (diameter ratio). 2 stranded wire conductors 201 were prepared and used as comparative product 2.

実施品1の外層を構成する素線の伸び率の平均は20.4%であった。一方、比較品1の外層を構成する素線の伸び率の平均は18.3%であり、比較品2の外層を構成する素線の伸び率の平均は14.6%であった。   The average elongation percentage of the wires constituting the outer layer of the product 1 was 20.4%. On the other hand, the average elongation rate of the strands constituting the outer layer of the comparative product 1 was 18.3%, and the average elongation rate of the strands constituting the outer layer of the comparative product 2 was 14.6%.

本願発明の撚線導体1の伸び率は、圧縮を行っていないことにより、圧縮されている従来技術2よりも約40%向上し、従来技術1のものと比較しても同等以上であることが分った。   The elongation rate of the stranded wire conductor 1 of the present invention is about 40% higher than that of the prior art 2 that is compressed because it is not compressed, and is equal to or greater than that of the prior art 1. I found out.

中径線3の直径dを0.184mmとすると、上記式(7)、(8)の関係となるような、細径線2の直径dは、d=0.82137×d=0.1511mmであり、太径線4の直径dは、d=1.08932×d=0.2005mmである。 When the diameter d 2 of the medium diameter wire 3 is 0.184 mm, the diameter d 1 of the thin diameter wire 2 that satisfies the relationship of the above formulas (7) and (8) is d 1 = 0.82137 × d 2. = 0.1511 mm, and the diameter d 3 of the thick wire 4 is d 3 = 1.08932 × d 2 = 0.2005 mm.

上記関係とは一部異なる実施品として、直径が0.184mmの中径線3と、直径が0.1511mmの細径線2と、直径が0.2040mmの太径線4の3種類の素線2、3、4を用いて、撚ピッチ12.5mmで一括撚線として撚線導体1を得、これを実施品2とした。なお、素線2、3、4の材質は、錫メッキ軟銅線である。   As an implementation product partially different from the above relationship, there are three types of elements: a medium diameter wire 3 having a diameter of 0.184 mm, a thin diameter wire 2 having a diameter of 0.1511 mm, and a large diameter wire 4 having a diameter of 0.2040 mm. Using the wires 2, 3, and 4, a stranded wire conductor 1 was obtained as a collective stranded wire at a twist pitch of 12.5 mm. In addition, the material of the strands 2, 3, and 4 is a tin plating annealed copper wire.

この実施品2の外径の実測値は0.854mmであり、式(9)から求められる計算値、
D1=2×(d/2+d+d)=3d+2d
=3×0.184+2×0.1511=0.854 ・・・(21)
となった。
The actually measured value of the outer diameter of this product 2 is 0.854 mm, and is a calculated value obtained from the equation (9),
D1 = 2 × (d 2/ 2 + d 2 + d 1) = 3d 2 + 2d 1
= 3 x 0.184 + 2 x 0.1511 = 0.854 (21)
It became.

この実施品2を顕微鏡にて観察すると、各素線は隣接する全ての素線と接しており、かつ、その外形形状は略真円形状であった。   When this embodiment product 2 was observed with a microscope, each strand was in contact with all adjacent strands, and the outer shape thereof was a substantially perfect circle.

また、従来技術1の撚線導体101の導体断面積と実施品2の導体断面積と同じとなる、d=d/1.02265=0.180mm(式(16)より)の直径を有する錫メッキ軟銅線を素線として用い、撚ピッチ12.5mmにて、従来技術1の撚線導体101を作成し、これを比較品3とした。 Further, the diameter of d 4 = d 2 /1.02265=0.180 mm (from Expression (16)), which is the same as the conductor cross-sectional area of the stranded wire conductor 101 of the prior art 1 and the conductor cross-sectional area of the implementation product 2, is The stranded wire conductor 101 of the prior art 1 was created at a twist pitch of 12.5 mm using the tin-plated annealed copper wire as a comparative product 3.

この比較品3の最大外径の実測値は0.892mmであり、式(18)から求められる計算値は、
D2’=5×d
=5×0.180=0.900 ・・・(22)
であり、略一致し、実施品2と比較品3との導体断面積が同じものにおいても、実施品2の外径は、比較品3の最大外径よりも小さいことが分った。
The actual measurement value of the maximum outer diameter of the comparative product 3 is 0.892 mm, and the calculated value obtained from the equation (18) is
D2 ′ = 5 × d 4
= 5 x 0.180 = 0.900 (22)
It was found that the outer diameter of the implementation product 2 was smaller than the maximum outer diameter of the comparison product 3 even when the conductor cross sections of the implementation product 2 and the comparison product 3 were the same.

本発明の撚線導体を示す横断面図。The cross-sectional view which shows the stranded wire conductor of this invention. 本発明の撚線導体を説明するための略断面図。The schematic sectional drawing for demonstrating the twisted wire conductor of this invention. 従来技術1の撚線導体の斜視図。The perspective view of the stranded wire conductor of the prior art 1. FIG. 従来技術1の撚線導体を絶縁材で被覆した被覆線の横断面図。The cross-sectional view of the covered wire which coat | covered the twisted wire conductor of the prior art 1 with the insulating material. 従来技術2の撚線導体を示す横断面図。The cross-sectional view which shows the stranded wire conductor of the prior art 2. FIG.

符号の説明Explanation of symbols

1 撚線導体
2 細径線(素線)
3 中径線(素線)
4 太径線(素線)
5 谷間部
11 中心線
1A 内層
1B 外層
1 Stranded conductor 2 Thin wire (elementary wire)
3 Medium diameter wire (elementary wire)
4 Thick wire (elementary wire)
5 Valley 11 Central line 1A Inner layer 1B Outer layer

Claims (1)

1心の素線からなる中心線を設け、該中心線の周囲を6心の素線が覆い囲んで内層を形成し、更に、その外周を12心の素線が覆い囲んで外層を形成する19心の撚線導体であって、
前記素線として、直径が異なる3種類の細径線、中径線、太径線を用い、
前記中心線と内層を構成する素線は全て前記中径線であり、
外層を構成する素線として、前記中径線よりも細い6心の前記細径線と、前記中径線よりも太い6心の前記太径線を用いて、これらを周方向に交互に配置するとともに、
前記6心の細径線を、その中心が、前記中心線の中心と、内層を構成する6心の中径線の中心とを結んだ延長線上に位置するように配設し、前記内層を構成する6心の中径線における隣接する中径線の外面同士で形成される谷間部に太径線を配設し、
前記各素線は、隣接する全ての素線と接触し、
前記中心線の中心から前記細径線の最外縁端までの距離と、前記中心線の中心から前記太径線の最外縁端までの距離とが等しいことを特徴とする撚線導体。
A center line composed of a single core wire is provided, an inner layer is formed by surrounding the center line with six core wires, and an outer layer is formed by surrounding the outer periphery with 12 core wires. A 19-core stranded conductor,
As said strand, three kinds of thin diameter wires with different diameters, medium diameter wires, and large diameter wires are used,
All the strands constituting the center line and the inner layer are the medium diameter wires,
As the strands constituting the outer layer, the six thin diameter wires thinner than the medium diameter wire and the six thick wires thicker than the medium diameter wire are alternately arranged in the circumferential direction. And
The six-core thin diameter wires are arranged so that the center thereof is located on an extension line connecting the center of the center line and the center of the six-core medium diameter wires constituting the inner layer, and the inner layer is A thick wire is disposed in the valley formed by the outer surfaces of the adjacent medium wires in the 6 wires constituting the medium wire,
Each strand is in contact with all adjacent strands;
A stranded wire conductor characterized in that a distance from the center of the center line to the outermost edge of the thin wire is equal to a distance from the center of the center line to the outermost edge of the thick wire.
JP2006145159A 2006-05-25 2006-05-25 Twisted-wire conductor Pending JP2007317477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145159A JP2007317477A (en) 2006-05-25 2006-05-25 Twisted-wire conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145159A JP2007317477A (en) 2006-05-25 2006-05-25 Twisted-wire conductor

Publications (2)

Publication Number Publication Date
JP2007317477A true JP2007317477A (en) 2007-12-06
JP2007317477A5 JP2007317477A5 (en) 2008-01-24

Family

ID=38851165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145159A Pending JP2007317477A (en) 2006-05-25 2006-05-25 Twisted-wire conductor

Country Status (1)

Country Link
JP (1) JP2007317477A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073843A1 (en) * 2010-11-29 2012-06-07 Yazaki Corporation Stranded electrical insulated wire conductor
CN105625070A (en) * 2014-07-21 2016-06-01 蒋菊生 Optical cable or power cable or optical power composite cable with steel wire rope
JP2016517133A (en) * 2013-03-07 2016-06-09 フーバー + スーナー アーゲー Sealed conductor cable
JP6001130B1 (en) * 2015-04-17 2016-10-05 三洲電線株式会社 Stranded conductor
JP2017033796A (en) * 2015-08-03 2017-02-09 三洲電線株式会社 Twisted wire conductor
JP2017107802A (en) * 2015-12-11 2017-06-15 三洲電線株式会社 Twisted wire conductor
CN107017042A (en) * 2017-05-12 2017-08-04 西隆电缆有限公司 A kind of aluminium alloy conductor
JP6463453B1 (en) * 2017-12-18 2019-02-06 三洲電線株式会社 Stranded conductor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073843A1 (en) * 2010-11-29 2012-06-07 Yazaki Corporation Stranded electrical insulated wire conductor
JP2012119073A (en) * 2010-11-29 2012-06-21 Yazaki Corp Stranded conductor for insulated wire
CN103250214A (en) * 2010-11-29 2013-08-14 矢崎总业株式会社 Stranded electrical insulated wire conductor
EP2647015A1 (en) * 2010-11-29 2013-10-09 Yazaki Corporation Stranded electrical insulated wire conductor
EP2647015A4 (en) * 2010-11-29 2014-12-24 Yazaki Corp Stranded electrical insulated wire conductor
JP2016517133A (en) * 2013-03-07 2016-06-09 フーバー + スーナー アーゲー Sealed conductor cable
CN105625070A (en) * 2014-07-21 2016-06-01 蒋菊生 Optical cable or power cable or optical power composite cable with steel wire rope
JP6001130B1 (en) * 2015-04-17 2016-10-05 三洲電線株式会社 Stranded conductor
JP2016207345A (en) * 2015-04-17 2016-12-08 三洲電線株式会社 Stranded wire conductor
JP2017033796A (en) * 2015-08-03 2017-02-09 三洲電線株式会社 Twisted wire conductor
JP2017107802A (en) * 2015-12-11 2017-06-15 三洲電線株式会社 Twisted wire conductor
CN107017042A (en) * 2017-05-12 2017-08-04 西隆电缆有限公司 A kind of aluminium alloy conductor
JP6463453B1 (en) * 2017-12-18 2019-02-06 三洲電線株式会社 Stranded conductor

Similar Documents

Publication Publication Date Title
JP2007317477A (en) Twisted-wire conductor
JP4699952B2 (en) Stranded conductor
JP4700078B2 (en) Stranded conductor
JP2012119073A (en) Stranded conductor for insulated wire
JP5896869B2 (en) Stranded conductor
JP6937535B1 (en) Stranded conductor
JP2018060794A (en) Composite stranded wire conductor and insulated wire provided therewith
JP2009140661A (en) Stranded-cable conductor
JP6209187B2 (en) Twisted conductor
JP7022469B1 (en) Stranded conductor
JP2023086497A (en) Stranded wire conductor
JP2018022565A (en) Twisted wire conductor
JP6381569B2 (en) Stranded conductor
JP2009054410A (en) Twisted conductor
JP2020013686A (en) Twisted wire conductor
JP7022471B1 (en) Stranded conductor
JP2020053378A (en) Flat cable
JP6001130B1 (en) Stranded conductor
JP6895196B1 (en) Stranded conductor
JP7265812B1 (en) stranded conductor
JP6895198B1 (en) Stranded conductor
JP2021077562A (en) Twisted-wire conductor
JP7076170B1 (en) Stranded conductor
JP7198544B1 (en) stranded conductor
JP7265814B1 (en) stranded conductor

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20071109

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110111

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823