Nothing Special   »   [go: up one dir, main page]

JP2007316012A - Autoanalyzer and specimen-dispensing method therefor - Google Patents

Autoanalyzer and specimen-dispensing method therefor Download PDF

Info

Publication number
JP2007316012A
JP2007316012A JP2006148361A JP2006148361A JP2007316012A JP 2007316012 A JP2007316012 A JP 2007316012A JP 2006148361 A JP2006148361 A JP 2006148361A JP 2006148361 A JP2006148361 A JP 2006148361A JP 2007316012 A JP2007316012 A JP 2007316012A
Authority
JP
Japan
Prior art keywords
concentration
sample
dispensing
blood cell
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006148361A
Other languages
Japanese (ja)
Other versions
JP4871025B2 (en
Inventor
Akihisa Kuroda
顕久 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006148361A priority Critical patent/JP4871025B2/en
Publication of JP2007316012A publication Critical patent/JP2007316012A/en
Application granted granted Critical
Publication of JP4871025B2 publication Critical patent/JP4871025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an autoanalyzer capable of accurately measuring the concentration of blood corpuscle components, even if the times taken up to dispensing are different, and to provide a specimen-dispensing method therefor. <P>SOLUTION: The autoanalyzer is constituted so as to dispense a predetermined amount of a specimen, containing blood corpuscle components from a specimen container 9a by a dispenser 20 for making the same react with a reagent to perform analysis. The specimen-dispensing method for the autoanalyzer is also disclosed. The autoanalyzer includes a concentration detecting part 15a for detecting the concentrations of blood corpuscle components and a position control part 15b for controlling the suction position of the specimen in the vertical direction, at the dispensing by due to the dispenser. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動分析装置およびその検体分注方法に関するものである。   The present invention relates to an automatic analyzer and a sample dispensing method thereof.

従来、ヘモグロビンA1c(HbA1c)は、糖尿病の診断マーカとして使用されており、自動分析装置においては、被験者から採取した血球成分を含む検体(血液)の一定量を分注し、試薬、例えば、前処理液を加えて血球成分を溶血させた溶血試料の吸光度から求めた総ヘモグロビン(T−Hb)の濃度及びヘモグロビンA1cの濃度から総ヘモグロビン(T−Hb)に対する割合(%)として測定している(例えば、特許文献1参照)。ここで、血球成分を含む検体は、採取後、放置しておくと血球成分が沈降し、血漿成分と血球成分とに分離する。このため、通常、血球成分を含む検体は、採取後反応容器へ分注するまでの間、転倒混和する等の処理を施すことによって血球成分の沈降を回避している。   Conventionally, hemoglobin A1c (HbA1c) has been used as a diagnostic marker for diabetes. In an automatic analyzer, a certain amount of a sample (blood) containing blood cell components collected from a subject is dispensed, and a reagent, for example, It is measured as a ratio (%) to the total hemoglobin (T-Hb) from the concentration of total hemoglobin (T-Hb) and the concentration of hemoglobin A1c obtained from the absorbance of the hemolyzed sample in which the blood cell component is hemolyzed by adding the treatment solution. (For example, refer to Patent Document 1). Here, if a specimen containing a blood cell component is left after collection, the blood cell component settles and separates into a plasma component and a blood cell component. For this reason, usually, a specimen containing blood cell components avoids sedimentation of the blood cell components by performing a process such as inversion mixing until the sample is dispensed into the reaction container after collection.

特開2000−46843号公報JP 2000-46843 A

ところで、血球成分を含む検体(血液)を分析する自動分析装置は、検体を採取した採血管等の検体容器をラックに保持させ、これらのラックを搬送しながら検体を順次分析してゆく。このため、血球成分を含む検体は、ラックに保持してから分注位置へ搬送されて反応容器に分注されるまでに血球成分が沈降し、鉛直方向に濃度勾配が発生する。この結果、自動分析装置は、検体容器を保持したラックをセットした後、分注ノズルが検体を分注するまでの時間が異なると、検体を分注する位置が固定されているため、同一の検体であっても、血球成分の沈降に起因した前記濃度勾配のために血球成分の濃度を正確に測定することができなくなるという問題点があった。この場合、検体容器を振動させて血球成分の沈降を抑制することも考えられるが、自動分析装置は、振動装置を設けると装置の複雑化と大型化を招来して好ましくない。   By the way, an automatic analyzer for analyzing a sample (blood) containing blood cell components holds sample containers such as blood collection tubes from which samples are collected in racks and sequentially analyzes the samples while transporting these racks. For this reason, the specimen containing the blood cell component is retained in the rack, transported to the dispensing position, and dispensed into the reaction container, so that the blood cell component settles and a concentration gradient is generated in the vertical direction. As a result, the automatic analyzer has the same position because the position at which the sample is dispensed is fixed if the time until the dispensing nozzle dispenses the sample differs after the rack holding the sample container is set. Even for a specimen, there is a problem that the concentration of blood cell components cannot be measured accurately due to the concentration gradient caused by sedimentation of blood cell components. In this case, it is conceivable to vibrate the specimen container to suppress sedimentation of blood cell components. However, if the automatic analyzer is provided with a vibration device, it is not preferable because the device becomes complicated and large.

本発明は、上記に鑑みてなされたものであって、分注までの時間が異なっても血球成分の濃度を正確に測定することが可能な自動分析装置およびその検体分注方法を提供することを目的とする。   The present invention has been made in view of the above, and provides an automatic analyzer capable of accurately measuring the concentration of blood cell components even when the time until dispensing differs, and a sample dispensing method thereof With the goal.

上記目的を達成するために、請求項1にかかる自動分析装置は、血球成分を含む検体を検体容器中から分注装置によって所定量分注し、試薬と反応させて分析する自動分析装置において、前記血球成分の濃度を検出する濃度検出手段と、前記濃度検出手段によって検出された前記血球成分の濃度をもとに、前記分注装置による分注の際の鉛直方向における前記検体の吸引位置を制御する位置制御手段と、を備えたことを特徴とする。   In order to achieve the above object, an automatic analyzer according to claim 1 is an automatic analyzer that dispenses a predetermined amount of a sample containing blood cell components from a sample container by a dispensing device and reacts with a reagent for analysis. Based on the concentration of the blood cell component detected by the concentration detection means and a concentration detection means for detecting the concentration of the blood cell component, the suction position of the specimen in the vertical direction when dispensing by the dispensing device is determined. And a position control means for controlling.

また、請求項2にかかる自動分析装置は、上記の発明において、前記濃度検出手段は、前記検体容器から分注された所定量の検体における血球成分の濃度を検出することを特徴とする。   The automatic analyzer according to claim 2 is characterized in that, in the above invention, the concentration detecting means detects the concentration of a blood cell component in a predetermined amount of sample dispensed from the sample container.

また、請求項3にかかる自動分析装置は、上記の発明において、前記位置制御手段は、前記濃度検出手段が検出した前記血球成分の濃度が所定の濃度未満である場合には、前記分注装置による前記検体を吸引する鉛直方向の分注位置を下降させ、前記血球成分の濃度が所定の濃度を超えている場合には、前記分注位置を上昇させることを特徴とする。   According to a third aspect of the present invention, there is provided the automatic analyzer according to the above-mentioned invention, wherein the position control means is configured such that when the concentration of the blood cell component detected by the concentration detection means is less than a predetermined concentration, The vertical dispensing position for aspirating the specimen is lowered, and if the concentration of the blood cell component exceeds a predetermined concentration, the dispensing position is raised.

また、上記目的を達成するために、請求項4にかかる自動分析装置の検体分注方法は、血球成分を含む検体を検体容器中から所定量分注し、試薬と反応させて分析する自動分析装置の検体分注方法であって、前記検体を所定量分注する分注工程と、前記分注工程で分注した前記検体の血球成分の濃度を検出する濃度検出工程と、前記濃度検出工程によって検出された前記血球成分の濃度をもとに、分注の際の前記検体の鉛直方向の吸引位置を制御する位置制御工程と、を含むことを特徴とする。   In order to achieve the above object, the sample dispensing method of the automatic analyzer according to claim 4 is an automatic analysis in which a predetermined amount of a sample containing a blood cell component is dispensed from a sample container and reacted with a reagent for analysis. A sample dispensing method for an apparatus, a dispensing step for dispensing a predetermined amount of the sample, a concentration detecting step for detecting a concentration of a blood cell component of the sample dispensed in the dispensing step, and the concentration detecting step And a position control step for controlling the vertical suction position of the specimen at the time of dispensing based on the concentration of the blood cell component detected by the above.

また、請求項5にかかる自動分析装置の検体分注方法は、上記の発明において、前記濃度検出工程では、前記検体容器から分注された所定量の検体における血球成分の濃度を検出することを特徴とする。   Further, in the sample dispensing method of the automatic analyzer according to claim 5, in the above invention, in the concentration detection step, the concentration of a blood cell component in a predetermined amount of sample dispensed from the sample container is detected. Features.

本発明の自動分析装置は、位置制御手段が、濃度検出手段によって検出された血球成分の濃度をもとに、分注装置による分注の際の検体の鉛直方向における吸引位置を制御し、本発明の自動分析装置の検体分注方法は、位置制御工程において、濃度検出工程によって検出された血球成分の濃度をもとに、分注の際の検体の鉛直方向の吸引位置を制御するので、分注までの時間が異なっても、血球成分の濃度勾配を考慮した所定の濃度の検体を分注し、血球成分の濃度を正確に測定することが可能な自動分析装置およびその検体分注方法を提供することできるという効果を奏する。   In the automatic analyzer of the present invention, the position control means controls the aspiration position in the vertical direction of the specimen during dispensing by the dispensing apparatus based on the concentration of the blood cell component detected by the concentration detection means. In the sample dispensing method of the automatic analyzer of the invention, in the position control step, the suction position in the vertical direction of the sample at the time of dispensing is controlled based on the concentration of the blood cell component detected by the concentration detection step. An automatic analyzer capable of dispensing a predetermined concentration of a sample in consideration of a concentration gradient of a blood cell component and accurately measuring the concentration of the blood cell component even when the time to dispensing is different, and a sample dispensing method thereof There is an effect that can be provided.

以下に添付図面を参照して、本発明の自動分析装置およびその分注方法の好適な実施の形態を詳細に説明する。図1は、本発明の自動分析装置の概略構成図である。図2は、図1の自動分析装置で使用する検体分注装置の概略構成を示すブロック図である。   Exemplary embodiments of an automatic analyzer and a dispensing method thereof according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an automatic analyzer according to the present invention. FIG. 2 is a block diagram showing a schematic configuration of a sample dispensing apparatus used in the automatic analyzer of FIG.

自動分析装置1は、血球成分を含む血液や尿等の検体を自動分析する装置であり、図1に示すように、試薬テーブル2,3、キュベットホイール4、検体容器移送機構8、分析光学系11、洗浄機構12、第一攪拌装置13と第二攪拌装置14、制御部15及び検体分注装置20を備えている。   The automatic analyzer 1 is a device that automatically analyzes a sample such as blood or urine containing blood cell components. As shown in FIG. 1, the reagent tables 2 and 3, the cuvette wheel 4, the sample container transfer mechanism 8, the analysis optical system. 11, a cleaning mechanism 12, a first stirring device 13 and a second stirring device 14, a control unit 15, and a sample dispensing device 20.

試薬テーブル2,3は、図1に示すように、それぞれ第一試薬の試薬容器2aと第二試薬の試薬容器3aが周方向に複数配置され、駆動手段に回転されて試薬容器2a,3aを周方向に搬送する。複数の試薬容器2a,3aは、それぞれ検査項目に応じて血球成分を溶血させる前処理液を含む試薬が満たされ、外面には収容した試薬の種類,ロット及び有効期限等の情報を記録した情報記録媒体(図示せず)が付加されている。ここで、試薬テーブル2,3の外周には、試薬容器2a,3aに付加した情報記録媒体に記録された試薬情報を読み取り、制御部15へ出力する読取装置が設置されている。   As shown in FIG. 1, each of the reagent tables 2 and 3 includes a plurality of reagent containers 2a for the first reagent and a plurality of reagent containers 3a for the second reagent arranged in the circumferential direction. The reagent containers 2a and 3a are rotated by driving means. Transport in the circumferential direction. Each of the plurality of reagent containers 2a and 3a is filled with a reagent containing a pretreatment liquid that hemolyzes blood cell components in accordance with the test item, and information on the type, lot, and expiration date of the stored reagent is recorded on the outer surface. A recording medium (not shown) is added. Here, on the outer periphery of the reagent tables 2 and 3, a reading device that reads the reagent information recorded on the information recording medium added to the reagent containers 2 a and 3 a and outputs it to the control unit 15 is installed.

キュベットホイール4は、図1に示すように、複数の反応容器5が周方向に沿って配列されており、試薬テーブル2,3を駆動する駆動手段とは異なる駆動手段によって矢印で示す方向に回転されて反応容器5を周方向に移動させる。キュベットホイール4は、光源11aと分光部11bとの間に配置され、反応容器5を保持する保持部4aと光源11aが出射した光束を分光部11bへ導く円形の開口からなる光路4bとを有している。保持部4aは、キュベットホイール4の外周に周方向に沿って所定間隔で配置され、保持部4aの内周側に半径方向に延びる光路4bが形成されている。   As shown in FIG. 1, the cuvette wheel 4 has a plurality of reaction vessels 5 arranged in the circumferential direction, and is rotated in a direction indicated by an arrow by a driving means different from the driving means for driving the reagent tables 2 and 3. Then, the reaction vessel 5 is moved in the circumferential direction. The cuvette wheel 4 is disposed between the light source 11a and the spectroscopic unit 11b, and has a holding unit 4a that holds the reaction vessel 5 and an optical path 4b that includes a circular opening that guides the light beam emitted from the light source 11a to the spectroscopic unit 11b. is doing. The holding portions 4a are arranged on the outer periphery of the cuvette wheel 4 at predetermined intervals along the circumferential direction, and an optical path 4b extending in the radial direction is formed on the inner peripheral side of the holding portion 4a.

反応容器5は、分析光学系11から出射された分析光(340〜800nm)に含まれる光の80%以上を透過する光学的に透明な素材、例えば、耐熱ガラスを含むガラス,環状オレフィンやポリスチレン等によって四角筒状に成形されたキュベットと呼ばれる容器である。反応容器5は、近傍に設けた試薬分注装置6,7によって試薬テーブル2,3の試薬容器2a,3aから試薬が分注される。ここで、試薬分注装置6,7は、それぞれ水平面内を回動すると共に、上下方向に昇降されるアーム6a,7aに試薬を分注するノズル6b,7bが設けられ、洗浄水によってノズル6b,7bを洗浄する洗浄手段を有している。   The reaction vessel 5 is an optically transparent material that transmits 80% or more of the light contained in the analysis light (340 to 800 nm) emitted from the analysis optical system 11, such as glass containing heat-resistant glass, cyclic olefin, and polystyrene. It is a container called a cuvette formed into a square cylinder shape by the like. In the reaction container 5, the reagent is dispensed from the reagent containers 2a and 3a of the reagent tables 2 and 3 by the reagent dispensing devices 6 and 7 provided in the vicinity. Here, each of the reagent dispensing devices 6 and 7 is rotated in a horizontal plane, and nozzles 6b and 7b for dispensing the reagent are provided on arms 6a and 7a that are moved up and down in the vertical direction. , 7b.

検体容器移送機構8は、図1に示すように、配列された複数のラック9を矢印方向に沿って1つずつ歩進させながら移送する。ラック9は、検体を収容した複数の検体容器9aを保持している。ここで、検体容器9aは、検体容器移送機構8によって移送されるラック9の歩進が停止するごとに、検体分注装置20によって検体が各反応容器5へ分注される。   As shown in FIG. 1, the specimen container transfer mechanism 8 transfers the plurality of arranged racks 9 while stepping one by one along the arrow direction. The rack 9 holds a plurality of sample containers 9a that store samples. Here, each time the step of the rack 9 transferred by the sample container transfer mechanism 8 stops, the sample is dispensed into each reaction container 5 by the sample dispensing device 20.

分析光学系11は、試薬と検体とが反応した反応容器5内の液体試料に分析光(340〜800nm)を透過させて分析するための光学系であり、図1に示すように、光源11a、分光部11b及び受光部11cを有している。光源11aから出射された分析光は、反応容器5内の液体試料を透過し、分光部11bと対向する位置に設けた受光部11cによって受光される。受光部11cは、制御部15と接続されている。   The analysis optical system 11 is an optical system for performing analysis by transmitting analysis light (340 to 800 nm) through the liquid sample in the reaction vessel 5 in which the reagent and the sample have reacted. As shown in FIG. , A spectroscopic unit 11b and a light receiving unit 11c. The analysis light emitted from the light source 11a passes through the liquid sample in the reaction vessel 5 and is received by the light receiving unit 11c provided at a position facing the spectroscopic unit 11b. The light receiving unit 11 c is connected to the control unit 15.

洗浄機構12は、ノズル12aによって反応容器5内の液体試料を吸引して排出した後、ノズル12aによって洗剤や洗浄水等の洗浄液等を繰り返し注入し、吸引することにより、分析光学系11による分析が終了した反応容器5を洗浄する。   The cleaning mechanism 12 sucks and discharges the liquid sample in the reaction vessel 5 by the nozzle 12a, and then repeatedly injects and sucks a cleaning liquid such as detergent and cleaning water by the nozzle 12a, thereby performing analysis by the analysis optical system 11. The reaction vessel 5 that has been completed is washed.

第一攪拌装置13及び第二攪拌装置14は、分注された検体と試薬とを攪拌棒13a,14aによって攪拌し、反応させる。   The first stirrer 13 and the second stirrer 14 stir the dispensed specimen and reagent with the stirrers 13a and 14a and cause them to react.

制御部15は、試薬テーブル2,3、試薬分注装置6,7、検体容器移送機構8、分析光学系11、洗浄機構12、攪拌装置13,14、入力部16、表示部17及び検体分注装置20等と接続されてこれら各部の作動を制御し、マイクロコンピュータ等が使用される。制御部15は、図2に示すように、分析光学系11から入力される光情報をもとに反応容器5内の液体試料の濃度を検出する濃度検出部15aと、駆動機構22を制御する駆動機構制御部15bとを有している。このとき、駆動機構制御部15bは、駆動機構22によってアーム20aの昇降動作と回動動作を制御するが、アーム20aの昇降動作を制御することによって検体分注装置20による検体を分注する際の分注ノズル20bによる検体容器9aに保持された検体の鉛直方向における吸引位置を制御する位置制御手段である。   The control unit 15 includes the reagent tables 2 and 3, the reagent dispensing devices 6 and 7, the sample container transfer mechanism 8, the analysis optical system 11, the cleaning mechanism 12, the stirring devices 13 and 14, the input unit 16, the display unit 17, and the sample distribution. It is connected to the injection device 20 and the like to control the operation of these parts, and a microcomputer or the like is used. As shown in FIG. 2, the control unit 15 controls the concentration detection unit 15 a that detects the concentration of the liquid sample in the reaction vessel 5 based on the optical information input from the analysis optical system 11, and the drive mechanism 22. And a drive mechanism control unit 15b. At this time, the drive mechanism control unit 15b controls the raising / lowering operation and the turning operation of the arm 20a by the drive mechanism 22, but when dispensing the sample by the sample dispensing apparatus 20 by controlling the raising / lowering operation of the arm 20a. This is a position control means for controlling the suction position in the vertical direction of the specimen held in the specimen container 9a by the dispensing nozzle 20b.

また、制御部15は、受光部11cから入力される波長ごとの光量信号をもとに濃度検出部15aが各反応容器5内の液体試料の波長ごとの吸光度を求め、検体の成分濃度等を分析する。このとき、自動分析装置1は、分注ノズル20bによる検体容器9aに採取された検体の鉛直方向における吸引位置と、そのときの血球成分の濃度との標準的な関係を予め濃度検出部15aに記憶しておき、この関係に基づいて濃度検出部15aが分注ノズル20bによる検体の吸引位置を設定する。更に、制御部15は、試薬容器2a,3aに付加した情報記録媒体から読み取った情報に基づき、試薬のロットが異なる場合や有効期限外等の場合に分析作業を停止するように自動分析装置1を制御し、或いはオペレータに警報を発する。   Further, in the control unit 15, the concentration detection unit 15a obtains the absorbance for each wavelength of the liquid sample in each reaction vessel 5 based on the light amount signal for each wavelength input from the light receiving unit 11c, and calculates the component concentration of the specimen. analyse. At this time, the automatic analyzer 1 previously stores the standard relationship between the suction position in the vertical direction of the sample collected in the sample container 9a by the dispensing nozzle 20b and the concentration of the blood cell component at that time in the concentration detection unit 15a. Based on this relationship, the concentration detector 15a sets the sample suction position by the dispensing nozzle 20b based on this relationship. Further, based on information read from the information recording medium added to the reagent containers 2a, 3a, the control unit 15 stops the analysis work when the reagent lot is different or when the expiration date is out of date, etc. Or alert the operator.

入力部16は、制御部15へ検査項目等を入力する操作を行う部分であり、例えば、キーボードやマウス等が使用される。表示部17は、分析内容,分析結果或いは警報等を表示するもので、ディスプレイパネル等が使用される。   The input unit 16 is a part that performs an operation of inputting an inspection item or the like to the control unit 15, and for example, a keyboard, a mouse, or the like is used. The display unit 17 displays analysis contents, analysis results, alarms, or the like, and a display panel or the like is used.

検体分注装置20は、図2に示すように、駆動機構22によって駆動されるアーム20aに検体を分注する分注ノズル20bが設けられている。アーム20aは、駆動機構22によって昇降駆動と回動駆動される支柱21に支持されている。分注ノズル20bは、液面検知部24と接続された液面検知電極23が取り付けられている。液面検知部24は、液面検知電極23が液面に触れて変化する電流により検体容器9aに保持された検体Sの液面を電気的に検知する。   As shown in FIG. 2, the sample dispensing device 20 is provided with a dispensing nozzle 20 b that dispenses a sample to an arm 20 a that is driven by a drive mechanism 22. The arm 20 a is supported by a support column 21 that is driven to rotate up and down by a drive mechanism 22. A liquid level detection electrode 23 connected to the liquid level detection unit 24 is attached to the dispensing nozzle 20b. The liquid level detection unit 24 electrically detects the liquid level of the sample S held in the sample container 9a by a current that changes when the liquid level detection electrode 23 touches the liquid level.

以上のように構成される自動分析装置1は、回転するキュベットホイール4によって周方向に沿って搬送されてくる複数の反応容器5に試薬分注装置6が試薬容器2aから第一試薬を順次分注する。第一試薬が分注された反応容器5は、検体分注装置20によってラック9に保持された複数の検体容器9aから検体が順次分注される。検体が分注された反応容器5は、キュベットホイール4が停止する都度、第一攪拌装置13によって攪拌されて第一試薬と検体が反応する。第一試薬と検体が攪拌された反応容器5は、試薬分注装置7によって試薬容器3aから第二試薬が順次分注された後、キュベットホイール4の停止時に第二攪拌装置14によって攪拌され、更なる反応が促進される。ここで、分析対象の検体によっては、必ずしも第一試薬と第二試薬の両方を分注せず、いずれか一方の場合もある。   In the automatic analyzer 1 configured as described above, the reagent dispensing device 6 sequentially dispenses the first reagent from the reagent container 2a to the plurality of reaction containers 5 conveyed along the circumferential direction by the rotating cuvette wheel 4. Note. In the reaction container 5 into which the first reagent has been dispensed, the specimen is sequentially dispensed from the plurality of specimen containers 9 a held in the rack 9 by the specimen dispensing apparatus 20. The reaction container 5 into which the sample has been dispensed is stirred by the first stirring device 13 each time the cuvette wheel 4 is stopped, and the first reagent reacts with the sample. The reaction container 5 in which the first reagent and the sample are stirred is sequentially stirred by the second stirring device 14 when the cuvette wheel 4 is stopped after the second reagent is sequentially dispensed from the reagent container 3a by the reagent dispensing device 7. Further reaction is promoted. Here, depending on the sample to be analyzed, both the first reagent and the second reagent are not necessarily dispensed, and either one of them may be present.

次いで、キュベットホイール4が再び回転すると、キュベットホイール4は、反応容器5が光源11aに対して順次相対移動し、反応容器5が分析光学系11を通過する。これにより、受光部11cが制御部15に光信号を出力する。制御部15は、受光部11cから入力される波長ごとの光量信号をもとに各反応容器5内の液体試料の波長ごとの吸光度を求め、検体の成分濃度等を分析する。このとき、制御部15は、分析した検体の成分濃度等の分析結果を記憶し、分析結果を表示部17に表示する。このようにして、分析が終了した反応容器5は、洗浄機構12によって洗浄された後、再度検体の分析に使用される。   Next, when the cuvette wheel 4 is rotated again, the reaction vessel 5 sequentially moves relative to the light source 11 a and the reaction vessel 5 passes through the analysis optical system 11. Thereby, the light receiving unit 11 c outputs an optical signal to the control unit 15. The control unit 15 obtains the absorbance for each wavelength of the liquid sample in each reaction vessel 5 based on the light amount signal for each wavelength input from the light receiving unit 11c, and analyzes the component concentration and the like of the specimen. At this time, the control unit 15 stores the analysis result such as the component concentration of the analyzed sample, and displays the analysis result on the display unit 17. Thus, after the analysis is completed, the reaction vessel 5 is washed by the washing mechanism 12 and then used again for analyzing the specimen.

ここで、検体容器9aに採取した検体(血液)は、時間経過に伴って血球成分が沈降してゆく。検体容器9aに採取した検体Sの血球成分が沈降してゆく様子を図3に示す。検体Sは、血漿成分に対して血球成分の比重が大きいため、図3に示すように、採取時、血球成分が血漿中に均一に分布していても、時間経過に伴って血球成分が沈降し、検体Sの上層部は血球成分が薄く、検体Sの下層部は血球成分が濃くなってゆく。   Here, in the specimen (blood) collected in the specimen container 9a, blood cell components are precipitated with time. FIG. 3 shows a state in which blood cell components of the sample S collected in the sample container 9a are sedimented. Since the specific gravity of the blood cell component is larger than that of the plasma component in the sample S, as shown in FIG. 3, even when the blood cell component is uniformly distributed in the plasma at the time of collection, the blood cell component settles with time. However, the upper layer part of the sample S has a thin blood cell component, and the lower layer part of the sample S becomes thicker.

図4は、反応容器におけるこのような血球成分の沈降に起因した血球成分の基準濃度R1(上限値Lu,下限値Ll)の時間変化を示す模式図である。   FIG. 4 is a schematic diagram showing the change over time of the reference concentration R1 (upper limit Lu, lower limit Ll) of the blood cell component resulting from such sedimentation of the blood cell component in the reaction vessel.

図4に示すように、血球成分と血漿成分とが均一に分布している血液採取直後の時刻をt0とした場合、時刻t0では、血球成分が血漿成分中に均一に分布して全体として基準濃度R1となっている。時刻t1では、血球成分の沈降が始まり、検体Sの上層部には、基準濃度R1より薄い濃度R0の領域が形成されると共に、下層部には基準濃度R1より濃い濃度R2の領域が形成される。時刻t2では、血球成分の沈降が進み、濃度R0の領域が下方へ広がると共に、濃度R2の領域が下層部から上方へ広がり、基準濃度R1の領域が縮小する。時刻t3では、濃度R0と濃度R2の領域が更に拡大し、基準濃度R1の領域が一層狭くなる。従って、検体Sは、経時的な沈降によって鉛直方向に血球成分の濃度勾配が生じても、所定の上限値Luと下限値Llとの範囲内に基準濃度R1があれば、沈降の影響なく分注することができる。   As shown in FIG. 4, when the time immediately after blood collection in which the blood cell component and the plasma component are uniformly distributed is defined as t0, the blood cell component is uniformly distributed in the plasma component at the time t0 and is the reference as a whole. The density is R1. At time t1, sedimentation of blood cell components begins, and an area with a concentration R0 lower than the reference concentration R1 is formed in the upper layer portion of the sample S, and a region with a concentration R2 higher than the reference concentration R1 is formed in the lower layer portion. The At time t2, sedimentation of blood cell components proceeds, the region of concentration R0 expands downward, the region of concentration R2 expands upward from the lower layer, and the region of reference concentration R1 shrinks. At time t3, the areas of density R0 and density R2 are further enlarged, and the area of reference density R1 is further narrowed. Therefore, even if a concentration gradient of the blood cell component occurs in the vertical direction due to sedimentation over time, the sample S can be separated without any influence of sedimentation if the reference concentration R1 is within the range between the predetermined upper limit Lu and the lower limit Ll. Can be noted.

このような血球成分の沈降と基準濃度との関係を前提として、自動分析装置1を使用し、被験者から採取した血液に含まれる血球成分のヘモグロビンA1c(HbA1c)を分析する際、制御部15が駆動機構22によってアーム20aの昇降動作を制御することにより、分注ノズル20bによる検体の鉛直方向における吸引位置を制御する本発明の分注方法を以下に説明する。図5は、制御部15の制御動作を示すフローチャートである。   On the premise of the relationship between the sedimentation of the blood cell component and the reference concentration, the control unit 15 uses the automatic analyzer 1 to analyze the hemoglobin A1c (HbA1c) of the blood cell component contained in the blood collected from the subject. A dispensing method according to the present invention, in which the suction position of the specimen in the vertical direction by the dispensing nozzle 20b is controlled by controlling the raising / lowering operation of the arm 20a by the drive mechanism 22, will be described below. FIG. 5 is a flowchart showing the control operation of the control unit 15.

先ず、制御部15は、駆動機構制御部15bによって分注ノズル20bの先端を検体(血液)の液面から所定の深さに侵入させ、侵入深さについての初期設定を行う(ステップS101)。次に、制御部15は、検体分注装置20を駆動して検体を吸引した後、吸引した検体を反応容器5に吐出する仮分注をする(ステップS102)。仮分注された検体は、上述の手順を経て前処理液が分注されて血球成分が溶血され、分析光学系11によって測光される。   First, the control unit 15 causes the distal end of the dispensing nozzle 20b to enter a predetermined depth from the liquid level of the specimen (blood) by the drive mechanism control unit 15b, and performs initial setting for the penetration depth (step S101). Next, the controller 15 drives the sample dispensing device 20 to suck the sample, and then performs temporary dispensing to discharge the sucked sample to the reaction container 5 (step S102). The preliminarily dispensed specimen is subjected to the pretreatment liquid after the above-described procedure, the blood cell component is hemolyzed, and the photometric measurement is performed by the analysis optical system 11.

次いで、制御部15は、分析光学系11からの入力をもとに濃度検出部15aによって溶血試料の濃度Rを測定する(ステップS103)。その後、制御部15は、測定した溶血試料の濃度Rが上限値Luと下限値Llとを有する基準濃度R1内にあるか否かを判断する(ステップS104)。濃度Rが基準濃度R1内にある場合(ステップS104,Yes)、制御部15は、検体分注装置20を駆動し、分注ノズル20bの先端を仮分注と同じ位置に保持して検体を本分注する(ステップS105)。   Next, the control unit 15 measures the concentration R of the hemolyzed sample by the concentration detection unit 15a based on the input from the analysis optical system 11 (step S103). Thereafter, the control unit 15 determines whether or not the measured concentration R of the hemolyzed sample is within a reference concentration R1 having an upper limit value Lu and a lower limit value Ll (step S104). When the concentration R is within the reference concentration R1 (step S104, Yes), the control unit 15 drives the sample dispensing device 20 to hold the tip of the dispensing nozzle 20b at the same position as that of the temporary dispensing, and the sample. This dispensing is performed (step S105).

一方、測定した溶血試料の濃度Rが基準濃度R1内にない場合(ステップS103,No)、制御部15は、濃度検出部15aによって濃度Rが基準濃度R1未満か否かを判断する(ステップS106)。測定した溶血試料の濃度Rが下限値Ll未満である場合(ステップ106,Yes)、制御部15は、駆動機構制御部15bによって駆動機構22の駆動を制御して分注ノズル20bを所定距離下降させる(ステップS107)。   On the other hand, when the measured concentration R of the hemolyzed sample is not within the reference concentration R1 (step S103, No), the control unit 15 determines whether the concentration R is less than the reference concentration R1 by the concentration detection unit 15a (step S106). ). When the measured concentration R of the hemolyzed sample is less than the lower limit value Ll (step 106, Yes), the control unit 15 controls the drive of the drive mechanism 22 by the drive mechanism control unit 15b to lower the dispensing nozzle 20b by a predetermined distance. (Step S107).

この場合、濃度Rが下限値Ll未満であるということは、検体の分注までに時間が掛かり、均一に分布している場合に比べて検体の吸引位置における血球成分が沈降してしまっている。このため、分注ノズル20bを下降させて、より濃度の高い下方へ移動させる。このとき、分注ノズル20bを下降させる所定距離は、予め記憶させておいた分注ノズル20bによる検体の鉛直方向における吸引位置と血球成分の濃度との標準的な関係から濃度検出部15aが決定する。   In this case, when the concentration R is less than the lower limit L1, it takes time until the sample is dispensed, and the blood cell component at the sample aspirating position has settled compared to the case where the sample is uniformly distributed. . For this reason, the dispensing nozzle 20b is lowered and moved downward with higher concentration. At this time, the predetermined distance for lowering the dispensing nozzle 20b is determined by the concentration detection unit 15a from the standard relationship between the suction position in the vertical direction of the specimen by the dispensing nozzle 20b stored in advance and the concentration of blood cell components. To do.

一方、濃度Rが基準濃度R1未満でない場合(ステップS106,No)、血球成分の沈降によって検体の吸引位置における溶血試料の濃度Rが上限値Luを超えている。このため、制御部15は、駆動機構制御部15bによって駆動機構22の駆動を制御して分注ノズル20bを所定距離上昇させる(ステップS108)。このとき、分注ノズル20bを上昇させる所定距離も濃度検出部15aが決定する。   On the other hand, when the concentration R is not less than the reference concentration R1 (No in step S106), the concentration R of the hemolyzed sample at the specimen suction position exceeds the upper limit value Lu due to sedimentation of blood cell components. For this reason, the control part 15 controls the drive of the drive mechanism 22 by the drive mechanism control part 15b, and raises the dispensing nozzle 20b for a predetermined distance (step S108). At this time, the concentration detector 15a also determines a predetermined distance for raising the dispensing nozzle 20b.

その後、分注ノズル20bを下降又は上昇させた新たな吸引位置で検体の本分注を行う(ステップS105)。これによって、本発明の検体分注方法が終了する。この場合、新たな吸引位置は、標準的な血球成分の濃度と分注ノズル20bによる検体の吸引位置との関係に基づいて濃度検出部15aが設定する。   Thereafter, the main dispensing of the specimen is performed at a new suction position where the dispensing nozzle 20b is lowered or raised (step S105). This completes the sample dispensing method of the present invention. In this case, the new suction position is set by the concentration detector 15a based on the relationship between the standard blood cell component concentration and the sample suction position by the dispensing nozzle 20b.

以上のように、自動分析装置1は、本発明の検体分注方法を用いることにより、検体を保持したラック9が自動分析装置1にセットされた後、検体分注装置20によって反応容器5に分注されるまでの時間が異なっていても、血球成分の濃度勾配を考慮した基準濃度の検体を分注することができるので、血球成分の濃度を正確に測定することが可能になる。このため、自動分析装置1は、血球成分の測定精度が安定し、測定結果に対する信頼性を高めることができる。また、自動分析装置1は、血球成分の沈降が始まっていても、検体(血液)をオペレータが手作業で混和する必要がないので、多数の検体(血液)を連続的に分析することができる。   As described above, the automatic analyzer 1 uses the sample dispensing method of the present invention, and after the rack 9 holding the sample is set in the automatic analyzer 1, the sample dispensing device 20 puts it in the reaction container 5. Even if the time until dispensing is different, it is possible to dispense the reference concentration specimen in consideration of the concentration gradient of the blood cell component, so that the concentration of the blood cell component can be accurately measured. For this reason, the automatic analyzer 1 can stabilize the measurement accuracy of the blood cell component and increase the reliability of the measurement result. Further, the automatic analyzer 1 can continuously analyze a large number of samples (blood) because the operator does not need to mix the samples (blood) manually even when the sedimentation of blood cell components has started. .

なお、分注ノズル20bを昇降させる距離は、濃度検出部15aが決定するが、測定した溶血試料の濃度Rが基準濃度R1を大きく超えている場合は、昇降距離を長くし、濃度Rが基準濃度R1を僅かに超えている場合は、昇降距離を短くするようにしてもよい。   The distance by which the dispensing nozzle 20b is moved up and down is determined by the concentration detector 15a. However, when the measured concentration R of the hemolyzed sample greatly exceeds the reference concentration R1, the lifting distance is increased and the concentration R is the reference. When the density R1 is slightly exceeded, the elevation distance may be shortened.

また、分注ノズル20bを下降又は上昇させた新たな吸引位置で検体の本分注を行った場合の溶血試料の濃度Rが基準濃度R1を逸脱していた場合、制御部15は、再度、濃度検出部15aが決定する新たな吸引位置に分注ノズル20bを所定距離昇降させて検体の本分注を行い、溶血試料の濃度Rを改めて測定するようにしてもよい。   If the concentration R of the hemolyzed sample in the case where the sample is dispensed at the new suction position where the dispensing nozzle 20b is lowered or raised, the control unit 15 again returns to the reference concentration R1. The concentration R of the hemolyzed sample may be measured again by moving the dispensing nozzle 20b up and down a predetermined distance to a new suction position determined by the concentration detection unit 15a to perform the main dispensing of the specimen.

更に、上述の実施の形態は、血球成分としてヘモグロビンA1cを測定する場合について説明したが、分注までの時間の相違に起因した沈降の影響を受ける血球成分の測定であれば、ヘモグロビンA1c以外の測定にも適用可能であり、例えば、赤血球(ヘモグロビンA1a,A1bを含む)、白血球或いは血小板の測定にも適用できる。   Furthermore, although the above-mentioned embodiment demonstrated the case where hemoglobin A1c was measured as a blood cell component, if it is a measurement of the blood cell component which receives the influence of the sedimentation resulting from the difference in time to dispensing, it will be other than hemoglobin A1c. For example, it can be applied to the measurement of red blood cells (including hemoglobins A1a and A1b), white blood cells or platelets.

一方、本発明の自動分析装置は、試薬分注装置を2つ備えた場合について説明したが、試薬分注装置は1つであってもよい。また、本発明の自動分析装置は、自動分析装置1を1ユニットとして複数のユニットが組み合わされて構成されていてもよい。   On the other hand, although the automatic analyzer of the present invention has been described with respect to the case where two reagent dispensing devices are provided, the number of reagent dispensing devices may be one. Moreover, the automatic analyzer of the present invention may be configured by combining a plurality of units with the automatic analyzer 1 as one unit.

本発明の自動分析装置の概略構成図である。It is a schematic block diagram of the automatic analyzer of this invention. 図1の自動分析装置で使用する検体分注装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the sample dispensing apparatus used with the automatic analyzer of FIG. 検体容器に採取された検体(血液)に含まれる血球成分の沈降する様子を示す模式図である。It is a schematic diagram which shows a mode that the blood cell component contained in the sample (blood) extract | collected in the sample container precipitates. 検体(血液)に含まれる血球成分の沈降に起因した基準濃度の時間変化を示す模式図である。It is a schematic diagram which shows the time change of the reference | standard density | concentration resulting from sedimentation of the blood cell component contained in a test substance (blood). この発明の実施の形態にかかる分注動作の手順を示すフローチャートである。It is a flowchart which shows the procedure of the dispensing operation | movement concerning embodiment of this invention.

符号の説明Explanation of symbols

1 自動分析装置
2,3 試薬テーブル
4 キュベットホイール
5 反応容器
6,7 試薬分注装置
8 検体容器移送機構
9 ラック
9a 検体容器
11 分析光学系
12 洗浄機構
13,14 攪拌装置
15 制御部
15a 濃度検出部
15b 駆動機構制御部
16 入力部
17 表示部
20 検体分注装置
21 支柱
22 駆動機構
23 液面検知電極
24 液面検知部
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2,3 Reagent table 4 Cuvette wheel 5 Reaction container 6,7 Reagent dispensing apparatus 8 Sample container transfer mechanism 9 Rack 9a Sample container 11 Analytical optical system 12 Washing mechanism 13,14 Stirrer 15 Control part 15a Concentration detection Unit 15b Drive mechanism control unit 16 Input unit 17 Display unit 20 Sample dispensing device 21 Column 22 Drive mechanism 23 Liquid level detection electrode 24 Liquid level detection unit

Claims (5)

血球成分を含む検体を検体容器中から分注装置によって所定量分注し、試薬と反応させて分析する自動分析装置において、
前記血球成分の濃度を検出する濃度検出手段と、
前記濃度検出手段によって検出された前記血球成分の濃度をもとに、前記分注装置による分注の際の鉛直方向における前記検体の吸引位置を制御する位置制御手段と、
を備えたことを特徴とする自動分析装置。
In an automatic analyzer that dispenses a predetermined amount of a sample containing blood cell components from a sample container with a dispensing device and reacts with a reagent for analysis.
Concentration detecting means for detecting the concentration of the blood cell component;
Based on the concentration of the blood cell component detected by the concentration detection means, a position control means for controlling the suction position of the specimen in the vertical direction when dispensing by the dispensing device;
An automatic analyzer characterized by comprising:
前記濃度検出手段は、前記検体容器から分注された所定量の検体における血球成分の濃度を検出することを特徴とする請求項1に記載の自動分析装置。   The automatic analyzer according to claim 1, wherein the concentration detection unit detects a concentration of a blood cell component in a predetermined amount of sample dispensed from the sample container. 前記位置制御手段は、前記濃度検出手段が検出した前記血球成分の濃度が所定の濃度未満である場合には、前記分注装置による前記検体を吸引する鉛直方向の分注位置を下降させ、前記血球成分の濃度が所定の濃度を超えている場合には、前記分注位置を上昇させることを特徴とする請求項1に記載の自動分析装置。   The position control means, when the concentration of the blood cell component detected by the concentration detection means is less than a predetermined concentration, lowers the vertical dispensing position for aspirating the sample by the dispensing device, 2. The automatic analyzer according to claim 1, wherein the dispensing position is raised when the concentration of blood cell components exceeds a predetermined concentration. 血球成分を含む検体を検体容器中から所定量分注し、試薬と反応させて分析する自動分析装置の検体分注方法であって、
前記検体を所定量分注する分注工程と、
前記分注工程で分注した前記検体の血球成分の濃度を検出する濃度検出工程と、
前記濃度検出工程によって検出された前記血球成分の濃度をもとに、分注の際の前記検体の鉛直方向の吸引位置を制御する位置制御工程と、
を含むことを特徴とする自動分析装置の検体分注方法。
A sample dispensing method for an automatic analyzer that dispenses a predetermined amount of a sample containing blood cell components from a sample container and reacts with a reagent for analysis.
A dispensing step of dispensing a predetermined amount of the specimen;
A concentration detection step for detecting the concentration of blood cell components of the sample dispensed in the dispensing step;
Based on the concentration of the blood cell component detected by the concentration detection step, a position control step for controlling the vertical suction position of the specimen during dispensing,
A sample dispensing method for an automatic analyzer characterized by comprising:
前記濃度検出工程では、前記検体容器から分注された所定量の検体における血球成分の濃度を検出することを特徴とする請求項4に記載の自動分析装置の検体分注方法。   5. The sample dispensing method for an automatic analyzer according to claim 4, wherein in the concentration detection step, the concentration of a blood cell component in a predetermined amount of sample dispensed from the sample container is detected.
JP2006148361A 2006-05-29 2006-05-29 Automatic analyzer and its sample dispensing method Expired - Fee Related JP4871025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148361A JP4871025B2 (en) 2006-05-29 2006-05-29 Automatic analyzer and its sample dispensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148361A JP4871025B2 (en) 2006-05-29 2006-05-29 Automatic analyzer and its sample dispensing method

Publications (2)

Publication Number Publication Date
JP2007316012A true JP2007316012A (en) 2007-12-06
JP4871025B2 JP4871025B2 (en) 2012-02-08

Family

ID=38849988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148361A Expired - Fee Related JP4871025B2 (en) 2006-05-29 2006-05-29 Automatic analyzer and its sample dispensing method

Country Status (1)

Country Link
JP (1) JP4871025B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175132A (en) * 2007-12-28 2009-08-06 Olympus Corp Automatic analysis apparatus and its dispensing method
US20100210007A1 (en) * 2009-02-16 2010-08-19 Kabushiki Kaisha Toshiba Automatic analyzer
JP2012037478A (en) * 2010-08-11 2012-02-23 Nippon Koden Corp Analysis apparatus
JP2013205405A (en) * 2012-03-29 2013-10-07 Toshiba Corp Automatic analyzer and inspection system
JP2014215123A (en) * 2013-04-24 2014-11-17 株式会社日立ハイテクノロジーズ Filling device, method, and analyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246727A (en) * 1997-02-28 1998-09-14 Shimadzu Corp Sample dispenser for blood analyzer
JP2002040035A (en) * 2000-07-26 2002-02-06 Jeol Ltd Biochemical automatic analyzer
JP2006125868A (en) * 2004-10-26 2006-05-18 Arkray Inc Cartridge for automatic measurement, and measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246727A (en) * 1997-02-28 1998-09-14 Shimadzu Corp Sample dispenser for blood analyzer
JP2002040035A (en) * 2000-07-26 2002-02-06 Jeol Ltd Biochemical automatic analyzer
JP2006125868A (en) * 2004-10-26 2006-05-18 Arkray Inc Cartridge for automatic measurement, and measuring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175132A (en) * 2007-12-28 2009-08-06 Olympus Corp Automatic analysis apparatus and its dispensing method
US8778686B2 (en) 2007-12-28 2014-07-15 Beckman Coulter, Inc. Automatic analyzer and dispensing method thereof
EP2075587A3 (en) * 2007-12-28 2014-10-22 Beckman Coulter, Inc. Automatic analyzer and dispensing method thereof
US20100210007A1 (en) * 2009-02-16 2010-08-19 Kabushiki Kaisha Toshiba Automatic analyzer
US9897623B2 (en) * 2009-02-16 2018-02-20 Toshiba Medical Systems Corporation Automatic analyzer
JP2012037478A (en) * 2010-08-11 2012-02-23 Nippon Koden Corp Analysis apparatus
JP2013205405A (en) * 2012-03-29 2013-10-07 Toshiba Corp Automatic analyzer and inspection system
JP2014215123A (en) * 2013-04-24 2014-11-17 株式会社日立ハイテクノロジーズ Filling device, method, and analyzer

Also Published As

Publication number Publication date
JP4871025B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP7035130B2 (en) Automatic analyzer
JP4812352B2 (en) Automatic analyzer and its dispensing method
JP5911603B2 (en) Automatic analyzer
WO2007129741A1 (en) Automatic analyzer
JP6462844B2 (en) Automatic analyzer
JP5583337B2 (en) Automatic analyzer and its dispensing method
WO2011074273A1 (en) Automatic analyzing device
WO2007139212A1 (en) Automatic analyzer
JP4871026B2 (en) Automatic analyzer and its sample dispensing method
JP4871025B2 (en) Automatic analyzer and its sample dispensing method
JP2008145334A (en) Automatic analyzer, and method of moving its reagent container
JP5903054B2 (en) Automatic analyzer
JP5199785B2 (en) Blood sample detection method, blood sample dispensing method, blood sample analysis method, dispensing apparatus, and blood sample type detection method
JP2008175731A (en) Automatic analysis apparatus and its maintenance method
CN115667940A (en) Automatic analyzer
JP5336555B2 (en) Sample analyzer
JP5374092B2 (en) Automatic analyzer and blood sample analysis method
JP2011227092A (en) Automatic analyzing apparatus
JP5606843B2 (en) Automatic analyzer
JP5571982B2 (en) Automatic analyzer
CN110730910A (en) Automatic analyzer
JP2014041144A (en) Automatic analyzer
JP5808473B2 (en) Automatic analyzer
JP2011257248A (en) Automatic analyzer
JP2011007697A (en) Autoanalyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Ref document number: 4871025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees