JP2007311255A - Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program - Google Patents
Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program Download PDFInfo
- Publication number
- JP2007311255A JP2007311255A JP2006140587A JP2006140587A JP2007311255A JP 2007311255 A JP2007311255 A JP 2007311255A JP 2006140587 A JP2006140587 A JP 2006140587A JP 2006140587 A JP2006140587 A JP 2006140587A JP 2007311255 A JP2007311255 A JP 2007311255A
- Authority
- JP
- Japan
- Prior art keywords
- assembled battery
- voltage
- battery
- unit
- deterioration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本発明は組電池状態測定装置、組電池劣化判定方法および組電池劣化判定プログラムに関し、特に、非常用電源設備として用いられる組電池の劣化判定方法に適用して好適なものである。 The present invention relates to an assembled battery state measurement device, an assembled battery deterioration determination method, and an assembled battery deterioration determination program, and is particularly suitable for application to an assembled battery deterioration determination method used as an emergency power supply facility.
鉛蓄電池は単位電池(セル)当たりの起電力が制限されることから所定の電圧が得られるように、例えば、24セルや48セル分の単位電池を組電池として構成して運用することが一般的に行われている。また、必要な容量が得られるようにするために、単位電池を並列に接続して用いられることもある。すなわち、組電池は、用途に応じた容量および電圧を確保するために、複数の単位電池を直並列に接続して構成される。 Since lead-acid batteries are limited in electromotive force per unit battery (cell), for example, unit batteries for 24 cells or 48 cells are generally configured and operated as an assembled battery so that a predetermined voltage can be obtained. Has been done. In order to obtain a required capacity, unit batteries may be connected in parallel and used. That is, the assembled battery is configured by connecting a plurality of unit batteries in series and parallel in order to ensure a capacity and voltage according to the application.
その際、鉛蓄電池には寿命があることから組電池にも寿命があり、組電池の経済性および信頼性の面から組電池の寿命を正確に判定し、組電池の交換時期を的確に把握できるようにする方法が望まれている。
組電池の劣化形態としては、組電池全体でほぼ均一に劣化が進行する場合もあるが、組電池を構成する一部の単位電池の劣化に起因する場合もある。組電池を構成する一部の単位電池の劣化の原因としては、組電池を構成する単位電池間の製造バラツキに起因する初期からの特性差、あるいは運用中の温度差などの環境条件に起因する劣化の進行の違いなどが考えられる。さらに、この組電池を構成する単位電池間の劣化のバラツキは運用時間の延長とともに拡大していく。
At that time, since the lead-acid battery has a lifetime, the assembled battery also has a lifetime. From the viewpoint of the economic and reliability of the assembled battery, the life of the assembled battery is accurately determined, and the replacement time of the assembled battery is accurately grasped. There is a need for a way to make it possible.
As a deterioration mode of the assembled battery, there are cases where the deterioration progresses almost uniformly in the entire assembled battery, but there are also cases where it is caused by deterioration of some unit cells constituting the assembled battery. The cause of deterioration of some unit cells constituting the assembled battery is caused by environmental characteristics such as a difference in characteristics from the initial stage due to manufacturing variation among the unit cells constituting the assembled battery, or a temperature difference during operation. Differences in the progress of deterioration can be considered. Furthermore, the variation in deterioration among the unit batteries constituting the assembled battery increases as the operation time is extended.
そして、組電池として運用される際には、これらの単位電池の特性の低下が組電池としての特性の低下を引き起こす。特に、劣化が進行した単位電池があると、その単位電池の放電時の電圧の低下が激しくなり、組電池の総電圧の低下を加速し、組電池に対する性能の要求を果たせなくなることから、組電池としての放電時間の短縮を招くようになる。
ここで、例えば、特許文献1には、車両走行時などの組電池の通常の使用中に組電池を構成する単位電池の異常を検出できるようにするため、所定電力放電時の電圧変化を測定し、この時の放電挙動を調べることにより、セルの異常を診断する方法が開示されている。
And when it operates as an assembled battery, the fall of the characteristic of these unit batteries causes the fall of the characteristic as an assembled battery. In particular, if there is a unit battery that has deteriorated, the voltage drop at the time of discharge of the unit battery becomes severe, accelerating the decrease in the total voltage of the battery pack, and cannot meet the performance requirements for the battery pack. The discharge time as a battery is shortened.
Here, for example, in
また、例えば、特許文献2には、鉛蓄電池の劣化状態の検知や容量の推定を精度よく行えるようにするために、1〜1000Hzのいずれかの周波数の交流電源にて鉛蓄電池の交流インピーダンスを測定する方法が開示されている。
また、例えば、特許文献3には、多数セルからなる組電池の1セルごとの電圧を計測し、計測した電圧の最大値と最小値の差分を所定値と比較することで、鉛蓄電池の寿命を判定する方法が開示されている。
In addition, for example, in
しかしながら、特許文献1に開示された方法では、電気自動車のように頻繁に充放電を繰り返すような用途に用いられるため、個々の単位電池の挙動を解析するための処理が煩雑化し、処理に時間を要するとともに装置が複雑化し、非常用電源設備のように定常時充電状態であるような組電池の劣化判定方法には適さないという問題があった。
また、特許文献2に開示された方法では、頻繁に充放電を繰り返すような運用条件では、鉛蓄電池の交流インピーダンスの変化が小さく、組電池の劣化を精度よく判定することができないという問題があった。特に、鉄道用非常用電源などのように計画的に停電が頻繁に繰り返されるような用途には組電池の劣化を正確に判定することができなかった。
However, since the method disclosed in
In addition, the method disclosed in
また、特許文献3に開示された方法では、1セルごとの電圧の測定時に鉛蓄電池が充電器から常に充電されるとともに、鉛蓄電池を放電させることなく1セルごとの電圧の測定が行われる。このため、単位電池に異常がある場合においても、個々の単位電池の電圧が充電器の出力電圧によって規定され、個々の単位電池の電圧異常を精度よく検出することができなくなることから、組電池の劣化を精度よく判定することができないという問題があった。
そこで、本発明の目的は、非常用電源設備として用いられる組電池の劣化の判定精度を確保しつつ、組電池の劣化を簡易に判定することが可能な組電池状態測定装置、組電池劣化判定方法および組電池劣化判定プログラムを提供することである。
In the method disclosed in
Accordingly, an object of the present invention is to provide an assembled battery state measuring device and an assembled battery deterioration determination that can easily determine deterioration of the assembled battery while ensuring the accuracy of determining deterioration of the assembled battery used as an emergency power supply facility. A method and a battery pack deterioration determination program are provided.
上述した課題を解決するために、請求項1記載の組電池状態測定装置によれば、非常用電源設備として用いられる組電池を構成する各単位電池の放電時の電圧の最大値と最小値を検出する最大値/最小値検出手段と、前記単位電池の電圧の最大値と最小値との差分を算出する差分算出手段と、前記単位電池の電圧の最大値と最小値との差分をしきい値と比較する比較手段と、前記比較手段による比較結果に基づいて前記組電池の劣化状態を判定する組電池状態判定手段とを備えることを特徴とする。
In order to solve the above-described problem, according to the assembled battery state measuring apparatus according to
これにより、充電器の出力電圧の影響を受けることなく、各単位電池の放電時の電圧を検出することが可能となり、個々の単位電池の電圧異常を精度よく検出することが可能となるとともに、単位電池の電圧の最大値と最小値との差分を算出することで、非常用電源設備として用いられる組電池の劣化を判定することが可能となる。このため、非常用電源設備として用いられる組電池の劣化の判定精度を確保しつつ、組電池の劣化を簡易に判定することが可能となり、装置構成の簡略化を図りつつ、非常用電源設備のように定常時充電状態であるような組電池の劣化判定を有効に行うことが可能となる。 Thereby, it becomes possible to detect the voltage at the time of discharge of each unit battery without being affected by the output voltage of the charger, and it is possible to accurately detect the voltage abnormality of each unit battery, By calculating the difference between the maximum value and the minimum value of the voltage of the unit battery, it is possible to determine the deterioration of the assembled battery used as an emergency power supply facility. For this reason, it is possible to easily determine the deterioration of the assembled battery while ensuring the accuracy of determining the deterioration of the assembled battery used as the emergency power supply facility. As described above, it is possible to effectively perform the deterioration determination of the assembled battery which is in the steady state charging state.
また、請求項2記載の組電池劣化判定方法によれば、非常用電源設備として用いられる組電池を負荷に接続したまま前記組電池と充電器とを電気的に遮断するステップと、前記充電器と電気的に遮断された状態で前記組電池を構成する各単位電池の放電時の電圧の最大値と最小値を検出するステップと、前記単位電池の電圧の最大値と最小値との差分を算出するステップと、前記単位電池の電圧の最大値と最小値との差分をしきい値と比較するステップと、前記比較手段による比較結果に基づいて前記組電池の劣化状態を判定するステップとを備えることを特徴とする。
Further, according to the assembled battery deterioration judging method according to
これにより、組電池を負荷に接続したまま各単位電池の電圧を計測することが可能となり、組電池の実際の運用時における各単位電池の放電時の電圧を検出することが可能となるとともに、充電器の出力電圧の影響を受けることなく、各単位電池の放電時の電圧を検出することが可能となる。このため、個々の単位電池の電圧異常を精度よく検出することが可能となるとともに、単位電池の電圧の最大値と最小値との差分を算出することで、非常用電源設備として用いられる組電池の劣化を判定することが可能となり、非常用電源設備として用いられる組電池の劣化の判定精度を確保しつつ、組電池の劣化を簡易に判定することが可能となる。 Thereby, it becomes possible to measure the voltage of each unit battery while the assembled battery is connected to the load, and it becomes possible to detect the voltage at the time of discharging each unit battery during the actual operation of the assembled battery, It is possible to detect the voltage when each unit battery is discharged without being affected by the output voltage of the charger. For this reason, it is possible to detect an abnormal voltage of each unit battery with high accuracy, and by calculating the difference between the maximum value and the minimum value of the voltage of the unit battery, the assembled battery used as an emergency power supply facility The deterioration of the assembled battery can be easily determined while ensuring the determination accuracy of the deterioration of the assembled battery used as an emergency power supply facility.
また、請求項3記載の組電池劣化判定方法によれば、前記組電池の劣化状態の判定基準となるしきい値を設備運転条件から設定することを特徴とする。
これにより、組電池の放電時間や負荷電流などに応じて組電池の劣化状態を判定することが可能となり、設備容量や運転条件に合わせながら組電池の交換時期を柔軟に設定することが可能となる。
Further, according to the assembled battery deterioration determining method according to
This makes it possible to determine the deterioration state of the assembled battery according to the discharge time and load current of the assembled battery, and to flexibly set the replacement time of the assembled battery according to the equipment capacity and operating conditions. Become.
また、請求項4記載の組電池劣化判定方法によれば、前記最大値と最小値との差分がしきい値より大きな値を有する単位電池の個数に基づいて前記組電池の健全性を判定することを特徴とする。
これにより、組電池の劣化が組電池全体の平均的な劣化に起因するものであるのか、組電池を構成する個々の単位電池の劣化に起因するものであるのかを判断することができ、単位電池の部分交換や全数交換などの対策を決定する際の判断材料とすることが可能となる。
According to the assembled battery deterioration determining method according to
This makes it possible to determine whether the deterioration of the assembled battery is due to the average deterioration of the entire assembled battery or the deterioration of the individual unit batteries constituting the assembled battery. It can be used as a judgment material when determining measures such as partial replacement or total replacement of batteries.
また、請求項5記載の組電池劣化判定プログラムによれば、非常用電源設備として用いられる組電池を負荷に接続したまま前記組電池と充電器とを電気的に遮断させるステップと、前記充電器と電気的に遮断された状態で前記組電池を構成する各単位電池の放電時の電圧の最大値と最小値を検出するステップと、前記単位電池の電圧の最大値と最小値との差分を算出するステップと、前記単位電池の電圧の最大値と最小値との差分をしきい値と比較するステップと、前記比較手段による比較結果に基づいて前記組電池の劣化状態を判定するステップとをコンピュータに実行させることを特徴とする。
In addition, according to the assembled battery deterioration determination program according to
これにより、組電池劣化判定プログラムをコンピュータに実行させることで、非常用電源設備として用いられる組電池の劣化の判定精度を確保しつつ、組電池の劣化を簡易に判定することが可能となる。このため、非常用電源設備が長期に渡って運用される場合においても、ハードウェア構成の簡略化を図りつつ、非常用電源設備のように定常時充電状態であるような組電池の劣化判定を有効に行うことが可能となる。 Accordingly, by causing the computer to execute the assembled battery deterioration determination program, it is possible to easily determine the deterioration of the assembled battery while ensuring the determination accuracy of the deterioration of the assembled battery used as the emergency power supply facility. For this reason, even when the emergency power supply equipment is operated for a long period of time, it is possible to determine the deterioration of the assembled battery that is in a steady state charging state like the emergency power supply equipment while simplifying the hardware configuration. It becomes possible to carry out effectively.
以上説明したように、本発明によれば、充電器の出力電圧の影響を受けることなく、各単位電池の放電時の電圧を検出することが可能となり、個々の単位電池の電圧異常を精度よく検出することが可能となるとともに、単位電池の電圧の最大値と最小値との差分を算出することで、非常用電源設備として用いられる組電池の劣化を判定することが可能となり、非常用電源設備として用いられる組電池の劣化の判定精度を確保しつつ、組電池の劣化を簡易に判定することが可能となる。 As described above, according to the present invention, it becomes possible to detect the voltage at the time of discharging each unit battery without being affected by the output voltage of the charger, and to accurately detect the voltage abnormality of each unit battery. It is possible to detect the deterioration of the assembled battery used as an emergency power supply facility by calculating the difference between the maximum value and the minimum value of the unit battery voltage. It is possible to easily determine the deterioration of the assembled battery while ensuring the accuracy of determining the deterioration of the assembled battery used as equipment.
以下、本発明の実施形態に係る組電池状態測定装置および組電池劣化判定方法について図面を参照しながら説明する。
図1は、本発明の一実施形態に係る組電池状態測定装置が用いられる組電池のシステムの概略構成を示すブロック図である。
図1において、電力系統1は、100Vまたは200Vの交流電圧を供給することができる。また、充電器2は、組電池3の充電時に組電池3に接続され、電力系統1から供給される交流電圧を直流電圧に変換してから組電池3に出力することができる。また、組電池3は、インバータ4を介して交流負荷5に接続されるとともに、直流負荷6に直接接続される。なお、組電池3は、鉄道用非常用電源などのように計画的に停電が頻繁に繰り返されるような非常用電源設備として用いることができる。
Hereinafter, an assembled battery state measurement device and an assembled battery deterioration determination method according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of an assembled battery system in which an assembled battery state measuring apparatus according to an embodiment of the present invention is used.
In FIG. 1, the
ここで、組電池3は、組電池3の劣化状態を判定する組電池状態測定装置7に常時接続されている。そして、組電池状態測定装置7は、組電池3の放電検出後に組電池3を構成する各単位電池の電圧を所定時間ごとに周期的に計測し、放電時の組電池3の中の各単位電池の同時刻における最大電圧と最小電圧を検出することができる。そして、各単位電池の最大電圧と最小電圧との差分に基づいて組電池3の劣化状態を判定することができる。なお、組電池3の放電の検出方法としては、組電池3の電圧が設定値になったかどうかを検出する方法、あるいは放電電流を検出する方法などがある。
Here, the assembled
図2は、図1の組電池状態測定装置7の概略構成を示すブロック図である。
図2において、組電池3には、単位電池3a〜3c・・・が設けられている。ここで、単位電池3a〜3c・・・は、組電池3の用途に応じた容量および電圧を確保するために、例えば、24セルや48セル分の単位電池3a〜3c・・・を直並列に接続して構成することができる。
FIG. 2 is a block diagram showing a schematic configuration of the assembled battery
2, the assembled
一方、組電池状態測定装置7には、組電池3を構成する各単位電池3a〜3c・・・の放電時の電圧を計測する電圧計Va、Vb・・・が設けられるとともに、各単位電池3a〜3c・・・の放電時の電圧を収集するデータ収集部11、データ収集部11にて収集された電圧を記憶する内部メモリ12および各単位電池3a〜3c・・・の放電時の電圧の計測結果に基づいて組電池3の劣化状態を判定する演算機能13が設けられている。
On the other hand, the assembled battery
ここで、演算機能13には、組電池3を構成する各単位電池3a〜3c・・・の放電時の電圧の最大値と最小値を検出する最大値/最小値算出手段13a、単位電池3a〜3c・・・の電圧の最大値と最小値との差分を算出する差分算出手段13b、単位電池3a〜3c・・・の電圧の最大値と最小値との差分をしきい値と比較する比較手段13cおよび比較手段13cによる比較結果に基づいて組電池3の劣化状態を判定する組電池状態判定手段13dが設けられている。
Here, the
そして、図1の電力系統1が正常に稼動している場合には、図1の交流負荷5または直流負荷6には電力系統1から電力が供給され、交流負荷5または直流負荷6の作動が行われる。そして、電力系統1が停電状態になると、組電池3と充電器2とが電気的に遮断されるとともに、交流負荷5または直流負荷6には組電池3から電力が供給されながら、交流負荷5または直流負荷6の作動が行われる。
When the
そして、組電池状態測定装置7は組電池3の放電を検出すると、データ収集部11は、各単位電池3a〜3c・・・の放電時の電圧を電圧計Va、Vb・・・を介して収集し、内部メモリ12に記憶する。そして、データ収集部11にて収集されたデータが内部メモリ12に記憶されると、各単位電池3a〜3c・・・の放電時の電圧の最大値と最小値が最大値/最小値算出手段13aにて検出される。そして、各単位電池3a〜3c・・・の放電時の電圧の最大値と最小値が検出されると、単位電池3a〜3c・・・の電圧の最大値と最小値との差分が差分算出手段13bにて算出される。そして、単位電池3a〜3c・・・の電圧の最大値と最小値との差分が差分算出手段13bにて算出されると、単位電池3a〜3c・・・の電圧の最大値と最小値との差分が比較手段13cにしきい値と比較され、組電池状態判定手段13dは、比較手段13cにおける比較結果に基づいて組電池3の劣化状態を判定する。
When the assembled battery
これにより、充電器2の出力電圧の影響を受けることなく、各単位電池3a〜3c・・・の放電時の電圧を検出することが可能となり、個々の単位電池3a〜3c・・・の電圧異常を精度よく検出することが可能となるとともに、単位電池3a〜3c・・・の電圧の最大値と最小値との差分を算出することで、非常用電源設備として用いられる組電池3の劣化を判定することが可能となる。このため、非常用電源設備として用いられる組電池3の劣化の判定精度を確保しつつ、組電池3の劣化を簡易に判定することが可能となり、装置構成の簡略化を図りつつ、非常用電源設備のように定常時充電状態であるような組電池3の劣化判定を有効に行うことが可能となる。
Thereby, it becomes possible to detect the voltage at the time of discharge of each unit battery 3a-3c ..., without being influenced by the output voltage of the
なお、最大値/最小値算出手段13a、差分算出手段13b、比較手段13cおよび組電池状態判定手段13dは、これらのブロックで行われる処理を遂行させる命令が記述されたプログラムをコンピュータに実行させることにより実現することができる。
そして、このプログラムをCD−ROMなどの記憶媒体に記憶しておけば、コンピュータに記憶媒体を装着し、そのプログラムをコンピュータにインストールすることにより、最大値/最小値算出手段13a、差分算出手段13b、比較手段13cおよび組電池状態判定手段13dで行われる処理を実現することができる。また、このプログラムをインターネットやLANなどの通信網を介してダウンロードすることにより、このプログラムを容易に普及させることができる。
The maximum value / minimum value calculation means 13a, difference calculation means 13b, comparison means 13c, and assembled battery state determination means 13d cause a computer to execute a program in which an instruction for performing processing performed in these blocks is described. Can be realized.
If this program is stored in a storage medium such as a CD-ROM, the maximum / minimum value calculation means 13a and difference calculation means 13b are installed by installing the storage medium in the computer and installing the program in the computer. The processing performed by the
また、最大値/最小値算出手段13a、差分算出手段13b、比較手段13cおよび組電池状態判定手段13dで行われる処理を遂行させる命令が記述されたプログラムをコンピュータに実行させる場合、スタンドアロン型コンピュータで実行させるようにしてもよく、ネットワークに接続された複数のコンピュータに分散処理させるようにしてもよい。
Further, when the computer executes a program in which an instruction for performing the processing performed by the maximum value / minimum value calculating means 13a, the difference calculating means 13b, the comparing
図3は、図1の組電池状態測定装置の組電池劣化判定方法を示す図である。
図3において、組電池3の放電開始後の放電時間Tの経過に伴って、組電池3を構成する各単位電池3a〜3c・・・間の電圧のバラツキ幅が拡大することが知られている。このため、各単位電池3a〜3c・・・間の電圧のバラツキ幅を比較することにより、組電池3の劣化状態を判定することができる。なお、各単位電池3a〜3c・・・間の電圧のバラツキ幅の許容値は、組電池3を構成する単位電池3a〜3c・・・の数や種類や容量などによって決定されるため、非常用電源設備に固有と値となる。
FIG. 3 is a diagram illustrating an assembled battery deterioration determination method of the assembled battery state measurement device of FIG.
In FIG. 3, it is known that the variation width of the voltage between the unit cells 3 a to 3 c... Constituting the assembled
具体的には、図2のデータ収集部11は、組電池3の放電検出後に所定時間ごとに組電池3を構成する各単位電池3a〜3c・・・のセル電圧Vを周期的に収集し、最大値/最小値算出手段13aは、放電時の組電池3の中の各単位電池3a〜3c・・・の設定時刻T1における最大電圧Vmaxと最小電圧Vminを検出する。そして、差分算出手段13bは、各単位電池3a〜3c・・・の最大電圧Vmaxと最小電圧Vminとの差分ΔVn=(Vmax−Vmin)を算出し、比較手段13cは、最大電圧Vmaxと最小電圧Vminとの差分ΔVnをしきい値Vsと比較する。そして、組電池状態判定手段13dは、ΔVn>Vsの関係をみたす場合、組電池3が劣化していると判定し、ΔVn≦の関係をみたす場合、組電池3は正常であると判定することができる。
Specifically, the
また、組電池状態判定手段13dは、最大値と最小値との差分ΔVがしきい値より大きな値を有する単位電池3a〜3c・・・の個数に基づいて組電池3の健全性を判定することができ、差分ΔVがしきい値より大きな値を有する単位電池3a〜3c・・・の個数の全体に占める割合が所定値以上になった場合、組電池3全体が劣化していると判定することもできる。これにより、組電池3の劣化が組電池3全体の平均的な劣化に起因するものであるのか、組電池3を構成する個々の単位電池3a〜3c・・・の劣化に起因するものであるのかを判断することができ、単位電池3a〜3c・・・の部分交換や全数交換などの対策を決定する際の判断材料とすることが可能となる。
なお、組電池3の劣化状態の判定基準となるしきい値は設備運転条件から設定することができる。これにより、組電池3の放電時間や負荷電流などに応じて組電池3の劣化状態を判定することが可能となり、設備容量や運転条件に合わせながら組電池3の交換時期を柔軟に設定することが可能となる。
Moreover, the assembled battery state determination means 13d determines the soundness of the assembled
In addition, the threshold value used as the criterion for determining the deterioration state of the assembled
また、定期点検時などに行われる放電試験などの機会を活用し、組電池3の各放電ごとの差分ΔVnのみを内部メモリ12に保存し、次回の放電時に差分ΔVnをしきい値Vsと比較することにより、組電池3の劣化の進行状況を判定するようにしてもよい。また、必要に応じて各単位電池3a〜3c・・・のセル電圧Vの温度補正を行うようにしてもよい。また、各単位電池3a〜3c・・・の内部抵抗の計測と組み合わせ、各単位電池3a〜3c・・・の内部抵抗の変化と連動させて放電試験を自動的に行えるようにしてもよい。これにより、各単位電池3a〜3c・・・の内部抵抗の変化による組電池3の劣化の予兆検知と合わせてより精度の高い劣化判定を実現することができる。
Further, by utilizing an opportunity such as a discharge test performed at the time of periodic inspection, only the difference ΔVn for each discharge of the assembled
また、組電池3の劣化の判定結果を表示し、組電池3の劣化に対する対応策を指示することにより、組電池3の劣化に対処できるようにしてもよい。
このように、組電池3の放電時の各単位電池3a〜3c・・・間の電位差を活用することにより、制御弁式鉛蓄電池のように電解液量が限定される蓄電池の他、電解液量が豊富や液式鉛蓄電池やアルカリ蓄電池などのように抵抗値の変化が小さな蓄電池や、頻繁に放電を繰り返すような用途に用いられる蓄電池の劣化を精度よく検出することが可能となる。
Further, the deterioration determination result of the assembled
As described above, by utilizing the potential difference between the unit batteries 3a to 3c at the time of discharging the assembled
さらに、各単位電池3a〜3c・・・の最大電圧Vmaxと最小電圧Vminとの差分ΔVnのみを算出すればよく、少ないデータ数で組電池3の劣化を判定することが可能となることから、内部メモリ12の容量を小さくすることができ、組電池3の全寿命期間における長期間の運用においても、設備にかかるコストを抑制することが可能となるとともに、組電池3の劣化判定に必要な演算量も少なくすることができ、判定時間を短縮することができる。
Furthermore, it is only necessary to calculate the difference ΔVn between the maximum voltage Vmax and the minimum voltage Vmin of each of the unit batteries 3a to 3c, and it is possible to determine the deterioration of the assembled
図4は、図1の組電池状態測定装置の組電池劣化判定方法を示すフローチャートである。
図4において、組電池状態測定装置7は組電池3の放電を検出すると(ステップS1)、データ収集部11は、各単位電池3a〜3c・・・の放電時の電圧を電圧計Va、Vb・・・を介して収集し、内部メモリ12に記憶する(ステップS2)。そして、最大値/最小値算出手段13aは所定時間の経過を待って(ステップS3)、各単位電池3a〜3c・・・の放電時の電圧を比較することにより、各単位電池3a〜3c・・・の同時刻における最大電圧Vmaxと最小電圧Vminを検出する(ステップS4)。なお、組電池3が非常用電源設備として用いられる場合、機器容量や負荷条件にはほとんど変動がないため、所定時間の経過後の値を最終的に比較値として用いることができる。そして、差分算出手段13bは、各単位電池3a〜3c・・・の最大電圧Vmaxと最小電圧Vminとの差分ΔVnを算出し(ステップS5)、比較手段13cは、最大電圧Vmaxと最小電圧Vminとの差分ΔVnをしきい値Vsと比較する(ステップS6)。そして、組電池状態判定手段13dは、ΔVn>Vsの関係をみたす場合、組電池3が劣化していると判定し(ステップS7)、ΔVn≦Vsの関係をみたす場合、ステップS1に戻って以上の処理を繰り返す。
FIG. 4 is a flowchart showing an assembled battery deterioration determination method of the assembled battery state measurement device of FIG.
4, when the assembled battery
容量200Ah・2Vの液式鉛蓄電池24個を直列に接続し、48Vの直流電源装置を組電池として構成した。この直流電源装置は基本的には非常用電源として構成されるが、この直流電源装置が設置される環境では、他の設備の点検あるいは直流電源装置の点検のために頻繁に計画停電があり、放電回数が多い環境に設置される。
この直流電源装置を構成する各単位電池には電圧測定器が設置され、各単位電池のセル電圧が周期的に測定される。そして、この測定されたセル電圧がデータ収集装置に集積され、通常時は1日のうちの所定時刻に1日分のデータが平均化され、この平均値を当日の電圧データとして保存される。また、組電池の総電圧も同様に処理される。
Twenty-four liquid lead acid batteries with a capacity of 200 Ah · 2 V were connected in series, and a 48 V DC power supply device was configured as an assembled battery. This DC power supply is basically configured as an emergency power supply, but in the environment where this DC power supply is installed, there are frequent planned power outages due to inspection of other equipment or DC power supply, Installed in an environment where there are many discharges.
A voltage measuring device is installed in each unit battery constituting this DC power supply device, and the cell voltage of each unit battery is periodically measured. Then, the measured cell voltage is accumulated in the data collecting device, and the data for one day is averaged at a predetermined time of the day in normal times, and this average value is stored as voltage data of the day. Further, the total voltage of the assembled battery is similarly processed.
このデータ収集装置には電圧比較回路が内蔵され、電圧比較回路は、組電池の総電圧または各単位電池のセル電圧が設定値以下(例えば、2.1V/セル以下)となった段階で、直流電源装置の放電開始と判断することができる。また、放電開始後に組電池の総電圧または各単位電池のセル電圧が設定値以上(例えば、2.05V/セル以上)となった時点で放電完了と判断することができる。 This data collection device has a built-in voltage comparison circuit, and the voltage comparison circuit is configured such that when the total voltage of the assembled battery or the cell voltage of each unit battery becomes a set value or less (for example, 2.1 V / cell or less), It can be determined that the discharge of the DC power supply device has started. Moreover, it can be determined that the discharge is complete when the total voltage of the assembled battery or the cell voltage of each unit battery becomes equal to or higher than a set value (for example, 2.05 V / cell or higher) after the discharge starts.
そして、データ収集装置は、直流電源装置の放電開始を検出した時点で、各単位電池の放電電圧を一定時間ごと(たとえば、1分ごと)に測定し、これら一連の測定値の中から最大値および最小値を検出し、最大値と最小値の差分を算出する。なお、この最大値と最小値の差分は、各測定時間に関連付けられて保存される。そして、直流電源装置の放電開始から10分後の放電電圧の差分を、直流電源装置の運用開始後の定期検査の時に測定した。この時の測定結果と運用開始後の経過年数との関係を図5に示す。 The data collection device measures the discharge voltage of each unit battery at regular time intervals (for example, every minute) at the time when the discharge start of the DC power supply device is detected, and the maximum value is selected from the series of measurement values. Then, the minimum value is detected, and the difference between the maximum value and the minimum value is calculated. Note that the difference between the maximum value and the minimum value is stored in association with each measurement time. And the difference of the discharge voltage 10 minutes after the discharge start of a DC power supply device was measured at the time of the periodic inspection after the operation start of a DC power supply device. FIG. 5 shows the relationship between the measurement result at this time and the number of years that have elapsed since the operation started.
図5において、5年目までは各単位電池の放電電圧の最大値と最小値の差分は10mV以下と小さく、組電池としての健全性が維持されていることが判る。また、この段階までに停電による非常用発電設備の作動もあったが、問題なく動作することも確認できた。
その後の時間の経過に伴って、各単位電池の放電電圧の最大値と最小値の差分の急速な増大が確認され、8年目には49mVまで増大した。この段階で、この設備のしきい値である50mVに近づいていることが確認されたため、実負荷試験運転を手動にて実施した。この結果、直流電源装置の放電持続時間が設計値の1時間に対して1時間2分程度あり、設計値とほぼ同じであることを確認した。ここで、各単位電池の放電電圧の最大値と最小値の差分がこれ以上拡大すると、直流電源装置の放電持続時間が設計値を満足できない状況となると判断されるため、直流電源装置の交換時期と判定した。
In FIG. 5, the difference between the maximum value and the minimum value of the discharge voltage of each unit battery is as small as 10 mV or less until the fifth year, and it can be seen that the integrity of the assembled battery is maintained. In addition, there was an emergency power generation system operation due to a power failure up to this stage, but it was also confirmed that it worked without problems.
Along with the passage of time thereafter, a rapid increase in the difference between the maximum value and the minimum value of the discharge voltage of each unit battery was confirmed, and it increased to 49 mV in the 8th year. At this stage, since it was confirmed that it was close to the threshold value of 50 mV for this equipment, the actual load test operation was performed manually. As a result, it was confirmed that the discharge duration of the DC power supply device was about 1 hour and 2 minutes with respect to the design value of 1 hour, which was almost the same as the design value. Here, when the difference between the maximum value and the minimum value of the discharge voltage of each unit battery is further increased, it is determined that the discharge duration of the DC power supply device cannot satisfy the design value. It was determined.
また、この直流電源装置に内部抵抗測定装置も取り付け、各単位電池の内部抵抗も測定し、図6に示すように、直流電源装置の運用開始後の経過年数と内部抵抗の最大値および最小値の変化の関係を調べた。この結果、直流電源装置の運用年数が経過しても、内部抵抗の変化は非常に小さく、直流電源装置の劣化の予兆を検出できるレベルにないことが確認できた。 Also, an internal resistance measuring device is attached to this DC power supply device, and the internal resistance of each unit battery is also measured. As shown in FIG. 6, the number of years that have elapsed since the DC power supply device started operation and the maximum and minimum values of internal resistance. The relationship between changes was investigated. As a result, it was confirmed that even when the operating years of the DC power supply device passed, the change in internal resistance was very small, and it was not at a level that could detect a sign of deterioration of the DC power supply device.
1 電力系統
2 充電器
3 組電池
4 インバータ
5 交流負荷
6 直流負荷
7 組電池状態測定装置
3a〜3c 単位電池
Va、Vb 電圧計
11 データ収集部
12 内部メモリ
13 演算機能
13a 最大値/最小値検出手段
13b 差分算出手段
13c 比較手段
13d 組電池状態判定手段
14 表示部
DESCRIPTION OF
Claims (5)
前記単位電池の電圧の最大値と最小値との差分を算出する差分算出手段と、
前記単位電池の電圧の最大値と最小値との差分をしきい値と比較する比較手段と、
前記比較手段による比較結果に基づいて前記組電池の劣化状態を判定する組電池状態判定手段とを備えることを特徴とする組電池状態測定装置。 Maximum value / minimum value detecting means for detecting the maximum value and the minimum value of the voltage at the time of discharge of each unit battery constituting the assembled battery used as an emergency power supply facility;
Difference calculating means for calculating a difference between the maximum value and the minimum value of the voltage of the unit battery;
A comparison means for comparing a difference between a maximum value and a minimum value of the voltage of the unit battery with a threshold value;
An assembled battery state measuring device comprising: an assembled battery state determining unit that determines a deterioration state of the assembled battery based on a comparison result by the comparing unit.
前記充電器と電気的に遮断された状態で前記組電池を構成する各単位電池の放電時の電圧の最大値と最小値を検出するステップと、
前記単位電池の電圧の最大値と最小値との差分を算出するステップと、
前記単位電池の電圧の最大値と最小値との差分をしきい値と比較するステップと、
前記比較手段による比較結果に基づいて前記組電池の劣化状態を判定するステップとを備えることを特徴とする組電池劣化判定方法。 Electrically disconnecting the assembled battery and the charger while the assembled battery used as an emergency power supply facility is connected to a load;
Detecting a maximum value and a minimum value of a voltage at the time of discharging each unit battery constituting the assembled battery in a state of being electrically disconnected from the charger;
Calculating a difference between a maximum value and a minimum value of the voltage of the unit battery;
Comparing a difference between a maximum value and a minimum value of the voltage of the unit battery with a threshold value;
And a step of determining a deterioration state of the assembled battery based on a comparison result by the comparing means.
前記充電器と電気的に遮断された状態で前記組電池を構成する各単位電池の放電時の電圧の最大値と最小値を検出するステップと、
前記単位電池の電圧の最大値と最小値との差分を算出するステップと、
前記単位電池の電圧の最大値と最小値との差分をしきい値と比較するステップと、
前記比較手段による比較結果に基づいて前記組電池の劣化状態を判定するステップとをコンピュータに実行させることを特徴とする組電池劣化判定プログラム。 Electrically disconnecting the assembled battery and the charger while the assembled battery used as an emergency power supply facility is connected to a load;
Detecting a maximum value and a minimum value of a voltage at the time of discharging each unit battery constituting the assembled battery in a state of being electrically disconnected from the charger;
Calculating a difference between a maximum value and a minimum value of the voltage of the unit battery;
Comparing a difference between a maximum value and a minimum value of the voltage of the unit battery with a threshold value;
And a step of determining a deterioration state of the assembled battery based on a comparison result by the comparing means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006140587A JP2007311255A (en) | 2006-05-19 | 2006-05-19 | Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006140587A JP2007311255A (en) | 2006-05-19 | 2006-05-19 | Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007311255A true JP2007311255A (en) | 2007-11-29 |
Family
ID=38843916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006140587A Pending JP2007311255A (en) | 2006-05-19 | 2006-05-19 | Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007311255A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012060803A (en) * | 2010-09-10 | 2012-03-22 | Hitachi Vehicle Energy Ltd | Battery controller and voltage abnormality detection method |
JP2012122787A (en) * | 2010-11-17 | 2012-06-28 | Nissan Motor Co Ltd | Control device of battery pack |
WO2012105448A1 (en) * | 2011-01-31 | 2012-08-09 | 三洋電機株式会社 | Battery module, battery system, power supply apparatus, and moving body |
JP2012223046A (en) * | 2011-04-13 | 2012-11-12 | Toshiba Mitsubishi-Electric Industrial System Corp | Uninterruptible power supply device and uninterruptible power supply system |
JP2013110891A (en) * | 2011-11-22 | 2013-06-06 | Toyota Motor Corp | Diagnosis device for on-vehicle battery |
JP2015103283A (en) * | 2013-11-21 | 2015-06-04 | 日産自動車株式会社 | Controller of battery module and state discrimination method of battery module |
JPWO2014115513A1 (en) * | 2013-01-22 | 2017-01-26 | 三洋電機株式会社 | Battery module failure estimation system |
JP2017092028A (en) * | 2015-11-02 | 2017-05-25 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Battery management method and battery management apparatus |
US10211490B2 (en) | 2014-04-09 | 2019-02-19 | Mitsubishi Electric Corporation | Storage battery deterioration measurement device and power storage system |
KR20190065888A (en) * | 2017-12-04 | 2019-06-12 | 현대모비스 주식회사 | Apparatus for controlling air-conditioner for vehicle |
CN111246762A (en) * | 2017-10-18 | 2020-06-05 | 日本烟草产业株式会社 | Attraction component generation device, method for controlling attraction component generation device, and program |
CN111736076A (en) * | 2020-06-15 | 2020-10-02 | 北京嘀嘀无限科技发展有限公司 | Battery system state judgment method and device, readable storage medium and electronic equipment |
KR20200116983A (en) * | 2018-06-28 | 2020-10-13 | 히다치 겡키 가부시키 가이샤 | Construction equipment management system |
WO2022049804A1 (en) * | 2020-09-07 | 2022-03-10 | Kabushiki Kaisha Toshiba | Determination device relating to plurality of batteries, electricity storage system, determination method and determination program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03289574A (en) * | 1990-03-29 | 1991-12-19 | Fuji Electric Co Ltd | Detecting circuit for abnormality of battery of uninteruptible power supply |
JPH0515085A (en) * | 1991-06-28 | 1993-01-22 | Furukawa Electric Co Ltd:The | Checking method for life of battery of uninterruptible power source of bidirectional catv system |
JPH07298503A (en) * | 1994-04-20 | 1995-11-10 | Fuji Electric Co Ltd | Go/no-go decision device for battery of uninterruptible power supply |
JPH1023674A (en) * | 1996-07-01 | 1998-01-23 | Fujitsu Ltd | Method for estimating remaining life of battery, battery unit and device that uses battery unit |
-
2006
- 2006-05-19 JP JP2006140587A patent/JP2007311255A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03289574A (en) * | 1990-03-29 | 1991-12-19 | Fuji Electric Co Ltd | Detecting circuit for abnormality of battery of uninteruptible power supply |
JPH0515085A (en) * | 1991-06-28 | 1993-01-22 | Furukawa Electric Co Ltd:The | Checking method for life of battery of uninterruptible power source of bidirectional catv system |
JPH07298503A (en) * | 1994-04-20 | 1995-11-10 | Fuji Electric Co Ltd | Go/no-go decision device for battery of uninterruptible power supply |
JPH1023674A (en) * | 1996-07-01 | 1998-01-23 | Fujitsu Ltd | Method for estimating remaining life of battery, battery unit and device that uses battery unit |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012060803A (en) * | 2010-09-10 | 2012-03-22 | Hitachi Vehicle Energy Ltd | Battery controller and voltage abnormality detection method |
JP2012122787A (en) * | 2010-11-17 | 2012-06-28 | Nissan Motor Co Ltd | Control device of battery pack |
WO2012105448A1 (en) * | 2011-01-31 | 2012-08-09 | 三洋電機株式会社 | Battery module, battery system, power supply apparatus, and moving body |
JP2012223046A (en) * | 2011-04-13 | 2012-11-12 | Toshiba Mitsubishi-Electric Industrial System Corp | Uninterruptible power supply device and uninterruptible power supply system |
JP2013110891A (en) * | 2011-11-22 | 2013-06-06 | Toyota Motor Corp | Diagnosis device for on-vehicle battery |
JPWO2014115513A1 (en) * | 2013-01-22 | 2017-01-26 | 三洋電機株式会社 | Battery module failure estimation system |
JP2015103283A (en) * | 2013-11-21 | 2015-06-04 | 日産自動車株式会社 | Controller of battery module and state discrimination method of battery module |
US10211490B2 (en) | 2014-04-09 | 2019-02-19 | Mitsubishi Electric Corporation | Storage battery deterioration measurement device and power storage system |
JP2017092028A (en) * | 2015-11-02 | 2017-05-25 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Battery management method and battery management apparatus |
JP7046481B2 (en) | 2015-11-02 | 2022-04-04 | 三星電子株式会社 | Battery management method and battery management device |
CN111246762A (en) * | 2017-10-18 | 2020-06-05 | 日本烟草产业株式会社 | Attraction component generation device, method for controlling attraction component generation device, and program |
CN111246762B (en) * | 2017-10-18 | 2023-07-18 | 日本烟草产业株式会社 | Suction component generating device, method for controlling suction component generating device, and program |
KR20190065888A (en) * | 2017-12-04 | 2019-06-12 | 현대모비스 주식회사 | Apparatus for controlling air-conditioner for vehicle |
KR102391549B1 (en) * | 2017-12-04 | 2022-04-28 | 현대모비스 주식회사 | Apparatus for controlling air-conditioner for vehicle |
KR20200116983A (en) * | 2018-06-28 | 2020-10-13 | 히다치 겡키 가부시키 가이샤 | Construction equipment management system |
KR102515519B1 (en) | 2018-06-28 | 2023-03-29 | 히다치 겡키 가부시키 가이샤 | Construction Machinery Management System |
CN111736076A (en) * | 2020-06-15 | 2020-10-02 | 北京嘀嘀无限科技发展有限公司 | Battery system state judgment method and device, readable storage medium and electronic equipment |
WO2022049804A1 (en) * | 2020-09-07 | 2022-03-10 | Kabushiki Kaisha Toshiba | Determination device relating to plurality of batteries, electricity storage system, determination method and determination program |
US11892515B2 (en) | 2020-09-07 | 2024-02-06 | Kabushiki Kaisha Toshiba | Determination device relating to plurality of batteries, electricity storage system, determination method and non-transitory storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4818808B2 (en) | Battery pack state measuring device, battery pack deterioration judgment method and battery pack deterioration judgment program | |
JP2007311255A (en) | Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program | |
JP2007309839A (en) | Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same | |
US8150642B2 (en) | Secondary battery deterioration judging device and backup power supply | |
JP4615439B2 (en) | Secondary battery management device, secondary battery management method and program | |
JP5520580B2 (en) | Storage battery cell short-circuit detection method and detection device | |
JP5089619B2 (en) | Secondary battery deterioration diagnosis device | |
EP2306581B1 (en) | Abnormality prediction system for secondary batteries | |
JP7145865B2 (en) | Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method | |
JP5743634B2 (en) | Deterioration measuring device, secondary battery pack, deterioration measuring method, and program | |
US20110307202A1 (en) | System for monitoring the state of a battery | |
CN109856548B (en) | Power battery capacity estimation method | |
EP3913726B1 (en) | Soh/soc detecting device for power storage element, and power storage element managing unit | |
CN113811781B (en) | Battery diagnosis device and method | |
JPH08140270A (en) | Method of measuring parameter of secondary cell, method of controlling charging/discharging of secondary cell by using the parameter measuring method, method of predicting life of secondary cell by using the parameter measuring method, device for controlling charging/discharging of secondary cell, and power storage device using the charging/discharging controlling device | |
EP1188063A1 (en) | Battery capacity measurement | |
JP2013518272A (en) | How to diagnose battery deterioration | |
JP2008288192A (en) | Abnormality detecting device, method, and program of battery device | |
JP7515956B2 (en) | Battery diagnostic device and method | |
EP3832331B1 (en) | Cell state estimation device and cell control device | |
KR20140053585A (en) | Apparatus and method for estimating state of health of battery | |
JP2009064682A (en) | Battery deterioration judging device, and lithium ion battery pack equipped with the same | |
JP7326237B2 (en) | Determination device, power storage system, determination method, and determination program for multiple batteries | |
KR20190048089A (en) | Apparatus and method for estimating state of health of battery | |
JP2010175496A (en) | Power supply apparatus equipped with device for determining deterioration of battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080201 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090311 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120525 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120925 |