JP2007306669A - Power stabilization system employing power storage unit - Google Patents
Power stabilization system employing power storage unit Download PDFInfo
- Publication number
- JP2007306669A JP2007306669A JP2006130641A JP2006130641A JP2007306669A JP 2007306669 A JP2007306669 A JP 2007306669A JP 2006130641 A JP2006130641 A JP 2006130641A JP 2006130641 A JP2006130641 A JP 2006130641A JP 2007306669 A JP2007306669 A JP 2007306669A
- Authority
- JP
- Japan
- Prior art keywords
- power
- compensation
- value
- stabilization system
- storage device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006641 stabilisation Effects 0.000 title claims abstract description 61
- 238000011105 stabilization Methods 0.000 title claims abstract description 61
- 238000005259 measurement Methods 0.000 claims abstract description 53
- 238000004364 calculation method Methods 0.000 claims description 67
- 238000012937 correction Methods 0.000 claims description 42
- 238000001514 detection method Methods 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000004904 shortening Methods 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
本発明は、風力発電機等の発電機から電力系統に加える電力を安定化するシステムに係り、特に、電力貯蔵装置を用いた電力安定化システムに関する。 The present invention relates to a system for stabilizing power applied to a power system from a generator such as a wind power generator, and more particularly to a power stabilization system using a power storage device.
近年、風力や太陽光など自然エネルギーを利用した分散型電源の電力系統への連系が増加している。しかし、自然エネルギーを利用した分散型電源は、風速などの自然条件に応じて時々刻々と出力が変動するため、特に僻地や離島などの弱い電力系統では系統の周波数や電圧の変動が生じ、問題となる場合がある。 In recent years, interconnection of distributed power sources using natural energy such as wind power and sunlight has increased. However, since the output of a distributed power source that uses natural energy fluctuates from moment to moment depending on natural conditions such as wind speed, system frequency and voltage fluctuations occur especially in weak power systems such as remote areas and remote islands. It may become.
また、将来、マイクログリッドの導入を進めることが考えられる。マイクログリッドでは、自然エネルギーを利用した分散型電源の出力変動や、需要化設備の電力需要変動により、需給アンバランスが生じ、連系点の潮流が時々刻々と変化する。このため、連系点電力制御を行い、連系点潮流を事前計画値にあわせてできるだけ一定とし、商用系統に悪影響を与えない運用が求められる。しかし、ガスタービン等の制御可能な分散型電源には負荷追従性に限界があり、速い潮流変動は抑制できないという問題がある。 In the future, it is possible to introduce microgrids. In the microgrid, output fluctuations of distributed power sources using natural energy and power demand fluctuations of demanding equipment cause supply and demand imbalance, and the tidal current at the interconnection point changes from moment to moment. For this reason, the connection point power control is performed, the connection point power flow is made as constant as possible according to the pre-planned value, and an operation that does not adversely affect the commercial system is required. However, a controllable distributed power source such as a gas turbine has a limit in load followability, and there is a problem that fast tidal current fluctuation cannot be suppressed.
従来より、フライホイールや二次電池などの電力貯蔵装置を用いて、電力の吸収または放出を行うことにより、出力変動、負荷変動、潮流変動等の電力変動分を補償するシステムが開発されている。例えば、風力発電機の出力変動補償を行う場合、風力発電機の発電出力が増加した場合には、電力貯蔵装置の電力放出を減少または電力吸収を増大させ、風力発電機の発電出力が減少した場合には、電力貯蔵装置の電力吸収を減少または電力放出を増大させることにより、風力発電機と電力貯蔵装置の連系点の電力変動を補償することができる。 Conventionally, a system has been developed that compensates for power fluctuations such as output fluctuations, load fluctuations, power flow fluctuations, etc. by absorbing or discharging power using a power storage device such as a flywheel or a secondary battery. . For example, when compensating for fluctuations in the output of a wind power generator, if the power output of the wind power generator increases, the power output of the power storage device decreases or power absorption increases, and the power output of the wind power generator decreases. In some cases, power fluctuations at the interconnection point between the wind power generator and the power storage device can be compensated by reducing the power absorption of the power storage device or increasing the power release.
ただし、電力変換器の機器容量、及び電力貯蔵装置の貯蔵電力量は有限であり、電力変換器においては充放電電力、電力貯蔵装置においては貯蔵電力量に運転許容範囲が存在する。運転許容範囲を逸脱した場合、例えば電力変換器では機器の停止、フライホイールでは回転数オーバーによる装置の停止や回転数不足による運転の不安定化、二次電池では過充電・過放電による電池寿命の低下につながる。そこで通常、運転許容範囲の逸脱を防止するためのリミッタを制御装置の出力段に設けている。 However, the device capacity of the power converter and the stored power amount of the power storage device are finite, and there is an allowable operating range for the charge / discharge power in the power converter and the stored power amount in the power storage device. In case of deviation from the allowable operating range, for example, the power converter stops the equipment, the flywheel stops the equipment due to overspeed or the operation becomes unstable due to insufficient speed, and the secondary battery life due to overcharge / overdischarge Leading to a decline. Therefore, normally, a limiter for preventing deviation from the allowable operating range is provided at the output stage of the control device.
特許文献1では、フライホイールの制御装置において、充放電電力が電力変換器の運転許容範囲を超えないように充放電電力リミッタを設け、またフライホイールの回転速度(貯蔵電力量に相当)がフライホイール(電力貯蔵装置)の運転許容範囲を超えないように速度リミッタを設け、機器を保護している。
また、電力貯蔵装置や電力変換器では充放電の際に損失が発生するため、そのままでは電力貯蔵装置に蓄えられる平均的な貯蔵電力量は徐々に減少し、終には貯蔵電力量の下限値に至り電力変動補償効果が得られなくなる。同様に有効電力変動量の平均値が電力貯蔵装置から充電する方向に偏っていた場合、そのままでは電力貯蔵装置に蓄えられる平均的な貯蔵電力量は徐々に増加し、終には貯蔵電力量の上限値に至り電力変動補償効果が得られなくなる。そこで、電力貯蔵装置の充放電量の平均的な偏りを補正し、貯蔵電力量が長期的に上下限値で張り付いてしまう状態を防止するための、各種制御方式が提案されている。 In addition, since a loss occurs during charging and discharging in the power storage device and power converter, the average stored power amount stored in the power storage device gradually decreases as it is, and finally the lower limit value of the stored power amount As a result, the power fluctuation compensation effect cannot be obtained. Similarly, if the average value of the active power fluctuation amount is biased in the direction of charging from the power storage device, the average stored power amount stored in the power storage device gradually increases as it is, and finally the stored power amount The upper limit is reached and the power fluctuation compensation effect cannot be obtained. Therefore, various control methods have been proposed for correcting the average bias of the charge / discharge amount of the power storage device and preventing the stored power amount from sticking to the upper and lower limit values in the long term.
電力貯蔵装置としてフライホイールを用いる例として特許文献2、二次電池を用いる例として非特許文献1等が挙げられる。
特許文献2では、フライホイールの制御装置において、フライホイールの回転速度(貯蔵電力量に相当)と目標回転速度(回転速度上限値と下限値の間に設定)との差異に基づいて回転速度が目標回転速度に近づくよう、フライホイールへの出力指令値に補正信号を加算することにより、フライホイールの充放電量の平均的な偏りを制御している。
As an example of using a flywheel as the power storage device, Patent Document 2 and as an example of using a secondary battery include Non-Patent Document 1 and the like.
In Patent Document 2, in the flywheel control device, the rotational speed is determined based on the difference between the rotational speed of the flywheel (corresponding to the stored electric energy) and the target rotational speed (set between the rotational speed upper limit value and the lower limit value). The average bias of the charge / discharge amount of the flywheel is controlled by adding a correction signal to the output command value to the flywheel so as to approach the target rotation speed.
非特許文献1では、二次電池の制御装置において、二次電池の端子電圧(貯蔵電力量に相当)があらかじめ設定したしきい値(端子電圧許容範囲に上下二つのしきい値を設定)を超えた場合に、端子電圧許容範囲の中間方向に近づくよう二次電池への出力指令値を補正(分散型電源の有効電力計測値から変動成分を除去した補償目標値に対し補正値を加算することにより、二次電池の充放電量の平均的な偏りを制御している。
しかし、運転状態が運転許容範囲の上下限に達した場合、補償電力の出力値をリミッタにより制限すれば運転許容範囲の逸脱は防止できるが、リミッタ前段、すなわちリミッタ入力信号である補償電力の演算値自体は依然運転許容範囲を超える信号レベルに保たれてしまう。その結果、補償電力が自然に運転許容範囲に収まる信号レベルに落ち着くまでそれ以上の電力補償ができなくなる問題があった。 However, if the operating state reaches the upper and lower limits of the allowable operating range, the output of the compensating power can be limited by a limiter to prevent the deviation of the operating allowable range, but the preceding stage of the limiter, that is, the calculation of the compensating power that is the limiter input signal The value itself is still kept at a signal level that exceeds the allowable operating range. As a result, there has been a problem that further power compensation cannot be performed until the compensation power settles to a signal level that naturally falls within the allowable operating range.
また、運転状態が運転許容範囲の上下限に張り付き電力補償ができない期間の有効電力の変化方向と、電力補償を再開する際の電力補償方向が異なるため、電力補償再開時に補償後の有効電力が急激に変化する問題があった。 In addition, the direction of change in active power during the period when the operating state is stuck to the upper and lower limits of the allowable operating range and power compensation is not possible, and the power compensation direction when restarting power compensation is different. There was a problem that changed rapidly.
本発明の課題は、運転状態が運転許容範囲の上下限に達した場合、運転状態が運転許容範囲の上下限に張り付き電力補償ができなくなる時間を短縮し、尚且つ電力補償再開時の補償後有効電力の急激な変動を抑え、電力貯蔵装置の運転許容範囲の中で、より効率的・効果的な電力変動補償が可能な、電力貯蔵装置を用いた電力安定化システム、その制御装置等を提供することである。 The object of the present invention is to reduce the time during which power compensation cannot be performed when the operating state reaches the upper and lower limits of the allowable operating range, and after the compensation when the power compensation is resumed. A power stabilization system using a power storage device, its control device, etc. that can suppress sudden fluctuations in active power and can compensate for more efficient and effective power fluctuation within the allowable operating range of the power storage device Is to provide.
第1の本発明による電力貯蔵装置を用いた電力安定化システムは、交流電力系統の有効電力を有効電力計測値として検出する有効電力検出手段と、前記有効電力検出手段で検出された有効電力計測値から有効電力変動成分を除去し、補償目標値を算出する補償目標値演算手段と、前記補償目標演算手段で算出された補償目標値と前記有効電力検出手段で検出された有効電力計測値の差を取り、補償電力を算出する補償電力演算手段と、前記補償電力演算手段で算出された補償電力に応じて電力変換器出力指令を発信する電力変換器制御手段と、前記電力変換制御手段から発せられた電力変換器出力指令に応じて、電力貯蔵装置に貯蔵された電力を前記交流電力系統へ入出力する電力変換器を備え、前記補償目標値演算手段は、上限閾値と下限閾値で、演算あるいは演算値を制限する機能(以下「内部リミッタ」と呼ぶ)を持つローパスフィルタを有し、前記上限閾値は有効電力計測値に機械保護上限閾値を加算したもの(内部リミッタ上限閾値)とし、前記下限閾値は有効電力計測値に機械保護下限閾値を加算したもの(内部リミッタ下限閾値)とすることによって実現できる。 The power stabilization system using the power storage device according to the first aspect of the present invention includes an active power detection means for detecting an active power of an AC power system as an active power measurement value, and an active power measurement detected by the active power detection means. A compensation target value calculation means for removing the active power fluctuation component from the value and calculating a compensation target value; a compensation target value calculated by the compensation target calculation means; and an active power measurement value detected by the active power detection means Compensation power calculation means for calculating the compensation power by taking the difference, power converter control means for transmitting a power converter output command according to the compensation power calculated by the compensation power calculation means, and the power conversion control means A power converter for inputting / outputting power stored in a power storage device to / from the AC power system in response to a power converter output command issued; A low-pass filter having a function to limit the calculation or the calculated value (hereinafter referred to as “internal limiter”), and the upper limit threshold is obtained by adding the machine protection upper limit threshold to the active power measurement value (internal limiter upper limit threshold The lower limit threshold value can be realized by adding the machine protection lower limit threshold value to the active power measurement value (internal limiter lower limit threshold value).
上記構成の電力貯蔵装置を用いた電力安定化システムによれば、運転状態が運転許容範囲の上下限に達した場合、内部リミッタにより補償目標値の演算値自体が運転許容範囲に収まる信号レベルに制限される。そのため、有効電力計測値の増減が反転した段階で運転状態が運転許容範囲に入り、電力補償を再開できる。結果、運転状態が運転許容範囲の上下限に張り付き電力補償ができない時間が短縮できる。また有効電力の増減が反転したタイミングで電力補償を再開することにより、反転前の電力変動の傾向に沿った電力補償が可能になる。例えば、補償目標値演算手段への入力信号である有効電力計測値が内部リミッタの上限値に達した場合、有効電力計測値が減少を始めた段階で電力補償が再開される。また電力補償を再開する際、有効電力計測値の減少する変動成分を補償することにより、電力補償再開時の補償後有効電力の変動を抑制することができる。 According to the power stabilization system using the power storage device having the above configuration, when the operating state reaches the upper and lower limits of the allowable operating range, the internal limiter sets the signal level at which the calculated value of the compensation target value is within the allowable operating range. Limited. Therefore, at the stage where the increase / decrease in the active power measurement value is reversed, the operation state enters the operation allowable range, and the power compensation can be resumed. As a result, the time during which the operating state is stuck to the upper and lower limits of the allowable operating range and power compensation is not possible can be shortened. In addition, by resuming power compensation at the timing when the increase / decrease in active power is reversed, it is possible to perform power compensation in accordance with the tendency of power fluctuation before inversion. For example, when the active power measurement value that is an input signal to the compensation target value calculation means reaches the upper limit value of the internal limiter, the power compensation is resumed when the active power measurement value starts to decrease. Further, when the power compensation is resumed, the fluctuation of the active power after compensation when the power compensation is resumed can be suppressed by compensating for the fluctuation component that the active power measurement value decreases.
第2の本発明による電力貯蔵装置を用いた電力安定化システムは、交流電力系統の有効電力を有効電力計測値として検出する有効電力検出手段と、前記有効電力検出手段で検出された有効電力計測値から有効電力変動成分を抽出し、補償電力を算出する補償電力演算手段と、前記補償電力演算手段で算出された補償電力に応じて電力変換器出力指令を発信する電力変換器制御手段と、前記電力変換制御手段から発せられた電力変換器出力指令に応じて、電力貯蔵装置に貯蔵された電力を前記交流電力系統へ入出力する電力変換器とを備え、前記補償目標値演算手段は、機械保護上限閾値を内部リミッタ上限閾値とし、機械保護下限閾値を内部リミッタ下限閾値とする内部リミッタ付きハイパスフィルタを有することによって実現される。 The power stabilization system using the power storage device according to the second aspect of the present invention includes active power detection means for detecting active power of an AC power system as an active power measurement value, and active power measurement detected by the active power detection means. A compensation power calculation means for extracting an active power fluctuation component from the value and calculating compensation power; a power converter control means for transmitting a power converter output command in accordance with the compensation power calculated by the compensation power calculation means; In response to a power converter output command issued from the power conversion control means, a power converter that inputs and outputs power stored in a power storage device to the AC power system, the compensation target value calculation means, This is realized by having a high-pass filter with an internal limiter having a machine protection upper limit threshold as an internal limiter upper limit threshold and a machine protection lower limit threshold as an internal limiter lower limit threshold.
上記構成の電力貯蔵装置を用いた電力安定化システムによれば、運転状態が運転許容範囲の上下限に達した場合、内部リミッタにより補償目標値の演算値自体が運転許容範囲に収まる信号レベルに制限される。そのため、有効電力計測値の増減が反転した段階で運転状態が運転許容範囲に入り、電力補償を再開できる。結果、運転状態が運転許容範囲の上下限に張り付き電力補償ができない時間が短縮できる。また有効電力の増減が反転したタイミングで電力補償を再開することにより、反転前の電力変動の傾向に沿った電力補償が可能になる。例えば、補償目標値演算手段への入力信号である有効電力計測値が内部リミッタの上限値に達した場合、有効電力計測値が減少を始めた段階で電力補償が再開される。また電力補償を再開する際、有効電力計測値の減少する変動成分を補償することにより、電力補償再開時の補償後有効電力の変動を抑制することができる。 According to the power stabilization system using the power storage device having the above configuration, when the operating state reaches the upper and lower limits of the allowable operating range, the internal limiter sets the signal level at which the calculated value of the compensation target value is within the allowable operating range. Limited. Therefore, at the stage where the increase / decrease in the active power measurement value is reversed, the operation state enters the operation allowable range, and the power compensation can be resumed. As a result, the time during which the operating state is stuck to the upper and lower limits of the allowable operating range and power compensation is not possible can be shortened. In addition, by resuming power compensation at the timing when the increase / decrease in active power is reversed, it is possible to perform power compensation in accordance with the tendency of power fluctuation before inversion. For example, when the active power measurement value that is an input signal to the compensation target value calculation means reaches the upper limit value of the internal limiter, the power compensation is resumed when the active power measurement value starts to decrease. Further, when the power compensation is resumed, the fluctuation of the active power after compensation when the power compensation is resumed can be suppressed by compensating for the fluctuation component that the active power measurement value decreases.
本発明の電力貯蔵装置を用いた電力安定化システム、その制御装置等によれば、運転状態が運転許容範囲の上下限に達した場合にも、運転状態が運転許容範囲の上下限に張り付き電力補償ができない時間が短縮でき、電力貯蔵装置の運転許容範囲の中で、より効率的・効果的な電力変動補償が可能となる。 According to the power stabilization system using the power storage device of the present invention, its control device, etc., even when the operating state reaches the upper and lower limits of the allowable operating range, the operating state sticks to the upper and lower limits of the allowable operating range. The time during which compensation is not possible can be shortened, and more efficient and effective compensation for power fluctuations can be achieved within the allowable operating range of the power storage device.
また、有効電力の増減が反転した段階で電力補償を再開することにより、反転前の電力変動の傾向に沿った電力補償が可能になる。つまり、運転状態が運転許容範囲の上下限に達した場合でも、滑らかさを維持した電力補償の再開が実現される。 Further, by resuming the power compensation at the stage where the increase / decrease in the active power is reversed, it becomes possible to perform the power compensation according to the power fluctuation tendency before the reversal. That is, even when the driving state reaches the upper and lower limits of the driving allowable range, resumption of power compensation while maintaining smoothness is realized.
また、電力貯蔵装置を監視する補正信号を加えた場合においても、補正信号を加えたことによる運転許容範囲逸脱を防止しつつ、上記の効果を妨げない電力変動補償を行う。 In addition, even when a correction signal for monitoring the power storage device is added, power fluctuation compensation that does not hinder the above effect is performed while preventing the deviation from the allowable operating range due to the addition of the correction signal.
以下、図面を参照して、本発明の実施の形態について説明する。
尚、本発明は交流電力系統の有効電力変動を抑制する電力安定化システムに関するものであり、以下の説明では、上記自然エネルギーを利用した分散型電源が接続された交流電力系統を例にするが、本発明はこの例に限らない。本発明の電力安定化システムは、負荷変動やマイクログリッド連系運転時の連系点潮流変動等、交流電力系統の有効電力を抑制する目的であれば適用できる。また、以下の説明では、上記自然エネルギーを利用した分散型電源の一例として風力発電機を例にして説明するが、この例に限らず、例えば太陽光発電等であってもよい。
Embodiments of the present invention will be described below with reference to the drawings.
The present invention relates to a power stabilization system that suppresses fluctuations in the active power of an AC power system. In the following description, an AC power system to which a distributed power source using natural energy is connected is taken as an example. The present invention is not limited to this example. The power stabilization system of the present invention can be applied for the purpose of suppressing the active power of the AC power system, such as load fluctuations and fluctuations in the interconnection point power flow during microgrid interconnection operation. In the following description, a wind power generator will be described as an example of the distributed power source using the natural energy. However, the present invention is not limited to this example, and may be solar power generation, for example.
図1は本発明の実施例1における、電力貯蔵装置を用いた電力安定化システム全体の構成図である。同図の電力安定化システム1は、電力貯蔵装置3、電力変換器4、制御装置5からなり、変圧器を介して電力系統2に接続する。 FIG. 1 is a configuration diagram of an entire power stabilization system using a power storage device in Embodiment 1 of the present invention. The power stabilization system 1 in FIG. 1 includes a power storage device 3, a power converter 4, and a control device 5, and is connected to the power system 2 via a transformer.
電力貯蔵装置3は、例えばフライホイール、二次電池、キャパシタ等である。
電力変換器4は、制御装置5からの電力変換器出力指令値PO(ここでは、電力貯蔵装置から電力を放出する方向を正とする)に基づいて、電力系統2と電力貯蔵装置3との間で電力の授受を行う。電力貯蔵装置3がフライホイールである場合は、フライホイール側の交流電力と電力系統側の交流電力を双方向に変換し、電力貯蔵装置3が二次電池・キャパシタ等である場合には、二次電池・キャパシタ側の直流電力と電力系統側の交流電力を双方向に変換する。
The power storage device 3 is, for example, a flywheel, a secondary battery, a capacitor, or the like.
The power converter 4 is based on the power converter output command value P O from the control device 5 (here, the direction in which power is discharged from the power storage device is positive), and the power system 2, the power storage device 3, Give and receive power. When the power storage device 3 is a flywheel, the AC power on the flywheel side and the AC power on the power system side are converted bidirectionally, and when the power storage device 3 is a secondary battery, a capacitor, or the like, DC power on the secondary battery / capacitor side and AC power on the power system side are converted bidirectionally.
またここでは自然エネルギーを利用した分散型電源の出力変動補償を行う場合を想定し、風力発電機が変圧器を介して電力系統に接続されているとする。尚、マイクログリッド連系点の有効電力を検出することにより、連系点潮流変動の抑制等にも応用できる。
制御装置5は、有効電力検出器6、補償目標演算部7、補償電力演算部8、電力変換器制御部9等を有する。
Here, it is assumed that the output fluctuation compensation of the distributed power source using natural energy is performed, and the wind power generator is connected to the power system via a transformer. In addition, by detecting the effective power at the connection point of the microgrid, it can be applied to the suppression of fluctuations in the connection point power flow.
The control device 5 includes an active power detector 6, a compensation target calculation unit 7, a compensation power calculation unit 8, a power converter control unit 9, and the like.
制御装置5は、特に図示しないが、CPU等と、メモリや各種記憶媒体(ハードディスク等)等の記憶装置等を備えたコンピュータで構成されており、上述の有効電力検出部6、補償目標値演算部7、補償電力演算部8、電力変換器制御部9、貯蔵電力量検出部11、補正信号演算部12等による処理(後述する)は、たとえば、CPUが記憶装置に記憶されている所定のアプリケーションプログラム(電力安定化制御プログラム)を読出して実行することにより実現することができる。 Although not shown in particular, the control device 5 is configured by a computer including a CPU and the like, and a storage device such as a memory and various storage media (hard disk, etc.). The above-described active power detection unit 6, compensation target value calculation The processing (to be described later) by the unit 7, the compensation power calculation unit 8, the power converter control unit 9, the stored power amount detection unit 11, the correction signal calculation unit 12, and the like is, for example, a predetermined value stored in the storage device by the CPU. This can be realized by reading and executing an application program (power stabilization control program).
あるいは、制御装置5の有効電力検出部6、補償目標値演算部7、補償電力演算部8、電力変換器制御部9、貯蔵電力量検出部11、補正信号演算部12等による処理を専用回路等のハードウェアによって実現してもよい。 Alternatively, the processing by the active power detection unit 6, the compensation target value calculation unit 7, the compensation power calculation unit 8, the power converter control unit 9, the stored power amount detection unit 11, the correction signal calculation unit 12, etc. of the control device 5 is a dedicated circuit. It may be realized by hardware such as.
また、ハードウェアによって実現する場合、デジタルの制御装置5(プログラマブルコントローラ)を用いて制御してもよいし、オペアンプ等によるアナログ制御回路で実現してもよい。 Further, when realized by hardware, it may be controlled using a digital control device 5 (programmable controller), or may be realized by an analog control circuit such as an operational amplifier.
有効電力検出器6は、風力発電機の出力端の電圧・電流値に基づいて風力発電機の有効電力計測値PGを検出する。
補償目標値演算部7は、ローパスフィルタ等の変動分を除去するフィルタ、あるいは移動平均等の平滑化処理により、有効電力計測値PGから有効電力変動成分を除去し補償目標値PAを演算する。
Active power detector 6 detects the effective power measured value P G of the wind power generator on the basis of the voltage and current value of the output of the wind power generator.
Compensation target value computing unit 7, an arithmetic filter, or by smoothing the moving average or the like, the removal of the active power variation component from the effective power measured value P G compensation target value P A to remove variation such as a low-pass filter To do.
補償電力演算部8は、補償目標値PAから有効電力計測値PGを減算することにより、補償電力ΔPG(ここでは、電力貯蔵装置から電力を放出する方向を正とする)を演算する。
電力変換器制御部9は、補償電力ΔPGの大きさに応じて変換器への指令値である電力変換器出力指令値POを生成する。
The compensation power calculation unit 8 calculates the compensation power ΔP G (here, the direction in which power is discharged from the power storage device is positive) by subtracting the active power measurement value P G from the compensation target value P A. .
Power converter control section 9 generates a command value to the converter depending on the magnitude of the power converter output command value P O of the compensation power [Delta] P G.
図2では補償目標値演算部の内部構成例を説明する。補償目標値演算部内には有効電力変動分除去フィルタ10(或いは平滑化処理)を設け、有効電力変動分除去フィルタ10には後述する上下限しきい値で演算を止めるリミッタ(以下では内部リミッタと参照する)を設ける。内部リミッタ上下限しきい値(HL、LL)には機器保護上下限しきい値(HLO、LLO)と有効電力計測値PGとを加算した値を設定する。なお、この機器保護上下限しきい値(HLO、LLO)は、固定値(例えば電力変換器の出力可能上下限値等)であっても良いし、電力安定化システムの状態(例えば電力貯蔵装置の温度や貯蔵電力量等)に応じて制御される可変値であってもよい。また、図中の有効電力変動成分除去フィルタには一次のローパス特性の伝達関数が記載されているが、本発明はこの伝達関数に制限されるものではない。伝達関数等のフィルタ特性は本発明実施者の設計事項である。 FIG. 2 illustrates an internal configuration example of the compensation target value calculation unit. An active power fluctuation removal filter 10 (or smoothing process) is provided in the compensation target value calculation unit, and the active power fluctuation removal filter 10 is a limiter (hereinafter referred to as an internal limiter) that stops calculation at an upper / lower threshold value described later. To be referred). The internal limiter upper / lower threshold values (HL, LL) are set to a value obtained by adding the device protection upper / lower threshold values (HL O , LL O ) and the active power measurement value P G. The device protection upper and lower thresholds (HL O , LL O ) may be fixed values (for example, upper and lower limit values that can be output from the power converter), or the state of the power stabilization system (for example, power It may be a variable value controlled according to the temperature of the storage device or the amount of stored power. In addition, the active power fluctuation component removal filter in the figure describes a first-order low-pass characteristic transfer function, but the present invention is not limited to this transfer function. Filter characteristics such as a transfer function are a design matter of the present inventor.
ここで、上述の内部リミッタの機能に関して説明する(なお、このリミッタはダイナミックリミッタと参照されることもある)。従来技術では、電力変換器の出力PO等の運転状態(各種検出信号)が電力変換器、及び電力貯蔵装置の運転許容範囲を逸脱しないように、補償電力ΔPGあるいは電力変換器出力指令値POという処理過程の後半部分に上下限リミッタ(このリミッタを以降「外部リミッタ」と呼ぶ)を設け、機器保護上下限しきい値(HLO、LLO)を設定していた。この機器保護上下限しきい値(HLO、LLO)を固定値に設定、或いは可変制御することにより、運転許容範囲の逸脱を防止することはできた。例えば電力変換器の出力POの運転許容範囲逸脱を防止する場合、HLO、LLOに電力変換器の出力上下限値を設定すればよい。 Here, the function of the above-described internal limiter will be described (Note that this limiter may be referred to as a dynamic limiter). In the prior art, the operating conditions such as the output P O of the power converter (various detection signals) of the power converter, and so as not to deviate from the operation allowable range of the electric power storage device, the compensation power [Delta] P G or the power converter output command value the upper and lower limit limiter (hereinafter this limiter is referred to as "external limiter") provided on the second half of the P O of process, had set equipment protection over the lower threshold (HL O, LL O). The equipment protection over the lower threshold (HL O, LL O) set to a fixed value, or by variably controlling, was able to prevent a departure operation allowable range. For example, to prevent the operation allowable range deviation of the output P O of the power converter, HL O, it may be set the output upper and lower limits of the power converter LL O.
しかし運転状態が外部リミッタの上下限に達した場合、外部リミッタの出力値は上下限値で制限されるが、外部リミッタの入力値である補償電力ΔPG、或いは電力変換器出力指令値POは依然運転許容範囲を超える信号レベルに保たれてしまう。そのため運転許容範囲の逸脱は防止できるが、外部リミッタの入出力値である補償電力ΔPG、或いは電力変換器出力指令値POが自然に運転許容範囲に収まるまで、それ以上の電力補償ができなかった。 However, when the operating condition reaches the upper and lower limits of the external limiter, the output value of the external limiter is limited by the upper and lower limits, but the compensation power ΔP G that is the input value of the external limiter or the power converter output command value P O Is still kept at a signal level exceeding the allowable operating range. Therefore, the deviation of the allowable operating range can be prevented, but more power compensation can be performed until the compensation power ΔP G , which is the input / output value of the external limiter, or the power converter output command value PO naturally falls within the allowable operating range. There wasn't.
また、運転状態が運転許容範囲の上下限に張り付き電力補償が出来ない期間の有効電力の変化方向と、電力補償を再開する際の電力補償方向が異なるため、電力補償再開時に補償後の有効電力が大きく変化する問題があった。 In addition, the active power change direction during the period when the operating state is stuck to the upper and lower limits of the allowable operating range and power compensation cannot be performed is different from the power compensation direction when resuming power compensation. There was a problem that changed greatly.
上記の問題を解決するために、本発明では有効電力変動分除去フィルタ10の中にリミッタを設ける。この構成は従来技術と比較すると、リミッタの位置が処理過程の前半部分に配置されるという点で大きく異なる。さらに、フィルタ内にリミッタを設けることにより、演算値自体が許容範囲に収まる信号レベルに制限するため、従来技術で問題となっていた過剰な演算を防止できる。 In order to solve the above problem, in the present invention, a limiter is provided in the active power fluctuation elimination filter 10. This configuration differs greatly from the prior art in that the position of the limiter is arranged in the first half of the process. Furthermore, by providing a limiter in the filter, the calculation value itself is limited to a signal level that falls within an allowable range, so that excessive calculation that has been a problem in the prior art can be prevented.
なお、フィルタ内にリミッタを設ける実装方法は、フィルタの種類や演算方法(デジタルフィルタ、アナログフィルタ、伝達関数等)に依存する。また、演算の抑制の仕方によって上下限値に達する時や分離する時の出力の仕上がり具合が異なる。つまり、本発明におけるフィルタ内のリミッタの構成は、本発明の実施者が目的に応じて行う設計事項である。 The mounting method in which the limiter is provided in the filter depends on the type of filter and the calculation method (digital filter, analog filter, transfer function, etc.). Moreover, the output finish when the upper and lower limit values are reached or when the separation is performed differs depending on how the calculation is suppressed. In other words, the configuration of the limiter in the filter according to the present invention is a design matter that the practitioner of the present invention performs according to the purpose.
この技術的工夫により、例えばフィルタへの入力信号である有効電力計測値PGが急激に増加し内部リミッタの上限値に達した場合、内部リミッタにより補償目標値PAの演算値自体が運転許容範囲に収まる信号レベルに制限されるため、有効電力計測値PGが減少を始めた段階で電力補償が再開される。つまり、運転状態が許容範囲内の上下限値に張り付き電力補償ができない時間が短縮できる。 This technical device, for example, when the effective power measured value P G, which is an input signal to the filter has reached the upper limit value of the rapidly increasing internal limiter, calculation value itself of the compensation target value P A is operation allowable by the internal limiter because it is limited to a signal level falls within the range, power compensation is resumed at the stage where active power measurement P G began to decrease. That is, the time during which the operating state is stuck to the upper and lower limits within the allowable range and power compensation is not possible can be shortened.
また、有効電力の増減が反転したタイミングで電力補償を再開することにより、反転前の電力変動の傾向に沿った電力補償が可能になる。
また、内部リミッタ上下限しきい値(HL、LL)を機器保護上下限しきい値(HLO、LLO)に有効電力計測値PGを加算した値とすることにより、補償目標値PAの大きさは上限値HLO+PG、下限値HLO+PGにて制限される。ところが図3に示されるように、後段の補償電力演算部では補償目標値PAの大きさは上限値HLO+PG、下限値HLO+PGにて制限されているため、有効電力計測値PGを減算することによって求まる補償電力ΔPGの大きさは上限値HLO、下限値HLOにて制限されることになる。これにより電力変換器、及び電力貯蔵装置の運転許容範囲逸脱を防止することができる。
Further, by resuming the power compensation at the timing when the increase / decrease in the active power is reversed, it becomes possible to perform the power compensation in accordance with the power fluctuation tendency before the reversal.
Also, the compensation target value P A can be obtained by setting the internal limiter upper / lower limit threshold (HL, LL) to the value obtained by adding the active power measurement value P G to the device protection upper / lower limit threshold (HL O , LL O ). the size of the upper limit value HL O + P G, is limited by the lower limit value HL O + P G. However, as shown in FIG. 3, since the later of the compensation power computing unit size for the compensation target value P A is limited by the upper limit value HL O + P G, the lower limit HL O + P G, active power the size of the compensation power [Delta] P G which is obtained by subtracting the measured value PG will be restricted upper limit value HL O, at the lower limit HL O. Thereby, the deviation | shift deviation of the driving | operation allowable range of a power converter and a power storage device can be prevented.
図4は本発明の実施例2における電力安定化システムシステム全体構成の図である。本実施例の構成の主旨は、貯蔵電力量の監視により得られた補正信号を加えた場合に、補正信号を加えたことよって、運転状態が運転許容範囲を逸脱してしまわないようにしながらも、本発明の実施例1の特徴を損なわないようにすることである。 FIG. 4 is a diagram of the overall configuration of the power stabilization system in the second embodiment of the present invention. The main point of the configuration of the present embodiment is that when the correction signal obtained by monitoring the stored electric energy is added, the correction state is added so that the operation state does not deviate from the operation allowable range. This is to prevent the features of the first embodiment of the present invention from being impaired.
同図の電力安定化システム1は、実施例1の構成要素に加えて、貯蔵電力量検出器11と補正信号演算部12を有する。
貯蔵電力量検出器11は、電力貯蔵装置の貯蔵電力量ESを、直接あるいは間接的に検出/算出する。例えば電力貯蔵装置がフライホイールの場合は、フライホイール回転数を検出し、二次電池・キャパシタ等である場合は端子電圧を検出して、前記検出結果に基づいて貯蔵電力量ESを算出する。
The power stabilization system 1 in FIG. 1 includes a stored power amount detector 11 and a correction signal calculation unit 12 in addition to the components of the first embodiment.
Stored power amount detector 11, the stored power amount E S of the electric power storage device, directly or indirectly detected / calculated. For example if the power storage device is a flywheel, to detect the flywheel speed when a secondary battery, capacitor or the like detects the terminal voltage, calculating a stored power amount E S based on the detection result .
補正信号演算部12は、貯蔵電力量検出器11から貯蔵電力量ESを受け取り、補正信号PCを算出し、補償目標値PAまたは補償電力ΔPGに加算する。このとき、さらに補償目標値演算部7にも補正信号PCを転送する。 Correction signal calculating unit 12 receives the stored power amount E S from a storage power amount detector 11 calculates a correction signal P C, is added to the compensation target value P A or compensation power [Delta] P G. In this case, further also transfers the corrected signal P C to the compensation target value computing unit 7.
図5は本発明の実施例2における補償目標値演算部7の構成例を説明する。なお、本構成例は、補償電力ΔPGに補正信号PCを加算する場合にも実質的に同じである。
同図に示されるように、補償目標演算部7は内部リミッタ付有効電力変動成分除去フィルタを有し、有効電力計測値PGから補償目標値PAを算出する。このとき、内部リミッタ上下限しきい値(HL、LL)を以下のように定める。
FIG. 5 illustrates a configuration example of the compensation target value calculation unit 7 according to the second embodiment of the present invention. Incidentally, this configuration example is substantially the same even when adding the correction signal P C to the compensation power [Delta] P G.
As shown in the figure, the compensation target processing unit 7 has an effective power variation component removal filter with internal limiter, it calculates the compensation target value P A from the active power measurements P G. At this time, the internal limiter upper and lower thresholds (HL, LL) are determined as follows.
内部リミッタ上限しきい値HL=
機器保護上限しきい値HLo+有効電力計測値PG−補正信号PC
内部リミッタ下限しきい値LL=
機器保護下限しきい値LLo+有効電力計測値PG−補正信号PC
つまり、補償目標値PAの大きさは上限値PG+HLo−PC、下限値PG+LLo−PCで制限される。
Internal limiter upper limit threshold HL =
Device protection upper threshold HLO + active power measurement value P G -correction signal P C
Internal limiter lower threshold LL =
Equipment protection lower limit threshold LLo + active power measurement value P G -correction signal P C
In other words, the magnitude of the compensation target value P A is the upper limit value P G + HLo-P C, is limited by the lower limit value P G + LLo-P C.
このように定める利点を、図6を使って説明する。上限値PG+HLo−PC、下限値PG+LLo−PCで制限された補償目標値PAは、後段にて補正信号PCが加算され、補償電力演算部8では有効電力計測値PGが減算される。結果として、補償電力ΔPGの大きさは上限値HLo、下限値LLoで制限される。つまり、補正信号PCを補償電力ΔPGに反映させながらも、変動自体は上限値HLo、下限値LLoに制限させることが可能である。これにより電力変換器および電力貯蔵装置の運転許容範囲逸脱を防止しつつ、運転状態が運転許容範囲の上下限に張り付き電力補償ができない時間が短縮できる。 The advantages determined in this way will be described with reference to FIG. Upper limit P G + HLO-P C, the lower limit value P G + LLO-P C in a restricted compensation target value P A, the correction signal P C at the subsequent stage is added, the compensation power calculating section 8 active power measurement P G is subtracted. As a result, the size of the compensation power [Delta] P G upper limit value HLO, is limited by the lower limit value LLO. That is, while reflecting the correction signal P C to the compensation power [Delta] P G, change itself can be restricted upper limit HLO, the lower limit value LLO. As a result, it is possible to reduce the time during which the power state cannot be compensated for when the operating state sticks to the upper and lower limits of the operation allowable range while preventing the deviation from the operation allowable range of the power converter and the power storage device.
図7は本発明の実施例3におけるシステム全体構成の図である。
図示の電力安定化システム1は、電力貯蔵装置3、電力変換器4、制御装置5からなり、変圧器を介して電力系統に接続する。また、本実施形態においても、自然エネルギーを利用した分散型電源の出力変動補償を行う場合を想定し、風力発電機が変圧器を介して電力系統に接続されているものとする。
FIG. 7 is a diagram showing the overall system configuration according to the third embodiment of the present invention.
The illustrated power stabilization system 1 includes a power storage device 3, a power converter 4, and a control device 5, and is connected to a power system via a transformer. Also in the present embodiment, it is assumed that a wind power generator is connected to the power system via a transformer, assuming a case where output fluctuation compensation of a distributed power source using natural energy is performed.
制御装置5は、有効電力検出器6、補償電力演算部8、電力変換器制御部9等を有する。
有効電力検出器は6、風力発電機の出力端の電圧・電流値に基づいて風力発電機の有効電力計測値PGを検出する。
The control device 5 includes an active power detector 6, a compensation power calculation unit 8, a power converter control unit 9, and the like.
Active power detector 6 detects the effective power measured value P G of the wind power generator on the basis of the voltage and current value of the output of the wind power generator.
補償電力演算部7はハイパスフィルタ等により、有効電力計測値PGから有効電力変動成分を抽出し補償電力ΔPG(ここでは、電力貯蔵装置から電力を放出する方向を正とする)を算出する。 The compensation power calculation unit 7 extracts the active power fluctuation component from the active power measurement value P G by using a high-pass filter or the like, and calculates the compensation power ΔP G (here, the direction in which the power is discharged from the power storage device is positive). .
電力変換器制御部9は、補償電力ΔPGの大きさに応じて変換器への指令値である電力変換器出力指令値POを生成する。
なお、実施例1と実施例2では補償目標値演算部7にて有効電力計測値PGから有効電力変動成分を除去して補償目標値PAを演算し、補償電力演算部にて補償目標値PAから有効電力計測値PGを減算して補償電力ΔPGを演算するが、本実施例3では補償電力演算部8において、ハイパスフィルタ等によって有効電力測定値PGから有効電力変動成分を抽出して補償電力を演算する。すなわち、実施例3では異なる構成によって同じ機能を実現している。
Power converter control section 9 generates a command value to the converter depending on the magnitude of the power converter output command value P O of the compensation power [Delta] P G.
In the first and second embodiments, the compensation target value calculation unit 7 calculates the compensation target value PA by removing the active power fluctuation component from the active power measurement value PG, and the compensation power calculation unit calculates the compensation target value PA. While computing the active power measurement PG subtraction and compensated power [Delta] P G, in the present embodiment 3, the compensation power calculating section 8 extracts the active power variation component from the active power measurement PG by the high-pass filter or the like compensation from Calculate power. That is, in the third embodiment, the same function is realized by different configurations.
図8では、実施例3における補償電力演算部の構成を説明する。補償電力演算部8内に有効電力を抽出するフィルタ(ハイパスフィルタ等)13に上下限しきい値で演算を止める内部リミッタを設け、内部リミッタ上下限しきい値(HL、LL)に機器保護上下限しきい値(HLO、LLO)を設定する。なお、この機器保護上下限しきい値(HLO、LLO)は、固定値(例えば電力変換器の出力可能上下限値等)であっても良いし、電力安定化システムの状態(例えば電力貯蔵装置の温度や貯蔵電力量等)に応じて制御される可変値であってもよい。また、図中の有効電力変動成分抽出フィルタには一次のハイパス特性の伝達関数が記載されているが、本発明はこの伝達関数に制限されるものではない。伝達関数などのフィルタ特性は本発明実施者の設計事項である。 FIG. 8 illustrates the configuration of the compensation power calculation unit in the third embodiment. A filter (high pass filter, etc.) 13 for extracting active power in the compensation power calculation unit 8 is provided with an internal limiter that stops the calculation at the upper and lower thresholds, and the internal limiter upper and lower thresholds (HL, LL) are used for device protection. Set the lower threshold (HL O , LL O ). The device protection upper and lower thresholds (HL O , LL O ) may be fixed values (for example, upper and lower limit values that can be output from the power converter), or the state of the power stabilization system (for example, power It may be a variable value controlled according to the temperature of the storage device or the amount of stored power. In addition, the active power fluctuation component extraction filter in the figure describes a transfer function having a first-order high-pass characteristic, but the present invention is not limited to this transfer function. Filter characteristics such as a transfer function are a matter of design for the practitioner of the present invention.
この内部リミッタにより例えばフィルタへの入力信号である有効電力計測値PGが急激に増加し内部リミットの上限値に達した場合、内部リミッタにより補償電力ΔPGの演算自体が運転許容範囲視収まる信号レベルに制限されるため、有効電力計測値PGが減少を始めた段階で電力補償が再開される。つまり、運転状態が許容範囲内の上下限値に張り付き電力補償ができない時間が短縮できる。 If a valid power measurements P G is the input signal by the internal limiter to example filter has reached the upper limit value of the rapidly increasing internal limit, signal computation itself of the compensation power [Delta] P G falls operation allowable range vision by the internal limiter Since the level is limited, the power compensation is resumed when the active power measurement value PG starts to decrease. That is, the time during which the operating state is stuck to the upper and lower limits within the allowable range and power compensation is not possible can be shortened.
また、有効電力の増減が反転したタイミングで電力補償を再開することにより、反転前の電力変動の傾向に沿った電力補償が可能になる。
また、内部リミッタ上下限しきい値(HL、LL)を機器保護上下限しきい値(HLO、LLO)とすることにより、補償目標値PAの大きさは上限値HLO、下限値HLOにて制限される。これにより電力変換器、及び電力貯蔵装置の運転許容範囲逸脱を防止することができる。
Further, by resuming the power compensation at the timing when the increase / decrease in the active power is reversed, it becomes possible to perform the power compensation in accordance with the power fluctuation tendency before the reversal.
The internal limiter upper and lower limit threshold (HL, LL) the equipment protection over the lower threshold (HL O, LL O) by the magnitude of the compensation target value P A is the upper limit value HL O, the lower limit value Limited by HL O. As a result, it is possible to prevent a deviation from the allowable operating range of the power converter and the power storage device.
図9は本発明の実施例4における電力安定化システムシステム全体構成の図である。本実施例の構成の目的は、電力貯蔵量の監視により得られた補正信号を加えた場合に、補正信号を加えたことよって、運転状態が運転許容範囲を逸脱してしまわないようにしながらも、本発明の実施例3の特徴を損なわないようにすることである。 FIG. 9 is a diagram showing the overall configuration of the power stabilization system in Embodiment 4 of the present invention. The purpose of the configuration of this embodiment is to add the correction signal when the correction signal obtained by monitoring the power storage amount is added, while preventing the operation state from deviating from the allowable operating range. This is to avoid losing the characteristics of the third embodiment of the present invention.
同図の電力安定化システム1は、実施例3の構成要素に加えて、貯蔵電力検出器11と補正信号演算部12を有する。
貯蔵電気量検出器11は、電力貯蔵装置の貯蔵電力量ESを、直接あるいは間接的に検出/算出する。例えば電力貯蔵装置がフライホイールの場合は、フライホイール回転数を検出し、二次電池・キャパシタ等である場合は端子電圧を検出して、前記検出結果に基づいて貯蔵電力量ESを算出する。
The power stabilization system 1 in FIG. 1 includes a stored power detector 11 and a correction signal calculation unit 12 in addition to the components of the third embodiment.
Storage electric quantity detector 11, the stored power amount E S of the electric power storage device, directly or indirectly detected / calculated. For example if the power storage device is a flywheel, to detect the flywheel speed when a secondary battery, capacitor or the like detects the terminal voltage, calculating a stored power amount E S based on the detection result .
補正信号演算部12は、貯蔵力量検出器11から貯蔵力量ESを受け取り、補正信号PCを算出し、補償電力ΔPGに加算する。このとき、さらに補償目標値演算部7にも補償目標値PAを転送する。 Correction signal calculating unit 12 receives the storage competence E S from the reservoir competence detector 11, calculates a correction signal P C, is added to the compensation power [Delta] P G. In this case, further also transfers the compensation target value P A in the compensation target value computing unit 7.
図10は本発明の実施例4における補償電力演算部7の構成例を説明する。同図に示されるように、補償目標演算部7は内部リミッタ付有効電力変動成分抽出フィルタを有し、有効電力計測値PGから補償電力ΔPGを算出する。このとき、内部リミッタ上下限しきい値(HL、LL)を以下のように定める。 FIG. 10 illustrates a configuration example of the compensation power calculation unit 7 according to the fourth embodiment of the present invention. As shown in the figure, the compensation target processing unit 7 has an effective power variation component extraction filter with internal limiter, it calculates the compensation power [Delta] P G from active power measurements P G. At this time, the internal limiter upper and lower thresholds (HL, LL) are determined as follows.
内部リミッタ上限しきい値HL=機器保護上限しきい値HLo−補正信号PC
内部リミッタ下限しきい値LL=機器保護下限しきい値LLo−補正信号PC
つまり、補償目標値PAの大きさは上限値HLo−PC、下限値LLo−PCで制限される。
Internal limiter upper limit threshold HL = Device protection upper limit threshold HLO-Correction signal P C
Internal limiter lower threshold LL = Equipment protection lower threshold LLo-Correction signal P C
In other words, the magnitude of the compensation target value P A is the upper limit value HLO-P C, it is limited by the lower limit value LLO-P C.
このように定める利点を、図10を使って説明する。上限値HLo−PC、下限値LLo−PCで制限された補償電力ΔPGは、後段にて補正信号PCが加算され、補償電力演算部8では有効電力計測値PGが減算される。結果として、補償電力ΔPGの大きさは上限値HLo、下限値LLoで制限される。つまり、補正信号PCを補償電力ΔPGに反映させながらも、変動自体は上限値HLo、下限値LLoに制限させることが可能である。これにより電力変換器および電力貯蔵装置の運転許容範囲逸脱を防止しつつ、運転状態が運転許容範囲の上下限に張り付き電力補償ができない時間が短縮できる。 The advantages determined in this way will be described with reference to FIG. Upper limit HLO-P C, compensation power [Delta] P G that is limited by the lower limit value LLO-P C is the correction signal P C at the subsequent stage is added, the compensation power calculating section 8 active power measurement P G is subtracted . As a result, the size of the compensation power [Delta] P G upper limit value HLO, is limited by the lower limit value LLO. That is, while reflecting the correction signal P C to the compensation power [Delta] P G, change itself can be restricted upper limit HLO, the lower limit value LLO. As a result, it is possible to reduce the time during which the power state cannot be compensated for when the operating state sticks to the upper and lower limits of the operation allowable range while preventing the deviation from the operation allowable range of the power converter and the power storage device.
以上説明した電力貯蔵装置を用いた電力安定化システムの上記効果について、以下、本発明者による検証結果について示す。
ここでは、本発明の実施例1における電力貯蔵装置を用いた電力安定化システムにおいて補償目標値演算部に電力変換器の出力範囲逸脱を防止するための内部リミッタを設けた場合(以下「内部リミッタを設けた場合」)の実測波形と、補償電力ΔPGに電力変換器の出力範囲逸脱を防止するための外部リミッタを設けた場合(以下「外部リミッタを設けた場合」)のシミュレーション結果とを、図11、図12、図13に示す。
About the effect of the electric power stabilization system using the electric power storage apparatus demonstrated above, the verification result by this inventor is shown below.
Here, in the power stabilization system using the power storage device according to the first embodiment of the present invention, when the internal limiter for preventing the deviation from the output range of the power converter is provided in the compensation target value calculation unit (hereinafter referred to as “internal limiter”). the measured waveform when ") provided with, a simulation result obtained when a external limiter for preventing the output range deviation of the power converter to compensate the power [Delta] P G (hereinafter" when the external limiter provided ") FIG. 11, FIG. 12, and FIG.
以下のシュミレーションにおいて、内部リミッタ上下限しきい値は下式とする。
内部リミッタ上下限しきい値(HL、LL)
=機器保護上下限しきい値(HLo、LLo)+有効電力計測値PG
外部リミッタ上下限しきい値は下式とする。
In the following simulation, the upper / lower threshold value of the internal limiter is represented by the following equation.
Internal limiter upper / lower threshold (HL, LL)
= Device protection upper / lower threshold (HLo, LLo) + active power measurement value P G
The external limiter upper and lower thresholds are as follows:
外部リミッタ上下限しきい値=機器保護上下限しきい値(HLo、LLo)
また機器保護上下限しきい値(HLo、LLo)は電力変換器の出力上下限値±0.2[pu]固定とする。
External limiter upper / lower threshold = device protection upper / lower threshold (HLo, LLo)
The device protection upper and lower thresholds (HLo, LLo) are fixed to the power converter output upper and lower limits ± 0.2 [pu].
図11に、内部リミッタを設けた場合の補償目標値PAの実測波形と、外部リミッタを設けた場合の補償目標値PA’のシミュレーション結果と、内部リミッタを設けた場合の内部リミッタ上限しきい値HL及び内部リミッタ下限しきい値LLの実測波形を示す。 11, the measured waveforms for the compensation target value P A of the case in which the internal limiter, and simulation compensation target value P A 'results obtained when a external limiter, internal limiter upper limit in the case of providing the internal limiter The measured waveforms of the threshold value HL and the internal limiter lower threshold LL are shown.
図11の波形より、47500秒近辺からの有効電力の減少に対し、外部リミッタを設けた場合、47600秒近辺から47900秒近辺まで補償目標値PA’は内部リミッタ上限しきい値HLを上回っている。これは外部リミッタを設けた場合、補償目標値PA’が運転許容範囲を逸脱するレベルに達しても補償目標値PA’自体は大きさが制限されないことを示しており、結果、再び有効電力が増加に転じ補償目標値PA’が自然に外部リミッタの範囲内に納まるまで、補償目標値PA’が外部リミッタのしきい値を超過する信号レベルを維持することを示している。 From the waveform of FIG. 11, when an external limiter is provided for the decrease in active power from around 47500 seconds, the compensation target value P A ′ exceeds the internal limiter upper limit threshold HL from around 47600 seconds to around 47900 seconds. Yes. This indicates that when an external limiter is provided, even if the compensation target value P A ′ reaches a level that deviates from the allowable operating range, the compensation target value P A ′ itself is not limited in size. It shows that the signal level at which the compensation target value P A ′ exceeds the threshold value of the external limiter is maintained until the power is increased and the compensation target value P A ′ naturally falls within the range of the external limiter.
また47900秒近辺で補償目標値PA’と内部リミッタ上限しきい値HLとが交差している。これは電力補償再開時に有効電力の変化方向と、電力補償方向とが異なることを示しており、これが電力補償再開時における補償後有効電力の変動要因となる。 In addition, the compensation target value P A ′ and the internal limiter upper limit threshold HL intersect at around 47900 seconds. This indicates that the direction of change in active power differs from the direction of power compensation when power compensation is resumed, and this becomes a variation factor of post-compensation active power when power compensation is resumed.
一方、内部リミッタを設けた場合、47600秒近辺から47800秒近辺まで補償目標値PAは内部リミッタ上限しきい値と同じ値をたどり、47800秒近辺で有効電力が再び増加に転じて以降、補償目標値PAは内部リミッタ上限しきい値HLを下回っている。これは内部リミッタを設けた場合、補償目標値PA自体が内部リミッタ上下限しきい値で制限されることを示しており、結果、有効電力が反転した段階で補償目標値PAが内部リミッタの上下限しきい値の範囲内に収まることを示している。 On the other hand, the case of providing an internal limiter, follows the same value as the compensation target value P A is the internal limiter upper threshold to around 47,800 seconds around 47600 seconds since been increasing active power again at around 47,800 seconds, compensation target value P a is below the internal limiter upper threshold HL. If this is provided with internal limiter, the compensation target value P A itself shows to be limited within the limiter upper and lower limit threshold, a result, the compensation target value P A at the stage of active power is reversed the internal limiter Is within the upper and lower thresholds.
また47800秒近辺で補償目標値PAと内部リミッタ上限しきい値HLとが分離している。これは電力補償再開時にそれまでの有効電力の変化方向に沿った電力補償を行うことを示しており、これにより電力補償再開時における補償後有効電力の変動が抑制できる。
図12に、内部リミッタを設けた場合の補償電力ΔPGの実測波形と、外部リミッタを設けた場合の補償電力ΔPG’のシミュレーション結果を示す。
Also a compensation target value P A in the vicinity 47,800 seconds and an internal limiter upper threshold HL is separated. This indicates that power compensation is performed along the direction of change of the active power up to that time when the power compensation is resumed, whereby the fluctuation of the compensated active power when the power compensation is resumed can be suppressed.
Figure 12 shows the measured waveform of the compensation power [Delta] P G obtained when a internal limiter, the simulation results of compensated power [Delta] P G 'obtained when a external limiter.
図12の波形より、外部リミッタを設けた場合、47600秒近辺から47900秒近辺まで補償電力ΔPG’は外部リミッタにより機器保護上限しきい値HLo(0.2[pu])に制限される。一方、内部リミッタを設けた場合、47600秒近辺から47800秒近辺まで補償電力ΔPGは機器保護上限しきい値HLo(0.2[pu])にて制限される。 From the waveform of FIG. 12, when an external limiter is provided, the compensation power ΔP G ′ is limited to the device protection upper limit threshold value HLo (0.2 [pu]) by the external limiter from around 47600 seconds to around 47900 seconds. On the other hand, the case of providing an internal limiter, compensation power [Delta] P G to around 47,800 seconds around 47600 seconds is limited by equipment protection upper threshold HLo (0.2 [pu]).
これは図11で説明した通り、外部リミッタを設けた場合と比較して、内部リミッタを設けた場合の方が、早期に補償動作を再開できることを示している。
図13に、内部リミッタを設けた場合の補償後有効電力PG+ΔPGの計測結果と、外部リミッタを設けた場合の補償後有効電力PG+ΔPG’のシミュレーション結果、及び(補償前の)有効電力計測値PGを示す。この量は補償後の電力系統に供給される電力が補償前と比較しどれだけ平滑化されているかを計る目安となる。
This indicates that the compensation operation can be resumed earlier when the internal limiter is provided, as compared with the case where the external limiter is provided, as described with reference to FIG.
13, the measurement result after compensation active power P G + [Delta] P G obtained when a internal limiter, simulation results after compensation active power P G + ΔP G 'obtained when a external limiter, and (before compensation of) shows the active power measurement P G. This amount is a measure of how much power supplied to the compensated power system is smoothed compared to before compensation.
図13の波形より、外部リミッタを設けた場合、47600秒近辺から47900秒近辺まで補償できなかった有効電力変動成分が補償後有効電力PG+ΔPG’に現れており、補償動作再開時の電力変化も大きいことが分かる。補償動作再開時の電力変化が急激である理由は、運転状態が運転許容範囲の上下限に張り付き電力補償ができない期間の有効電力の変化方向と、電力補償を再開する際の電力補償方向が異なるためである。 From the waveform in FIG. 13, when an external limiter is provided, the active power fluctuation component that could not be compensated from around 47600 seconds to around 47900 seconds appears in the compensated active power P G + ΔP G ′. It can be seen that the power change is also large. The reason why the power change at the time of resuming the compensation operation is abrupt is that the change direction of the active power during the period in which the power state cannot be compensated for the operation state sticks to the upper and lower limits of the operation allowable range and the power compensation direction when the power compensation is resumed Because.
一方、内部リミッタを設けた場合、47600秒近辺から47800秒近辺まで補償できなかった有効電力変動成分が補償後有効電力PG+ΔPGに現れているが、早期に補償動作を再開しており、また補償動作再開時の電力変動も小さいことが分かる。補償電力ΔPGは機器保護上限しきい値HLo(0.2[pu])にて制限される。内部リミッタを設けた場合における、補償動作再開時の電力変動が小さい理由は、有効電力の増減が反転したタイミングで補償動作を再開することにより、反転前の電力変動の傾向に沿った電力変動補償が可能になるためである。 On the other hand, the case of providing an internal limiter, but the active power variation component which could not be compensated to around 47,800 seconds around 47600 seconds is appeared after compensation active power P G + [Delta] P G, and resumed compensation operation early It can also be seen that the power fluctuation when the compensation operation is resumed is small. Compensating power [Delta] P G is limited by equipment protection upper threshold HLo (0.2 [pu]). When the internal limiter is provided, the power fluctuation when resuming the compensation operation is small because the compensation operation is resumed at the timing when the increase / decrease in the active power is reversed, thereby compensating for the power fluctuation along the power fluctuation trend before the reversal. This is because it becomes possible.
以上に説明したように、本例の電力貯蔵装置を用いた電力安定化システムによれば、電力貯蔵装置の運転許容範囲内で効率的・効果的な電力変動補償が可能な、電力貯蔵装置を用いた電力変動補償システムを提供できる。 As described above, according to the power stabilization system using the power storage device of this example, the power storage device capable of efficient and effective power fluctuation compensation within the allowable operating range of the power storage device. The power fluctuation compensation system used can be provided.
1 電力安定化システム
2 電力系統
3 電力貯蔵装置
4 電力変換器
5 制御装置
6 有効電力検出部
7 補償目標値演算部
8 補償電力演算部
9 電力変換器制御部
10 内部リミッタ付きローパスフィルタ
11 貯蔵電力量検出器
12 補正信号演算部
13 内部リミッタ付きハイパスフィルタ
DESCRIPTION OF SYMBOLS 1 Power stabilization system 2 Electric power system 3 Power storage apparatus 4 Power converter 5 Control apparatus 6 Active power detection part 7 Compensation target value calculation part 8 Compensation power calculation part 9 Power converter control part 10 Low pass filter 11 with an internal limiter Storage power Quantity detector 12 Correction signal calculator 13 High-pass filter with internal limiter
Claims (18)
前記交流電力系統に対して電力の貯蔵と放出を行う電力貯蔵装置と、
前記交流電力系統の有効電力を有効電力計測値として検出する有効電力検出手段と、
前記有効電力検出手段で検出された有効電力計測値から有効電力変動成分を除去し、補償目標値を算出する補償目標値演算手段と、
前記補償目標演算手段で算出された補償目標値と前記有効電力検出手段で検出された有効電力計測値の差を取り、補償電力を算出する補償電力演算手段と、
前記補償電力演算手段で算出された補償電力に応じて電力変換器出力指令を発信する電力変換器制御手段と、
前記電力変換器制御手段から発せられた電力変換器出力指令に応じて、前記電力貯蔵装置に貯蔵された電力を前記交流電力系統へ入出力する電力変換器を備え、
前記補償目標値演算手段は、上限閾値と下限閾値にて演算あるいは演算値を制限する機能を持つローパスフィルタを有する
ことを特徴とする電力貯蔵装置を用いた電力安定化システム。 In a power stabilization system that suppresses fluctuations in the active power of the AC power system,
A power storage device for storing and releasing power to the AC power system;
Active power detection means for detecting the active power of the AC power system as an active power measurement value;
Compensation target value calculation means for removing the active power fluctuation component from the active power measurement value detected by the active power detection means and calculating a compensation target value;
Compensation power calculation means for calculating the compensation power by taking the difference between the compensation target value calculated by the compensation target calculation means and the active power measurement value detected by the active power detection means;
Power converter control means for transmitting a power converter output command according to the compensation power calculated by the compensation power calculation means;
In response to a power converter output command issued from the power converter control means, a power converter that inputs and outputs power stored in the power storage device to the AC power system,
The compensation target value calculation means includes a low pass filter having a function of calculating or limiting a calculation value with an upper limit threshold and a lower limit threshold, and a power stabilization system using a power storage device.
前記ローパスフィルタの、前記上限閾値は前記有効電力測定値と機械保護上限閾値を加算したものであり、前記下限閾値は前記有効電力測定値と機械保護下限閾値を加算したものである
ことを特徴とする電力貯蔵装置を用いた電力安定化システム。 The power stabilization system according to claim 1,
The low-pass filter is characterized in that the upper threshold value is obtained by adding the measured active power value and the machine protection upper threshold value, and the lower threshold value is obtained by adding the measured active power value and the machine protection lower threshold value. A power stabilization system using a power storage device.
前記電力貯蔵装置の貯蔵電力量またはそれに相当する信号を検出する貯蔵電力量検出手段と、
前記貯蔵電力量検出手段により検出された前記貯蔵電力量から、前記補償目標値或いは前記補償電力を補正する補正信号を演算する補正信号演算手段と、
を備えることを特徴とする電力貯蔵装置を用いた電力安定化システム。 The power stabilization system according to claim 1,
A stored power amount detecting means for detecting a stored power amount of the power storage device or a signal corresponding thereto; and
Correction signal calculation means for calculating a correction signal for correcting the compensation target value or the compensation power from the stored power quantity detected by the stored power quantity detection means;
An electric power stabilization system using an electric power storage device.
前記ローパスフィルタの、前記上限閾値は前記有効電力測定値に機械保護上限閾値を加算し前記補正信号を減算したものであり、前記下限閾値は前記有効電力測定値に機械保護下限閾値を加算し前記補正信号を減算したものである
ことを特徴とする電力貯蔵装置を用いた電力安定化システム。 The power stabilization system according to claim 3,
In the low-pass filter, the upper threshold is a value obtained by adding a machine protection upper threshold to the active power measurement value and subtracting the correction signal, and the lower threshold is obtained by adding a machine protection lower threshold to the active power measurement value. A power stabilization system using a power storage device, wherein a correction signal is subtracted.
前記交流電力系統に対して電力の貯蔵と放出を行う電力貯蔵装置と、
前記交流電力系統の有効電力を有効電力計測値として検出する有効電力検出手段と、
前記有効電力検出手段で検出された有効電力計測値から有効電力変動成分を抽出し、補償電力を算出する補償電力演算手段と、
前記補償電力演算手段で算出された補償電力に応じて電力変換器出力指令を発信する電力変換器制御手段と、
前記電力変換制御手段から発せられた電力変換器出力指令に応じて、前記電力貯蔵装置に貯蔵された電力を前記交流電力系統へ入出力する電力変換器を備え、
前記補償電力演算手段は、上限閾値と下限閾値にて演算あるいは演算値を制限する機能を持つハイパスフィルタを有する
ことを特徴とした電力安定化システム。 In a power stabilization system that suppresses fluctuations in the active power of the AC power system,
A power storage device for storing and releasing power to the AC power system;
Active power detection means for detecting the active power of the AC power system as an active power measurement value;
Compensation power calculation means for extracting active power fluctuation components from the active power measurement value detected by the active power detection means and calculating compensation power;
Power converter control means for transmitting a power converter output command according to the compensation power calculated by the compensation power calculation means;
In accordance with a power converter output command issued from the power conversion control means, a power converter that inputs and outputs power stored in the power storage device to the AC power system,
The compensation power calculating means includes a high-pass filter having a function of limiting an operation value or an operation value with an upper limit threshold and a lower limit threshold.
前記ハイパスフィルタの、前記上限閾値は機械保護上限閾値であり、前記下限閾値は機械保護下限閾値である
ことを特徴とする電力貯蔵装置を用いた電力安定化システム。 The power stabilization system according to claim 5,
The power stabilization system using a power storage device, wherein the upper threshold of the high-pass filter is a machine protection upper threshold and the lower threshold is a machine protection lower threshold.
前記電力貯蔵装置の貯蔵電力量またはそれに相当する信号を検出する貯蔵電力量検出手段と、
前記貯蔵電力量検出手段により検出された前記貯蔵電力量から、前記補償電力を補正する補正信号を演算する補正信号演算手段と、
を備えることを特徴とする電力貯蔵装置を用いた電力安定化システム。 The power stabilization system according to claim 5,
A stored power amount detecting means for detecting a stored power amount of the power storage device or a signal corresponding thereto; and
Correction signal calculation means for calculating a correction signal for correcting the compensation power from the stored power quantity detected by the stored power quantity detection means;
An electric power stabilization system using an electric power storage device.
前記ハイパスフィルタの、前記上限閾値は機械保護上限閾値から前記補正信号を減算したものであり、前記下限閾値は機械保護下限閾値から前記補正信号を減算したものである
ことを特徴とする電力貯蔵装置を用いた電力安定化システム。 The power stabilization system according to claim 7,
In the high-pass filter, the upper limit threshold value is obtained by subtracting the correction signal from a machine protection upper limit threshold value, and the lower limit threshold value is obtained by subtracting the correction signal from a machine protection lower limit threshold value. Power stabilization system using
前記機械保護上限閾値と前記機械保護下限閾値は前記電力安定化システムの状態(電力変換器の出力、電力貯蔵装置の貯蔵電力量、電力貯蔵装置の温度など)に応じて可変制御される
ことを特徴とする電力貯蔵装置を用いた電力安定化システム。 The power stabilization system according to any one of claims 1 to 8,
The machine protection upper limit threshold and the machine protection lower limit threshold are variably controlled according to the state of the power stabilization system (output of the power converter, stored power amount of the power storage device, temperature of the power storage device, etc.). A power stabilization system using the featured power storage device.
前記交流電力系統の有効電力を有効電力計測値として検出する有効電力検出手段と、
前記有効電力検出手段で検出された有効電力計測値から有効電力変動成分を除去し、補償目標値を算出する補償目標値演算手段と、
前記補償目標演算手段で算出された補償目標値と前記有効電力検出手段で検出された有効電力計測値の差を取り、補償電力を算出する補償電力演算手段と、
前記補償電力演算手段で算出された補償電力に応じて電力変換器出力指令を発信する電力変換器制御手段を備え、
前記補償目標値演算手段は、上限閾値と下限閾値にて演算あるいは演算値を制限する機能を持つローパスフィルタ
を有することを特徴とする電力貯蔵装置を用いた電力安定化システムの制御装置。 In the control device of the power stabilization system using the power storage device controlled by the power converter, which suppresses the active power fluctuation of the AC power system,
Active power detection means for detecting the active power of the AC power system as an active power measurement value;
Compensation target value calculation means for removing the active power fluctuation component from the active power measurement value detected by the active power detection means and calculating a compensation target value;
Compensation power calculation means for calculating the compensation power by taking the difference between the compensation target value calculated by the compensation target calculation means and the active power measurement value detected by the active power detection means;
Power converter control means for transmitting a power converter output command according to the compensation power calculated by the compensation power calculation means,
The compensation target value calculation means includes a low-pass filter having a function of calculating or limiting a calculation value with an upper limit threshold and a lower limit threshold, and a control device for a power stabilization system using a power storage device.
前記ローパスフィルタの、前記上限閾値は前記有効電力測定値と機械保護上限閾値を加算したものであり、前記下限閾値は前記有効電力測定値と機械保護下限閾値を加算したもの
であることを特徴とする電力貯蔵装置を用いた電力安定化システムの制御装置。 A control device for a power stabilization system according to claim 10,
The low-pass filter is characterized in that the upper threshold value is obtained by adding the measured active power value and the machine protection upper threshold value, and the lower threshold value is obtained by adding the measured active power value and the machine protection lower threshold value. Control device for power stabilization system using power storage device.
前記電力貯蔵装置の貯蔵電力量またはそれに相当する信号を検出する貯蔵電力量検出手段と、
前記貯蔵電力量検出手段により検出された前記貯蔵電力量から、前記補償目標値或いは前記補償電力を補正する補正信号を演算する補正信号演算手段と、
を備えることを特徴とする電力貯蔵装置を用いた電力安定化システムの制御装置。 A control device for a power stabilization system according to claim 10,
A stored power amount detecting means for detecting a stored power amount of the power storage device or a signal corresponding thereto; and
Correction signal calculation means for calculating a correction signal for correcting the compensation target value or the compensation power from the stored power quantity detected by the stored power quantity detection means;
A control device for a power stabilization system using the power storage device.
前記ローパスフィルタの、前記上限閾値は前記有効電力測定値に機械保護上限閾値を加算し前記補正信号を減算したものであり、前記下限閾値は前記有効電力測定値に機械保護下限閾値を加算し前記補正信号を減算したものである
ことを特徴とする電力貯蔵装置を用いた電力安定化システムの制御装置。 A control device for a power stabilization system according to claim 12,
In the low-pass filter, the upper threshold is a value obtained by adding a machine protection upper threshold to the active power measurement value and subtracting the correction signal, and the lower threshold is obtained by adding a machine protection lower threshold to the active power measurement value. A control device for a power stabilization system using a power storage device, wherein a correction signal is subtracted.
前記交流電力系統の有効電力を有効電力計測値として検出する有効電力検出手段と、
前記有効電力検出手段で検出された有効電力計測値から有効電力変動成分を抽出し、補償電力を算出する補償電力演算手段と、
前記補償電力演算手段で算出された補償電力に応じて電力変換器出力指令を発信する電力変換器制御手段を備え、
前記補償電力演算手段は、上限閾値と下限閾値にて演算あるいは演算値を制限する機能を持つハイパスフィルタを有する
ことを特徴とした電力安定化システムの制御装置。 In the control device of the power stabilization system using the power storage device controlled by the power converter, which suppresses the active power fluctuation of the AC power system,
Active power detection means for detecting the active power of the AC power system as an active power measurement value;
Compensation power calculation means for extracting active power fluctuation components from the active power measurement value detected by the active power detection means and calculating compensation power;
Power converter control means for transmitting a power converter output command according to the compensation power calculated by the compensation power calculation means,
The compensation power calculation means includes a high-pass filter having a function of limiting the calculation value or a calculation value with an upper limit threshold value and a lower limit threshold value.
前記ハイパスフィルタの、前記上限閾値は機械保護上限閾値であり、前記下限閾値は機械保護下限閾値である
ことを特徴とする電力貯蔵装置を用いた電力安定化システムの制御装置。 A control device for a power stabilization system according to claim 14,
The control device of the power stabilization system using the power storage device, wherein the upper threshold of the high pass filter is a machine protection upper threshold and the lower threshold is a machine protection lower threshold.
前記電力貯蔵装置の貯蔵電力量またはそれに相当する信号を検出する貯蔵電力量検出手段と、
前記貯蔵電力量検出手段により検出された前記貯蔵電力量から、前記補償電力を補正する補正信号を演算する補正信号演算手段を備える
ことを特徴とする電力貯蔵装置を用いた電力安定化システムの制御装置。 A control device for a power stabilization system according to claim 14,
A stored power amount detecting means for detecting a stored power amount of the power storage device or a signal corresponding thereto; and
Control of a power stabilization system using a power storage device, comprising correction signal calculation means for calculating a correction signal for correcting the compensation power from the stored power quantity detected by the stored power quantity detection means apparatus.
前記ハイパスフィルタの、前記上限閾値は機械保護上限閾値から前記補正信号を減算したものであり、前記下限閾値は機械保護下限閾値から前記補正信号を減算したものである
ことを特徴とする電力貯蔵装置を用いた電力安定化システムの制御装置。 A control device for a power stabilization system according to claim 16,
In the high-pass filter, the upper limit threshold value is obtained by subtracting the correction signal from a machine protection upper limit threshold value, and the lower limit threshold value is obtained by subtracting the correction signal from a machine protection lower limit threshold value. Control device of power stabilization system using
前記機械保護上限閾値と前記機械保護下限閾値は前記電力安定化システムの状態(電力変換器の出力、電力貯蔵装置の貯蔵電力量、電力貯蔵装置の温度など)に応じて可変制御される
ことを特徴とする電力貯蔵装置を用いた電力安定化システムの制御装置。 A control device for a power stabilization system according to any one of claims 10 to 17,
The machine protection upper limit threshold and the machine protection lower limit threshold are variably controlled according to the state of the power stabilization system (output of the power converter, stored power amount of the power storage device, temperature of the power storage device, etc.). The control apparatus of the power stabilization system using the electric power storage apparatus characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006130641A JP4764982B2 (en) | 2006-05-09 | 2006-05-09 | Power stabilization system using power storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006130641A JP4764982B2 (en) | 2006-05-09 | 2006-05-09 | Power stabilization system using power storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007306669A true JP2007306669A (en) | 2007-11-22 |
JP4764982B2 JP4764982B2 (en) | 2011-09-07 |
Family
ID=38840142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006130641A Active JP4764982B2 (en) | 2006-05-09 | 2006-05-09 | Power stabilization system using power storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4764982B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110098866A1 (en) * | 2008-04-11 | 2011-04-28 | Meidensha Corporation | System stabilization device |
JP2013179737A (en) * | 2012-02-28 | 2013-09-09 | Mitsubishi Heavy Ind Ltd | Output smoothing device, output smoothing method, and program |
WO2015054878A1 (en) * | 2013-10-18 | 2015-04-23 | 中国电力科学研究院 | Change rate-based method and system for controlling energy storage power station in smoothing wind/light fluctuations |
JP2016135041A (en) * | 2015-01-21 | 2016-07-25 | 株式会社明電舎 | Stabilization device for power system and control method |
WO2017143955A1 (en) * | 2016-02-26 | 2017-08-31 | 中国恩菲工程技术有限公司 | Method and apparatus for controlling power of electric furnace |
CN107370176A (en) * | 2017-06-28 | 2017-11-21 | 国电南瑞科技股份有限公司 | A kind of method stabilized randomness power supply and go out fluctuation |
CN111831510A (en) * | 2020-07-13 | 2020-10-27 | Oppo广东移动通信有限公司 | Function regulation and control method and device and computer readable storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11262186A (en) * | 1998-03-09 | 1999-09-24 | Hitachi Ltd | Controller of power storage system |
JP2001327080A (en) * | 2000-05-10 | 2001-11-22 | Kansai Electric Power Co Inc:The | Power storage device and control method of distributed power supply system equipped therewith |
-
2006
- 2006-05-09 JP JP2006130641A patent/JP4764982B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11262186A (en) * | 1998-03-09 | 1999-09-24 | Hitachi Ltd | Controller of power storage system |
JP2001327080A (en) * | 2000-05-10 | 2001-11-22 | Kansai Electric Power Co Inc:The | Power storage device and control method of distributed power supply system equipped therewith |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110098866A1 (en) * | 2008-04-11 | 2011-04-28 | Meidensha Corporation | System stabilization device |
US8527106B2 (en) * | 2008-04-11 | 2013-09-03 | Meidensha Corporation | System stabilization device |
JP2013179737A (en) * | 2012-02-28 | 2013-09-09 | Mitsubishi Heavy Ind Ltd | Output smoothing device, output smoothing method, and program |
WO2015054878A1 (en) * | 2013-10-18 | 2015-04-23 | 中国电力科学研究院 | Change rate-based method and system for controlling energy storage power station in smoothing wind/light fluctuations |
JP2016135041A (en) * | 2015-01-21 | 2016-07-25 | 株式会社明電舎 | Stabilization device for power system and control method |
WO2017143955A1 (en) * | 2016-02-26 | 2017-08-31 | 中国恩菲工程技术有限公司 | Method and apparatus for controlling power of electric furnace |
CN107370176A (en) * | 2017-06-28 | 2017-11-21 | 国电南瑞科技股份有限公司 | A kind of method stabilized randomness power supply and go out fluctuation |
CN111831510A (en) * | 2020-07-13 | 2020-10-27 | Oppo广东移动通信有限公司 | Function regulation and control method and device and computer readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP4764982B2 (en) | 2011-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5099237B2 (en) | Power stabilization system, power stabilization control program, and power stabilization control method | |
JP5391598B2 (en) | Stabilized control system for distributed power supply | |
JP4764982B2 (en) | Power stabilization system using power storage device | |
US9640999B2 (en) | Power system stabilizer | |
JP4782245B1 (en) | Wind turbine generator control device and control method | |
JP6335641B2 (en) | Frequency stabilizer for single system | |
JP4518002B2 (en) | Power stabilization system using power storage device and control device thereof | |
JP4432938B2 (en) | Power stabilization system using power storage device and control device thereof | |
JP2008182859A (en) | Hybrid system, wind power generating system, power control device for wind power generating device and storage device | |
JP5062325B2 (en) | System stabilization device | |
JP2007116825A (en) | Double-layer capacitor power storage device | |
JP5125274B2 (en) | New energy generation system output fluctuation mitigation device | |
JP2018196182A (en) | Control device and reactive power compensation apparatus | |
JP5141764B2 (en) | System stabilization device | |
JP2011024386A (en) | Power stabilizer and controller thereof | |
KR101490547B1 (en) | Output power control apparatus | |
JP2018064328A (en) | Power conversion apparatus and control method thereof | |
JP5239767B2 (en) | System stabilization device | |
JP2009112175A (en) | Power stabilization system | |
WO2009136639A1 (en) | System stabilizing device | |
JP2015061331A (en) | Voltage fluctuation suppression device | |
JP5558172B2 (en) | Power stabilization system | |
JP2010283904A (en) | Power conversion apparatus, power conversion system and method for controlling the power conversion apparatus | |
WO2020100372A1 (en) | Electric power converting device, and method for controlling electric power converting device | |
JP4665831B2 (en) | Power stabilization system, control device, and control program thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110422 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110411 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4764982 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140624 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |