JP2007300728A - 発電装置 - Google Patents
発電装置 Download PDFInfo
- Publication number
- JP2007300728A JP2007300728A JP2006126212A JP2006126212A JP2007300728A JP 2007300728 A JP2007300728 A JP 2007300728A JP 2006126212 A JP2006126212 A JP 2006126212A JP 2006126212 A JP2006126212 A JP 2006126212A JP 2007300728 A JP2007300728 A JP 2007300728A
- Authority
- JP
- Japan
- Prior art keywords
- power
- voltage
- solar cell
- secondary battery
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Control Of Electrical Variables (AREA)
- Photovoltaic Devices (AREA)
Abstract
【課題】太陽エネルギを効率よく利用する。
【解決手段】発電装置は、太陽電池20と、二次電池22と、インバータ26と、第1のダイオード30と、第2のダイオード32とを含む。二次電池22は、設置済みの太陽電池20の最大電力点電圧の最大値に対して90パーセントから100パーセントまでのいずれかの電圧で電力を出力するように、電力を蓄積する。インバータ26は、太陽電池20と二次電池22とが出力する直流電力を交流電力に変換する。第1のダイオード30は、二次電池22が出力した直流電力が太陽電池20に逆流することを防止する。第2のダイオード32は、太陽電池20が出力した直流電力が二次電池22に逆流することを防止する。
【選択図】図1
【解決手段】発電装置は、太陽電池20と、二次電池22と、インバータ26と、第1のダイオード30と、第2のダイオード32とを含む。二次電池22は、設置済みの太陽電池20の最大電力点電圧の最大値に対して90パーセントから100パーセントまでのいずれかの電圧で電力を出力するように、電力を蓄積する。インバータ26は、太陽電池20と二次電池22とが出力する直流電力を交流電力に変換する。第1のダイオード30は、二次電池22が出力した直流電力が太陽電池20に逆流することを防止する。第2のダイオード32は、太陽電池20が出力した直流電力が二次電池22に逆流することを防止する。
【選択図】図1
Description
本発明は、発電装置に関し、特に、夜間や曇りのため日射が得られず太陽電池の出力が不足する場合に予め二次電池などに充電された電力を入力することで電気量を所望値へ復元する、発電装置に関する。
図9、図10、図11、図12、図13、および図14を参照して、太陽電池と二次電池とを備える従来の発電装置を説明する。
太陽電池から家庭用の一般交流負荷に電力を供給するためには、太陽電池自身に加え、インバータが必要である。インバータは、太陽電池の直流電力を交流電力に変換するために必要とされる。また、太陽電池だけでは不足する電力を補う場合や太陽電池の余剰電力を蓄える場合には二次電池が必要とされる。太陽電池の供給電力は日射により変化する。日射の少ないときは負荷が要求する電力を供給できなくなる。二次電池が補う電力は、この時供給できなくなった電力である。
通常、太陽電池は、出力電流によって出力電圧が変化する。出力電圧が変化するので、太陽電池から最大の電力を取出すため、最大電力点追尾制御が一般に行なわれている。この制御はMPPT(Maximum Power Point Tracking)制御とも呼ばれている。この制御は、インバータで電流と電圧とを監視することにより、電力が最大となるように電流と電圧とが調節される制御である。この制御が実施されると、日射量や表面温度によって太陽電池の出力が時々刻々と変化しても電力が最大となるようにインバータの入力電圧が追従する。
MPPT制御が実施されると、太陽電池と二次電池とをそのまま並列にインバータの入力に接続することはできない。放電状態により多少電圧が低下することを除けば、二次電池の出力電圧がほぼ一定であるためである。
MPPT制御が実施される場合、太陽電池と二次電池とを並列にインバータの入力に接続するためには、次の対策のうち1つを講じることが必要である。第1の対策は、DC/DC(direct current)コントローラ(以下「DDコン」と称する)を回路に含めて太陽電池の電圧と二次電池の電圧とを合わせる対策である。第2の対策は、太陽電池をMPPT制御させないで接続する対策である。
図9は、二次電池22とインバータとの間にDDコン42が入った発電装置の例を表わす。太陽電池20からの出力が第1のダイオード30を介してインバータ26へ入力されている。二次電池22からの出力が第2のダイオード32を介してインバータ26へ入力されている。第1のダイオード30と第2のダイオード32とは、逆流防止のために取付けられている。太陽電池20からの出力はMPPT制御により制御される。そのために、二次電池22は、DDコン42を介してインバータ26に接続される。DDコン42の入力電圧は二次電池22の出力電圧に等しい。DDコン42の出力電圧は太陽電池20の出力がMPPT制御に基づき調節されることで得られた電圧に等しい。
図10は、図9に示す発電装置における、出力電圧と電力との関係を説明する図である。太陽電池20の出力電圧が最大電力点電圧に等しければ太陽電池20から最も大きい電力が取出せることを太陽電池20のP−Vカーブ(電力対電圧のカーブ)は示している。「最大電力点電圧」とは、太陽電池20が出力する電力が最大となる電力(最大電力点)における太陽電池20の電圧のことである。二次電池22のP−Vカーブは縦線として表される。二次電池22の電圧が一定であるからである。太陽電池20と二次電池22とを同時にインバータ26に接続すると、太陽電池20の電圧は最大電力点電圧よりも低くなる。これは、二次電池22より太陽電池20の方が電力を供給する能力が通常低いためである。二次電池22の影響を受けると、太陽電池20から最大電力を取出すことはできない。二次電池22の電圧が太陽電池20の最大電力点電圧に等しくなるようにDDコン42が二次電池22の電圧を制御することで、太陽電池20から最大電力を取出しつつ、二次電池22からインバータ26へ電力を入力することができる。
特許文献1は、図9にかかる発電装置の発明を開示する。特許文献1に開示された発明は、与えられた指令値に対応した電力を発生するインバータと太陽電池とを接続し、インバータからバッテリまでの間に第1のDDコンと第2のDDコンとを並列に挿入し、バッテリから放電させるための指令の発生時に、第1のDDコンを選択的に動作させて太陽電池の発生電力が最大となるように電圧を制御し、バッテリを充電するための指令の発生時に、第2のDDコンを選択的に動作させて太陽電池の発生電力が最大となるように電圧を制御する発電設備を開示する。
特許文献1に開示された発明によると、太陽電池の発電能力を最大限に発揮させ、日射エネルギを有効に利用することができる。
図11は、太陽電池20とインバータ26との間にDDコン46が入った発電装置の例を表わす。インバータ26の入力電圧は二次電池22の出力電圧に等しい。DDコン46の入力電圧は太陽電池20の最大電力点電圧に等しい。DDコン46は、MPPT制御により制御される。これにより、DDコン46の出力電圧は、インバータ26の入力電圧に等しくなる。図12でその関係を説明する。図12は、図11に示す発電装置における出力電圧と電力との関係を表わす図である。図9に示す発電装置は、二次電池22のP−Vカーブが移動するようにDDコン42を制御する。図12に示す通り、図11に示す発電装置は、太陽電池20のP−Vカーブが移動するようにDDコン46を制御する。これにより、最大電力点電圧と二次電池22の出力電圧とが一致する。最大電力点電圧と二次電池22の出力電圧とが一致すると、太陽電池20から最大電力を取出しつつ、二次電池22からもインバータ26へ電力を入力することができる。
図13は、DDコンを使用せず、第1のダイオード30を介して太陽電池20をインバータ26へ接続し、第2のダイオード32を介して二次電池22をインバータ26へ接続している発電装置の例を表わす。図14は、この発電装置における、出力電圧と電力との関係を表わす図である。負荷の要求に対して十分な電力を太陽電池20が発電していれば、太陽電池20は負荷へ電力を供給できる。負荷の要求する電力が多く、かつ日射量が少なければ、本来出せる筈の電力より低い電力しか太陽電池20は供給できない。この場合、二次電池22は不足する電力を負荷へ供給する。
一旦、二次電池22から供給される状態になった場合、インバータ26の入力側の電圧は最大電力点電圧へ移行していかないケースがある。そのようなケースの中には、太陽電池20の最大電力点の発電量が負荷の要求する電力より上回った状態もしくは負荷の要求する電力が太陽電池20の最大電力点の発電量より下回った状態に移行しても、電圧が最大電力点電圧へ移行しないケースがある。ただし、二次電池22のP−Vカーブと太陽電池20のP−Vカーブとの交点を辿るようにインバータ26への入力電力が推移する場合はこの限りではない。
特開平6−266457号公報
しかしながら、図9に開示された発電装置や特許文献1にかかる発電設備や図11に開示された発電装置には、次に述べる問題点がある。その第1の問題点は、太陽電池20や二次電池22の電圧を制御するために複雑な回路を必要とすることである。第2の問題点は、DDコンが加わることによってエネルギの利用効率が悪くなるという問題点である。この問題点は、DDコンにおいて電力のロスが発生することを原因とする。
図13に開示された発電装置には、太陽エネルギを十分に利用することが難しいという問題点がある。図15、図16、および図17を参照して、この問題点を具体的に説明する。
二次電池22の電圧が太陽電池20の開放電圧よりも低く、ある時点において、太陽電池20が出力できる最大の電力よりも負荷28が消費する電力が小さい場合を仮定する。
この場合、太陽電池20の電圧は、負荷が消費する電力に対応する電力となる。図15は、たとえばある日射条件のもとで二次電池22の電圧が太陽電池20の最大電力点電圧よりも低い場合の負荷28が消費する電力を表わす図である。
その後、負荷28が消費する電力が増加すると、太陽電池20の電圧は低くなる。太陽電池20のP−Vカーブによれば、太陽電池20が出力する電力と太陽電池20の電圧とは対応するからである。負荷28が消費する電力が増加した結果、太陽電池20が出力できる最大の電力と負荷28が消費する電力とが等しくなると、太陽電池20の電圧は最大電力点電圧に達する。図16は、太陽電池20の電圧が最大電力点電圧に達した場合に負荷28が消費する電力を表わす図である。
その後、太陽電池20が出力できる最大の電力を負荷28が消費する電力が超えると、太陽電池20と二次電池22とが負荷28に電力を供給するようになる。図17は、このような場合に負荷28が消費する電力を表わす図である。二次電池22が負荷28に電力を供給するようになると、太陽電池20の電圧は二次電池22の電圧に等しくなる。太陽電池20が電力を供給する能力よりも二次電池22が電力を供給する能力が高いためである。太陽電池20の電圧が二次電池22の電圧に等しくなると、太陽電池20が供給できる電力は、本来供給できる電力よりも少なくなる。太陽電池20が供給できる電力を二次電池22が供給してしまうためである。この場合、太陽エネルギを十分に利用できず、かつ必要以上に二次電池22の電力を使ってしまうため、太陽エネルギの利用効率は悪くなる。二次電池22の電圧が太陽電池20の最大電力点電圧より低ければ低いほど、太陽エネルギの利用効率は悪くなる。
図15、図16、図17は二次電池22の電圧が太陽電池20の最大電力点電圧よりも低い場合の例について図示してきたが、二次電池22の電圧が太陽電池20の最大電力点電圧より高い場合にも、太陽エネルギの利用効率は悪くなる。図18は、太陽エネルギの利用効率が悪くなることを表わす図である。図18のようにA点で太陽電池20が最大電力を出せば、負荷における電力需要を賄える場合でも、二次電池22の電圧の方が高いためB点で動作してしまう。
以上の説明の通り、太陽電池20の最大電力点電圧と二次電池22の電圧との差が大きくなるにつれ、太陽エネルギの利用効率は悪くなる。この差を小さいままに維持することは困難である。太陽電池20の最大電力点電圧が日射量や太陽電池20表面の温度により刻々と変化するためである。
本発明は上述の問題点を解決するためになされたものであって、その目的は、太陽エネルギを効率よく利用できる発電装置を提供することにある。
上記目的を達成するために、本発明のある局面に従うと、発電装置は、太陽電池と、蓄積手段と、変換手段と、第1の防止手段と、第2の防止手段とを含む。蓄積手段は、太陽電池の最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧で電力を出力するように、電力を蓄積する。変換手段は、太陽電池と蓄積手段とが出力する直流電力を交流電力に変換する。第1の防止手段は、蓄積手段が出力した直流電力が太陽電池に逆流することを防止する。第2の防止手段は、太陽電池が出力した直流電力が蓄積手段に逆流することを防止する。
また、上述した蓄積手段は、天候の区分を表わす期間における最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧で電力を出力するように、電力を蓄積するための手段を含むことが望ましい。
もしくは、上述した電力を蓄積するための手段は、1つの季節における最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧で電力を出力するように、電力を蓄積するための手段を含むことが望ましい。
もしくは、上述した電力を蓄積するための手段は、1年における最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧で電力を出力するように、電力を蓄積するための手段を含むことが望ましい。
また、上述した発電装置は、変換手段における入力側と出力側とを一定とするように、蓄積手段に電力を供給するための供給手段をさらに含むことが望ましい。
もしくは、上述した供給手段は、整流器と、スイッチとを含むことが望ましい。整流器は、変換手段に接続され、変換手段が変換した交流電力を直流電力に変換する。スイッチは、変換手段および整流器の一方に蓄積手段の接続先を切替える。
本発明の他の局面に従うと、発電装置は、太陽電池と、蓄積手段と、変換手段と、第1の防止手段と、第2の防止手段とを含む。蓄積手段は、太陽電池の最大電力点電圧の最大値に対して90パーセントから100パーセントまでのいずれかの電圧で電力を出力するように、電力を蓄積する。変換手段は、太陽電池と蓄積手段とが出力する直流電力を交流電力に変換する。第1の防止手段は、蓄積手段が出力した直流電力が太陽電池に逆流することを防止する。第2の防止手段は、太陽電池が出力した直流電力が蓄積手段に逆流することを防止する。
本発明に係る発電装置は、太陽エネルギを効率よく利用できる。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰返さない。
<第1の実施の形態>
図1は、本実施の形態に係る発電装置の構成を表わす図である。図1を参照して、本実施の形態に係る発電装置は、太陽電池20と、二次電池22と、インバータ26と、第1のダイオード30と、第2のダイオード32とを含む。太陽電池20は、光を受けると発電する。二次電池22は、後述する電圧で電力を出力するように、電力を蓄積する。インバータ26は、太陽電池20と二次電池22とが出力する直流電力を交流電力に変換する。本実施の形態に係るインバータ26は、上述したMPPT制御を実施しない。インバータ26は、変換された交流電力を負荷28に供給する。第1のダイオード30は、二次電池22が出力した直流電力が太陽電池20に逆流することを防止する素子である。第2のダイオード32は、太陽電池20が出力した直流電力が二次電池22に逆流することを防止する素子である。
図1は、本実施の形態に係る発電装置の構成を表わす図である。図1を参照して、本実施の形態に係る発電装置は、太陽電池20と、二次電池22と、インバータ26と、第1のダイオード30と、第2のダイオード32とを含む。太陽電池20は、光を受けると発電する。二次電池22は、後述する電圧で電力を出力するように、電力を蓄積する。インバータ26は、太陽電池20と二次電池22とが出力する直流電力を交流電力に変換する。本実施の形態に係るインバータ26は、上述したMPPT制御を実施しない。インバータ26は、変換された交流電力を負荷28に供給する。第1のダイオード30は、二次電池22が出力した直流電力が太陽電池20に逆流することを防止する素子である。第2のダイオード32は、太陽電池20が出力した直流電力が二次電池22に逆流することを防止する素子である。
本実施の形態に係る発電装置は、図示しないスイッチを含む。このスイッチは、第2のダイオード32と並列に接続されている。これにより、二次電池22は、インバータ26を介して図示しない商用電源からの電力を蓄積できる。
二次電池22が出力する直流電力の電圧は、次の要件を満たす電圧である。その要件とは、電圧Vmpに対して90パーセントから105パーセントまでのいずれかの電圧であるという要件である。電圧Vmpは、設置済みの太陽電池20の最大電力点電圧の最大値である。本実施の形態の場合、電圧Vmpは、1年における最大電力点電圧の最大値を意味する。このため、本実施の形態に係る発電装置を設置する場合、電圧Vmpを設置前に特定する必要がある。電圧Vmpを特定する方法は特に限定されない。たとえば、過去の実験データに基づいて特定する方法がある。
図2は、太陽電池20が発電する電力の大きさPとその電圧Vとの関係(P−Vカーブ)を表わす図である。図2において、黒丸は太陽電池20の最大電力点電圧を表わす。各曲線の近傍に付されている値は、各曲線の日射量を表わす。日射量の単位はワット毎平方メートルである。
図2によれば、日射量が500ワット毎平方メートルまでであれば日射量が増えるにつれ最大電力点電圧が高くなり、日射量が500ワット毎平方メートルを超えると日射量が増えるにつれ最大電力点電圧が低下する。これらの現象は、次の性質に基づく現象と考えられる。その第1の性質は、日射量が増加するにつれ最大電力点電圧が増加するという性質である。第2の性質は、太陽電池20の温度が高くなるにつれ最大電力点電圧が低くなるという性質である。本実施の形態に係る発電装置の設置にあたっては、図2に示すような図を実験に基づいて予め作成し、二次電池22が出力する直流電力の電圧をその図に基づいて決定する。
図3は、設定電圧の比率に対する発電量の比率を表わす図である。図3に基づいて、太陽電池20の最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧を二次電圧22の電圧とする理由を説明する。
図3において、細い線で描かれたカーブは晴天日におけるデータの軌跡を表わす。太い線で描かれたカーブは曇天日におけるデータの軌跡を表わす。図3において、横軸は設定電圧の比率を表す。図3において、縦軸は発電量の比率を表す。「設定電圧の比率」とは、二次電池22の電圧を最大電力点電圧で除算した値を表わす。「発電量の比率」とは、本実施の形態にかかる太陽電池20に対してMPPT制御を実施したときとしないときとで、太陽電池20の1日の発電量がどれだけ差があるかを表す比率である。「発電量の比率」は、MPPT制御を実施した場合の太陽電池20の1日の発電量を分母とし、MPPT制御を実施しない場合の太陽電池20の1日の発電量を分子とする。MPPT制御を実施しない場合、太陽電池20の発電量は二次電池22の電圧に依存する。
図3において、設定電圧の比率が「1」の場合、発電量の比率はほぼ100パーセントである。このことは、晴天日においては、MPPT制御をせず、かつ太陽電池20が出力する電力の電圧が二次電池22の電圧に等しくなったとしても、MPPT制御をした場合とほぼ同量の電力を発電できることを意味する。設定電圧の比率が「1.1」から「1.2」へと増大して行った場合、発電量の比率は97パーセントから80パーセントへと低下する。これは、二次電池22の設定電圧が高くなると太陽電池20が効率よく発電できないためである。太陽電池20が効率よく発電できないのは、太陽電池20の出力電圧が最大電力点電圧を大きく上回るためである。設定電圧の比率が「1」を超えた場合に発電量の比率が低下する傾向は曇天日において特に顕著になる。曇天時の場合、設定電圧の比率が「1.05」を超えると、発電量の比率は95パーセントから急激に低下している。即ち、MPPT制御をしないシステムで、設定電圧の比率を「1.05」より大きく設定すると天候が曇って来たときに、太陽電池が効率よく発電できなくなり利用効率が悪くなる。従って、MPPT制御をしないのであれば、設定電圧の比率を「0.9」から「1.0」までの間、即ち、太陽電池20の最大電力点電圧の最大値に対して90パーセントから100パーセントまでの間となる電圧を二次電圧22の電圧とすることが望ましい。なお、90パーセント以上となる電圧が望ましい理由は後述する。曇天時に発電量の比率が急激に低下する限界点の設定電圧の比率「1.05」に対し、望ましい上限を「1.0」としているが、晴天の多い地方に設置されたなどの理由により曇天時の効率低下を気にしなくてよい場合には、設定電圧の比率が「1.0」から「1.05」までの間、即ち、二次電圧22の電圧は、太陽電池20の最大電力点電圧の最大値に対して100パーセントから105パーセントまでの間であってもよい。一方、太陽電池20の最大電力点電圧の最大値に対して90パーセントから100パーセントまでのいずれかの値に二次電圧22の電圧が等しければ、本実施の形態に係る発電装置のユーザは、天候の影響をあまり受けることなく、適切な効率で変換された電力を得ることができる。
これより設定電圧の比率の望ましい上限は決まったが、望ましい下限については上限での発電量の比率95パーセント以上の範囲から求める。図3において、晴天日の場合、設定電圧の比率が「0.9」を下回ると、発電量の比率は95パーセントを下回る。日射量が大きくなる時間帯において太陽電池20が効率よく発電できないためである。従って、MPPT制御をしないのであれば、設定電圧の比率が「0.9」以上、即ち、太陽電池20の最大電力点電圧の最大値に対して90パーセント以上となる電圧を二次電圧22の電圧とすることが望ましい。設定が可能であれば、太陽電池20の最大電力点電圧の最大値に対して90パーセント以上となる電圧を二次電圧22の電圧としてもよい。
以上の説明が、太陽電池20の最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧を二次電圧22の電圧とする理由である。太陽電池20の最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧を二次電池22の電圧とすることで、MPPT制御をせず、かつ太陽電池20が出力する電力の電圧が二次電池22の電圧に等しくなったとしても、MPPT制御をした場合の95パーセント程度以上の電力を得ることができる。太陽電池20の最大電力点電圧の最大値に対して95パーセントから100パーセントまでのいずれかの電圧を二次電池22の電圧とすることで、MPPT制御をせず、かつ太陽電池20が出力する電力の電圧が二次電池22の電圧に等しくなったとしても、MPPT制御をした場合の95パーセント程度以上の電力を得ることができる。
図4、図5、および図6は、日射量についての参考となる図である。図4は、晴天日の日射量の推移例を表わす図である。図4は、日本国の奈良県で2月に測定されたデータに基づいて描かれた図である。図4に示すデータの場合、日射量の最大値は974ワット毎平方メートルである。図5は、曇天日の日射量の推移例を表わす図である。図5も、日本国の奈良県で2月に測定されたデータに基づき描かれている。図5に示すデータの場合、日射量の最大値は360ワット毎平方メートルである。図4が表わすデータと図5が表わすデータとによれば、曇天日における日射量の総量は、晴天日における日射量の総量の10分の1程度である。図6は、日射量と最大電力点電圧との関係を表わす図である。図6が表わすデータによると、日射量の最大値が974ワット毎平方メートルのとき最大電力点電圧は198ボルトである。日射量の最大値が360ワット毎平方メートルのとき最大電力点電圧は210ボルトである。
以上のような構造に基づく、本実施の形態に係る発電装置の動作について説明する。
本実施の形態に係る発電装置が設置された地域の電気は当初快晴であったとする。その地域の天候が快晴である間には、太陽電池20は発電することとなる。太陽電池20は、発電した直流電力を第1のダイオード30を通じてインバータ26に供給する。太陽電池20が発電した直流電力をインバータ26は交流電力に変換する。インバータ26は変換した交流電力を負荷28に供給する。MPPT制御は実施されないが、図3に示すデータから明らかなように、MPPT制御が実施された場合の少なくとも95パーセントの電力が太陽電池20から得られる。
本実施の形態に係る発電装置が設置された地域の電気は当初快晴であったとする。その地域の天候が快晴である間には、太陽電池20は発電することとなる。太陽電池20は、発電した直流電力を第1のダイオード30を通じてインバータ26に供給する。太陽電池20が発電した直流電力をインバータ26は交流電力に変換する。インバータ26は変換した交流電力を負荷28に供給する。MPPT制御は実施されないが、図3に示すデータから明らかなように、MPPT制御が実施された場合の少なくとも95パーセントの電力が太陽電池20から得られる。
その後、天候が曇りになると、太陽電池20が発電する電力量は低下する。その結果、太陽電池20が発電する電力量よりも負荷28が消費する電力量が多くなると、二次電池22はインバータ26を介して負荷28に電力を供給する。MPPT制御は実施されないが、図3に示すデータから明らかなように、MPPT制御が実施された場合の少なくとも95パーセントの電力が太陽電池20から得られる。
以上のようにして、本実施の形態に係る発電装置は、太陽光から得たエネルギを負荷に供給できる。その際負荷に供給される電力は、MPPT制御が実施された場合とほぼ同程度の電力である。これにより、本実施の形態に係る発電装置は、次の効果を得ることができる。第1の効果は、低コストで太陽光発電システムが実現できるという効果である。その理由は、高価なDDコンを使わないことにある。これに付随して、交換部品の点数が少なくなり、メンテナンスも容易になる効果もある。第2の効果は、次の点で、高いエネルギ効率を得ることができるという効果である。即ち、MPPT制御機能のないシンプルなシステムにおいても、効率95%のDDコンバータを用いてMPPT制御した場合に匹敵する高いエネルギー効率が得られているという点である。第3の効果は、制御回路などを簡略化できるという効果である。その理由は、複雑なMPPT制御を行わないことにある。第4の効果は、蓄電池の消耗を抑え交換回数を減らすことができるという効果である。太陽電池から効率良く電力が供給され、かつ蓄電池からの電力の供給が抑制されることによる、充放電量の減少によるものである。第5の効果は、太陽光の有効利用ができるので、自然エネルギの利用拡大を図ることができるという効果である。
なお、本実施の形態の変形例にかかる発電装置は、太陽電池20の容量と二次電池22の容量との比が1:0.5から1:3の範囲に含まれる装置であってもよい。たとえば、太陽電池20の容量が1kWあれば、二次電池22の容量が3kWであってもよい。太陽電池20の容量と二次電池22の容量との比が上述した範囲にある場合、二次電池22の容量が最適化されるためである。この比率は、太陽電池の電力を効率よく取り出したときに太陽電池の電力が多少余る程度の丁度よい比率である。二次電池の設定電圧が悪い従来のシステムは、太陽電池の電力を十分に引き出しきれていないため、二次電池を余分に用意する必要があった。即ち、太陽電池の容量の3倍以上の二次電池を用意していた。本実施の形態にかかる発明なら、太陽電池の電力を有効に利用できるので、二次電池の設置容量が少なくて済む。
<第2の実施の形態>
図7は、本実施の形態に係る発電装置の構成を表わす図である。図7を参照して、本実施の形態に係る発電装置は、太陽電池20と、二次電池22と、インバータ26と、第1のダイオード30と、第2のダイオード32と、整流器34と、スイッチ36とを含む。第2のダイオード32と並列に接続されるスイッチは設けられていない。整流器34は、インバータ26と二次電池22とに接続され、負荷28と共用される電線を通じてインバータ26が変換した交流電力を直流電力に変換する。これにより、本実施の形態に係る発電装置は、インバータ26における入力側と出力側とを一定とするように、二次電池22に電力を供給する素子を含むこととなる。スイッチ36は、インバータ26および整流器34の一方に二次電池22の接続先を切替える。なお、その他のハードウェア構成については前述の第1の実施の形態と同じである。それらについての機能も同じである。したがって、それらについての詳細な説明はここでは繰返さない。
図7は、本実施の形態に係る発電装置の構成を表わす図である。図7を参照して、本実施の形態に係る発電装置は、太陽電池20と、二次電池22と、インバータ26と、第1のダイオード30と、第2のダイオード32と、整流器34と、スイッチ36とを含む。第2のダイオード32と並列に接続されるスイッチは設けられていない。整流器34は、インバータ26と二次電池22とに接続され、負荷28と共用される電線を通じてインバータ26が変換した交流電力を直流電力に変換する。これにより、本実施の形態に係る発電装置は、インバータ26における入力側と出力側とを一定とするように、二次電池22に電力を供給する素子を含むこととなる。スイッチ36は、インバータ26および整流器34の一方に二次電池22の接続先を切替える。なお、その他のハードウェア構成については前述の第1の実施の形態と同じである。それらについての機能も同じである。したがって、それらについての詳細な説明はここでは繰返さない。
以上のような構造に基づく、発電装置の動作について説明する。
スイッチ36は、二次電池22が整流器34に接続されるような状態にあることとする。この状態で、整流器34は太陽電池20の余剰電力を直流電力に変換する。整流器34はその直流電力を二次電池22に供給する。これにより、二次電池22は充電される。
スイッチ36は、二次電池22が整流器34に接続されるような状態にあることとする。この状態で、整流器34は太陽電池20の余剰電力を直流電力に変換する。整流器34はその直流電力を二次電池22に供給する。これにより、二次電池22は充電される。
二次電池22が十分電力を蓄積した後、スイッチ36は二次電池22が接続される回路を切替える。スイッチ36の切替え方法は特に限定されない。たとえばユーザがスイッチ36を操作する方法であってもよい。スイッチ36が回路を切替えた後、太陽電池20が供給する電力が低下すると、二次電池22は、インバータ26を介して、先に蓄積した電力を負荷28に供給する。
以上のようにして、本実施の形態に係る発電装置は、整流器34を通じて二次電池22を充電できる。これにより、本実施の形態に係る発電装置は、双方向インバータが含まれていなくても二次電池を充電できる。
なお、本実施の形態の変形例に係る発電装置の場合、整流器34は、図示しない商用電源から供給された交流電力を二次電池22に供給してもよい。
<第3の実施の形態>
図8は、本実施の形態に係る発電装置の構成を表わす図である。図8を参照して、本実施の形態に係る発電装置は、太陽電池20と、第1の二次電池23と、インバータ26と、第1のダイオード30と、第2のダイオード32と、スイッチ38と、第2の二次電池24と、スイッチ40と、第3の二次電池25とを含む。第1の二次電池23と第2の二次電池24と第3の二次電池25とは電力を蓄積する。スイッチ38とスイッチ40とは第1の二次電池23と第2の二次電池24と第3の二次電池25とを直列に接続させる。第1の二次電池23と第2の二次電池24と第3の二次電池25とは、スイッチ38とスイッチ40とによって、次に述べる電力を出力するように動作する蓄電ユニットとなることとする。その電力とは、次に述べる電圧に対して90パーセントから105パーセントまでのいずれかの電圧の電力である。その電圧とは、1つの季節における最大電力点電圧の最大値である。このために、第1の二次電池23の容量と第2の二次電池24の容量と第3の二次電池25の容量とは、図2に示したデータと同様のデータに基づいて決定されていることとする。なお、その他のハードウェア構成については前述の第1の実施の形態と同じである。それらについての機能も同じである。したがって、それらについての詳細な説明はここでは繰返さない。
図8は、本実施の形態に係る発電装置の構成を表わす図である。図8を参照して、本実施の形態に係る発電装置は、太陽電池20と、第1の二次電池23と、インバータ26と、第1のダイオード30と、第2のダイオード32と、スイッチ38と、第2の二次電池24と、スイッチ40と、第3の二次電池25とを含む。第1の二次電池23と第2の二次電池24と第3の二次電池25とは電力を蓄積する。スイッチ38とスイッチ40とは第1の二次電池23と第2の二次電池24と第3の二次電池25とを直列に接続させる。第1の二次電池23と第2の二次電池24と第3の二次電池25とは、スイッチ38とスイッチ40とによって、次に述べる電力を出力するように動作する蓄電ユニットとなることとする。その電力とは、次に述べる電圧に対して90パーセントから105パーセントまでのいずれかの電圧の電力である。その電圧とは、1つの季節における最大電力点電圧の最大値である。このために、第1の二次電池23の容量と第2の二次電池24の容量と第3の二次電池25の容量とは、図2に示したデータと同様のデータに基づいて決定されていることとする。なお、その他のハードウェア構成については前述の第1の実施の形態と同じである。それらについての機能も同じである。したがって、それらについての詳細な説明はここでは繰返さない。
以上のような構造に基づく発電装置の動作について説明する。
ユーザは、季節に応じてスイッチ38とスイッチ40とを操作する。これにより、二次電池22と第2の二次電池と第3の二次電池とが負荷28に供給する電圧は季節により変化する。
ユーザは、季節に応じてスイッチ38とスイッチ40とを操作する。これにより、二次電池22と第2の二次電池と第3の二次電池とが負荷28に供給する電圧は季節により変化する。
季節が夏であれば、スイッチ38とスイッチ40とをオフにする。春と秋とにおいて、ユーザはスイッチ38をオンにし、かつスイッチ40をオフにする。冬において、ユーザはスイッチ38と40とをオンにする。
以上のようにして、本実施の形態に係る発電装置は、季節に合わせて二次電池が供給する電力の電圧を変更できる。その電圧が変更されることにより、太陽電池は効率よく太陽エネルギを電力に変換する。二次電池の電圧が変更されることにより、太陽電池の最大電力点電圧が二次電池の電圧を下回るなどといった事態が回避されるからである。その結果、季節に応じた気温の変動が激しい環境にあっても太陽エネルギを効率よく利用できる発電装置を提供することができる。
なお、本実施の形態の第1の変形例にかかる発電装置は、複数の季節にまたがる期間に合わせて二次電池が供給する電力の電圧を変更できる装置であってもよい。たとえば、緯度が高い地域においては、寒暖の差にもよるが、四季に合わせて二次電池が供給する電力の電圧を変更するよりも、日の出から日没までの時間がどの範囲にあるかということに合わせて電圧を変更する方が合理的である場合もある。あるいは、発電装置は、乾季や雨季に合わせて二次電池が供給する電力の電圧を変更できる装置であってもよい。これらの変形例に基づき、二次電池は、定電圧源的な特性を持つ場合は、すなわち一定の電圧で電力を出力する電池である場合は、次に述べる電圧で電力を出力するように電力を蓄積するユニットであってもよいといえる。その電圧とは、天候の区分を表わす期間における最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧である。
また、本実施の形態の第2の変形例にかかる発電装置は、上述した期間とは異なる所定の期間に合わせて二次電池が供給する電力の電圧を変更できる装置であってもよい。そのような期間は発電装置が設置される場所その他の事情により特定される期間であってもよい。これらの変形例に基づき、二次電池は、定電圧源的な特性を持つ場合は、すなわち一定の電圧で電力を出力する電池である場合は、次に述べる電圧で電力を出力するように電力を蓄積するユニットであってもよいといえる。その電圧とは、設置済みの太陽電池の所定の期間における最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
20 太陽電池、22 二次電池、23 第1の二次電池、24 第2の二次電池、25 第3の二次電池、26 インバータ、28 負荷、30 第1のダイオード、32 第2のダイオード、34 整流器、36,38,40 スイッチ、42,46 DDコン。
Claims (7)
- 太陽電池と、
前記太陽電池の最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧で電力を出力するように、前記電力を蓄積するための蓄積手段と、
前記太陽電池と蓄積手段とが出力する直流電力を交流電力に変換するための変換手段と、
前記蓄積手段が出力した直流電力が前記太陽電池に逆流することを防止するための第1の防止手段と、
前記太陽電池が出力した直流電力が前記蓄積手段に逆流することを防止するための第2の防止手段とを含む、発電装置。 - 前記蓄積手段は、天候の区分を表わす期間における前記最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧で前記電力を出力するように、前記電力を蓄積するための手段を含む、請求項1に記載の発電装置。
- 前記電力を蓄積するための手段は、1つの季節における前記最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧で前記電力を出力するように、前記電力を蓄積するための手段を含む、請求項2に記載の発電装置。
- 前記電力を蓄積するための手段は、1年における前記最大電力点電圧の最大値に対して90パーセントから105パーセントまでのいずれかの電圧で前記電力を出力するように、前記電力を蓄積するための手段を含む、請求項2に記載の発電装置。
- 前記発電装置は、前記変換手段における入力側と出力側とを一定とするように、前記蓄積手段に電力を供給するための供給手段をさらに含む、請求項1に記載の発電装置。
- 前記供給手段は、
前記変換手段に接続され、前記変換手段が変換した交流電力を直流電力に変換する整流器と、
前記変換手段および整流器の一方に前記蓄積手段の接続先を切替えるスイッチとを含む、請求項5に記載の発電装置。 - 太陽電池と、
前記太陽電池の最大電力点電圧の最大値に対して90パーセントから100パーセントまでのいずれかの電圧で電力を出力するように、前記電力を蓄積するための蓄積手段と、
前記太陽電池と蓄積手段とが出力する直流電力を交流電力に変換するための変換手段と、
前記蓄積手段が出力した直流電力が前記太陽電池に逆流することを防止するための第1の防止手段と、
前記太陽電池が出力した直流電力が前記蓄積手段に逆流することを防止するための第2の防止手段とを含む、発電装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006126212A JP2007300728A (ja) | 2006-04-28 | 2006-04-28 | 発電装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006126212A JP2007300728A (ja) | 2006-04-28 | 2006-04-28 | 発電装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007300728A true JP2007300728A (ja) | 2007-11-15 |
Family
ID=38769749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006126212A Withdrawn JP2007300728A (ja) | 2006-04-28 | 2006-04-28 | 発電装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007300728A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2807740A1 (en) * | 2012-01-24 | 2014-12-03 | Robert Bosch GmbH | System and method for system-level power point control of a photovoltaic device |
JPWO2013018826A1 (ja) * | 2011-08-01 | 2015-03-05 | 国立大学法人東京工業大学 | 太陽光発電システム |
JP2020048259A (ja) * | 2018-09-14 | 2020-03-26 | 株式会社東芝 | 蓄電型光電池およびそれを用いた蓄電型光電池システム |
JP2021535725A (ja) * | 2018-11-22 | 2021-12-16 | ディジログ テクノロジーズ プロプライエタリー リミテッド | 太陽電池またはソーラーパネルエネルギー抽出システム |
-
2006
- 2006-04-28 JP JP2006126212A patent/JP2007300728A/ja not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013018826A1 (ja) * | 2011-08-01 | 2015-03-05 | 国立大学法人東京工業大学 | 太陽光発電システム |
EP2807740A1 (en) * | 2012-01-24 | 2014-12-03 | Robert Bosch GmbH | System and method for system-level power point control of a photovoltaic device |
JP2015512080A (ja) * | 2012-01-24 | 2015-04-23 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh | 光起電装置のシステムレベル電力点制御のためのシステム及び方法 |
US9563224B2 (en) | 2012-01-24 | 2017-02-07 | Robert Bosch Gmbh | System and method for system-level power point control of a photovoltaic device |
JP2020048259A (ja) * | 2018-09-14 | 2020-03-26 | 株式会社東芝 | 蓄電型光電池およびそれを用いた蓄電型光電池システム |
JP2021535725A (ja) * | 2018-11-22 | 2021-12-16 | ディジログ テクノロジーズ プロプライエタリー リミテッド | 太陽電池またはソーラーパネルエネルギー抽出システム |
EP3884355A4 (en) * | 2018-11-22 | 2022-09-28 | Digilog Technologies Pty Ltd. | ENERGY GENERATION SYSTEM WITH SOLAR CELLS OR SOLAR PANELS |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108496288B (zh) | 家用能源设备及操作家用能源设备的操作方法 | |
JP5584763B2 (ja) | 直流配電システム | |
EP2715904B1 (en) | System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads | |
JP5995041B2 (ja) | 充電制御装置、太陽光発電システム、および充電制御方法 | |
KR102048047B1 (ko) | 태양광 기반의 자율 독립형 마이크로그리드 시스템 및 그 운전방법 | |
WO2007086472A1 (ja) | 電力供給システム | |
JP5363254B2 (ja) | 分散型電源システム | |
KR101752465B1 (ko) | 주간모드 및 야간모드 기능을 구비한 태양광발전 시스템의 제어 방법 | |
AU2011213747A1 (en) | Solar power generation system and method | |
US10331157B2 (en) | Method and apparatus for managing power flow between an alternate energy source and a storage device | |
JP2007252146A (ja) | 給電システム | |
KR20140034848A (ko) | 충전 장치 | |
CN105680471A (zh) | 用于来自可再生能源的功率的转换和优化消耗管理的装置 | |
WO2015133136A1 (ja) | 電源システム | |
JP5645783B2 (ja) | 電力系統支援システム | |
JP5841279B2 (ja) | 電力充電供給装置 | |
JP2024009124A (ja) | 電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム | |
JP2014534794A (ja) | 公共の電力送電網への供給に対する安全装置を備えた光発電装置 | |
KR101571439B1 (ko) | 가정용 태양광 에너지 거래를 위한 시스템 및 방법 | |
JP2007300728A (ja) | 発電装置 | |
KR20150085227A (ko) | 에너지 저장 시스템 및 그의 제어 방법 | |
KR101587488B1 (ko) | 계통 연계형 시스템에서의 고효율 배터리 충방전 시스템 및 방법 | |
JP2007018180A (ja) | 太陽光発電システム | |
US20220200287A1 (en) | Power control apparatus, control method for power control apparatus, and distributed power generating system | |
JP2003116224A (ja) | 太陽光発電システム及びその電力変換装置、並びに該システムの制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090707 |